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Factor Models of Stock Returns: GARCH Errors

versus Time - Varying Betas
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Panagiotis Samartzisz

Abstract

This paper investigates the implications of time-varying betas in factor models for stock

returns. It is shown that a single-factor model (SFMT) with autoregressive betas and

homoscedastic errors (SFMT-AR) is capable of reproducing the most important stylized

facts of stock returns. An empirical study on the major US stock market sectors shows

that SFMT-AR outperforms, in terms of in-sample and out-of-sample performance, SFMT

with constant betas and conditionally heteroscedastic (GARCH) errors, as well as two

multivariate GARCH-type models.
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1 Introduction

The analysis of the statistical properties of stock returns has been a research area

of great interest since the beginning of 1950s. One of the most useful and intuitive

statistical models for stock returns is the single factor model (SFM) which, together

with its multivariate generalization (the multiple factor model), form the basis for

many asset pricing models, such as the Arbitrage Pricing Model (APT), put for-

ward by Ross (1976) or the Intertemporal Capital Asset Pricing Model (ICAPM),

introduced by Merton (1973). The SFM attempts to capture the intuitive idea that

asset returns are driven by unanticipated changes (surprises) of a common underly-

ing factor. More speci�cally, in the context of SFM, the return, ri, of a security (or

a portfolio) i, i = 1; 2; :::; n, is linearly related to an exogenous (zero-mean) variable

M through the linear regression ri = ai + �iM + ui. The error term, ui, in this

model has zero mean, �nite variance and satis�es the condition E (ui jM) = 0,

8i = 1; 2; :::; n. Furthermore, the theoretical assumption that the correlation be-

tween ri and rj; i 6= j stems solely from the common �causal�factor M entails the

assumption that Cov(ui; uj) = 0, for every i and j; i 6= j: The slope coe¢ cient, �i, is

interpreted as a measure of the systematic risk of the stock i, and is usually referred

to as the �beta coe¢ cient�, or simply the �beta�of the stock i.

SFM is a single period model. In the estimation of this model using time series

data, it is usually assumed that the aforementioned linear relationship between ri;

i = 1; 2; :::; n and M is time-invariant. Under this (often implicit) assumption, the

stochastic process fri;tg, i = 1; 2; :::; n is probabilistically caused by the stochastic

process fMtg through the temporal relationship ri;t = ai + �iMt + ui;t, hereafter

referred to as SFMT, with fui;tg being an iid process with zero mean and �nite

variance, �2�i. As a consequence, all the statistical properties of fri;tg, i = 1; 2; :::; n,

are determined solely by those of fMtg and fui;tg. This means that SFMT is a well-

speci�ed statistical model and hence, empirically adequate. Empirical adequacy of

SFMT means that the parameters ai, �i and �
2
�i
are time-invariant, and the error
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term ui;t is an iid process.

Has SFMT been found to be empirically adequate? The answer is negative.

There are at least two sources for the empirical failure of SFMT. The �rst one lies in

the fact that the error process fui;tg has been found to exhibit temporal dependence,

which is usually identi�ed as conditional heteroscedasticity (CH). The second source

of empirical inadequacy of SFMT comes from studies suggesting that the regression

coe¢ cient �i is not constant over time. Important studies o¤ering evidence for a

time-varying beta, �i;t; include Blume (1971, 1975), Fabozzi and Francis (1978),

Fisher and Kamin (1985), Sunder (1980), Ohlson and Rosenberg (1982), Bos and

Newbold (1984), Collins, Ledolter and Rayburn (1987), Bos and Fetherston (1992,

1995) and Fa¤, Lee and Fry (1992).

The response of the empirical literature to the aforementioned empirical fail-

ures of SFMT has taken various forms among which the following two are the most

prominent. The �rst response consists in replacing the assumption of independence

of the error sequence with the assumption that fui;tg exhibits non-linear depen-

dence, which usually takes the form of a GARCH-type model. Note that the re-

sulting model, hereafter referred to as SFMT-GARCH, retains the (rather strong)

assumption of a time-invariant beta. The second response focuses on the problem

of beta instability, thus specifying models with stochastic parameters. For exam-

ple, Shanken (1990) models the time varying beta as a linear function of observable

state variables. Alternatively, the time varying beta is often treated as a stochastic

(hidden) process. To this end, Fabozzi and Francis (1978) assumed that �i;t is an

i.i.d process with �nite variance, while Fisher and Kamin (1985), Sunder (1980), Bos

and Newbold (1984) and Jostova and Philipov (2005) allowed for persistence in the

variation of beta by assuming that �i;t follows a �rst-order autoregressive (AR(1))

process (including the case of a random walk). Ohlson and Rosenberg (1982) and

Collins, Ledolter and Rayburn (1987) proposed a hybrid of these two models by
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assuming that �i;t is the sum of a random and an AR(1) processes1. Overall, these

studies suggest the emergence of another variant of SFMT, namely the one in which

the slope coe¢ cient is modeled as an autoregressive process, whilst the error term

ui;t retains its independence property. The resulting model in which �i;t is assumed

to follow an AR(1) process, will be hereafter referred to as SFMT-AR.

Both SFMT-GARCH and SFMT-AR may be thought of as emerging from im-

posing alternative sets of restrictions on the vector stochastic process fZi;tg, Zi;t =

[ri;t;Mt]
0. Under this point of view, the question of which of the two models is

empirically adequate is translated into the question of which of the two sets of

restrictions is supported by the data, which has both empirical and theoretical in-

terest. Indeed, moving from SFMT-GARCH to SFMT-AR may be theoretically

interpreted as shifting interest from imposing conditions on the temporal behavior

of the non-systematic risk to modeling explicitly the dynamics of the (theoretically

more interesting) systematic risk. In other words, in spite of the fact that SFMT-

GARCH and SFMT-AR may be thought of as alternative parameterizations of the

same process, these two models o¤er quite di¤erent theoretical explanations of the

observed regularities. In the context of SFMT-AR and SFMT-GARCH, the stylized

facts of stock returns are explained (at least partly) by the persistent variation of

the systematic risk or that of the idiosyncratic risk, respectively.2

The preceding discussion leads, quite naturally, to the following question: Is there

any SFMT-type model that combines the main features of both SFMT-GARCH and

SFMT-AR? In an attempt to produce such a model, one may assume that fZi;tg

follows a bivariate GARCH process. In such a case, the model that arises by con-

1More recently, Andersen et al. (2005) o¤ered convincing evidence for the autoregressive nature
of betas. Building on their previous work on the relationship between realized volatility and condi-
tional covariance matrix (Andersen et al., 2003), they constructed quarterly and monthly realized
betas for 25 stocks of the Dow Jones Industrial Average index using high-frequency returns. These
realized beta series exhibit positive serial correlation, which is adequately captured by stationary,
low-order autoregressive models (see also Jostova and Philipov, 2005, for additional evidence on
the autoregressive nature of beta).

