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Switzerland

Abstract

Foster and Hart (2009) introduce an objective measure of the riskiness of an
asset that implies a bound on how much of one’s wealth is ‘safe’ to invest
in the asset while (a.s.) guaranteeing no-bankruptcy in the long run. In
this study, we translate the Foster-Hart measure from static and abstract
gambles to dynamic and applied finance using nonparametric estimation of
risk-neutral densities from S&P 500 call and put option prices covering 2003
to 2013. This exercise results in an option-implied market view of objec-
tive riskiness. The dynamics of the resulting ‘option-implied Foster-Hart
bound’ are analyzed and assessed in light of well-known risk measures in-
cluding value at risk, expected shortfall and risk-neutral volatility. The new
measure is shown to be a significant predictor of ahead-return downturns.
Furthermore, it is able to grasp more characteristics of the risk-neutral prob-
ability distributions than other measures, furthermore exhibiting predictive
consistency. The robustness of the risk-neutral density estimation method is
analyzed via a bootstrap.
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The price which a man whose available fund is n pounds may prudently
pay for a share in a speculation... (Whitworth 1870, p.217)

1. Introduction

Foster and Hart (2009) introduce a concept that relates the riskiness of
a given gamble to a critical wealth level above which it is ‘safe’ to enter
that gamble. Entering gambles below the critical wealth level is not safe in
the sense that it results in risk exposures that exhibit a positive probability
of bankruptcy in finite time. Conversely, safe gambles (a.s.) guarantee no-
bankruptcy. Importantly, the Foster-Hart risk measure is law-invariant; i.e.
it depends only on the underlying distribution and not on the risk attitude
of the investor. In this sense Foster and Hart (2009) refer to it as ‘objective’.

Thus far, despite its interesting theoretical properties, the Foster-Hart
criterion for no-bankruptcy has not been applied much in finance.3 In this
paper, we set out to propose a novel application of the measure using an
option-implied (hence forward-looking) perspective on the stock market, and
and to evaluate the resulting option-implied risk measure as regards its pre-
dictive significance and consistency.

Before we proceed to elaborate on our application in detail, it is worth
placing the Foster-Hart criterion amongst the most closely related risk mea-
sures, namely the ‘economic index of riskiness’ (Aumann and Serrano, 2008)
and the ‘Kelly criterion’ (Kelly, 1956; Samuelson, 1979). The ‘economic index
of riskiness’ measures a gamble’s risk instead of individuals’ risk perceptions
(Aumann and Serrano, 2008). The Aumann-Serrano index constitutes the
motivation for the formulation of the Foster-Hart criterion as an ‘objective’
(also ‘operational’) interpretation as a wealth level/fraction. The resulting
Foster-Hart criterion resembles the Kelly criterion formally with the differ-
ence that Kelly maximizes growth rates over sequences of gambles, while
Foster-Hart guarantees no-bankruptcy.4 Both, Kelly and Foster-Hart crite-
ria are deeply rooted in the very origins of mathematical risk analyses, and
indeed they are both first expressed in Whitworth’s seminal book Choice

3Exceptions include Anand et al. (2015); Bali et al. (2011, 2012).
4We shall make the mathematical connections clear when we formally introduce Foster-

Hart riskiness in the next section.
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and Chance in the year 1870.5 Importantly, these measures have important
decision-theoretic properties that are interesting for finance applications, and,
moreover, thet have been shown to matter crucially from the perspective of
evolutionary stability of stock markets (Evstigneev et al., 2006).

In this note, we translate FH from abstract gambles to applied option-
market dynamics using nonparametric estimation of risk-neutral densities
from S&P 500 call and put option prices covering 2003 to 2013. As the un-
derlying decisions are purchases of stocks, we are looking at scalable gambles,
which means that the Foster-Hart measure of riskiness as a ‘critical wealth
level’ can be re-interpreted as a ‘bound’ (between zero and one) that defines
the share of one’s wealth that is safe to invest. Henceforth, we shall write ‘FH’
as shorthand for the Foster-Hart measure of riskiness in the bounds/shares
interpretation.6

We shall address the question of how much of one’s wealth can one, in the
sense of Foster and Hart (2009), safely invest in the S&P 500 stock index.

Obviously, the answer is not straightforward, because the pig in the poke
regarding such real-world investment decisions is the underlying probability
distribution of the stock market, which typically is unknown not only to the
decision-maker but also to us as scientists. One may use the word ‘specu-
lation’ instead of ‘gamble’ to stress this feature (as in the above citation by
Whitworth 1870).7 Fundamental to our analysis is therefore a formulation of
probability distributions for developments of the S&P 500 stock index over
some finite horizon. One way to approach this would be to employ historical
return distributions, possibly in combination with a dynamic model as, for
example, in Anand et al. (2015). We, by contrast, extract risk-neutral densi-
ties from the information contained in call and put option prices written on
the S&P 500 stock index.

The economic rationale for choosing the option-implied approach over
other alternatives is that the option-implied information is inherently forward-
looking, hence the information used to quantify the ‘gamble’ regarding future
realizations of the S&P 500 stock index is both available when the investment
decision made and directly targeted at the consequences of that decision. We

5See pp. 216-219 for the no-bankruptcy proofs.
6The crucial (a.s.) no-bankruptcy guarantee is preserved by FH.
7Indeed, many of the rare real-world situations where the return distributions are known

to the decision-maker (and to the scientist) in a strict sense are gambling or casino situa-
tions, where FH would typically commend not to invest at all.
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rely on efficient markets or, perhaps somewhat weaker, a “wisdom of the mar-
ket” argument as regards why this information should be informative, instead
of making specific modeling assumptions. In other words, we assume that
the options are priced, on average, accurately to reflect underlying market
risks. The resulting ‘option-implied Foster-Hart bound’ is an aggregation of
the market information to a fraction of one’s wealth that is ‘safe’ to invest
in the S&P 500 stock index while guaranteeing no-bankruptcy.

