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AN APPROXIMATE VERSION OF THE TREE PACKING CONJECTURE

JULIA BÖTTCHER†, JAN HLADKÝ‡, DIANA PIGUET∗, AND ANUSCH TARAZ?

Abstract. We prove that for any pair of constants ε > 0 and ∆ and for n sufficiently
large, every family of trees of orders at most n, maximum degrees at most ∆, and with at
most

(
n
2

)
edges in total packs into K(1+ε)n. This implies asymptotic versions of the Tree

Packing Conjecture of Gyárfás from 1976 and a tree packing conjecture of Ringel from 1963
for trees with bounded maximum degree. A novel random tree embedding process combined
with the nibble method forms the core of the proof.

1. Introduction

Graph packing is a concept that generalises the notion of graph embedding to finding
several subgraphs in a host graph instead of just one. A family of graphs H = (H1, . . . ,Hk)
is said to pack into a graph G if there exist pairwise edge-disjoint copies of H1, . . . ,Hk in G, pack

where we allow Hi = Hj for i 6= j. Many classical problems in Graph Theory can be stated
as packing problems. For example, Mantel’s Theorem can be formulated by saying that if G

is an n-vertex graph with less than
(
n
2

)
− n2

4 edges, then the family (K3, G) packs into Kn.
Among the best known packing problems, let us for example mention a conjecture of

Bollobás, Catlin, and Eldridge [7, 10] that any two n-vertex graphs H1, H2 of maximum
degree ∆(H1) and ∆(H2), respectively, and satisfying (∆(H1) + 1)(∆(H2) + 1) ≤ n+ 1 pack
into Kn. The asymptotic solution of this conjecture was reported by Gábor Kun around 2006.

Another beautiful packing conjecture was posed by Gyárfás (see [14]) in 1976 and concerns
trees. This conjecture is referred to as the Tree Packing Conjecture.

Conjecture 1. Any family (T1, T2, . . . , Tn) of trees, j ∈ [n] of order v(Tj) = j, packs into Kn.

A related conjecture of Ringel [21] dating back to 1963 deals with packing many copies of
the same tree.

Conjecture 2. Any 2n+ 1 identical copies of any tree of order n+ 1 pack into K2n+1.
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AN APPROXIMATE VERSION OF THE TREE PACKING CONJECTURE 2

Note that both conjectures are best possible in the sense that they deal with perfect pack-
ings, i.e. the total number of edges packed equals the number of edges in the host graph. perfect

packingsMoreover, the fact that two spanning stars do not pack into the complete graph shows that
further requirements than this necessary condition are needed.

A slightly outdated survey on packings of trees is by Hobbs [15]. Here, we recall only the
most important results concerning the two conjectures above.

A packing of many of the small trees from Conjecture 1 was obtained by Bollobás [6], who
showed that any family of trees T1, . . . , Ts with v(Ti) = i and s < n/

√
2 can be packed into

Kn. He also observed that the validity of a famous conjecture of Erdős and Sós would imply
that one can improve the bound to s < 1

2

√
3n. The Erdős-Sós Conjecture states that any

graph of average degree greater than k − 1 contains any tree of order at most k + 1 as a
subgraph. The solution of this conjecture for large trees was announced by Ajtai, Komlós,
Simonovits, and Szemerédi in the early 1990s. In a similar direction, Yuster [25] proved that

any sequence of trees T1, . . . , Ts, s <
√

5/8n can be packed into Kn−1,n/2. This improves
upon a result of Caro and Roditty [8] and is related to a conjecture of Hobbs, Bourgeois
and Kasiraj [16] (see Conjecture 44 in Section 9). Moreover, a result of Caro and Yuster [9]
implies that one can pack perfectly a family of trees into a complete graph Kn, provided that
the trees are very small compared to n.

Packing the large trees of Conjecture 1 is a much more challenging task. Balogh and
Palmer [3] proved that any family of trees Tn, Tn−1, . . . , Tn− 1

10
n1/4 , v(Ti) = i packs into Kn+1.

Surprisingly few results are known for special classes of tree families. It was proved already
in [14] that Conjecture 1 holds when all the trees are stars and paths. Dobson [12] and
Hobbs, Bourgeois, and Kasiraj [16] consider packings of trees with small diameter. Moreover,
Fishburn [13] proved that it is at least possible to adequately match up the degrees of the trees
T1, . . . , Tn appearing in Conjecture 1: If we add n− i isolated vertices to the tree Ti and let
di,1, . . . , di,n denote the degree sequence of the resulting forest, then there are permutations
π1, . . . , πn such that

∑
i di,πi(j) = n− 1 for all j ∈ [n].

Our main result, Theorem 3, deals with almost perfect packings of bounded-degree trees
into a complete graph. It implies an asymptotic solution of Conjecture 1 and Conjecture 2
for trees of bounded maximum degree.

Theorem 3. For any ε > 0 and any ∆ ∈ N there is an n0 ∈ N such that for any n ≥ n0

the following holds. Any family of trees T = (Ti)i∈[k] such that Ti has maximum degree at

most ∆ and order at most n for each i ∈ [k], and
∑

i∈[k] e(Ti) ≤
(
n
2

)
packs into K(1+ε)n.

We emphasise that, unlike Conjectures 1 and 2, this theorem only requires the trees to
satisfy the obvious upper bound on the total number of edges.

2. Outline of the proof

A very natural approach to pack the trees T1, . . . , Tk into K(1+ε)n is to use a random
embedding process:

• Start with G = K(1+ε)n. Successively build a packing of the trees, edge by edge, starting
with an arbitrary edge in an arbitrary tree and then following the structure of the trees
(it is not important which order exactly we choose, but one example would be to use a
breadth-first search order; it also should not matter here whether we embed tree by tree,
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or first embed a few edges of one tree, then a few edges of another tree, and so on, and
then return to the first tree).
• In one step of this procedure, when we want to embed an edge xy of some tree Ti, with x

already embedded to h(x), choose a random neighbour v ∈ V (G) of h(x) which is not
contained in the set Ui ⊆ V (G) of Ti-images so far, and embed y to h(y) = v.
• After embedding xy, remove the edge uv from G and add v to Ui.

Clearly, this process produces a proper packing unless we get stuck, that is, unless the set
NG

(
h(x)

)
\ Ui gets empty. But if, during the evolution, the host graph G always remains

sufficiently quasirandom, then with high probability NG

(
h(x)

)
\ Ui should not get empty

(because e(K(1+ε)n)−
∑

i∈[k] e(Ti) ≥ εn2 implies that G has positive density throughout).

We believe that the host graph does indeed remain quasirandom in this process. Unfortu-
nately, however, graph processes like this are extremely difficult to analyse because of their
dynamically evolving environment in each step. A prominent example illustrating the occur-
rent complexity is that of the random triangle-free graph process: it took more than a decade
after the introduction of this process until Bohman [5] gave a detailed analysis. Nonetheless,
a related random construction of triangle-free graphs was effectively analysed already much
earlier by Kim [18]. This construction was easier to handle because it uses a nibble approach.

The nibble method bypasses the difficulties originating from the dynamics of random graph
processes by proceeding in constantly many rounds and updating the environment only after
each round. This method was used by Rödl [22] to prove the existence of asymptotically
optimal Steiner systems (see [1] for an exposition). Since then it has served as an important
ingredient for several breakthroughs in combinatorics. In the context of packing problems the
nibble method is also used in Kun’s announced result on the Bollobás–Catlin–Eldridge Con-
jecture. In our setting the nibble method amounts to the following approach for embedding
T1, . . . , Tk into G = K(1+ε)n:

• Pack the trees in r rounds (with r big but constant). For this purpose, cut each tree Ti
into small equally sized forests F ji with j ∈ [r] and use in each round exactly one forest
of each tree.
• In round j, for each i construct a random homomorphism from the forest F ji to G as

follows. First, randomly embed some forest vertex x, then choose a neighbour v uniformly
at random in NG(h(x)) \Ui, where the forbidden set Ui ⊆ V (G) are vertices used by Ti in

previous rounds. Then continue with the next vertex in F ji , following again the structure
of Ti.
• After round j, delete all the edges from G to which some forest edges were mapped in this

round and add to Ui all images of vertices of F ji .

In other words, the difference between this approach and the random process described above
is that the host graph G and the sets Ui are not updated after the embedding of each single
vertex, but only at the end of each round.

Naturally, this procedure will not produce a proper packing of the trees: Firstly, it will
create vertex collisions, that is, two vertices of some tree Ti are mapped to the same vertex of
the host graph G. Secondly, there will be edge collisions, that is, two edges of different trees

are mapped to the same edge. However, since all forests F ji are small this will create only a
small proportion of vertex and edge collisions in each round, and the updates at the end of
each round guarantee that there are no collisions between rounds. So our hope is that vertex
and edge collisions can be corrected at the end.
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Theorem 3; proof in Section 3
⇑ ⇑

Packing with a small number of collisions Correcting collisions
Lemma 6; proof in Section 5 Lemma 7; proof in Section 6

⇑
One round: Lemma 22; proof in Section 8.
The proof builds on properties of limping
homomorphisms derived in Section 7.

Table 1. Outline of the proof of Theorem 3.

The difficulty with this construction of random homomorphisms though is that it still leads
to lots of small dependencies between embedded vertices, which we found difficult to control.
We remark that techniques recently developed by Barber and Long [4] allow to handle these
dependencies and show that after each round the host graph is indeed quasirandom. However,
applying these techniques to our setting and modifying them so that they also give all the
additional properties that we need (such as that there are few collisions; see Lemma 22) would
require substantial additional work and probably lead to a significantly longer proof.