2The motivation for a comparative study of SFMT-AR and SFMT-GARCH is enhanced by
the fact that this remark remains valid when SFMT-AR and SFMT-GARCH are augmented by
additional risk factors.
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ditioning on Mt; hereafter referred to as SFMT-B-GARCH, exhibits a time varying

beta (under the usual covariance/variance interpretation) and a conditionally het-

eroscedastic error. It is important to note, however, that although SFMT-B-GARCH

is perfectly eligible as a statistical model, it nonetheless lacks the �theoretical �a-

vor�of SFMT-AR and SFMT-GARCH. This is because, SFMT-B-GARCH treats

ri;t and Mt as causally symmetrical, instead of explicitly assuming that Mt is the

sole causal factor of ri;t: Put di¤erently, the presence of Mt on the right-hand side

of the SFMT equation should not merely be the result of �conditioning on Mt,�

but it should re�ect the theoretical role of Mt as the common cause of all ri;t�s,

i = 1; 2; :::; n: However, since quite often, the shortage of theoretical elegance is

more than compensated by forecasting performance, we include SFMT-B-GARCH

in our set of competing SFMT-type models.

What is the empirical performance of SFMT-GARCH, SFMT-AR and SFMT-B-

GARCH? Since all these models exhibit mean conditional independence properties

(since Mt represents unanticipated changes of the risk factor), their comparison

should focus on how well each of these models approximates the second-order e¤ects

of fZi;tg. To this end, we distinguish between in-sample and out-of-sample perfor-

mance. In-sample performance of a given model is satisfactory, if each and every

probabilistic assumption that de�nes this model is supported by the available data.

On the other hand, the out-of-sample performance of any of the aforementioned

models is determined by the ability of the model to predict the covariance matrix

�tjt�1 of rt, rt = [r1;t; r2;t; :::; rn;t]0, accurately, based on the information available up

to t� 1. Since �tjt�1 is unobservable, the question of the out-of-sample performance

of the models under study may reduce to that of which of these models results in the

most e¢ cient diversi�cation of the underlying n assets. More speci�cally, if these n

assets are used at each t to construct optimal portfolios in the Markowitz sense, then

which of the three competing models under consideration, namely SFMT-GARCH,

SFMT-AR and SFMT-B-GARCH, comes closer to delivering the Markowitz ideal
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portfolio? Put di¤erently, which of these models achieve the most e¢ cient man-

agement of portfolio risk? Moreover, is the best of these models good enough? In

other words, does any of the aforementioned models produce diversi�cation gains

that are superior to those achieved by the naive (1=N) rule? This last question

becomes particularly interesting in the light of the strong evidence, o¤ered by De

Miquel, Garlappi and Uppal (2007), against the ability of several standard methods

for estimating �tjt�1 to beat the (1=N) rule in terms of portfolio e¢ ciency. Note

however, that the aforementioned results refer to an observation frequency, namely

monthly, in which most of the second-order e¤ects have been washed out via tem-

poral aggregation. This leaves an important question unanswered: Does any of the

aforementioned parametric models for CH - when applied to higher than monthly

frequencies - produce any diversi�cation gains over the (1=N) rule?

The remainder of this paper is organized as follows: Section 2 de�nes the SFMT-

AR model, analyzes its theoretical properties and studies the problem of estimat-

ing its parameters in some detail. More speci�cally, the �rst part of this section

demonstrates that SFMT-AR implies that the generating process fri;tg exhibits the

theoretical properties of conditional heteroscedasticity and leptokurtosis. A rather

interesting result, emerging from this analysis is that SFMT-AR produces CH even

in the case in which the factor process fMtg is independent. This result, already

introduced above, implies that the empirical regularities of stock returns may be

caused not by the probabilistic properties of the underlying risk factor, but rather

by the persistent time variation of the systematic risk. The second part of Section

2 discusses estimation issues concerning SFMT-AR and presents the results of a

small Monte Carlo study, which show that the proposed estimator exhibits satisfac-

tory �nite-sample properties. Section 3 estimates SFMT-GARCH, SFMT-AR and

SFMT-B-GARCH using weekly US stock returns data and compares their in-sample

and out-of-sample forecasting performance. To account for the possibility thatMt is

a poor proxy of the market portfolio, we also consider an additional model, hereafter
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referred to as SFMT-MGARCH, in which the errors of the ten factor models are

jointly modelled as a multivariate GARCH process. The results from this section

suggest that none of the four heteroscedastic factor models under consideration is

fully adequate in terms of the adopted in-sample criteria. However, all these models

o¤er signi�cant portfolio e¢ ciency gains over the (1=N) rule. Moreover, with the

exception of SFMT-B-GARCH, these models dominate, in terms of all the usual out-

of-sample criteria adopted in the literature, both the homoscedastic SFMT model

and the method of estimating �tjt�1 via the sample moments. Among the four

heteroscedastic factor models under consideration, SFMT-AR seems to achieve the

best out-of-sample performance, closely followed by SFMT-GARCH. Interestingly,

the performance of SFMT-B-GARCH, that is the model supposed to combine the

virtues of SFMT-AR and SFMT-GARCH, is remarkably poor. Section 5 concludes

the paper.

2 The Single Factor Model with Autoregressive Beta (SFMT-

AR)

First, a note on notation. Throughout the paper, we will use normal letters for

numbers or random variables, bold non-capital letters for vectors and bold capital

letters for matrices. Let us consider a market with n assets (stocks) and let ri;t be

the one-period continuously compounded return on an individual stock, de�ned as

ri;t = pi;t � pi;t�1; where pi;t is the natural logarithm of the price of the particular

stock. Following the discussion of the previous section, we assume that ri;t is related

to an observable factor, Mt via the following relationship:

ri;t = �i + (�i + �i;t)Mt + ui;t; i = 1; 2; :::; n (1)
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where �i and �i are real numbers, and ui;t, �i;t, are zero-mean sequences of random

variables whose exact properties will be de�ned below. Equation (1) can be written

in vector form as follows:

rt = �+ (� + �t)Mt + ut; (2)

where r0t = [r1;t; r2;t; : : : ; rn;t], �0 = [�1; �2; : : : ; �n], �
0 = [�1; �2; : : : ; �n] and u

0
t =

[u1;t; u2;t; : : : un;t].