The motivating assumption is that the investor considers how much of his
(unleveraged) wealth to invest in one single index stock, in our case one that
is tied to the S&P 500, based on information about the associated options
market. We analyze and assess option-implied FH in light of well-known risk
measures including value at risk (VaR), expected shortfall (ES), risk-neutral
volatility (RNV) and the volatility index (VIX), as well as the spread (TED)
between the London Interbank Offered Rate (LIBOR) and Treasury bills (T-
Bill) as a measure of credit risk. This approach turns out to be predictively
fruitful, especially in predicting large market downturns.

There are, however, some technical issues we have to address to make
the exercise work, because, in contrast to the original formulation of FH, the
gamble of investing in a stock based on option-implied information is both
continuous and dynamic. The original operationalization by Foster and Hart
(2009) has recently been generalized to our setting by Riedel and Hellmann
(2015) and Hellmann and Riedel (2015). To get most information out of the
options data, our estimation of the underlying risk-neutral densities (RNDs)
is done nonparametrically from S&P 500 call and put options prices using a
variant of the method by Figlewski (2010) introduced in (Leiss et al., 2015).

The empirical literature that is directly related to ours, to the best of our
knowledge, only consists of two excellent, recent papers; Bali et al. (2011,
2012). Bali et al. (2011) propose a generalized measure of riskiness nest-
ing those of Aumann and Serrano (2008) and Foster and Hart (2009). Their
measure is shown to significantly predict risk-adjusted market returns, and in
some cases even outperforms standard risk measures as evaluated historically.
Bali et al. (2012) build on Bali et al. (2011), but focus on economic down-
turns, finding empirical support for both Foster-Hart and Aumann-Serrano.
Compared with our approach, there are three key differences between ours
and the studies by Bali et al. (2011) and Bali et al. (2012), and while we
advance beyond them in some dimensions, we also take steps backward in
others.

First, quite differently to the risk measure introduced by Bali et al. (2011),
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which is a generalization of Foster and Hart (2009), ours is an attempt to
return to the objectivity feature of Foster-Hart in terms of its independence
from risk aversion. We achieve this by making a somewhat ‘brutal’ (be-
cause direct) move from the physical probability measure (P) to the option-
implied risk-neutral measure (Q). While this is inappropriate for most fi-
nancial analyses, where alternative approaches are preferred (e.g., Bliss and
Panigirtzoglou 2004; Kostakis et al. 2011), the direct P-Q move is both theo-
retically and empirically validated in our setting as it results in a ‘bound for
the Foster-Hart bound’; i.e. taking into account agents’ risk-aversion would
only lead to higher and thus riskier values for FH. It is in this sense that our
approach is closer in spirit to the original ‘satisficing’ approach of (Foster
and Hart, 2009, p. 802) (as opposed to an ‘optimizing’ approach as in, for
example, Kelly 1956). Furthermore, our approach thus also remains inde-
pendent of risk aversion, making it ‘objective’ as in Foster and Hart (2009)
(as opposed to Aumann and Serrano 2008 and Bali et al. 2011).

Second, in contrast to Bali et al. (2011), and more in the spirit of Bali
et al. (2012), we compare FH with other option-implied risk measures rather
than with historical measures. We believe this establishes a somewhat level
playing field, as then all measures are forward-looking. Our estimation of
full RNDs allows us to calculate virtually any option-implied risk measure.

Finally, and perhaps most importantly, we address the dynamic feature
of option-implied information as the time to maturity diminishes. By con-
trast, Bali et al. (2011, 2012) use the smoothed volatility surface by Op-
tionMetrics, which interpolates the raw options data so that the windows of
forward-looking remain of constant lengths. While this smoothed surface is
preferable for most scientific enquiries (hence the popularity of that data in
the literature), we are particularly interested in the dynamic component of
FH, to which the theoretical work by Hellmann and Riedel (2015) recently
opened the door. We therefore use the non-smoothed dynamic ‘raw’ options
data (provided by Stricknet).

Our main findings summarize as follows. First, a linear correlation analy-
sis suggests that FH provides an investor with additional information beyond
standard risk measures. Second, FH is shown to be a significant predictor
of large return downturns. Third, by contrast to standard risk measures,
FH captures a large number of characteristics of the risk-neutral probability
distributions. And finally, we evaluate a form of time-consistency of the risk
measures and find FH to be predictively consistent.

The remainder of this document is structured as follows. Next, we for-
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mally introduce and discuss FH in section two, and turn to the estimation
of RNDs in section three. Section four contains the analysis. Finally, section
five concludes.

2. Foster-Hart riskiness

2.1. No-bankruptcy

When applying Foster and Hart (2009) finance, it will prove useful to work
within the setup where the decision maker is allowed to take any proportion of
the offered gamble. In our case the gamble g consists of buying some multiple
of the risky asset at price S0, holding it over a period T > 0 and finally selling
it at price ST . Including dividends, we may define g as the absolute return
g := ST + Y − S0, where Y is the monetary amount of dividends being paid
over the period. This allows us to define the Foster-Hart bound FH ∈ (0, 1)
for a gamble with positive expectation as the zero of the equation

E [log (1 + r FH)] = 0, (1)

with r := g/S0 = (ST +Y −S0)/S0 being the relative return. Since in reality
any risky asset might default, FH is bounded from above by 1. Riedel and
Hellmann (2015) show that there exist gambles for which equation (1) has
no solution FH ∈ (0, 1), even if the expected return is positive. In this case
we may consistently set FH to one, FH = 1.