Our approach (which was developed before the techniques of Barber and Long) is different.
We instead use the following construction of random homomorphisms in round j of the nibble
approach described above, which we call limping homomorphisms:

• For each i, call one of the colour classes of F ji the set of primary vertices, and the other
the set of secondary vertices. Now first map all primary vertices randomly to vertices
of V (G) \ Ui. Then map each secondary vertex randomly into the common (G − Ui)-
neighbourhood of the images of its forest neighbours – unless this common neighbourhood
is smaller than expected, in which case we simply skip this secondary vertex.

Observe that, if our host graph is quasirandom (and the forest has bounded degree), then
most common neighbourhoods are big and hence few vertices will get skipped. Of course
in this random construction we still have dependencies. But since these occur only between
vertices with distance at most 2 in the trees, we now can control them and prove that the
host graph is quasirandom after each round and that we get few collisions.

It remains to correct the vertex collisions and edge collisions (and take care of skipped ver-
tices and connections between the different forests of each tree). Before starting the described
embedding rounds we put aside εn/2 reserve vertices of K(1+ε)n. Our random homomorphisms
(constructed on the remaining vertices) also guarantee that the collisions are sufficiently well
distributed over the host graph so that a simple greedy strategy can be used to relocate
vertices in collisions to the reserved vertices, thus obtaining a proper packing of T1, . . . , Tk.

The organisation of the proof is given in Table 1.

3. Proof of the main theorem (Theorem 3)

Theorem 3 assumes little on the orders of trees T to be packed. However, as we show as
a first step of the proof of Theorem 3, there is a simple transformation of an arbitrary such
family into a family of trees whose orders are (with possibly one exception) more than n/2.
The definition of an (n,∆)-tree family below formalises this. The fact that the subsequent
family is a family of trees of linear orders is crucial for our proof.
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Definition 4. A family of trees T is called (n,∆)-tree family, if all trees in T have order at (n,∆)-tree
familymost n, maximum degree ∆ and the total number of edges is at most

(
n
2

)
. Further all but at

most one tree from T have order more than n/2. Observe that the upper bound on the total
number of edges and the lower bound on the number of vertices imply that such a family must
contain less than 2n trees.

Indeed, it is easy to show that we can transform any family T satisfying the requirements
of Theorem 3 into an (n,∆)-tree family (see below).

Our next step will be to relax the requirements of a packing in the sense that we allow an
exceptional set R of vertices not to be embedded. At the same time, we control both the size
of R as well as the number of neighbours of R that get embedded into the same vertex.

Definition 5 (Almost packing). Let F = {Fi}i∈[k] be a family of graphs. For a graph G, a
family of sets {Ri}i∈[k] with Ri ⊆ V (Fi) and a family of maps {hi}i∈[k] with hi : V (Fi)\Ri →
V (G) we say that {hi, Ri}i∈[k] is an `-almost packing of F into G if `-almost

packing(a) {hi}i∈[k] is a packing of the family {Fi −Ri}i∈[k] into the graph G,
(b) we have |Ri| ≤ ` for each i ∈ [k], and
(c) for each v ∈ V (G),

∑
j∈[k] |

{
x ∈ h−1

j (v) : ∃xy ∈ E(Fj) such that y ∈ Rj
}
| ≤ `.

We say that F `-almost packs into a graph G if there exist {Ri}i∈[k] and {hi}i∈[k] such that `-almost
packs{hi, Ri}i∈[k] is an `-almost packing of F into G.

Using this concept, the next two lemmas state that we can always find an almost packing,
and that an almost packing can always be turned into a packing.

Lemma 6 (Almost packing lemma). For any ε > 0 and any ∆ ∈ N there is an n0 ∈ N such
that for any n ≥ n0 the following holds. Any (n,∆)-tree family (εn)-almost packs into K(1+ε)n.

Lemma 7 (Correction lemma). Let ε > 0 be arbitrary, and let T be a family of trees of

maximum degrees at most ∆. Suppose that |T | ≤ 2m, and that T has an ( ε
2m

64∆2 )-almost
packing into Km. Then T packs into K(1+ε)m.

Lemmas 6 and 7 are proven in Section 5 and Section 6, respectively. Based on these two
lemmas, it is now an easy task to prove our main theorem. We remark that here and in the
rest of the paper, we shall often use subscripts on constants to clarify which theorem/lemma
they originate from: For example εl7 refers to the constant ε from Lemma 7.

Proof of Theorem 3. Let ε > 0 and ∆ ∈ N be given. We define εl6 = ε2/(256∆2) and apply
Lemma 6 with parameters εl6 and ∆ to obtain n0.

Now we consider a family T of trees satisfying the requirements of the theorem. If T
contains two trees F1 and F2 of orders at most n/2, then we can replace them by a single
tree of order v(F1) + v(F2) − 1 that is obtained by identifying a leaf of F1 and a leaf of
F2. Repeating this step, we arrive at a situation where all but at most one tree in T have
order more than n/2. This procedure does not change the maximum degree of the trees nor
their total number of edges. Hence we have obtained an (n,∆)-tree family T ′. Observe that
now it suffices to pack T ′ into K(1+ε)n. Feeding the family T ′ to Lemma 6, we obtain an
(εl6n)-almost packing of T ′ into K(1+εl6)n.

Now we set m = (1 + ε
4)n ≥ (1 + εl6)n and εl7 = ε/2. Since

εl6n =
ε2n

256∆2
≤ ε2m

256∆2
=

(εl7)2m

64∆2
,
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the family T ′ also has an (εl7)2m
64∆2 -almost packing into Km. As the number of trees in T ′ is

bounded by 2n ≤ 2m, we can apply Lemma 7 with parameter εl7 and obtain a packing of T ′
into K(1+εl7)m. Since (1 + εl7)m = (1 + ε

2)(1 + ε
4)n ≤ (1 + ε)n, this completes the proof. �

4. Notation and preliminaries

4.1. Basic notation. Let G = (V,E) be a graph and V ′ ⊆ V and E′ ⊆ E. We use the minus
symbol to denote both the removal of vertices and edges from a graph, i.e., G−V ′ = (V \V ′, E∩(
V ′

2

)
), G−E′ = (V,E \E′). For vertex sets U,W ⊆ V we let e(U) denote the number of edges e(U), e(U,W )

with both endvertices in U and let e(U,W ) = |{(u,w) ∈ U ×W : uw ∈ E}|. Here, the edges
with both endvertices in U ∩W are counted twice. The common neighbourhood of vertices common

neighbour-
hood

v1, . . . , vk in the graph G is defined by NG(v1, . . . , vk) = {u ∈ V : uv1, uv2, . . . , uvk ∈ E}. The
codegree of v1, . . . , vk is then codegG(v1, . . . , vk) = |NG(v1, . . . , vk)|. In the special case k = 1,

codegree

codegG(v1, . . . , vk)
this quantity is called the degree of v1, degG(v1) = codegG(v1). We drop the subscript when

degree

degG(v)

the graph G is understood from the context. The density of G is defined as |E|/
(|V |

2

)
.

density

Denote by dist(x, y) the length of a shortest path between x and y. Here, the distance

dist(x, y)

dist(U,W )

between vertices lying in different components is defined to be +∞. For two sets U,W of
vertices of the same graph we write dist(U,W ) = minu∈U,w∈W dist(u,w). In particular, we
will use this notation when U and W are edges (i.e., vertex sets of size two).

By a d-th power of a graph G = (V,E) we mean its distance-power, that is, a loopless
power

graph, denoted Gd, on the vertex set V where two vertices u and v are adjacent if and only
if distG(u, v) ≤ d. We refer to the case d = 2 as square. square

Finally, the set of components of G is denoted by Comp(G). Comp(G)

Generally, we shall use letters x, y, and z to denote vertices in trees and forests that we
pack. Letters u, v, and w will be used to denote the vertices in the host graph into which we
pack. When we write a = b ± c, we mean that a has its value in the interval [b − c, b + c]. ±
Analogously, by a 6= b± c we mean that a has its value outside the interval [b− c, b+ c].

4.2. Quasirandomness. Here, we recall the concept of quasirandom graphs, which goes
back to Thomason [24], and Chung, Graham, and Wilson [11].

Definition 8 (Quasirandom graph). We say that a graph G of order n is α-quasirandom of

density d if for every B ⊆ V (G) we have e(B) = d
(|B|

2

)
± αn2 edges. α-

quasirandom
of density dSince e(A,B) = e(A ∪ B) + e(A ∩ B) − e(A \ B) − e(B \ A), this definition immediately

implies that in a quasirandom graph we also have control over the number of edges between
two vertex sets.

Observation 9. In an α-quasirandom graph G on n vertices, for each pair of sets A,B ⊆
V (G) we have e(A,B) = d|A||B| ± 4αn2 ± n.

Our next easy lemma asserts that induced subgraphs of quasirandom graphs inherit quasir-
andomness and density.

Lemma 10. If G is α-quasirandom of density d and order at most 3
2n, and a set V ′ ⊆ V (G)

has size |V ′| ≥ εn, then G[V ′] is a (3α/ε2)-quasirandom graph of density d± 3α/ε2.

Proof. For any B ⊆ V ′ we have

eG(B) = d

(
|B|
2

)
± α(3

2n)2 = d

(
|B|
2

)
± α · (3

2)2 · |V
′|2

ε2
= d

(
|B|
2

)
± 3

α

ε2
|V ′|2 .
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Hence G[V ′] is a (3α/ε2)-quasirandom graph of density d± 3α/ε2. �

If G = (V,E) is a quasirandom graph with density d, we expect that in G most sets
of p vertices have a common neighbourhood of order roughly dp|V |. So, we say that a set
{v1, . . . , vp} ⊆ V is γ-bad , if γ-bad

|N(v1, . . . , vp)| 6= (1± γ)dp|V |.
The next lemma states that most vertices of a quasirandom graph are contained in few bad
p-sets. We use the following definitions. For a vertex v ∈ V , let badγ,p(v)

badγ,p(v) =
∣∣∣ {B ∈ ( V

p−1

)
: B ∪ {v} is γ-bad

} ∣∣∣ .
(In particular, badγ,1(v) ∈ {0, 1}, depending on whether deg(v) = (1± γ)d|V |, or not.) Set BADγ,∆(G)

BADγ,∆(G) =
{
v ∈ V : badγ,p(v) > γ

( |V |
p−1

)
for some p ∈ [∆]

}
.