Assumption M: �i;t follows a zero-mean AR(1) process,

�i;t = 'i�i;t�1 + "i;t; j'ij < 1, 1 � i � n (3)

and 266664
ut

Mt

"t

377775 � NIID
0BBBB@0;

266664
�u 0 0

0 �2m 0

0 0 �"

377775
1CCCCA (4)

where "t = ["1;t; : : : ; "n;t]
0, �u = diag

�
�2u1 ; : : : ; �

2
un

�
, and �" = diag

�
�2"1 ; : : : ; �

2
"n

�
.

Remark: The assumption that Mt is independent may appear to be overly

restrictive and inconsistent with the empirical properties of the variables that are

usually called to play the role of Mt: However, if CH is deduced from a model in

which Mt is independent, it is quite natural to assume that this result will continue

to hold in the case that Mt exhibits properties similar to those that SFMT-AR

attempts to explain. In other words, SFMT-AR with independent Mt constitutes

the least favorable case for deriving CH.

From assumption M we have that, �� := V ar(�t) = diag
�
�2�1 ; �

2
�2
; : : : ; �2�n

�
;

where,

�2�i = V ar
�
�i;t
�
=

�2"i
1� '2i

.
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Equation (3) can be also written in vector form as

�t = ��t�1 + "t , (5)

where �=diag('1; '2; : : : ; 'n).

Remark:

In the case of constant beta, i.e. ri;t = �i + �iMt + ui;t; i = 1; 2; :::; n, the

assumption that [u0t;Mt]
0 is NIID with mean 0 and covariance matrix �c de�ned as

�c =

264 �u 0

0 �2m

375 ,

implies that rt is niid with E(rt) = � and V ar(rt) = �2m��
0+�u. On the contrary,

as will be shown below, the assumption that [u0t;Mt; "
0
t]
0 is niid, that is assumption

(4), together with the assumption of autoregressive betas, that is assumption (3),

imply that rt is a non-Gaussian stationary process, exhibiting non-linear temporal

dependence.

2.1 Theoretical Properties of SFMT-AR

Let us now analyze the probabilistic properties of the process rt, implied by SFMT-

AR. Let Ft�1 = �(r1; :::; rt�1;M1; :::;Mt�1) to be the information up to time t � 1;

where �(r1; :::; rt�1;M1; :::;Mt�1) denotes the smallest sigma-algebra generated by

the collection fr1; :::; rt�1;M1; :::;Mt�1g:

(I) Conditional Heteroscedasticity

From assumptionM we obtain:

V ar (rt) = E
�
((� + �t)Mt + ut) ((� + �t)Mt + ut)

0�
= �2mE

�
(� + �t) (� + �t)

0�+ �u = �2m (�� + ��0) + �u (6)
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and

V ar(rt j Ft�1) =

= E
�
((� + �t)Mt + ut) ((� + �t)Mt + ut)

0 j Ft�1
�
=

= �2mE
�
(� + �t) (� + �t)

0 j Ft�1
�
+ �u =

= �u + �
2
m

��
� +��t�1

� �
� +��t�1

�0
+ �"

�
=

= �2m�" + �u + �
2
m

�
� +��t�1

� �
� +��t�1

�0
(7)

Under the diagonality of �u the returns ri;t; i = 1, 2,: : :, n, are related only through

Mt, in the sense that the idiosyncratic terms ui;t and uj;t do not contribute in

Cov (ri;t; rj;t) and Cov (ri;t; rj;t j Ft�1). Equation (7) demonstrates that SFM-AR

implies that rt is a conditionally heteroscedastic process.

Remarks:

(i) Equation (6), together with the martingale-property of frtg discussed below,

imply that frtg is a second-order stationary process.

(ii) Under assumption M, the constant beta SFM arises as a special case in which

"t � 0 for every i and t and � � 0. In such a case, V ar (rt j Ft�1) = V ar (rt) =

�2m��
0+�u , which is time invariant. Conditional homoscedasticity arises also in the

case of non-persistent random betas. Indeed, when the autoregressive parameters,

'i, of the stochastic betas are zero (see, for example, Fabozzi and Francis, 1977),

we have V ar (rt j Ft�1) = V ar (rt) = �2m�" + �u + �
2
m��

0, which means that rt

is conditionally homoscedastic. On the other hand, in the general case in which

'i 6= 0, equation (7) implies that Cov (ri;t; rj;t j Ft�1) is time varying. In other

words, the presence of conditional heteroscedasticity cannot be accounted for solely

by assuming that
�
�i;t
	
is a random sequence. Indeed, it is the persistence of �i;t

that gives rise to conditional heteroscedasticity.

(iii) As already noted, assumptionM implies independence for the factor sequence

fMtg. This means that SFMT-AR is capable of producing CH solely in terms of the
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autoregressive nature of betas. Put it di¤erently, individual stock returns are likely

to exhibit volatility clustering, even if the single factor a¤ecting them has much

simpler dynamic properties.

(II) Leptokurtosis

We now show that SFMT-AR implies that the unconditional distribution of

stock returns is a mixture of normal distributions and derive the kurtosis coe¢ cient,

which implies a positive excess kurtosis. First note that from the independence

between ut, Mt and "t, postulated in assumptionM, conditional on the realization

of �t and all the information that is generated up to time t � 1, Ft�1; we have

that E [rt j �t;Ft�1] = � and V ar [rt j �t;Ft�1] = �u + �2m(� + �t)(� + �t)0. On

the other hand, since [u0t;Mt; "
0
t]
0 is multivariate normal, we directly conclude the

following proposition:

Proposition 1: The unconditional distribution of rt is a mixture of normal distri-

butions and is described by:

rt �MN
�
�;�u + �

2
m(� + �t)(� + �t)

0� , (8)

where MN stands for the mixed normal distribution.

The analytic expression of the kurtosis coe¢ cient of rt is given in Theorem 1:

Theorem 1: Under Assumption M, the kurtosis coe¢ cient of the unconditional

distribution of ri;t is given by:

Kurt(ri;t) =
E
�
(ri;t � E[ri;t])4

�
V ar2(ri;t)

= 3 +
12�2i�

2
�i
�4m

V ar2(ri;t)
: (9)

Proof: see Appendix A.

Remarks:

(i) The above theorem proves that, in general, stock returns are leptokurtic, except
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for the case that the excess kurtosis,

12�2i�
2
�i
�4m

V ar2(ri;t)

is equal to zero, i.e. when ��i = 0 or, when ��i 6= 0 and �i = 0 (the case �m = 0 is

ruled out a-priori since it implies a degenerate process for Mt).