FH connects to the original definition of the Foster-Hart objective mea-
sure of riskiness as a wealth level R simply as FH = S0/R (Foster and Hart,
2009, p. 791). Varying between 0 and 1, one may interpret it as the fraction
of wealth at which it becomes risky to invest in the asset. Formally, this
may be expressed via a no-bankruptcy criterion. Following Foster and Hart
(2009), we define no-bankruptcy as a vanishing probability for ending up
with zero wealth when confronted with a sequence of gambles

P
[

lim
t→∞

Wt = 0
]

= 0. (2)

Foster and Hart (2009) (Theorem 2) show that no-bankruptcy is guaran-
teed if, and only if, the fraction of wealth invested in the risky asset is
always smaller than FH. In this case, wealth actually diverges; limt→∞Wt →
∞ (a.s.).
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2.2. Growth rates

FH can be interpreted as the limit between the positive and negative
geometric means of the gamble outcomes. A simple example may provide
some intuition. Assume that a risky asset at price S0 = $300 will, with
equal probability of one half, increase to ST = $420 or decrease to ST =
$200. Solving equation (1) reads as

(
1 + 2

5
FH
) (

1− 1
3
FH
)

= 1. The solution
FH = 0.5 is exactly that quantity balancing the potential gain and loss to an
expected geometric mean of 1. By contrast, investing a higher (lower) fraction
of wealth will result in a negative (positive) expected geometric mean. Thus
FH separates the regimes of expected negative and positive growth rates of
wealth. For an infinite sequence of gambles only investments in the latter
avoid bankruptcy.

A natural question is why FH (equation 1) sets the expected growth rate
to zero instead of maximizing it. Indeed, there is an extensive literature on
the corresponding maximal growth rate, which is often referred to as the
‘Kelly criterion’ (Kelly, 1956; Samuelson, 1979). (Foster and Hart, 2009, p.
802) succinctly comment on this relation as follows:

While the log function appears there too, our approach is different.
We do not ask who will win and get more than everyone else [...],
but rather who will not go bankrupt and will get good returns. It
is like the difference between ‘optimizing’ and ‘satisficing’.

In our eyes, and more importantly for our purposes, the main difference
between Kelly and FH lies in their respective applications. While the first
is an investment strategy explicitly stating how to allocate one’s portfolio
in order to maximize wealth growth, the latter is a risk measure indicating
the set of mathematically problematic portfolio allocations in the sense of
incurring bankruptcy risks. For us, the goal is to identify risky investment
decisions, which is why we prefer the latter interpretation.

2.3. A more conservative bound

While FH (equation 1) is defined under the physical probability measure
P, we will evaluate it under the option-implied risk-neutral measure Q. Al-
though Cox et al. (1985) argue from a theoretical standpoint that the RND
will converge to the physical probability density as the aggregate wealth of an
economy rises, more recent econometric work questions this hypothesis (e.g.
Brown and Jackwerth 2001). Since studies such as Bliss and Panigirtzoglou
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(2004) find remarkable consistencies in the deviations of the two measures
across markets, utility functions and time horizons, we shall address in this
section what our direct move between P and Q means for the validity of
option-implied FH in our analysis.

Intuitively, given a risk-averse representative investor, FH will be lower
under Q than under P. Hence, our FH thus evaluated under Q, even though
defined under P is justified as a ‘bound on the bound’. To make this state-
ment more formal, we follow Bliss and Panigirtzoglou (2004) to reconstruct
the subjective density function p from the RND q assuming, as an example,
a power utility function;

p(ST ) =
q(ST )/U ′(ST )∫
q(x)/U ′(x)dx

=
q(ST )SγT∫
q(x)xγdx

, (3)

where ST is the price of the underlying at maturity and U(ST ) = (S1−γ
T −

1)/(1 − γ). For a positive relative risk aversion coefficient γ > 0, it is clear
that this transformation shifts probability mass from lower towards higher
prices.8 Be S1 > S0 > 0, then

p(S1)/p(S0)

q(S1)/q(S0)
=

(
S1

S0

)γ
> 1. (4)

Technically, the above argument shows that p first-order stochastically domi-
nates q, hence FH increases – as the gamble becomes more ‘attractive’ (Foster
and Hart, 2009). This means that FH under will be a more conservative risk
measure under Q than under P, such that the bankruptcy property persists.
Throughout the literature one finds positive coefficients of relative risk aver-
sion for the representative agent, albeit of various magnitude (e.g. Arrow
1971; Friend and Blume 1975; Hansen and Singleton 1982, 1984; Epstein and
Zin 1991; Normandin and St-Amour 1998). In the spirit of Foster and Hart
(2009), and in the light of recent findings (Leiss et al., 2015) that indicate
changing risk attitudes over time as a result of events such as the Global
Financial Crisis, for example, we restrain from making somewhat arbitrary
assumptions on the utility of a representative agent and pursue directly with
option-implied quantities instead.

8Note that the same argument applies to exponential utilities with U(ST ) =
−(e−γSt)/γ, i.e. to the other type of utility function discussed by Bliss and Panigirt-
zoglou (2004).
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3. Risk-neutral densities

3.1. Theory

Several methods for estimating RNDs from options data as underlying
various risk assessment studies exist (e.g., Aı̈t-Sahalia and Lo 2000; Aı̈t-
Sahalia et al. 2001; Panigirtzoglou and Skiadopoulos 2004; Figlewski 2010,
to name just some of the most popular). Jackwerth (2004) provides an
excellent review. All these methods share the fundamental ‘inversion’ logic,
which we shall now proceed to sketch out.9

The fundamental theorem of asset pricing, stating that, in a complete
market, the current price of a derivative may be determined as the dis-
counted expected value of the future payoff under the unique risk-neutral
measure (e.g., Delbaen and Schachermayer, 1994), guides the way of infer-
ring information from financial options. The price Ct of a standard European
call option at time t with exercise price K and exercise time T on a stock
with price S is thus given as