Lemma 11. For every γ > 0 and every integer ∆ ≥ 1 there is α > 0 such that if G = (V,E)
is an α-quasirandom graph of density d ≥ γ and order n, then |BADγ,∆(G)| ≤ γn.

Proof. Let α ≤ 1/(10∆2) be small enough so that for β = 1
2

√
α and γ1 ≤ · · · ≤ γ∆ defined by

γp =


√

10β
d p = 1√

4pγp−1 + 20pβ
dpγp−1

1 < p ≤ ∆ ,

we have γ∆ ≤ min{γ/∆, 1/2}. Testing over two-element sets in Definition 8, we get that
if n < max{2∆, β−1} then G is either complete or empty. Hence we may assume that
n ≥ max{2∆, β−1} in the following.

We prove by induction on p that

at most γpn vertices v of G satisfy badγp,p(v) > γp
(
n
p−1

)
. (1)

Let us first consider the base case p = 1. Let V + be the set of vertices v with deg(v) >
(1 + γ1)dn. We have e(V +, V ) > |V +|(1 + γ1)dn. But since G is α-quasirandom we have
by Observation 9 that e(V +, V ) ≤ d|V +|n + 4αn2 + n ≤ d|V +|n + 5βn2. Putting these
bounds together, we get |V +| < 5βn/(dγ1). Similarly for the set V − of vertices v with
deg(v) < (1 − γ1)dn we have |V −| < 5βn/(dγ1). Thus there are at most 10βn/(dγ1) = γ1n
vertices v with badγ1,1(v) = 1 > γ1

(
n
0

)
.

Now consider p > 1 and assume that (1) holds for p− 1 ≥ 1. The number of γp−1-bad sets

in
(
V
p−1

)
is

1

p− 1

∑
v∈V

badγp−1,p−1(v) ≤ 1

p− 1

(
γp−1n

(
n

p− 2

)
+ nγp−1

(
n

p− 2

))
≤ 4γp−1

(
n

p− 1

)
, (2)

where we used n/2 ≤ n − p + 1. Fix an arbitrary set {v1, . . . , vp−1} in
(
V
p−1

)
that is not

γp−1-bad. Hence for W = N(v1, . . . , vp−1) we have |W | = (1 ± γp−1)dp−1n. Let V + be
the set of vertices v ∈ V \ {v1, . . . , vp−1} with |N(v) ∩ W | > (1 + γp−1)d|W |. We have
|V +|(1 + γp−1)d|W | < e(V +,W ) ≤ d|V +||W | + 5βn2 and hence |V +| < 5βn2/(γp−1d|W |) ≤
5βn2/(γp−1d

1
2d

p−1n) = 10βn/(dpγp−1). Similarly, for the set V − of vertices v such that
|N(v)∩W | < (1− γp−1)d|W | we have |V −| < 10βn/(dpγp−1). Let v be an arbitrary vertex in
V \ (V + ∪ V − ∪ {v1, . . . , vp−1}). Then

|N(v, v1, . . . , vp−1)| = (1± γp−1)d|W | = (1± γp)dpn ,
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and therefore {v, v1, . . . , vp−1} is not γp-bad. Hence, by (2), the number of γp-bad p-tuples is
at most (

4γp−1

(
n

p− 1

))
n+

(
n

p− 1

)
· 2 10βn

dpγp−1
=
γ2
p

p
n

(
n

p− 1

)
.

Consequently, for at most γpn vertices v ∈ V , we have badγp,p(v) > γp
(
n
p−1

)
. This gives (1).

The bound |BADγ,∆(G)| ≤ γn follows by summing (1) over p = 1, . . . ,∆. �

As our next lemma shows, this implies that we need to delete only few vertices from a
quasirandom graph to obtain a graph G in which BADγ,∆(G) = ∅.

Definition 12 (Superquasirandom graph). We say that a graph G is (γ,∆)-superquasiran-
dom if we have BADγ,∆(G) = ∅. (γ,∆)-super-

quasirandom
Lemma 13. For every γ > 0 and every integer ∆ ≥ 1 there is α > 0 such that if G is
an α-quasirandom graph of density d > γ and order m, then G contains an induced (γ,∆)-
superquasirandom subgraph of order at least (1− γ)m and density d± γ.

Proof. We can assume that γ < 1
2 . Let α′ be given by Lemma 11 for input parameters

γ′ = γd∆/200 and ∆, and set α = min{α′, dγ/(800 · 2∆)}. Now suppose that G is an α-
quasirandom graph of density d and order m. By Lemma 11, we have |BADγ′,∆(G)| ≤ γ′m.

We claim that the induced subgraph G′ on the vertex set V ′ = V \ BADγ′,∆(G) satisfies
the assertion of the lemma. Indeed, |V ′| ≥ (1 − γ′)m and since G is α-quasirandom the

density d′ of G′ satisfies d′ = (d
(|V ′|

2

)
±αn2)/

(|V ′|
2

)
= d± 4α = d± γ. It remains to show that

BADγ,∆(G′) = ∅. By the definition of G′, for each v ∈ V ′ and p ≤ ∆ all but at most γ′
( |V |
p−1

)
sets {v1, . . . , vp−1} ∈

(
V ′

p−1

)
are such that {v, v1, . . . , vp−1} is not γ′-bad in G. But such sets

{v, v1, . . . , vp−1} are not γ-bad in G′ either because

|NG′(v, v1, . . . , vp−1)| = |NG(v, v1, . . . , vp−1)| ± |BADγ′,∆(G)| = (1± γ′)dpm± γ′m
= (1± 1

100γ)dpm = (1± 1
100γ)(d′ ± 4α)p(1± γ′)|V ′|

=
(
1± 10( 1

100γ + 2p · 4α 1
d′ + γ′)

)
(d′)p|V ′| = (1± γ)(d′)p|V ′| ,

where we use 2p · 4α 1
d′ ≤ γ/100. Hence BADγ,∆(G′) = ∅. �

The next easy lemma asserts that very dense graphs are quasirandom.

Lemma 14. For any α > 0 there exist n0 = nL14(α) such that the following holds for any
n ≥ n0. Suppose that G was obtained from the complete graph Kn by deleting at most n edges.
Then G is α-quasirandom.

4.3. Homomorphisms. Let H and G be graphs. A homomorphism h from H to G is an homomorphism

edge-preserving map from V (H) to V (G), i.e., for every xy ∈ E(H) we have h(x)h(y) ∈ E(G).
By h : H → G or simply H → G we denote the fact that there is a homomorphism h from H
to G. Moreover, we write V (h) = {h(v) : v ∈ V (H)} ⊆ V (G) for the image of h, and V (h)

E(h) = {h(x)h(y) : xy ∈ E(H)} ⊆ E(G) for the image of the edges of H. E(h)

We say that a map h is a partial homomorphism of H to G if there exists a set Y ⊆ V (H) partial ho-
momorphismsuch that h is a homomorphism of H − Y to G. The set Y is called vertices skipped by h.
skippedWe define V (h) = {h(v) : v ∈ V (H)−Y } ⊆ V (G), and E(h) analogously. We denote the fact
V (h)

E(h)

that h is a partial homomorphism by h : H  G.

H  G
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In the language of homomorphisms, a packing of a family (H1, . . . ,Hk) of graphs into G is
a family of injective homomorphisms (hi : Hi → G)i∈[k] with mutually disjoint images of the
edge sets.

Let (hi)i∈[k] be a family of homomorphisms hi : Hi → G with i ∈ [k] (we assume that
the graphs Hi live on different vertex sets). Then the union

⋃
i∈[k] hi of (hi)i∈[k] is the map

h :
⋃
i∈[k] V (Hi)→ G defined by h(x) = hi(x) for all vertices x ∈ V (Hi) and all i ∈ [k].

4.4. Trees. The pair (F,X) is a rooted forest if F is a forest and X ⊆ V (F ) contains exactly rooted forest

one vertex of every tree C ∈ Comp(F ) of F , which we call root of C. If F is a tree with root x root

then we also write (F, x) for (F,X) = (F, {x}) and say that (F, x) is a rooted tree. In a rooted rooted tree

forest (F,X) we can speak of children, parents, ancestors, and descendants of vertices. For a children
parents

ancestors

descendants

vertex y, we let F (y) be the maximal subtree of F with root y.

4.4.1. Cutting trees. The central notion of this section is that of a %-balanced r-level partition
defined below.

Definition 15 (balanced level partition). Given a rooted tree (T, x), we say that a partition
P = (L1, . . . , Lr) of V (T ) is a %-balanced r-level partition if %-balanced

r-level
partition(a) |Li| = (1± %/2)v(T )

r for every i ∈ [r], and

(b) for each i ∈ [r], the parent of each non-root vertex in Li lies in the set
⋃
j≤i L

j.

The forest T [Li] is called level i of the partition P. For a vertex y of T [Li] or a tree C ∈ level

Comp(T [Li]) we say that y or C are in level i of P.

The following lemma states that bounded-degree trees have balanced level partitions with
a bounded number of components in each level.

Lemma 16. Let (T, x) be a rooted tree with maximum degree at most ∆ and v(T ) ≥ 4∆r
% with

0 < % < 1
4r and r ∈ N. Then there is a %-balanced r-level partition of (T, x) such that every

level has at most 8∆
% components.