(ii) Equation (9) shows that the degree of persistence of �i;t as measured by 'i is

not the only factor that a¤ects the degree of leptokurtosis of the distribution of ri;t:

In other words, leptokurtosis may be present even if 'i = 0; provided that �i;t is a

stochastic sequence, that is, ��i 6= 0:

(iii) In the context of the linear SFMT with constant beta, the leptokurtosis of ri;t

could be accounted for by either the leptokurtosis of Mt or that of ui;t or both. In

the context of SFMT-AR, leptokurtosis arises even under the assumption that Mt

and ui;t (as well as �i;t) are Gaussian processes.

2.2 Estimation Issues

We �rst use a Kalman �lter approach to derive the Gaussian log-likelihood function

of SFMT-AR. The parameters of this model may be estimated using the maximum

likelihood method. Note that assumption M implies that conditional on Mt and

Ft�1, we have

0B@
264"t
ut

375
�������Mt;Ft�1

1CA � N

0B@
2640
0

375 ;
264�" 0

0 �u

375
1CA ; (10)

where �u and �" are diagonal matrices de�ned in section 2.

Next, let us de�ne

�t=t�1 = E[�t j Ft�1]

Pt=t�1 = E[(�t � �t=t�1)
0
(�t � �t=t�1) j Ft�1]
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to be the conditional mean and the conditional covariance matrix of �t, respectively.

Then we have,

E[rt j Mt;Ft�1] = �+ (� + �t=t�1)Mt;

V ar[rt j Mt;Ft�1] =M
2

t Pt=t�1 +�u;

Cov[rt;�t j Mt;Ft�1] =MtPt=t�1:

By virtue of (10), it follows that

0B@
264�t
rt

375
�������Mt;Ft�1

1CA � N

0B@
264 �t=t�1

�+ (� + �t=t�1)Mt

375 ;
264 Pt=t�1 MtPt=t�1

MtPt=t�1 M
2

t Pt=t�1 +�u

375
1CA .

The above result allows us to derive the updating equations:

�t=t = E[�t j Ft] = �t=t�1 +MtPt=t�1F
�1
t=t�1vt=t�1;

Pt=t = V ar[�t j Ft] = Pt=t�1(I�M2
t Pt=t�1F

�1
t=t�1);

where vt=t�1 = rt�E[rt jMt;Ft�1] = rt���(� + �t=t�1)Mt; and Ft=t�1 = V ar[rt j

Mt;Ft�1] = E[vt=t�1v
0

t=t�1 jMt;Ft�1) =M
2

t Pt=t�1 +�u:

Finally, the prediction equations are given by:

�t=t�1 = ��t�1=t�1;

Pt=t�1 = �Pt�1=t�1�+�":

Note that the eigenvalues (i.e. the diagonal elements) of the matrix � are assumed

to lie inside the unit circle, implying that �t is covariance-stationary and thus,

we may set the starting value for the recursion, �1=0 = 0 and its associated MSE

vec(P1=0) = (I � (�
�))�1vec(�"), where 
 is the Kronecker product and vec is

the linear transformation of a n�n matrix into a column of size n2� 1 under which
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the columns of the matrix are stacked on top of one another. With these initial

values for the recursion and a set of values for the hyper-parameters �;�;�;�" and

�u; we obtain the sequences f�t=t�1gTt=1 and fPt=t�1gTt=1:

Given the results above, the sample log-likelihood is given by:

TX
t=1

log f(rt j Mt;Ft�1) =

= �TN
2
log(2�)� 1

2

TX
t=1

log j Ft=t�1 j �
1

2

TX
t=1

v
0

t=t�1F
0

t=t�1vt=t�1:(11)

Note that if �" = 0 and � 6= 0, then we end up with a zero-mean AR(1) model

whose coe¢ cients vary deterministically. In this case the log-likelihood function

does not provide an estimator for �, since it attains the same maximum for any �

whose eigenvalues are less than one in absolute value. In other words, this particular

parameter con�guration causes identi�cation failure for �: Pagan (1980) provides

su¢ cient conditions for the maximum likelihood estimates of the parameters of

general state space models to be consistent and asymptotically normal. In the

case of the SFMT-AR model, these conditions amount to: (i) model identi�cation

(this excludes the case �" = 0;� 6= 0), (ii) stationarity of the state process, that

is j�ij < 1; i = 1; 2; :::; n, (iii) second-order stationarity of fri;tg ; i = 1; 2; :::; n

(see Remark (i) in section 2.1) and (iv) the model parameters taking values inside

the permissible parameter space. To maximize (11), we employ the Levenberg�

Marquardt algorithm, put forward by Levenberg (1944), which has been shown to

be more robust than the Gauss�Newton algorithm.

For the initial estimates of the hyper-parameters �;�;�;�" and �u; we use

OLS estimators. More speci�cally, we estimate the regression:

rt = �+ �Mt + ut; (12)

from which we obtain the initial value of the hyper-parameter �0
u: Then, we apply
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rolling OLS to (12) to obtain rolling estimates,
�
�01; :::�

0
n�k+1

�
and

�
�01; :::;�

0
n�k+1

�
of � and � respectively and set �0 =

n�k+1X
i=0

�0i
n�k+1 and �

0 =

n�k+1X
i=0

�0i
n�k+1 ; where k is

the estimation window. Finally, �0 and �0
" are obtained from the AR(1) regression

�0t = ��
0
t�1 + "t, t = 1; :::; n� k + 1.3

In order to examine the �nite-sample performance of the proposed ML estimator

under alternative sets of the SFMT-AR parameters, we conduct a small Monte

Carlo study. In all the simulations that follow, the number of replications is equal

to 5000 and the sample size, T , is set equal to 250, 500, and 1000. Although many

alternative parameter sets were examined, we report the results from the following

four representative cases, for T = 1000:4

1:
�
a; �; �; �2u; �

2
"

�
= (0:0005; 1:20; 0:30; 0:00015; 0:200);

2:
�
a; �; �; �2u; �

2
"

�
= (0:0005; 1:10; 0:90; 0:00015; 0:025);

3:
�
a; �; �; �2u; �

2
"

�
= (0:0005; 1:00; 0:99; 0:00015; 0:0035);

4:
�
a; �; �; �2u; �

2
"

�
= (0:0005; 0:90; 0:10; 0:00035; 0:250):

The cases above, are representative of the corresponding ML estimates obtained in

the empirical applications of the next section. The �rst and last parameter settings

correspond to the case where the process f�tg has small persistence and is driven

mainly by the noise component, whereas the second and third parameter settings

correspond to the case in which the process f�tg is very close to being non-stationary.