Ct(K) = e−rf (T−t) EQ
t [max(ST −K, 0)] = e−rf (T−t)

∫ ∞
K

(ST −K)ft(ST )dST ,

(5)
where Q and ft are the risk-neutral measure and the corresponding RND,
respectively. Since option prices as well as the risk-free rate, rf , and time to
maturity, T − t, are observable, we may hope to invert equation (5) for the
RND.10

Several inversion methods have been proposed (Jackwerth, 2004). Be-
sides parametric approaches, where one assumes a specific form for the RND
with parameters that minimize the pricing error, a ‘trick’ by Breeden and
Litzenberger (1978) opens another route: if strikes were distributed contin-
uously on the positive real line, we could simply differentiate equation (5)
with respect to K to obtain the RN-distribution Ft and RND ft as

Ft(ST ) = erf (T−t)
∂

∂K
Ct(K) + 1, ft(ST ) = erf (T−t)

∂2

∂K2
Ct(K). (6)

9Skipping the risk-neutral density estimation, the spanning formula by Bakshi and
Madan (2000) poses a way of directly estimating the option-implied FH bound, as well as
risk-neutral volatility, skewness and kurtosis (Bakshi et al., 2003).

10One may at least proxy the true risk-free rate with, say, yields on 13-week T-Bills or
LIBOR.
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Again various methods exist to overcome the numerical problems associated
with the fact that options are only traded at discrete and unevenly spaced
strikes (Rubinstein, 1994; Aı̈t-Sahalia and Lo, 2000; Shimko et al., 1993).

3.2. A nonparametric approach

For our purposes, the relatively new approach by Figlewski (2010), as
adapted in the recent study (Leiss et al., 2015), turns out to be most suited
in order to get as much information out of the data as regard extreme events.
It combines a 4th-order polynomial interpolation of data points in implied
volatility space with appended generalized extreme value (GEV) tails beyond
the range of observed strikes. We shall briefly present this method here.

We start from bid and ask quotes for puts and calls with a given maturity
and transform the mid-prices to implied-volatility space via the Black-Scholes
equation (Black and Scholes, 1973). Note that we do not assume the Black-
Scholes model to price options correctly, but only use the equation as a math-
ematical tool. The implied volatilities of puts and calls are blended together
such that only the more liquid, and thus informative, out-of-the-money and
at-the-money data points are considered while ensuring a smooth transition
from puts to calls. The resulting famous ‘volatility smirk’ is interpolated
with a 4th-order polynomial weighted by open interest, thus, giving higher
importance to data points which contain more market information.11 After
a retransformation of the fit values to price space, we numerically evaluate
the empirical part of the RND according to equation (6).

As the range of strikes is finite, we have to choose a functional form of
the tails. Instead of the often-used log-normal function, Figlewski (2010)
employs the family of generalized extreme value (GEV) distributions (Em-
brechts et al., 2005, p. 265). The Fisher-Tippett theorem supports this
choice, stating that, under weak regularity conditions and after rescaling,
the maximum of any i.i.d. random variable sample converges in distribution
to a GEV distribution (Embrechts et al., 2005, p. 266). The GEV fam-
ily contains many relevant distributions, in particular also those with heavy
tails.12 A distribution of GEV-type is characterized by three parameters:

11Since our data set admits open interest weighting, we deviate as in Leiss et al. (2015)
here from the original approach by Figlewski (2010), who weighs such that fits outside the
bid-ask spread are penalized instead.

12The conceptually correct choice of extreme value family is the generalized Pareto dis-
tribution (GPD), since the risk-neutral tails correspond rather to the peaks-over-threshold
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location, scale and shape. We determine them by imposing the following
three connection conditions for the left and right tails separately: the GEV
density should match the empirical one at two specified quantile points and
conserve the probability mass in the tail.

Joining the empirical part with the tails eventually gives the full option-
implied RND. While there exist many approaches to estimate RNDs, we
argue that Figlewski’s method, as a combination of a model-free empirical
part and flexible extreme value tails, belongs to the most unbiased ones.
Allowing for non-standard features such as bimodality and fat tails will be
of advantage for analyzing the highly different regimes around the Global
Financial Crisis of 2008. We refer the interested reader to Leiss et al. (2015),
who discuss in detail the properties of RNDs during and around the Financial
Crisis (see also Figlewski 2010; Birru and Figlewski 2012).

In order to assess the robustness of our analysis regarding fitting assump-
tions, we also fitted risk-neutral densities by mix of two log-normal distribu-
tions to equation (5) as, for example, in Bahra (1996); Melick and Thomas
(1997); Söderlind and Svensson (1997); Jondeau et al. (2007). We found
qualitatively and quantitatively similar results, but the log-normal approach
to be less stable. Furthermore, we repeated the nonparametric technique,
while slightly perturbing the input data as follows. For every iteration, in-
stead of using mid-prices, we choose points in the bid-ask spread of every
option uniformly at random and proceed as described above, thus obtaining
a different risk-neutral density. Iterating 500 times per business day gives us
statistical significance of option-implied quantities in a way that is similar to
a bootstrap.

3.3. Data

In this study, we employ end-of-day data for standard European call
and put options on the Standard & Poor’s 500 stock market index (SPX)
covering the period from January 1st, 2003, to October 23rd, 2013. During
this decade the market for SPX options grew substantially from about 150K
to 890K contracts in average daily volume and from 3,840K to 11,883K in

method than the block-maxima method (Embrechts et al., 2005, pp. 264-291). Mathe-
matically this translates into applying the Pickands-Balkema-de Haan theorem instead of
Fisher-Tippett. However, because of their asymptotic equivalence and quantitative simi-
larity we may use either and refer to Embrechts et al. (1997, 2005); Birru and Figlewski
(2012) for a more detailed discussion.
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open interest at the end of period, respectively.13 Our data provided by
Stricknet consists of bid and ask quotes as well as open interest across various
maturities, but we focus on the very liquid monthly options expiring on the
third Friday every month. Daily values for index level, its dividend yield and
the yield of the 3-Month Treasury bill as a proxy of the risk-free rate are
taken from the Thomson Reuters Datastream.