Proof. Let ξ = %/(2r). We first partition T into a family C = (Ci)i∈[`] (for some `) of rooted
connected components Ci of T so that

v(Ci) ∈
[

1
∆ξv(T )− 1, ξv(T )

]
for all i ∈ [`− 1] and v(C`) ≤ ξv(T ) . (3)

Clearly, such a partition can be obtained by the following simple algorithm. Starting with the
root, always proceed downwards in the tree order, at each step choosing the child y maximising
|F (y)| until |F (y)| ≤ ξv(T ) is satisfied for the first time. This gives the upper bound in (3),
and since this upper bound was not satisfied when we were looking at the parent of y, the
lower bound in (3) must also be satisfied. In this way, we obtain the first component C1 = C,
which we cut off from T and then repeat in order to obtain the remaining components.

We now inductively define the sets L1, . . . , Lr where each set Li will be the union Li =⋃
C∈Ci V (C) for a suitable set Ci of components. Suppose we have already chosen L1, . . . , Li−1

together with C1, . . . , Ci−1. Now choose Ci ⊆ C\
⋃
j<i Cj satisfying the following two properties:

• for every C ∈ Ci and for every C ′ ∈ C \
⋃
j<i Cj that is above C in the tree order, we must

have C ′ ∈ Ci,
• we have |Li| =

∑
C∈Ci |V (C)| = (1

r ± ξ)v(T ) = (1± %
2)v(T )

r .
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This choice of Ci is clearly possible by the upper bound given in (3). Both Conditions (a)
and (b) in Definition 15 are satisfied by construction and it remains to bound the number |Ci|
of components in each level T [Li]. First observe that due to the assumption v(T ) ≥ 4∆r/%,
we know that

ξv(T )

2∆
=
%v(T )

4∆r
≥ 1 . (4)

Therefore we get

|Ci| ≤
|Li|

minj∈[`−1] |Cj |
+ 1 ≤

(1
r + ξ)v(T )

1
∆ξv(T )− 1

+ 1
(4)

≤
(1
r + ξ)v(T )

1
2∆ξv(T )

+ 1 =
2∆

ξr
+ 2∆ + 1 ≤ 8∆

%
,

and hence the partition V (T ) = L1∪̇ · · · ∪̇Lr satisfies all requirements of the lemma. �

4.5. Probabilistic tools. We write Be(p) for the Bernoulli distribution with success proba-
bility p, and we write Bin(p, n) for the binomial distribution with n trials and success proba-
bility p.

We will use the following two versions of the Chernoff bound [17, (2.9) and (2.12)]. Let X ∈
Bin(n, p), and µ ≥ E[X], δ ∈ (0, 3

2), t > 0. We have that

P [X ≥ (1 + δ) · µ] ≤ 2 exp
(
−δ2µ/3

)
and (5)

P [X ≥ µ+ t] ≤ exp

(
−2t2

n

)
. (6)

Moreover, for every δ′ > 1 and every t ∈ R with t ≥ δ′E[X] there exists δ′′ > 0 such that

P [X ≥ t] ≤ exp
(
−δ′′t

)
. (7)

Obviously, these bounds also hold for random variables which are stochastically dominated
by X.

Suppose that Ω =
∏k
i=1 Ωi is a product probability space. A measurable function f : Ω→ R

is said to be C-Lipschitz if for each ω1 ∈ Ω1, ω2 ∈ Ω2, . . . , ωi, ω
′
i ∈ Ωi, . . . , ωk ∈ Ωk we have C-Lipschitz

|f(ω1, ω2, . . . , ωi, . . . , ωk)− f(ω1, ω2, . . . , ω
′
i, . . . , ωk)| ≤ C .

McDiarmid’s Inequality, [19] states that Lipschitz functions are concentrated around their
expectation.

Lemma 17 (McDiarmid’s Inequality). Let f : Ω → R be a C-Lipschitz function defined on

a product probability space Ω =
∏k
i=1 Ωi. Then for each t > 0 we have

P
[
|f − E[f ]| > t

]
≤ 2 exp

(
− 2t2

C2k

)
.

We shall also need Talagrand’s Inequality, in a version as in [?, Theorem 2].1 For a function

f : Ω → R in a probability space Ω =
∏k
i=1 Ωi, we say that values ωi1 ∈ Ωi1 , . . . , ωip ∈ Ωip

certify that f ≥ Λ if for each choice of (ωj ∈ Ωj)j∈[k]\{i1,...,ip} we have that f(ω1, . . . , ωk) ≥ Λ. certify

Lemma 18 (Talagrand’s Inequality). Let f : Ω→ [0,+∞) be a C-Lipschitz function defined

on a product probability space Ω =
∏k
i=1 Ωi. Suppose also that there exists a constant c > 0

1All the applications of McDiarmid’s Inequality below could actually be replaced by Talagrand’s Inequality.
However the former has assumptions that are easier to check and a conclusion that is cleaner.
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such that if we have Λ > 0 and ω1 ∈ Ω1, . . . , ωk ∈ Ωk such that f(ω1, . . . , ωk) ≥ Λ then there
is a set of at most cΛ values that certify f ≥ Λ. Then for each t > 0 we have

P [f ≥ E[f ] + t] ≤ exp

(
− t2

2cC2(E[f ] + t)

)
.

Next, we introduce Suen’s inequality ([23], see also [1, p. 128]). Let {Bi ⊆ Ω}i∈I be a finite
collection of events in an arbitrary probability space Ω. A superdependency graph for {Bi}i∈I superdependency

graphis an arbitrary graph on the vertex set I whose edges satisfy the following. Let I1, I2 ⊆ I be
two arbitrary disjoint sets with no edge crossing from I1 to I2. Then any Boolean combination
of the events {Bi}i∈I1 is independent of any Boolean combination of the events {Bi}i∈I2 . In
this setting (and only in this setting) we write i ∼ j to denote that ij forms an edge. i ∼ j

Suen’s Inequality allows us to approximate P[
∧
Bi] by

∏
P[Bi].

Lemma 19 (Suen’s Inequality). Using the above notation, and writing M =
∏

P[Bi], we
have ∣∣∣P[∧Bi

]
−M

∣∣∣ ≤M ·
exp

(∑
i∼j

νi,j
)
− 1

 ,

where

νi,j =
P[Bi ∧Bj ] + P[Bi]P[Bj ]∏
` ∼ i or ` ∼ j(1− P[B`])

.

5. Almost packings via the nibble method

In this section, we prove the almost packing lemma (Lemma 6).

5.1. Outline of the proof of Lemma 6. Given an (n,∆)-family of trees we want to find
an almost packing into K(1+ε)n. Our first step is to prepare the trees (see Section 5.3): We
start by grouping all trees but the exceptional tree T0 according to their sizes into c = 50/ε
many groups so that trees in each group have almost the same number of vertices. The
reason behind this is that one of our goals is to get good bounds on the quasirandomness
of the host graph after each packing round of the nibble method, and for obtaining these
bounds we need a very fine-grained control over the sizes of the forests embedded in one
round. Since our trees can be very different in size, however, we group them as described and
show that quasirandomness is maintained for each group individually (hence also in total).
Unfortunately though, even the difference in tree sizes within one group (which are at most
n/2c) is too big for the precision that we need for our quasirandomness bounds. We resolve
this issue by attaching a small path (of length at most n/2c = εn/100) to each tree, we can
guarantee that in each group i ∈ [c] all trees Ti,s with s ∈ [ki] are actually of exactly the
same size. Observe that in total this adds at most εn2/50 edges to our tree family, hence the
resulting family in total still has less edges than K(1+ε)n. Next, we use Lemma 16 to obtain

a %-balanced r-level partition of each tree Ti,s such that each level F ji,s with j ∈ [r] forms a
forest with constantly many components and all the levels are of similar size. The resulting
difference in forest sizes within one group now is sufficiently small for the precision that we
need for our quasirandomness bounds.

Our second step (see Section 5.4) is to remove a copy of T0 from K(1+ε)n. The resulting
graph is still α1-quasirandom for arbitrarily small α1. Our third step is to almost pack the

remaining trees in r rounds. In round j we embed level F ji,s of tree Ti,s for all i ∈ [c] and
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s ∈ [ki]. That this is possible is guaranteed by the nibble lemma, Lemma 22 (see Section 5.5).
This lemma states that in an αj-quasirandom graph Gj we can find partial homomorphisms

from our levels F ji,s to Gj such that these homomorphisms produce an almost packing of F ji,s.

At the end of round j we remove from Gj all edges used in images of any F ji,s. Lemma 22 also

guarantees that the resulting graph Gj+1 is still quasirandom (albeit with worse parameters),
hence we can continue with the next round.

5.2. Constants. We now start the proof of Lemma 6. Suppose that ε > 0 and ∆ ∈ N are
given. Set c = 50

ε and let c, r, βr

r =
1000∆2

ε10∆
and βr = ε2/100. (8)

We recursively define αr, βr−1, αr−1, . . . , β1, α1 by setting αj , βj

αj = αl22(ε, βj , c,∆) and βj−1 = αj , (9)

using Lemma 22 below. Note that we have that α1 ≤ β1 = α2 ≤ β2 = α3 ≤ · · · = αr ≤ βr.
Finally, let %, n0

% = min{ 1

4r
, α1} and n0 = max{8∆r

%α1
, nl14(α1), n1, n2, . . . , nr} , (10)

where ni = nl22(ε, βi, c,∆, αi, r).

5.3. Preparing the trees. Now that we have chosen n0 as required by Lemma 6, consider
an (n,∆)-tree family T and let T0 ∈ T be the exceptional tree of order at most n/2 (if it
exists). In the following embedding procedure T0 will be treated separately.