The results for the four cases, are reported in Tables 1 and 2. Table 1 contains the

average bias, standard deviation, kurtosis and skewness coe¢ cients of the corre-

sponding ML estimators. The empirical sizes of the corresponding t-statistic for the

null hypothesis H0 : b� = �, � 2 fa; �; �; �2u; �2"g, at the 5% signi�cance level, are also
presented. In addition, table 2 includes the empirical sizes of the well-known BDS

3The betas have been demeaned.
4This sample size was chosen as representative of the actual sample size for the empirical results

that will be discussed in the next section.
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test proposed by Brock, Dechert, Scheinkman and LeBaron (1996), for testing the

hypothesis that the standardized residuals are iid. To calculate the BDS, we must

specify the values of two parameters, the embedding dimension, m, and the distance

parameter, "=s, where s denotes the sample standard deviation. Brock, Hsieh and

LeBaron (1991), suggest that " should take values in the interval [0:5; 1:5], and that

m should be in line with the number of observations. Given the selected sample

size T = 1000, and the fact that " a¤ects the power of the test, the reported results

correspond to m = 2; 3; 4; 5 and "=s = 1.

The results may be summarized as follows:

(i) The ML estimators of all the parameters in SFMT-AR work su¢ ciently well

for all the parameter con�gurations under study, including those in which the autore-

gressive coe¢ cient for f�tg is near unity (case 3). The average biases and standard

deviations decrease as the sample size increases and the biases are su¢ ciently small

even for T = 250. For example, for T = 500; the bias of b� is equal to -0.041, -0.062,
-0.055 and -0.03 for cases 1, 2, 3 and 4, respectively. When the sample size increases

to T = 1000; the corresponding bias decreases, in absolute terms, to -0.015, -0.015,

-0.008 and -0.005, respectively.

(ii) The t-statistics corresponding to the parameters a; �2u and �
2
" are properly

sized, for all the four cases under consideration, even for sample sizes as small as

T = 250: The t-statistics for b� = �; appear to be over-sized, even for T = 1000;

in the cases of strongly persistent betas, namely cases 2 and 3. Size distortions in

both directions are reported for the t-statistics of b� = � for all the four cases under
consideration except for case 2. This means that testing the hypothesis b� = � is, in
general problematic unless f�tg exhibits strong (but not extremely strong) persis-

tence. This is attributed to the small rate of convergence in the case of very high

and very low persistence. For example, in case 3, when the number of observations

increases to T = 4000, the size distortions become much smaller.5

5The empirical sizes for testing the hypotheses b� = � and b� = � become 3.88 and 8.06,
respectively.
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(iii) The empirical sizes of the BDS tests (reported in table 2), are in general

close to their nominal values, especially for m = 5 and T = 1000, for all the cases

under consideration.

3 Empirical Results

The empirical analysis of this paper is based on the S&P500 sector data (see, for

example, DeMiguel, Garlappi and Uppal (2007), and Anderson, Brooks and Katsaris

(2010) among others for similar datasets). We follow the Global Industry Classi-

�cation Standard (GICS), designed and maintained by Standard & Poor�s (S&P)

and Morgan Stanley Capital International (MSCI), which consists of the following

10 sectors: 1: Consumer Discretionary, 2: Consumer Staples, 3: Energy, 4: Fi-

nancials, 5: Healthcare, 6: Industrials, 7: Information Technology, 8: Materials, 9:

Telecommunications and 10: Utilities. The dataset consists of weekly returns on

the value-weighted indices of the aforementioned sectors, the returns on the S&P

500 Index (used as an approximation of the single factor, Mt) and the return of

the 90-day T-bill, which is used as a proxy for the risk-free rate6. All the series

are obtained from Bloomberg (except for the risk-free rate which was obtained from

Ken French�s Data Library website) and cover the period 22/9/1989 - 28/12/2012.

3.1 In-sample Comparisons

Using this dataset, we estimate the SFMT, SFMT-GARCH, SFMT-B- GARCH and

SFMT-ARmodels. As already mentioned, SFMT is the simple homoscedastic model

rt = � + �Mt + �t; in which f�tg is assumed to be a niid process with zero mean

and �nite variance-covariance matrix, �v = diagf�2v1 ; :::; �2vng: SFMT-GARCH is

de�ned as follows:
6Following the tradition of the empirical literature (see for example, Fama and French 1996, Ng,

Engle and Rothschild 1992) we employ excess rather than simple returns in the empirical analysis
of this section. To avoid additional notational burden, we shall refrain from changing the relevant
notation, which means that from now on ri;t will denote the excess return on asset i.
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rt = �+ �Mt + zt; (13)

where zt is a vector whose elements are zi;t =
p
hi;t"i;t; where hi;t = ci + 
i"

2
i;t�1 +

�ihi;t�1; i = 1; :::; n and f"i;tg is NIID(0,1). Note that since Mt is assumed to be

the only source of correlation among the elements of rt, the conditional covariance

matrix, �zt;t�1; of zt is diagonal. Then, �tjt�1;(SFMT�GARCH) = �
z
t;t�1 + �

2
m��

0:

SFMT-B-GARCH is de�ned as follows:

�
ri;t
Mt

�
=
�
�i
�m

�
+
�
ui;t
um;t

�
= �i+uit; i = 1; :::; 10

where

uit = ztH
1=2
i;t

and zt is a 2-dimensional IID process with zero mean and the identity covariance

matrix. We employ the constant correlation model7 of Bollerslev (1990) to parame-

terize H1=2
i;t , and therefore,

Hi;t =

264cii + 
ii"2i;t�1 + �iihii;t�1 �im
p
hii;t

p
hmm;t

�im
p
hii;t

p
hmm;t cmm + 
mm"

2
m;t�1 + �mmhmm;t�1

375 :
Note that, under SFMT-B-GARCH, in contrast to our approach up to now, we also

model explicitly the conditional variance of Mt: Under the assumptions thus far, we

may write ri;t = ai;t + bi;tMt + ui;t; where ai;t = �i � bi;t�m; bi;t =
him;t
hmm;t

and ui;t is a

zero-mean process with variance equal to and ~hii;t = hii;t�
h2im;t
hmm;t

. As a consequence,

the conditional covariance matrix of the 10 sectors is given by:

�tjt�1;(SFMT�B�GARCH) = btb
0
thmm;t + �

u
t;t�1;

where b0t = [b1;t; b2;t; : : : ; b10;t]
0
and �ut;t�1 = diag

�
~h11;t; : : : ; ~h1010;t

�
. Note that the

7Other methodologies, such as the diagonal BEKK or VECH, produce similar results.

17



time-varying betas can be re-written as:

bi;t =
him;t
hmm;t

= �im

p
hii;tp
hmm;t

; i = 1; :::; 10:

The estimation results for SFMT, SFMT-GARCH, SFMT-B-GARCH and SFMT-

AR are reported in Tables 3, 4, 5 and 6, respectively. These tables include also the

results from the application of the BDS test on the standardized residuals of the

aforementioned models.8 An additional standard test for the presence of second-

order e¤ects in the standardized residuals is also reported.