We follow Figlewski (2010) in filtering the raw data, ignoring quotes with
bids below $0.50 and those that are more than $20.00 in the money, as such
bids come with high ambiguity due to large spreads. Moreover, we also
discard data points with midprices violating static no-arbitrage conditions.
Finally, to ensure well-behaved densities, we restrict our analysis to dates
with time to expiration of at least one week.14

In the following section, we will derive the option-implied risk measures
that we shall consider in our analysis. These are the Foster-Hart bound
(FH), value at risk (VaR), expected shortfall (ES) and risk-neutral volatility
(RNV). Moreover, we control for other risk measures popular in the industry
such as the Chicago Board Options Exchange Market Volatility Index (VIX),
also known as the “fear index” (Chicago Board Options Exchange, 2009),
which we obtain from the Thomson Reuters Datastream.15 Furthermore, as
a measure of perceived credit risk, we include the TED spread, which is the
difference between the 3-Month London Interbank Offered Rate (LIBOR)
and the interest rate on 3-Month Treasury bills (T-Bill).16

4. Empirical results

4.1. Option-implied risk indicators

Aı̈t-Sahalia and Lo (2000) is the pioneering work on option-implied mea-
sures of risk. Their study suggests that VaR under the risk-neutral measure
Q may capture aspects of market risk that VaR under the physical mea-
sure P does not. Aı̈t-Sahalia and Lo (2000) argue that “risk management

13See http://www.cboe.com/SPX for a detailed description of the options contracts and
recent market data.

14(i) As the range of relevant strikes shrinks on the way towards maturity, RNDs show
a strong peaking. (ii) Figlewski (2010) also notes that another reason may be price effects
from rollovers of hedge positions into later maturities around contract expirations.

15It is calculated as the 30-day expected variance of the S&P 500 Index and represents
volatility risk.

16LIBOR data is available at https://research.stlouisfed.org/fred2/series/USD3MTD156N.
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is a complex process that is unlikely to be driven by any single risk mea-
sure”, and conclude that the option-implied measure should rather be seen
as a compliment than substitute. In a similar fashion, Bali et al. (2011) set
out to assess the added value of their option-implied ‘generalized risk mea-
sure’ against traditional ones such as historical VaR, historical ES and an
option-implied measure of skewness (QSKEW; Xing et al. 2010). A Fama
and MacBeth (1973)-type of regression shows that their option-implied mea-
sure successfully explains the cross section of 1-, 3-, 6- and 12-month-ahead
risk-adjusted stock returns.17 Furthermore, Bali et al. (2012) find strong pre-
dictive power of the riskiness measures of both Aumann and Serrano (2008)
and Foster and Hart (2009) evaluated under option-implied the risk-neutral
measure for economic downturns as measured by the Chicago Fed National
Activity Index.18

In this work, we combine the previous approaches by Bali et al. (2011)
and Bali et al. (2012) and analyze if option-implied FH may help predict large
downturns in stock returns when controlling for other quantities evaluated
under the risk-neutral measure.19 For that, we calculate VaR and ES for
option-implied log-returns at the α = 5% level at time t,

VaRQ
t = − inf{x ∈ R : F r

t (x) ≤ α}, ESQ
t = −EQ

t [x ∈ R : x ≤ −VaRt] ,
(7)

where F r
t is the risk-neutral distribution of log-returns estimated at time t.20

In this definition VaR and ES are expressed in losses such that higher values
indicate higher risk. RNV is defined as the standardized second moment of

17Note, however, that the asset allocation implications of Bali et al. (2011)’s result are
limited: across all investment horizons the time-varying investment choice of an investor
with a relative risk aversion of three over the whole sample period of 1996–2008 ranges
only over a few percentage points.

18The Chicago Fed National Activity Index is an aggregate
measure for overall economic activity and inflationary pressure.
https://www.chicagofed.org/research/data/cfnai/historical-data

19Indeed, Bali et al. (2011) compare the option-implied Bali measure to historical VaR
and ES. Evaluating all risk measures under the same information set represents a somewhat
level playing field.

20One can easily go from annualized log-returns to prices as r = log(ST /S0)/T . The
RND expressed in log-returns is fr(r) = TST f

S(S).
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the risk-neutral density f(ST ),

RNV2
t =

1

(T − t)S2
t

∫ ∞
0

(ST − µt)2 ft(ST )dST , (8)

where T − t is the time to maturity, St the price of the underlying and µt the
mean of the density ft extracted at time t, respectively. Figure 1 displays
and compares the resulting quantities. All measures exhibit signatures of the
Global Financial Crisis of 2008 as well as the Greek and European sovereign
debt crises in 2010 and late 2011, respectively. Yet, it appears from Figure
1 that the behavior of FH is distinctly different from VaR, ES and RNV.
The corresponding one-standard-deviation bands are comparatively small,
suggesting that this observation is robust with respect to noise in the options
price data and not an artefact of our estimation technique. In particular, the
respective changes in the risk measures due to the crisis are by far larger
than the estimated variance.