We group the other trees in T according to their order. For i ∈ [c] let Ti,1, Ti,2, . . . , Ti,ki be
the trees of T whose order is in the interval

(
n
2 + (i− 1) · εn100 ,

n
2 + i · εn100

]
. We append to an

arbitrary leaf of each tree Ti,s a path with exactly n
2 + i · εn100 − v(Ti,s) edges. As a result, each

modified tree Ti,s has order exactly n
2 + i · εn100 . Since T contains at most 2n trees, this added

at most εn2

50 edges to the total number of edges in T and thus∑
i∈[c],s∈[ki]

e(Ti,s) ≤
(
n

2

)
+
εn2

50
. (11)

The order and the maximum degree of the trees are still upper-bounded by n and ∆, respec-
tively. For i ∈ [c] we now let ni

ni =
n

2r
+ i

n

2cr
=

n

2r
+ i

εn

100r
=
v(Ti,s)

r
. (12)

We slice the trees into r levels as follows. We pick an arbitrary root xi,s for each tree Ti,s xi,s

with i ∈ [c], s ∈ [ki]. For all i ∈ [c], s ∈ [ki] we apply Lemma 16 to the rooted tree (Ti,s, xi,s).
Since

v(Ti,s) >
n

2
≥ n0

2

(10)

≥ 4∆r

%
and %

(10)

≤ 1

4r
,

we obtain a %-balanced r-level partition Pi,s = (L1
i,s, . . . , L

r
i,s) of (Ti,s, xi,s) such that every Pi,s =

(L1
i,s, . . . , L

r
i,s)level of Pi,s has at most 8∆/% components. Finally, we use these partitions to define rooted

forests (F ji,s, X
j
i,s) with i ∈ [c], s ∈ [ki] and j ∈ [r] as follows. Let F ji,s = Ti,s[L

j
i,s] be the level j F ji,s

of the partition Pi,s and let nji,s
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nji,s = v(F ji,s) = |Lji,s|
Def 15

= (1± %

2
)
v(Ti,s)

r

(12)
= (1± %

2
)ni. (13)

Using the fact that % ≤ 1/(4r) by (10), we obtain that

n

4r
≤ nji,s ≤

2n

r
. (14)

Let the root set Xj
i,s be obtained by considering F ji,s as a rooted subforest of the rooted Xj

i,s

tree (Ti,s, xi,s), that is, X1
i,s = {xi,s}, and for j > 1, Xj

i,s is composed of the vertices of

every component of F ji,s that are the closest to xi,s. Lemma 16 guarantees that for every

i ∈ [c], s ∈ [ki] and j ∈ [r] we have

|Xj
i,s| ≤

8∆

%

(10)

≤ α1
n

r
. (15)

5.4. Embedding T0. Our embedding procedure now starts by embedding T0 arbitrarily into
K(1+ε)n. By Lemma 14 the resulting graph

G1 = (V,E1) = K(1+ε)n − T0 is α1-quasirandom. (16)

5.5. The nibble lemma. For almost packing the remaining trees we use a nibble method,
that is, we proceed in rounds and embed in each round one level of each tree. The setting of
Lemma 22, which captures one round of the nibble procedure, is as follows.

We have a quasirandom host graph G = (V,E) and a family (Fi,s, Xi,s)s∈[ki], i∈[c] of rooted
forests that we want to pack into G, one sub-forest Fi,s for each tree Ti,s to be packed. In
addition, we are given for each i ∈ [c], s ∈ [ki] a set Ui,s ⊆ V of forbidden vertices for the
embedding of Fi,s. The set Ui,s contains vertices of G that were used for the embedding of
vertices of Ti,s in earlier rounds.

It is the quasirandomness of G that will enable us to almost pack the forests Fi,s. While
doing so, however, we need to keep in mind that there are future embedding rounds to come.
Therefore we cannot embed the forest just somehow, but we have to assert that certain
invariants are maintained. One of these invariants is clearly the quasirandomness of the part
of the host graph that remains after the embedding (Property (C7)). In addition we need
to guarantee that the embedding of the different forests Fi,s is distributed “fairly” over the
vertices of G. To this end we require that the sets Ui,s are well spread over G and our goal is
to maintain this property for the next embedding round (Property (C8)). For this we need
a concept which measures whether the sets Ui,s are distributed in a sufficiently random-like
manner over the vertex set V .

Definition 20 (load). Consider a graph G = (V,E) with m = |V | and two vertices v, w ∈ V ,
and let W = (Ws)s∈[k] be a collection of subsets of V . load(v, w,W)

µ(W)

σ(W)
load(v, w,W) = |{s ∈ [k] : Ws ∩ {v, w} 6= ∅}| ,

µ(W) =
1(
m
2

) ∑
{v′,w′}∈(V2)

load(v′, w′,W),

σ(W) =
∑

{v′,w′}∈(V2)

(
load(v′, w′,W)− µ(W)

)2
.

We say that W is (α, `)-homogeneous if σ(W) ≤ α`4, and for each s, s′ ∈ [k] we have (α, `)-
homogeneous||Ws| − |Ws′ || ≤ α`.
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In the proof of Lemma 22 we will maintain these invariants by embedding the forests Fi,s
randomly, that is, we construct random partial homomorphisms hi,s : Fi,s  G. The mappings
hi,s do not embed the vertices in Xi,s, and there will be another family of sets, denoted by
Yi,s and called the skipped vertices, that are left unembedded. Thus the hi,s : Fi,s − (Xi,s ∪ skipped

Yi,s) → G are homomorphisms. However, they do not necessarily form a proper packing of
Fi,s − (Xi,s ∪ Yi,s)s∈[ki], i∈[c] into G, because they may fail to be injective or pairwise edge-
disjoint. In order to measure this shortcoming, we introduce various types of collisions, which
we describe in the following definition.

Definition 21 (colliding and skipped vertices). In the setting above, suppose that hi,s :
Fi,s − (Xi,s ∪ Yi,s) → G are homomorphisms. We say that a vertex y ∈ V (Fi,s) is in a
vertex collision or that y is colliding, if there exists a vertex z ∈ V (Fi,s) \ {y} such that vertex

collision

colliding
hi,s(y) = hi,s(z). We define

VCi,s
VCi,s = {y ∈ V (Fi,s) : y is colliding} .

We say that an edge xy ∈ E(Fi,s) is colliding if there is some (i′, s′) 6= (i, s) with x′y′ ∈
E(Fi′,s′) such that hi,s(x, y) = hi′s′(x

′, y′). A vertex y ∈ V (Fi,s) is in an edge collision if there edge collision

is x ∈ V (Fi,s) \ {y} such that xy is colliding. We define ECi,s

ECi,s = {y ∈ V (Fi,s) : y is in an edge collision} .
We say a vertex x ∈

⋃
i,s V (Fi,s) is faulty if x ∈

⋃
i,s(VCi,s ∪ ECi,s). faulty

For a vertex v ∈ V the vertices mapped to v with faulty neighbours are FN(v)

FN(v) =
⋃
i,s

{
x ∈ h−1

i,s (v) : ∃xy ∈ E(Fi,s) such that y is faulty
}
,

the vertices mapped to v with skipped neighbours are YN(v)

YN(v) =
⋃
i,s

{
x ∈ h−1

i,s (v) : ∃xy ∈ E(Fi,s) such that y ∈ Yi,s
}
,

and the vertices mapped to v with root neighbours are XN(v)

XN(v) =
⋃
i,s

{
x ∈ h−1

i,s (v) : ∃xy ∈ E(Fi,s) such that y ∈ Xi,s

}
,

Lemma 22 now asserts that we only have a small number of these collisions. As we will
show after stating the lemma, this implies that we get an almost embedding.

Lemma 22 (Nibble Lemma). For every ε, β > 0, and c,∆ ∈ N, there exists 0 < α ≤ β so
that for every integer r there exists n0 such that for every n ≥ n0 the following is true.

We assume that we are given a family of rooted forests F = (Fi,s, Xi,s)i∈[c],s∈[ki] with

n/2 ≤
∑c

i=1 ki ≤ 2n, |Xi,s| ≤ αnr , ni,s = v(Fi,s) = (1±α)ni, where, as before, ni = n
2r + i n2cr . ni,s

Moreover, we assume that G = (V,E) is an α-quasirandom graph with m = |V | = (1 + ε)n
and density d > ε. For each i ∈ [c], let Ui = (Ui,s)s∈[ki] be an (α, n)-homogeneous family with
|Ui,s| < n for all s ∈ [ki]. For all i ∈ [c], s ∈ [ki] set Vi,s = V \ Ui,s.

Then there are sets Yi,s ⊆ V (Fi,s) and homomorphisms hi,s : Fi,s − (Xi,s ∪ Yi,s) → G[Vi,s]
for all i ∈ [c] and s ∈ [ki], with the following properties. For each i ∈ [c], each s ∈ [ki], and
each v ∈ V (G) we have

(C1) |Yi,s| ≤ βn/r,
(C2) |VCi,s| ≤ 20n/(εr2d∆),
(C3) |ECi,s| ≤ 300∆n/(ε2r2d∆),
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(C4) |FN(v)| ≤ 104∆3n/(ε3r2d2∆),
(C5) |YN(v)| ≤ βn/r,
(C6) |XN(v)| ≤ βn/r,
(C7) the graph G̃ = (V,E \

⋃
i,sE(hi,s)) is β-quasirandom, and

(C8) for each i ∈ [c], the family Ũi = (Ũi,s)s∈[ki] with Ũi,s = Ui,s ∪ V (hi,s) is (β, n)-
homogeneous.

5.6. Applying the Nibble Lemma to obtain an almost-packing. Let us first recall

what we have achieved so far. In Section 5.3 we obtained a family F j = (F ji,s, X
j
i,s) of rooted

forests for j ∈ [r]. We can assume that
∑

i ki ≥ n/2 (as otherwise, we might add dummy
trees to be embedded). In Section 5.4 we embedded the tree T0, deleted its edges and ended
up with an α1-quasirandom graph G1 = (V,E1).