Additional diagnostic tests, aiming at assessing the degree of time variation in the

beta coe¢ cient, are reported in Figures 1 and 2 (Appendix B). These Figures contain

rolling estimates of the beta coe¢ cient for all the ten sectors under consideration

and for both models which assume a time-invariant beta, namely, for SFMT and

SFMT-GARCH9. The overall results may be summarized as follows:

(i) In the context of the constant-beta homoscedastic SFMT model, the OLS

estimates of beta from the ten sectors under consideration are quite disperse, ranging

from 0.58 for the Utilities sector to 1.35 for the Financials one. However, there is

strong evidence that this model is seriously misspeci�ed. For all the ten sectors, the

aforementioned test for higher-order temporal dependence rejects the hypothesis

that the standardized residuals form an independent sequence. Furthermore, the

rolling OLS estimates of beta, reported in Figure 1, leave no doubt that the constant

beta assumption does not enjoy empirical support. Indeed, in some cases the time

variation of betas is impressive. For example, in the case of Consumer Staples sector,

the estimates of beta range from -0.08 to 1.26 for the estimation periods 9-March

2001 and 29-October 1993, respectively.

(ii) As far as SFMT-GARCH is concerned, the ML estimates of its parameters

are broadly consistent with the ones reported in the empirical literature, that is, the

8The reported results correspond to the case where "=s = 1 and m = 3: Results for the cases
m = 2; 4 and 5 (not reported) provide similar conclusions.

9The �gures contain rolling betas for window size of 50 observations (1 year).
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sum of the GARCH coe¢ cients b
i + b�i is close to unity with b�i being much larger
than b
i. As expected, SFMT-GARCH performs far better than SFMT in terms of
in-sample performance criteria. Speci�cally, the standardized residuals of SFMT-

GARCH appear to be independent for all the sectors under consideration, with the

possible exceptions of Financials and Industrials. However, additional misspeci�ca-

tion testing reveals that SFMT-GARCH is not empirically adequate. Speci�cally,

the rolling ML estimates of beta in the context of SFMT-GARCH, reported in Figure

3, suggest that substantial (or even massive) parameter instability is still present.

This in turn implies that SFMT-GARCH does not capture adequately the exact

form of CH exhibited by the returns generating process. In other words, the time

variation of betas may be interpreted as evidence of important discrepancy between

the type of second-order e¤ects that truly characterize frtg and those implied by

SFMT-GARCH.

(iii) The SFMT-B-GARCH also performs far better than SFMT in terms of

in-sample performance criteria. However, the standardized residuals of SFMT-B-

GARCH as opposed to those of SFMT-GARCH, do not appear to be temporally

independent in general. On the other hand, SFMT-B-GARCH captures, to some

extent, the time variation of betas. These results show that the two GARCH models

produce di¤erent sets of empirical results with neither of them being clearly superior

to the other.

(iv) Turning to the SFMT-AR model, the �rst thing to observe is the emergence

of two distinct patterns of persistence for the beta process. Speci�cally, there is

one group of sectors (HP) consisting of Consumer Staples, Energy, Healthcare, In-

formation Technology and Materials for which the beta is highly persistent. The

rest �ve sectors form another subset (LP) for which the beta persistence is low

(Consumer Discretionary, Financials, Industrials) or even zero (Telecommunica-

tions, Utilities). As a result, HP exhibits strong second-order e¤ects as opposed

to LP in which dynamic heteroscedasticity is weak, if present at all. This varying
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degree of second-order e¤ects within the set of returns series under consideration im-

plied by SFMT-AR is in sharp contrast with the uniformity of volatility persistence

impinged upon the aforementioned series by SFMT-GARCH. As far as empirical

adequacy is concerned, SFMT-AR does not succeed in delivering independent stan-

dardized residuals in any of the ten series under study. This means that SFMT-AR

does not fully capture the second-order e¤ects of frtg : Another interesting question

would be to compare the time-variation of betas produced by SFMT-AR to that of

SFMT-B-GARCH. Table 7 reports the correlations between the conditional betas

from the two approaches, for each sector. These correlations suggest that betas

di¤er between the two approaches and sometimes, this di¤erence is substantial (see,

for example, the negative correlation in the case of the Telecommunication sector

betas). The overall assessment of the results on SFMT-GARCH, SFMT-B-GARCH

and SFMT-AR seem to suggest that neither of these models provide an adequate

characterization of the second-order dynamics of the returns generating process. As

a result, the relevant question becomes that of which of these models comes closer

to approximating the true CH exhibited by frtg : This question may also be stated

in the form: which of these models fares better in forecasting the next period�s

covariance matrix of returns? This question is addressed in the next sub-section.

(v) The estimated SFMT-GARCH conditional variance process di¤ers radically

from the SFMT-AR one, even in the cases where SFMT-AR delivers highly persistent

processes. Table 8 reports the correlation coe¢ cients between the two conditional

variance processes, for the ten sectors under consideration. These coe¢ cients are,

in general, close to zero or even negative. More speci�cally, the estimates of the

correlation coe¢ cient range from -0.561 to 0.613 for Information Technology and

Financials, respectively. It is interesting to note the strong negative correlation

between the SFMT-GARCH and SFMT-AR conditional variance processes for the

Information Technology sector, which is characterized by the most persistent beta

process among all the sectors under consideration. These results imply that in spite
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of the fact that both SFMT-GARCH and SFMT-AR entail second-order, persistent

e¤ects, the exact types of CH implied by these models are quite di¤erent.

3.2 Out-of-Sample Comparisons

To take into account the possibility that, eitherMt is not a good proxy of the market

portfolio, or that this is not the only factor accounting for the observed correlations

between ri;t and rj;t; we also consider an additional model, hereafter referred to as

SFMT-MGARCH, in which the errors of the ten factor models are jointly modelled

as a multivariate GARCH process. More speci�cally, de�ne r
0
t to be the (10 � 1)

time-series vector [r1;t; r2;t; : : : ; r10;t]
0
. Consider a system of 10 conditional mean

equations rt = a + bMt + ut; where ut = ztH
1=2
t and zt is a 10-dimensional IID

process with zero mean and the identity covariance matrix. Again, we employ the

constant correlation model to parametrize Ht, and therefore,

hij;t =

�
cii + 
ii"

2
i;t�1 + �iihii;t�1; i = j

�ij
p
hii;t

p
hjj;t; i 6= j

; i; j = 1; :::; 10:

Then, �tjt�1;(SFMT�MGARCH) = bb
0�2m +Ht:

The out-of-sample comparisons are carried out as follows: First, we select an ini-

tial sample, referred to as the estimation sample, for which all the competing mod-

els, namely SFMT, SFMT-GARCH, SFMT-B-GARCH, SFMT-MGARCH, SFMT-

AR, are estimated. Although various alternative estimation samples were tried

and produced similar results, our reported results refer to the period 22/9/1989 -

30/12/2005. Second, using the estimated parameters, we produce one-step ahead

forecasts of the conditional covariance matrix, �tjt�1; for each of the aforementioned

models for the period 6/1/2006 - 28/12/2012, thus obtaining 365 one-week ahead

forecasts. To remind the reader, the conditional covariance matrices implied by

SFMT, SFMT-GARCH, SFMT-B-GARCH, SFMT-MGARCH and SFMT-AR are
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given by:

�tjt�1;(SFMT ) = �v + �
2
m��

0;

�tjt�1;(SFMT�GARCH) = �z
t;t�1 + �

2
m��

0;

�tjt�1;(SFMT�BGARCH) = �ut;t�1 + hmm;tbtb
0
t;

�tjt�1;(SFMT�MGARCH) = Ht + �
2
mbb

0;

�tjt�1;(SFMT�AR) = �2m�" +�u + �
2
m

�
� + �t=t�1

� �
� + �t=t�1

�0
:

Using these matrices we calculate the global minimum variance portfolios together

with the corresponding realized portfolio returns. The reason for selecting the global

minimum variance portfolio is to minimize the estimation errors relating to the

estimation of the expected returns. This procedure results in 365 out-of-sample

realized portfolio returns for each model. For comparison purposes, apart from

the SFMT, SFMT-GARCH, SFMT-B-GARCH, SFMT-MGARCH and SFMT-AR

portfolios, we also calculate the portfolio returns that correspond to the case in which

in b�tjt�1 is the sample covariance matrix (SCM) and also for the case in which the

portfolio is formed according to the naive 1/n (1=N) strategy. To assess the out-

of-sample performance of each strategy, we employ the following three criteria: (i)

the out-of-sample Sharpe ratio (SR = �i
�i
), (ii) the Certainty-Equivalent Return

(CEQ = �i � 

2
�i), where 
 is the risk-aversion coe¢ cient, and (iii) the out-of-

sample Treynor ratio (TR = �i
�i
), where �i is the portfolio�s beta relative to the

market portfolio. Following common practice, the CEQ return is de�ned to be the

risk-free rate that an investor is willing to accept in order to be indi¤erent between

choosing this riskless return and the return of the strategy. CEQ is calculated for

various values of 
; with largely similar results (the reported ones correspond to


 = 1).

The results, reported in Table 9, may be summarized as follows:

(i) The SFMT-AR strategy dominates all the other strategies under any of the
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performance criteria mentioned above, although di¤erences are marginal. For ex-

ample, the SR of SFMT-AR is greater than that of SFMT-GARCH, SFMT-B-

GARCH, SFMT-MGARCH, SFMT, SCM and 1=N by 6.24%, 105.50%, 5.00%,

11.77%, 14.58% and 456.48%, respectively. It is worth noting that all the statistical

methods dominate the naive 1=N strategy by a wide margin. This piece of evidence

runs counter to the view expressed in De Miquel, Garlappi and Uppal (2007) ac-

cording to which no statistical method for forecasting the returns covariance matrix

o¤ers signi�cant diversi�cation gains over the 1=N strategy.

(ii) The SFMT-GARCH strategy comes second to SFMT-AR, o¤ering some mi-

nor gains over the homoscedastic SFMT and the non-parametric SCM ones, but

very signi�cant gains over the naive 1=N strategy. It is also worth noting the excep-

tionally poor performance of SFMT-B-GARCH, which appears to be superior only

to that of 1=N strategy.

Finally, it would be interesting to examine the di¤erences between the fore-

casted covariance matrices produced by the two best performing models, namely

SFMT-AR and SFMT-GARCH. To this end, we de�ne a distance, dAR�GARCH be-

tween �tjt�1;(SFMT�AR) and �tjt�1;(SFMT�GARCH) and examine how this di¤erence

has evolved over the forecast period under consideration. Foerstner and Moonen

(1999) de�ne the distance between two symmetric semi-positive de�nite matrices as

the sum of the squared logarithms of the properly de�ned eigenvalues, that is:

dAR�GARCH =

vuut nX
i=1

ln(�i(�tjt�1;(SFMT�AR);�tjt�1;(SFMT�GARCH)))2

with the eigenvalues �i(�tjt�1;(SFMT�AR);�tjt�1;(SFMT�GARCH)); i = 1; :::; n obtained

from the solution of j ��tjt�1;(SFMT�AR)��tjt�1;(SFMT�GARCH) j= 0. The time evo-

lution of dAR�GARCH , presented in Figure 3 (Appendix B), suggests �rst that this

distance ranges from 1.08 on 25/01/2008 to 4.05 on 19/12/2008. It also suggests that

dAR�GARCH increased rapidly during the period of the recent �nancial crisis, return-
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ing to more normal levels after the �rst quarter of 2009. We obtain similar results

when we use the Frobenius norm to calculate the distance, between�tjt�1;(SFMT�AR)

and�tjt�1;(SFMT�GARCH); (see Figure 4 in Appendix B). Speci�cally, the results show

a signi�cant increase of the di¤erence between the conditional covariance matrices

produced by SFMT-AR and SFMT-GARCH during the one-year period that starts

approximately at the bankruptcy date of Lehman Brothers (9/15/2008). Motivated

by this observation, we examine the out-of sample performance of the models under

consideration for the period 9/2008 - 8/2009. Because the annualized returns are

negative for this period, the SR and TR statistics are not appropriate measures for

comparing the models.10

Table 10 presents the results concerning CEQ, as well as the annualized returns

and risk for each model. We observe that the strategy implied by SFMT � AR

combines the smallest (in absolute values) negative return with the lowest annualized

risk. This results to a CEQ which is at least 11,85% higher than the corresponding

value of the second best model (which, in terms of CEQ, is SFMT �MGARCH).