A correlation table provides some first quantification of the relation be-
tween the various option-implied risk measures as well as with VIX and TED
spread (see Table 1). While the tail measures VaR and ES, as well as RNV,
are highly correlated amongst each other (with 98% and 81%), they correlate
with FH to only 20% - 46%. Indeed, it seems that FH captures different infor-
mation than VaR, ES or RNV. Furthermore, VIX and RNV exhibit a linear
correlation of 94%. This was to be expected as both are meant to capture
option-implied ahead-volatility. To avoid multicollinearity problems, we will
use in the following analyses only ES instead of VaR, and the VIX instead
of RNV.

4.2. Downturns
A glance at the FH definition (1) suggests that, due to the strongly con-

cave logarithm, FH may be particularly sensitive to left-tail risks, i.e. ex-
treme losses. We test this hypothesis using a dummy variable ∆rρt that
is one whenever the S&P 500 ahead-return until maturity of the option,
rt→T := log(ST/St), is lower than a threshold value ρ and zero otherwise:

∆rρt =

{
1, if rt→T = log (ST/St) < ρ,

0, if rt→T ≥ ρ,
(9)

where ST is the realized price at maturity. Figure 2 represents when those
return drawdowns occur over our data period. We run the logistic regressions,

∆rρt = a0,t + a1,t Rt, (10)
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Figure 1: Option-implied measures of riskiness.
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(a) Foster-Hart bound (FH).
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(b) Expected shortfall (ES).
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(c) Risk-neutral volatility (RNV).
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(d) Value at risk (VaR).

Various risk measures evaluated under the option-implied risk-neutral measure over time
(21-day moving average). The dashed red line marks the bankruptcy filing of Lehman
Brothers on September 15, 2008. FH (a) clearly shows a different behavior from ES (b),
RNV (c) and VaR (d), although all measures are determined on the same information set.
The grey area marks the one-standard-deviation band based on 500 bootstrap iterations
of density estimation.

where R ∈ R ≡
{

FHQ, ESQ, TED, VIX
}

. Furthermore, we control for
skewness and excess kurtosis of the RND,

Skewt = EQ
t

[(
S − µt
σt

)3
]
, Kurtt = EQ

t

[(
S − µt
σt

)4
]
− 3, (11)

where µt and σt are the first two moments of the RND estimated at time t.
Finally, we also control for the left tail shape parameter, which we denote by
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Table 1: Correlations between risk measures.

-FHQ VaRQ ESQ RNV VIX TED Skew Kurt
-FHQ

VaRQ 0.20
ESQ 0.26 0.98

RNV 0.46 0.81 0.82
VIX 0.48 0.64 0.64 0.94

TED -0.02 0.43 0.41 0.60 0.56
Skew -0.23 0.16 0.03 0.10 0.23 0.16
Kurt 0.18 -0.09 0.02 -0.05 -0.19 -0.11 -0.96

Left Tail 0.29 -0.18 -0.05 -0.06 -0.17 -0.12 -0.80 0.73
Correlations between various measures of risk. The option-implied risk measures are
Foster-Hart bound (FHQ), value at risk (VaRQ), expected shortfall (ESQ) and risk-neutral
volatility (RNV). Furthermore, the volatility index (VIX) and the TED spread between
interbank loans (Libor) and T-Bills are included.

Left Tailt. Thus, we also run the logistic regression

∆rρt = a0,t + a1,tSkewt + a2,tKurtt + a3,tLeft Tailt +
∑
R∈R

aR,tRt. (12)

Results for ρ = −5% and ρ = −10%, with 138 and 54 downturns respectively,
are reported in Table 2. As expected from theory, lower FH and higher
ES, VIX and TED spread, individually, all indicate a higher probability for
a return drawdown. However, in the full regression (12), the VIX looses
significance and ES surprisingly changes sign. Hence, only FH and TED
spread preserve their predictive characteristics in the joint regression.

The regression results are robust with respect to choice of threshold, ρ,
over a wide range of numerical values. Furthermore, stepwise backward
model selection (Venables and Ripley, 2002, p. 175) based on the Akaike
(1974) information criterion shows that the full model (12) is preferred over
all submodels. Finally, a leave-one-out cross-validation (Kohavi et al., 1995)
yields a classification rate of 94%.

4.3. The impact of RNDs on risk measures

How do characteristics of the RND shape the various risk measures? To
answer that question we regress the risk measures R ∈ R on the (standard-
ized) second, third and fourth moment as well as the left tail shape parameter
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Figure 2: Distribution of return downturns over time.
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Moments when the return decreases by more than a certain value (3, 5 or 10%). Most of
the larger drawdowns occur during the Global Financial Crisis (late 2007 to early 2009)
as well as the Greek and European sovereign debt crisis in 2010 and 2011, respectively.

of the RNDs:

Rt = a0,t + a1,tRNVt + a2,tSkewt + a3,tKurtt + a4,tLeft Tailt. (13)

Results are presented in Table 3. FH bound captures all variations in the
properties of the RND. In particular, a higher RNV and fatter left tail, as
well as more negative skewness lead to lower FH.21 By contrast, the other
risk measures do not grasp all the RND characteristics. For instance, ES
and VIX seem to react mainly to the second moment of the density (RNV),
whereas a thinner left tail actually makes them take on higher values. This
is particularly surprising in the case of ES, which is formulated specifically
to capture tail risks, but a phenomenon that is not an artefact of our esti-
mation technique. Moreover, TED spread is significantly explained by the
risk-neutral volatility, but not by the tail shape parameter.

21Note, that throughout our data period the RNDs consistently exhibit a negative skew-
ness of −1.5±0.9, such that a positive slope coefficient means a reversal to (log-)normality.
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Table 2: Regression of return downturns on risk measures.