Now we set U1
i = (U1

i,s)s∈[ki] where U1
i,s = ∅ for all i ∈ [c] and s ∈ [ki]. We perform r

embedding rounds. For j = 1, . . . , r, we do the following in round j. We apply Lemma 22
with parameters ε, βj , c, ∆, obtaining αj and n0. We then feed to Lemma 22

(P1)j the family F j = (F ji,s, X
j
i,s)i∈[c],s∈[ki] of rooted forests,

(P2)j an αj-quasirandom graph Gj = (V,Ej) with |V | = m = (1 + ε)n and dj
(
m
2

)
= |Ej | ≥

3
4εn

2, which implies dj ≥ ε,
(P3)j and for each i ∈ [c] an (αj , n)-homogeneous family U ji = (U ji,s)s∈[ki].

Let us now check that the conditions required by Lemma 22 are met. By (15) we have

|Xj
i,s| ≤ α1

n
r ≤ αj

n
r , by (13) and the definition of % we have v(F ji,s) = (1± αj)ni. Hence the

conditions of Lemma 22 are satisfied. So we obtain sets Y j
i,s ⊆ V (F ji,s) and homomorphisms

hji,s : F ji,s − (Xj
i,s ∪ Y

j
i,s) → G[V j

i,s], where V j
i,s = V \ U ji,s, with vertex collisions VCj

i,s, edge

collisions ECj
i,s, faulty neighbours FNj(v), skipped neighbours YNj(v), and root neighbours

XNj(v) for every v ∈ V , such that (C1)–(C8) are satisfied.
We will next argue that we can apply Lemma 22 again in the next round. For this purpose

let Gj+1 = (V,Ej+1) = (V,Ej \
⋃
i,sE(hji,s)). Since βj = αj+1 by (9), Conclusion (C7) implies

that Gj+1 is αj+1-quasirandom. Moreover, to check the density requirement in (P2)j+1,

|Ej+1| ≥ e(G1)−
∑

i∈[c],s∈[ki]
j∈[r]

e(F ji,s) ≥ e(K(1+ε)n)− e(T0)−
∑

i∈[c],s∈[ki]

e(Ti,s)

(11)

≥
(

(1 + ε)n

2

)
− (n− 1)− εn2

50
−
(
n

2

)
(10)

≥ 3

4
εn2 .

Let U j+1
i = Ũ ji . By (C8) the family U j+1

i is (βj = αj+1, n)-homogeneous. We conclude that
conditions (P2)j+1 and (P3)j+1 are again satisfied and hence we can apply Lemma 22 in the
next round.

After finishing all r embedding rounds we define the set Ri,s that contains all roots, skipped
vertices and vertices in vertex or edge collisions in the tree Ti,s,

Ri,s =
⋃
j∈[r]

(
Xj
i,s ∪ Y

j
i,s ∪VCj

i,s ∪ ECj
i,s

)
.
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Let h̃ji,s be the restriction of hji,s to V (F ji,s) \ Ri,s and h̃i,s =
⋃
j∈[r] h̃

j
i,s. We will show that

{h̃i,s, Ri,s}i∈[c],s∈[ki] is an (εn)-almost packing of T into K(1+ε)n − T0, which will finish the
proof of Lemma 6.

Indeed, by the definition of the sets V j
i,s, the vertex-images of two homomorphisms hji,s and

hj
′

i,s are disjoint, unless j = j′. In other words, vertices of different rounds cannot collide.
Moreover, by the definition of Gj , the edges of K(1+ε)n used for the embedding in some round
do not get used again in a later round. Hence edges of different rounds can also not collide.

Since hji,s is a homomorphism from F ji,s− (Xj
i,s∪Y

j
i,s) to G[V j

i,s], the set VCj
i,s∪ECj

i,s contains

all vertices in vertex and edge collisions of F ji,s, and Xj
i,s contains all roots of trees in F ji,s, we

conclude that {h̃i,s}i∈[c],s∈[ki] is a packing of the family {Ti,s−Ri,s}i∈[c],s∈[ki] into K(1+ε)n−T0.
Hence it remains to check conditions (b) and (c) of Definition 5. For condition (b), observe

that by (15), (C1), (C2) and (C3) of Lemma 22 we have

|Ri,s| =
∑
j∈[r]

(
|Xj

i,s|+ |Y
j
i,s|+ |VCj

i,s|+ |ECj
i,s|
)

≤ r ·
(
α1
n

r
+ βr

n

r
+ 20

n

εr2d∆
r

+
300∆n

ε3r2d2∆
r

)
≤
(

2βr +
320∆

ε3rd2∆
r

)
n ≤ εn ,

where we use dr ≥ ε, and (8). For condition (c), let v ∈ V (K(1+ε)n) be fixed and define

RN(v) =
⋃
i,s

{
y ∈ h−1

i,s (v) : ∃xy ∈ E(Ti,s) such that x ∈ Ri,s
}
.

We need to show that |RN(v)| ≤ εn. The definition of Ri,s implies that RN(v) =
⋃
j(FNj(v)∪

YNj(v) ∪XNj(v)
)

and thus we infer from (C4), (C5), (C6) of Lemma 22 that

|RN(v)| ≤
( 10∆3

ε3r2d2∆
r

+
βr
r

+
βr
r

)
rn ≤

( 10∆3ε10∆

ε3 · 1000∆ · ε2∆
+

2ε2

100

)
n ≤ εn ,

where again we use dr ≥ ε, and (8).

6. Proof of the Correction Lemma

In this section, we give a proof of Lemma 7. We consider the graph Km as a subgraph of
K(1+ε)m, and set W = V (K(1+ε)m) \ V (Km). We are given trees T1, . . . , Tk together with an

( ε
2m

64∆)-almost packing (hi : Ti −Ri → Km)i∈[k] of these trees into Km.
In each tree Ti we choose a root in V (Ti) \ Ri and a breadth-first search ordering of the

vertices of Ti starting at this root. We enumerate the vertices Ri = {xi,1, . . . , xi,`i} according
to this ordering. Our approach now is to proceed tree by tree, starting with T1, and to embed
the vertices of Ri one by one into W (in this order), so that we obtain a packing of all trees
into K(1+ε)m in the end. More precisely, for i = 1, . . . , k and t = 1, . . . , `i we map the vertex

xi,t to a vertex h̃i(xi,t) ∈ W using a greedy algorithm, where h̃i(xi,t) must avoid certain
forbidden sets, which we now define.
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Firstly, xi,t should not be embedded on vertices in W which are already images of other
vertices of Ti, that is, vertices in

Xi,t =
⋃
s<t

{
h̃i(xi,s)

}
.

This will guarantee that h̃i is injective. Secondly, xi,s should not be embedded on a vertex
in W whose edges to hi-images of Ti-neighbours of xi,t have been used already by a tree
Tj with j < i. These forbidden vertex sets are captured below by the sets Yi,t (for Ti-
neighbours of xi,t that are not in Ri) and Ui,t (for Ti-neighbours of xi,t that are in Ri). Let
Ai,t = NTi(xi,t) ∩

(
V (Ti) \Ri

)
be the neighbours of xi,t that have already been embedded by

hi and set

Yi,t = {w ∈W : ∃j < i, y ∈ Ai,t : hi(y) = v and vw ∈ E(hj) ∪ E(h̃j)} .
Thirdly, we do not want to embed xi,t to vertices contained in “dangerously” many used

edges, that is, vertices in the following set Zi. Let Ei,t be the set of edges in
(
W
2

)
that have

already been used, that is Ei,t =
⋃
j<iE(h̃j) ∪ E

(
(h̃i) �{xi,1,...,xi,t−1}

)
and set

Zi,t = {w ∈W : w is contained in at least εm/2 edges of Ei,t} .
Embedding xi,t outside Zi,t will guarantee that the embedding process can be continued for
the Ri-neighbours of xi,t.

Finally, let x be the parent of xi,t in Ti. If x ∈ Ri then we have x = xi,s for some s < t.
We let

Ui,t =
{
w ∈W : {h̃i(xi,s), w} ∈ Ei,t

}
=
{
w ∈W : {h̃i(xi,s), w} ∈ Ei,s

}
,

that is, the set of vertices in W whose edge to the image of xi,s has been used already.
The equality holds because after xi,s and before xi,t we only embed vertices xi,s′ of Ti and

guarantee that h̃i(xi,s′) 6= h̃i(xi,s). If x 6∈ Ri we let Ui,t = ∅.
Having defined these forbidden sets we now map xi,t to an arbitrary vertex

h̃i(xi,t) ∈W \
(
Xi,t ∪ Yi,t ∪ Zi,t ∪ Ui,t

)
.

We claim that this set is not empty. Indeed, we have |Xi,t| ≤ |Ri| ≤ ε2m/(64∆2). In
addition, in the definition of Yi,t there are at most ∆ choices for y and hence for v. For
a fixed v, Definition 5(c) states that at most ε2m/(64∆2) vertices z have been mapped by⋃
j≤i hj to v. Each of these vertices z ∈ V (Tj) has at most ∆ neighbours mapped by h̃j to

some w ∈W . Hence |Yi,t| ≤ ∆ ·∆ · ε2m/(64∆2). To get a bound on |Zi,t| we observe that

|Ei,t| ≤
∑
j≤i

e
(
Tj [Rj ]

)
≤
∑
j≤i
|Rj | ≤ k

ε2m

64∆2
.

Hence, since k ≤ 2m we obtain

|Zi,t| ≤
2|Ei,t|
εm/2

≤ 4kε2m

64∆2εm
≤ εm

8
.

Moreover, |Ui,t| ≤ εm/2 because h̃i(xi,s) 6∈ Zi,s. We conclude that∣∣W \ (Xi,t ∪ Yi,t ∪ Zi,t ∪ Ui,t
)∣∣ ≥ εm− ε2m

64∆2
−∆2 ε

2m

64∆2
− εm

8
− εm

2
> 0 .