Note that the calculation of CEQ in Table 10 retains the value of 
 equal to 1. On the

other hand, it is worth noting that during the period that followed the bankruptcy

of Lehman Brothers, the risk aversion increased. This fact in combination with

the best performance of SFMT �AR in terms of both annualized return and risk,

implies that the di¤erence between the CEQ of SFMT � AR and the CEQ of the

second best model is actually bigger for this period.11

10For example, if two models produce comparable (in magnitude) annualized returns but the
annualized standard deviation (beta) of the �rst is larger, the Sharpe (Treynor) ratio of the �rst
model becomes smaller (less negative) than that of the second one.
11A natural extension of our empirical analysis would be to examine whether the combination of

autoregressive betas with GARCH errors would yield better out of sample performance. To this end
we repeated the out of sample study for the speci�c model (SFMT �ARG). The results, however,
were not satisfactory. Speci�cally, SFMT � ARG outperforms only SFMT � B �GARCH and
the equally weighted portfolio.
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4 Conclusions

This paper has examined the in-sample and out-of-sample performance of several

variants of the single factor model for stock returns. Attention was focused mainly

on SFMT-GARCH in the context of which the idiosyncratic risk is conditionally

heteroscedastic and SFMT-AR which assumes an autoregressive structure for the

systematic risk and homoscedasticity for the non-systematic one. A large part of the

paper dealt with the theoretical properties as well as the estimation issues of SFMT-

AR. It was proved that SFMT-AR is capable of reproducing the most important

stylized facts of individual stock returns, namely conditional heteroscedasticity and

leptokurtosis. Interestingly enough, this result continues to hold even in the case in

which the stochastic process generating the �unanticipated changes of the factor�

is independent. The empirical results showed that none of the factor models under

examination is fully empirically adequate, in terms of in-sample criteria. For exam-

ple, SFMT-GARCH still su¤ers from substantial beta variation whereas SFMT-AR

does not account fully for conditional heteroscedasticity.

However, these models o¤er signi�cant gains for forecasting next period�s co-

variance matrix of returns over the homoscedastic SFMT and the non-parametric

method of forecasting second moments via their sample analogues. Moreover, these

gains are maximized relative to the naive (1/N) allocation strategy, which in some

recent studies was found to deliver the greatest portfolio diversi�cation gains among

a set of strategies that include various statistical methods (see, e.g. De Miguel et.

al. 2007). Among the four conditionally heteroscedastic models under considera-

tion, namely SFMT-AR, SFMT-GARCH, SFMT-B-GARCH and SFMT-MGARCH,

the former was found to exhibit systematically the best out-of-sample performance,

closely followed by SFMT-GARCH.
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APPENDIX A

Proof of Theorem 1:

(a) For notational simplicity, we drop the subscript i. First note that
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where we have used the fact that for the Gaussian distributions, the third moment

is zero and fourth moment equals to three times the square of the second. Hence,

the kurtosis coe¢ cient of the unconditional distribution of stock returns is given by

Kurt(rt) =
E
�
(rt � E[rt])4

�
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= 3 +
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4
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Figure 1: Rolling estimates for SFMT betas
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Table 1: Monte-Carlo results

Panel A: Persistent betas

� � ln(�2u) ln(�2�) �

Case 1
bias 0:00 �0:01 �0:62 0:39 �1:49
std 0:00 0:59 0:53 4:90 0:49
kurt 3:02 3:00 3:00 3:80 12:84
skew 0:02 0:01 �0:08 �0:41 �1:97

size(%) 4:54 7:26 5:62 5:84 5:14
Case 3
bias 0:00 0:12 �0:52 7:57 �0:84
std 0:00 1:66 0:47 4:93 0:20
kurt 3:00 2:96 2:92 4:75 822:11
skew �0:01 �0:04 �0:13 �0:20 �22:09

size(%) 5:30 16:46 4:66 4:58 0:84

Panel B: Non-persistent betas

� � ln(�2u) ln(�2�) �

Case 1
bias 0:00 �0:01 �0:38 �5:01 �1:50
std 0:00 0:37 0:63 2:75 1:67
kurt 3:01 2:96 2:95 8:37 4:08
skew 0:03 �0:02 �0:07 �1:31 �0:41

size(%) 4:48 5:06 4:84 4:02 7:08
Case 4
bias 0:00 0:04 �0:20 �23:70 �0:48
std 0:01 0:49 0:61 6:44 3:19
kurt 3:06 2:94 3:00 18:72 3:34
skew 0:01 �0:01 �0:01 �2:87 �0:10

size(%) 5:46 4:66 5:44 4:40 13:72
Note: S ize denotes the empirica l size of the corresp onding t-
statistic for the null hypothesis d iscussed above. B ias and size
values are �102 and std �101.

Table 2: (%) empirical sizes for the BDS test

m

2 3 4 5

Case 1 3:52 3:86 4:12 4:96
Case 2 3:90 4:46 5:02 5:94
Case 3 3:56 3:58 4:08 5:20
Case 4 2:94 3:46 4:02 4:60
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Table 7: Correlation coe¢ cients between SFMT-AR and SFMT-B-GARCH condi-
tional betas

1 2 3 4 5 6 7 8 9 10

0.177 0.579 0.267 0.333 0.392 0.145 0.729 0.537 -0.128 0.157
Note: 1 : Energy, 2 : M ateria l, 3 : Industria ls, 4 : Consumer D iscretionary, 5 : Consumer Stap les, 6 : Healthcare, 7 : F inancia ls, 8 :
In formation Technology, 9 : Telecommunications and 10: U tilities.

Table 8: Correlation coe¢ cients between SFMT-AR and SFMT-GARCH conditional
variances

1 2 3 4 5 6 7 8 9 10

0.066 -0.230 -0.265 0.340 -0.248 0.034 0.678 -0.515 0.069 0.190
Note: 1 : Energy, 2 : M ateria l, 3 : Industria ls, 4 : Consumer D iscretionary, 5 : Consumer Stap les, 6 : Healthcare, 7 : F inancia ls, 8 :
In formation Technology, 9 : Telecommunications and 10: U tilities.

Table 9: Out-of-sample results (full sample)

Models SR CEQ(%) TR Ann. Ret.(%) Ann. Risk(%)

SFMT � AR 0.138 0.95 0.033 2.10 15.16
SFMT �GARCH 0.130 0.80 0.031 2.10 16.10
SFMT �B �GARCH 0.067 -0.13 0.016 1.02 15.12
SFMT �MGARCH 0.132 0.82 0.031 2.16 16.40
SFMT 0.124 0.70 0.029 1.97 15.94
Sample 0.121 0.65 0.028 1.92 15.94
1=n 0.025 -1.59 0.010 0.51 20.50

Table 10: Out-of-sample results (9/2008-8/2009)

Models CEQ(%) Ann:Ret:(%) Ann:Risk(%)

SFMT � AR �20:68 �16:40 29:27
SFMT �GARCH �24:37 �19:12 32:40
SFMT �B �GARCH �27:15 �22:64 30:02
SFMT �MGARCH �23:46 �17:90 33:35
SFMT �24:04 �19:20 31:13
Sample �23:84 �18:98 31:17
1=N �29:17 �21:29 39:69
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