Regression of −5% downturns (138 such events) on risk measures and RND characteristics

(Intercept) −2.01∗∗∗ −2.92∗∗∗ −3.58∗∗∗ −4.64∗∗∗ −2.35∗∗∗ −2.39∗∗∗ −2.64∗∗∗ −6.04∗∗∗

(0.12) (0.11) (0.14) (0.22) (0.14) (0.11) (0.09) (0.59)

−FHQ 1.41∗∗∗ 0.74∗

(0.23) (0.36)

ESQ 0.07∗∗∗ −0.08∗∗

(0.02) (0.03)
TED 1.30∗∗∗ 1.18∗∗∗

(0.12) (0.18)
VIX 0.08∗∗∗ 0.06∗∗∗

(0.01) (0.01)
Skewness 0.20∗ −2.36∗∗∗

(0.09) (0.39)
Kurtosis −0.02∗∗ −0.14∗∗∗

(0.01) (0.03)
Left Tail −0.82∗ −1.11

(0.33) (0.63)
AIC 973.25 991.60 860.96 870.30 1006.00 999.11 1006.78 769.06
Log Likelihood -484.62 -493.80 -428.48 -433.15 -501.00 -497.56 -501.39 -376.53
Num. obs. 2037 2037 1989 2037 2037 2037 2037 1989

Regression of −10% downturns (54 such events) on risk measures and RND characteristics

(Intercept) −2.69∗∗∗ −3.80∗∗∗ −4.87∗∗∗ −5.66∗∗∗ −3.47∗∗∗ −3.46∗∗∗ −3.60∗∗∗ −6.70∗∗∗

(0.17) (0.16) (0.24) (0.32) (0.20) (0.16) (0.14) (0.96)

−FHQ 2.64∗∗∗ 3.41∗∗∗

(0.49) (0.70)

ESQ 0.05∗∗ −0.48∗∗∗

(0.02) (0.13)
TED 1.42∗∗∗ 2.44∗∗∗

(0.15) (0.30)
VIX 0.08∗∗∗ 0.04

(0.01) (0.03)
Skewness 0.09 −3.50∗∗∗

(0.11) (0.74)
Kurtosis −0.01 −0.20∗∗∗

(0.01) (0.05)
Left Tail −0.14 −1.95

(0.47) (1.15)
AIC 458.59 497.84 391.65 431.28 501.77 499.83 502.54 305.41
Log Likelihood -227.30 -246.92 -193.82 -213.64 -248.88 -247.92 -249.27 -144.71
Num. obs. 2037 2037 1989 2037 2037 2037 2037 1989

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

This table reports the intercept and slope coefficients of the regression of downturns of
ahead-returns until maturity of the underlying option of more than 5% (upper part) or
10% (lower part) on the option-implied Foster-Hart bound FHQ, option-implied expected
shortfall ESQ, the spread between interbank loans and T-Bills TED, and the VIX, as well
as skewness, excess kurtosis and the left tail shape parameter of the risk-neutral density.
Standard deviations are given in brackets, significance according to p-values is indicated
by stars.

4.4. Time-consistency

Hellmann and Riedel (2015) point out that FH lacks time-consistency,
similarly to VaR and ES. Somewhat loosely speaking, they define a risk
measure to be time-consistent, if the knowledge of gamble X1

t being riskier
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Table 3: Regression of risk measures on RND characteristics.

-FHQ ESQ VIX TED
(Intercept) −1.08∗∗∗ −2.46∗∗∗ 5.51∗∗∗ 0.05

(0.03) (0.16) (0.23) (0.03)
RNV 1.83∗∗∗ 26.78∗∗∗ 79.48∗∗∗ 2.72∗∗∗

(0.07) (0.42) (0.59) (0.09)
Skewness −0.19∗∗∗ −0.02 0.30 0.10∗∗∗

(0.02) (0.12) (0.18) (0.03)
Kurtosis −0.01∗∗∗ 0.02∗∗ −0.02∗∗ 0.00∗∗

(0.00) (0.01) (0.01) (0.00)
Left Tail 0.27∗∗∗ −1.30∗∗∗ −0.79∗ −0.02

(0.04) (0.27) (0.38) (0.06)
R2 0.34 0.68 0.91 0.37
Adj. R2 0.34 0.68 0.91 0.37
Num. obs. 2037 2037 2037 1989
RMSE 0.34 2.14 3.05 0.44
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

This table reports the intercept and slope coefficients of the regression of various risk
measures on characteristics of the density. The risk measures are the option-implied FH
bound, the option-implied expected shortfall, the volatility index and the TED spread.

than X2
t in any state of the world tomorrow should imply X1

t to be considered
riskier than X2

t already today. Hellmann and Riedel (2015) construct an
example showing that, in general, FH is not time-consistent.

Due to the fixed expiration dates of options, our option-implied risk mea-
sures also exhibit a naturally dynamic structure, thus raising the issue of
time-consistency in the above sense for the special case of risk-neutral densi-
ties approaching maturity. Tests thereof, in the sense of Hellmann and Riedel
(2015), however, are not possible as the structure of the dynamic gamble is
a priori not known to the representative investor. Instead, we may, how-
ever, get at the issue of predictive time-consistency by comparing how the
informativeness of predicting return downturns behaves for the various mea-
sures of riskiness depending on the time to maturity. Table 4 summarizes
the predictive power of FH, ES, VIX and TED spread when evaluated 2, 3,
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4 or 5 weeks before the exercise date of the option. While the slope coeffi-
cient of FH is consistently positive, it is significant only 4 and 5 weeks before
maturity. Similarly, the TED spread has explanatory power 3 to 5 weeks
ahead, whereas the option-implied ES does not show significance at any time
window. Surprisingly, the VIX significantly changes sign when derived at dif-
ferent times relative to the exercise date. Hence, only FH and TED spread
are predictively time-consistent.22

Table 4: Predictive consistency of risk measures.