It remains to check that, at the end of this procedure, the mappings (hi ∪ h̃i)i∈[k] form

a packing of T into K(1+ε)m. Firstly, each hi ∪ h̃i is injective, because hi is injective, h̃i is
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injective by the definition of Xi,t, and V (hi)∩ V (h̃i) = ∅. Secondly, hi ∪ h̃i is edge-preserving

because we embed into a complete graph. Thirdly, we have E(hi∪h̃i)∩E(hj∪h̃j) = ∅ for each

i > j. Indeed, E(hi) and E(hj) are disjoint by assumption. E(hi) and E(h̃j) (and similarly

E(h̃i) and E(hj)) are disjoint by the definition of Yi,t. Finally, E(h̃i) and E(h̃j) are disjoint
by the definition of Ui,t.

7. Limping homomorphisms on quasirandom graphs

Let F be a forest with maximum degree ∆ and a given bipartition into primary vertices and primary v.

secondary vertices. Let G = (V,E) be an (α,∆)-superquasirandom graph of density d. We secondary v.

now define a limping homomorphism h from F to G. This is a random partial homomorphism limping ho-
momorphismfrom F to G whose distribution is described by the following two-step procedure.

1. For each primary vertex x ∈ V (F ) we choose uniformly at random (u.a.r.) a vertex
h(x) ∈ V .

2. For each secondary vertex y ∈ V (F ) we choose u.a.r. a real number τ(y) ∈ [0, 1). To pick
h(y), consider the set {u1, . . . , up} = h(NF (y)).2

(a) If {u1, . . . , up} is α-bad then h does not map y anywhere. We say that h skips y. skips

(b) If y is not skipped, let i = bτ(y) · codeg(u1, . . . , up)c+ 1 and define h(y) to be the
i-th vertex in N(u1, . . . , up) (for which an order was fixed prior to the experiment).
In other words, we choose h(y) u.a.r. in N(u1, . . . , up).
Modelling this uniform random choice by τ(y) will help in the analysis.

Hence, if we denote the set of primary vertices by P and the set of secondary vertices by S,
the limping homomorphism is determined by an element of the probability space

ΩF = V P × [0, 1]S . (17)

This is the product space that we shall use in applications of McDiarmid’s Inequality later.
Observe that a limping homomorphism implicitly depends on the parameter α. This pa-

rameter will always be clear from the context.
The next three lemmas establish some fundamental properties of limping homomorphisms.

Lemma 23. Suppose that we are given α ∈ (0, 1
4), a tree F of maximum degree at most ∆

with a bipartition into primary and secondary vertices, and an (α,∆)-superquasirandom graph
G = (V,E) of density d and with |V | ≥ 4∆/d.

Let h be the limping homomorphism from F to G. Let uv ∈ E be an arbitrary edge of G,
let x ∈ V (F ) be an arbitrary primary vertex, let y ∈ V (F ) be an arbitrary secondary vertex
and let H be an arbitrary event describing the placements of all vertices except y. Then the
following statements hold.

(a) P[h(x) = v] = 1
|V | .

(b) P[y is skipped | h(x) = v] ≤ α.
(c) P[y is skipped ] ≤ α.

(d) Suppose that xy ∈ E(F ). Then P[h(x) = u and h(y) = v] =

(
1±α( 2

d)
∆
)∆+2

d|V |2 .

(e) P[h(y) = v] =

(
1±α( 2

d)
∆
)∆+3

|V | .

(f) P[h(y) = v | y not skipped ] =

(
1±α( 2

d)
∆
)∆+5

|V | .

2Note that p can be strictly smaller than degF (y); this happens when h is not injective on NF (y).
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(g) P[h(y) = v | H] ≤ 2
d∆|V | .

Proof. (a) This follows immediately from the definition of limping homomorphisms.

(b) The statement is trivially true when NF (y) = {x}. Indeed, then y is never skipped. So,
let us assume that |NF (y) \ {x}| ≥ 1.

Let us expose the placement of all the primary vertices of F . Let {u1, . . . , up} = h(NF (y))\
{v}. Note that p ≥ 1 almost surely. As G is (α,∆)-superquasirandom badα,p(v) ≤ α

( |V |
p−1

)
and so we have

P [y is skipped | h(x) = v] = P [{u1, . . . , up, v} is α-bad] ≤ α .

(c) We have P[y is skipped] =
∑

w∈V P[y is skipped | h(x) = w] · P[h(x) = w] ≤ α, by (a)
and (b).

(d) Let A be the event that x gets mapped to u, let B be the event that y gets mapped to v,
let C be the event that y is not skipped, and let D be the event that v is in the common
neighbourhood of h(NF (y) \ {x}). Note that B ⊆ C ∩ D. Indeed, the fact that B ⊆ C is
clear. If y is not skipped, it is mapped to the common neighbourhood of h(NF (y)). So, for
B to occur, we need v to be in this common neighbourhood. But then v is in the common
neighbourhood of h(NF (y) \ {x}) as well. Hence B ⊆ D.

Let Eq be the event that |h(NF (y))| = q + 1. As D and A are independent even if we
condition on Eq, we have

P [A ∩B|Eq] = P [A ∩B ∩ C ∩D|Eq]
= P [A|Eq] · P [D|A ∩ Eq] · P [C|Eq ∩D ∩A] · P [B|Eq ∩ C ∩D ∩A]

= P [A|Eq] · P [D|Eq] · P [C|Eq ∩D ∩A] · P [B|Eq ∩ C ∩D ∩A] . (18)

We have P [A|Eq] = P [A] = 1
|V | . As badα,1(v) = 0, we get that deg(v) = (1 ± α)d|V |.

Consequently, P [D|Eq] =
(
(1 ± α)d

)q
. The number of α-bad (q + 1)-sets that contain u and

have the remaining vertices inside N(v) is at most α
(|V |
q

)
. As |N(v)| ≥ (1− α)d|V |, the total

number of (q + 1)-sets that contain u and have the remaining vertices inside N(v) is at least(
(1−α)d|V |

q

)
. We thus get

1 ≥ P [C|Eq ∩D ∩A] ≥ 1−
α(|V |q )

((1−α)d|V |
q )

≥ 1− α
(

2
d

)∆
,

where we use (1 − α)d|V | − q ≥ 1
2d|V |, which follows from |V | ≥ 4∆/d. Finally, if y is not

skipped, then the set h(NF (y)) is not α-bad, implying that

P [B|Eq ∩ C ∩D ∩A] = ((1± α)dq+1|V |)−1 .

Substituting the above estimates into (18), we get

P [A ∩B|Eq] = P [A|Eq] · P [D|Eq] · P [C|Eq ∩D ∩A] · P [B|Eq ∩ C ∩D ∩A]

=
(1± α)qdq · (1± α

(
2
d

)∆
)

(1± α)dq+1|V |2
=

(1± α)∆(1± 2α)(1± α
(

2
d

)∆
)

d|V |2

=

(
1± α

(
2
d

)∆ )∆+2

d|V |2
.

As this quantity does not depend on the choice of q, we get the same answer if we condition
on the event Eq′ , for any q′ ∈ [∆]. This gives (d).
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(e) Fix an arbitrary neighbour z of y. Since z is primary, we have

P[h(y) = v] =
∑

w∈V : vw∈E
P[h(y) = v and h(z) = w] .

The above sum has (1± α)d|V | summands. The statement then follows from (d).

(f) We have

P[h(y) = v | y not skipped] =
P[h(y) = v and y not skipped]

P[y not skipped]
=

P[h(y) = v]

P[y not skipped]
.

Hence we get the claimed bound from (c) and (e).

(g) We can expose the entire embedding of F − y, and condition on the event H. Now, either
the image of the neighbours of y form an α-bad tuple, or they do not. In the former case, y
is skipped, and the event h(y) = v does not occur. In the latter case, y is chosen uniformly
at random inside a set of size at least d∆|V |/2. �

Lemma 24. Suppose that we are given α ∈ (0, 1
4), a forest F of maximum degree at most

∆ with a bipartition into primary and secondary vertices, and an (α,∆)-superquasirandom
graph G = (V,E) of density d and with |V | ≥ 4∆/d.

Let h be the limping homomorphism from F to G. Let x, y ∈ V (F ) be two distinct vertices,
and u, v ∈ V be not necessarily distinct. Then we have

P[h(x) = u and h(y) = v] <
(2

d

)4∆2 1

|V |2
.

Proof. If x and y form an edge, then this follows from Lemma 23(d) because(
1 + α

(
2
d

)∆ )∆+2

d
=

(d∆ + α2∆)∆+2

d∆(∆+2)+1
≤ 2∆(∆+2)

d4∆2 ≤
(2

d

)4∆2

.

If x and y are in different components, or the path from x to y contains at least two primary
vertices, then h(x) and h(y) are independent, and thus the claim follows from Lemma 23(a)
and (e) and a similar calculation as in the previous case.

Thus the only remaining case is that x and y are both secondary and at distance two. We
now first expose the entire embedding of F −{x, y}. Then either the image of N(x) forms an
α-bad tuple, or it does not. In the former case x is not mapped at all. In the latter case, x is
chosen uniformly among the at least (1−α)d∆|V | vertices in Ux = NG

(
h(NF (x))

)
. Likewise,

we have that y is either not mapped, or it is mapped to a vertex selected uniformly in a set Uy
with |Uy| ≥ (1− α)d∆|V |. Hence (even though the sets Ux are and Uy are not independent),

we get P[h(x) = u and h(y) = v] ≤ ( 1
(1−α)d∆|V |)

2 ≤ (2
d)4∆2 1

|V |2 . �

Lemma 25. Suppose that we are given α ∈ (0, 1
4), a forest F of maximum degree at most

∆ with a bipartition into primary and secondary vertices, and an (α,∆)-superquasirandom
graph G = (V,E) of density d.