All 2 weeks 3 weeks 4 weeks 5 weeks
(Intercept) −3.38∗∗∗ −9.89∗ −6.02∗∗∗ −2.56∗∗ −1.11

(0.48) (4.11) (1.40) (0.80) (0.86)
−FHQ 3.31∗∗∗ 24.60 1.01 2.96∗∗ 5.35∗∗

(0.64) (24.69) (1.42) (1.03) (1.77)
ESQ −0.54∗∗∗ −1.62 0.17 1.45 0.60

(0.13) (0.84) (0.63) (0.75) (1.01)
TED 2.02∗∗∗ −0.47 2.07∗∗∗ 2.78∗∗∗ 2.30∗

(0.28) (1.46) (0.53) (0.57) (0.95)
VIX 0.04 0.39∗ 0.02 −0.25∗ −0.16

(0.02) (0.17) (0.10) (0.10) (0.14)
AIC 327.73 27.40 85.05 117.33 80.62
Log Likelihood -157.86 -7.70 -36.52 -52.67 -34.31
Num. obs. 1989 498 578 582 214
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

This table reports the intercept and slope coefficients of the regression of downturns of
ahead-returns until maturity of the underlying option of more than 10% on the option-
implied Foster-Hart bound FHQ, option-implied expected shortfall ESQ, the spread be-
tween interbank loans and T-Bills TED, the VIX and realized volatility by time to ma-
turity of the underlying option. Standard deviations are given in brackets, significance
according to p-values is indicated by stars.

22Recall that it was also FH and TED who preserved their predictive characteristics in
the joint estimation of regression (12).
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5. Conclusion

The main contribution of this paper has been the translation of the ob-
jective risk measure by Foster and Hart (2009) (using Riedel and Hellmann
2015’s and Hellmann and Riedel 2015’s generalizations) to a typical decision
context in finance. This was done by extracting the underlying risk-neutral
densities from option prices and deriving the corresponding option-implied
risk measure. Rather than optimal estimates, we chose an approach which
could be described as deriving a conservative bound on these. Our result-
ing measure was shown to have additional information compared to standard
risk measures. In fact, it outperformed the standard measures including value
at risk, expected shortfall, risk-neutral volatility and the volatility index.23

Indeed, not only had our option-implied Foster-Hart measure of riskiness in-
teresting macroscopic patterns, in that it indicated rather extreme regime
shifts in the dawn of the financial crisis, but also was it shown to be of mi-
croscopic interest, in that it turned out a significant predictor of large return
downturns. Finally, in future work, we would like to study option-implied
Foster-Hart measures in richer investment settings, for example, when in-
vestment into more than one asset and/or leverage with hedging is allowed.

23Solely the TED spread (between Libor and Treasury bills), as a measure of credit
risk, turned out similarly predictive and consistent, despite the known reliability issues
associated with fraudulent Libor setting.

21



References

Aı̈t-Sahalia, Y. and A. W. Lo (2000). Nonparametric risk management and
implied risk aversion. Journal of Econometrics 94 (1–2), 9 – 51.

Aı̈t-Sahalia, Y., Y. Wang, and F. Yared (2001). Do option markets correctly
price the probabilities of movement of the underlying asset? Journal of
Econometrics 102 (1), 67–110.

Akaike, H. (1974). A new look at the statistical model identification. Auto-
matic Control, IEEE Transactions on 19 (6), 716–723.

Anand, A., T. Li, T. Kurosaki, and Y. S. Kim (2015). Foster-hart risk and
the too-big-to-fail banks: An empirical investigation.

Arrow, K. J. (1971). Essays in the Theory of Risk-Bearing. North Holland,
Amsterdam.

Aumann, R. J. and R. Serrano (2008). An economic index of riskiness.
Journal of Political Economy 116 (5), 810–836.

Bahra, B. (1996). Probability distributions of future asset prices implied by
option prices. Bank of England Quarterly Bulletin 36 (3), 299–311.

Bakshi, G., N. Kapadia, and D. Madan (2003). Stock return characteristics,
skew laws, and the differential pricing of individual equity options. Review
of Financial Studies 16 (1), 101–143.

Bakshi, G. and D. Madan (2000). Spanning and derivative-security valuation.
Journal of Financial Economics 55 (2), 205–238.

Bali, T. G., N. Cakici, and F. Chabi-Yo (2011). A generalized measure of
riskiness. Management science 57 (8), 1406–1423.

Bali, T. G., N. Cakici, and F. Chabi-Yo (2012). Does aggregate riskiness
predict future economic downturns? Technical report.

Birru, J. and S. Figlewski (2012). Anatomy of a meltdown: The risk neutral
density for the s&p 500 in the fall of 2008. Journal of Financial Mar-
kets 15 (2), 151–180.

22



Black, F. and M. Scholes (1973). The pricing of options and corporate lia-
bilities. The journal of political economy , 637–654.

Bliss, R. R. and N. Panigirtzoglou (2004). Option-implied risk aversion esti-
mates. The journal of finance 59 (1), 407–446.

Breeden, D. T. and R. H. Litzenberger (1978). Prices of state-contingent
claims implicit in option prices. Journal of business , 621–651.

Brown, D. P. and J. C. Jackwerth (2001). The pricing kernel puzzle: Recon-
ciling index option data and economic theory.

Chicago Board Options Exchange (2009). The CBOE volatility index – VIX.
White Paper .

Cox, J. C., J. E. Ingersoll Jr, and S. A. Ross (1985). An intertemporal
general equilibrium model of asset prices. Econometrica: Journal of the
Econometric Society , 363–384.

Delbaen, F. and W. Schachermayer (1994). A general version of the funda-
mental theorem of asset pricing. Mathematische annalen 300 (1), 463–520.

Embrechts, P., R. Frey, and A. McNeil (2005). Quantitative risk manage-
ment. Princeton Series in Finance, Princeton 10.
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