Let h be the limping homomorphism of F to G. Suppose that v ∈ V is arbitrary, x ∈ V (F )
is an arbitrary primary vertex, and y ∈ V (F ) is an arbitrary secondary vertex. Then we have:

(a) P [∃z ∈ V (F ) \ {x} : h(x) = h(z)] ≤ v(F )
|V | and

P [∃z ∈ V (F ) \ {y} : h(x) = h(z) | h(y) = v] ≤ 2v(F )

d∆(1−α( 2
d

)∆)∆+3|V | .
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(b) P [∃z ∈ V (F ) \ {y} : h(y) = h(z)] ≤ 2v(F )
d∆|V | and

P [∃z ∈ V (F ) \ {y} : h(y) = h(z) | h(x) = v] ≤ 2v(F )
d∆|V | .

(c) For the number of colliding vertices VC = {z ∈ V (F ) : ∃z′ : h(z) = h(z′)} and every

t > 0 we have P
[
|VC| ≥ 2v(F )2

d∆|V | + t
]
≤ 2 exp(− t2

2(∆+1)2v(F )
).

Proof. (a) We expose the entire embedding of F −
(
{x}∪NF (x)

)
. This is compatible with the

order of embedding in the definition of limping homomorphisms because all vertices in NF (x)
are secondary, and they are the only secondary vertices whose embedding depends on the
embedding of x. Let W be the image of the vertices in F −

(
{x} ∪NF (x)

)
. Observe that the

event E that there is z ∈ V (F ) \ {x} with h(x) = h(z) occurs if and only if the event E ′ that
h(x) ∈W occurs. But, no matter which vertices ended up in the set W , the probability of E ′

(conditioned on W ) is |W ||V | ≤
v(F )
|V | . Hence P [E ] ≤ v(F )

|V | .

The second part of (a) follows from

P [E | h(y) = v] =
P [h(y) = v | E ] · P [E ]

P[h(y) = v]
≤

2
d∆|V | ·

v(F )
|V |(

1−α( 2
d)

∆
)∆+3

|V |

,

where we use Lemma 23(e) and Lemma 23(g).

(b) We expose the entire embedding of F − {y}. Let W be the image of the vertices in
F − {y}. Then we either know that y is skipped, or we place y u.a.r. in a set of size at least
(1−α)d∆|V |. Similarly as in (a) the event we are interested in occurs if and only if h(y) ∈W ,

which (conditioned on W ) has probability at most |W |
(1−α)d∆|V | ≤

2v(F )
d∆|V | . This reasoning is valid

even in the conditional space h(x) = v.

(c) Using the bounds from (a) and (b), we get E [|VC|] ≤ 2v(F )2

d∆|V | . We would now like to

apply McDiarmid’s inequality, Lemma 17, to show concentration of |VC|. For this purpose
we consider the product space ΩF from (17) and view |VC| as a function from ΩF to R. We
claim that |VC| is 2(∆+1)-Lipschitz. Indeed, consider first the case that for a single secondary
vertex y the random real τ(y) changes. This only effects the embedding of y and hence |VC|
changes by 2 at most. If, on the other hand, for a single primary vertex x the random choice
of h(x) changes, then only the embedding of x and possibly its neighbours is effected. Hence
in this case |VC| changes by at most 2(∆ + 1), as claimed. Therefore McDiarmid’s Inequality
(Lemma 17) implies that

P
[
|VC| ≥ 2v(F )2

d∆|V | + t
]
≤ P

[
|VC| ≥ E

[
|VC|

]
+ t
]
≤ 2 exp

(
− 2t2

(2(∆ + 1))2v(F )

)
. �

8. Proof of the Nibble Lemma (Lemma 22)

Suppose that the numbers ε, β, c,∆ are given. Let us take

0 < α� αA � αB � αC � αD � αE � β .

That is we fix (in this order) αE, αD, αC, αB, αA, and α sufficiently small as a function of
ε, β, c,∆, and of the previously fixed constants. Given r, let n0 be sufficiently large. Let F ,
G and Ui be as in the setting of Lemma 22.

For each i ∈ [c] and each s ∈ [ki], the graph G[Vi,s] has order at least εn, and hence,
by Lemma 10, it is a (3α/ε2)-quasirandom graph of density d ± 3α/ε2. By Lemma 13,
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this implies that G[Vi,s] contains an almost spanning induced subgraph Gi,s that is (αA,∆)-
superquasirandom and has order mi,s

mi,s ≥ (1− αA)|Vi,s| > εn/2 (19)

and density di,s = d± αA. Since Ui is (α, n)-homogeneous, we have that ||Ui,s| − |Ui,s′ || ≤ αn
for each s, s′ ∈ [ki]. Consequently, mi,s = (1 ± 2αA)mi,s′ . Thus, we can choose numbers
mi > εn/2 such that

mi,s = (1± αA)mi. (20)

Finally, we recall that

(1− α)
n

2r
≤ ni,s = v(Fi,s) ≤

2n

r
. (21)

We now define the limping homomorphism hi,s of (Fi,s−Xi,s) to Gi,s so that the vertices of
V (Fi,s)\Xi,s of odd distance from Xi,s are the primary vertices and the ones at even distance
are the secondary vertices. We denote the set of the primary and the secondary vertices in Fi,s
by primi,s, and by seci,s, respectively. Let prim =

⋃
i,s primi,s and sec =

⋃
i,s seci,s. Let Yi,s primi,s

seci,s

prim
sec
Yi,s

denote the set of vertices skipped by hi,s. Notice that

Xi,s ∩ Yi,s = ∅ and Fi,s[Xi,s ∪ Yi,s] is an independent set ,

because the vertices in Yi,s are at even distance from Xi,s and hence in the same colour class
as Xi,s.

Let h :
⋃
i,s Fi,s → G be the union of the homomorphisms hi,s, and let H ⊆ G denote the h

Himage of the edges of the graphs Fi,s under h, i.e. H =
⋃
i,sE(hi,s).

It is our goal to show that the random partial homomorphisms hi,s satisfy the assertions
of the lemma with positive probability. We will show that each of the assertions is actually
met with high probability. The following table shows lemmas corresponding to individual
assertions:

(C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8)
Lem 28 Lem 29 Lem 31 Lem 32 Lem 33 Lem 34 Lem 40 Lem 41 and Lem 42

In addition to the parameters controlled by the lemma, we need to control the following
quantities. For v ∈ V , define DP (v) and DS(v) to be the number of all primary and secondary
vertices, respectively, that are mapped to v, DP (v)

DS(v)DP (v) =
∣∣h−1(v) ∩ prim

∣∣ and DS(v) =
∣∣h−1(v) ∩ sec

∣∣ .
Lemma 26. We have

P
[
∃v ∈ V : DP (v) >

15n

εr

]
≤ exp(−

√
n) , and (22)

P
[
∃v ∈ V : DS(v) >

15n

εr

]
≤ exp(−

√
n) . (23)

Further, the same bounds hold, if we condition on h(z) = u for an arbitrary z ∈ V (Fi,s) with
i ∈ [c] and s ∈ [ki] and u ∈ V (Gi,s).

Proof. We fix a vertex v ∈ V and first compute the expected number of primary vertices
mapped to v. For every i ∈ [c] and s ∈ [ki], we embed at most v(Fi,s) ≤ 2n/r primary
vertices into the set V (Gi,s) with mi,s ≥ εn/2 vertices. Since there are at most 2n choices
of pairs (i, s), this gives that E[DP (v)] =

∑
i,s

∑
v∈V (Fi,s)

1
mi,s
≤ 8n

εr . The Chernoff bound (5)

with µ = 8n/(εr) and δ = 1
2 and a union bound over all choices of v gives (22).
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To prove (23), let us again fix a vertex v ∈ V . Lemma 23(e) gives that for a fixed secondary
vertex y,

P[h(y) = v] ≤

(
1 + αA

(
2

d±2αA

)∆
)∆+3

mi,s

(19)

≤ 3

εn
. (24)

For each (i, s) consider the square F 2
i,s[seci,s] of the graph Fi,s[seci,s]. This graph has

maximum degree at most ∆2, and thus is (∆2 +1)-colourable. Let V (Fi,s) = C1
i,s∪̇ . . . ∪̇C

∆2+1
i,s

be a colouring of F 2
i,s[seci,s]. Note that the events h(x) = v and h(x′) = v for x 6= x′ ∈ C`i,s

are independent, because the unique x, x′-path in Fi,s contains at least two primary vertices.
The same reasoning gives that the events {h(x) = v}x∈C`i,s are in fact mutually independent.

We let C` =
⋃
i,sC

`
i,s and Z` =

∣∣C` ∩ h−1(v)
∣∣. Since we have at most 2n forests Fi,s, it

follows from (21) that

|C`| ≤
∑
`′

|C`′ | ≤
∑
i,s

v(Fi,s) ≤ 4n2/r . (25)

Thanks to the bound in (24) and the mutual independence described above, the random
variable Z` is stochastically dominated by a random variable Z ∈ Bin(|C`|, 3/(εn)). We
would like to apply the Chernoff bound in (7) with

µ = |C`|3/(εn) and δ′ = 1 +
1

103(∆2 + 1)
and t = µ+

n

10(∆2 + 1)εr
.

We check the condition of (7),

δ′µ =

(
1 +

1

103(∆2 + 1)

)
µ = µ+

3|C`|
103(∆2 + 1)εn

(25)

≤ µ+
12n

103(∆2 + 1)εr
≤ t.

Hence we can indeed apply (7) and obtain δ′′ > 0 (independent of n) for which

P
[
Z` ≥ µ+

n

10(∆2 + 1)εr

]
≤ exp

(
−δ′′ n

10(∆2 + 1)εr

)
.

By a union bound over all ` ∈ [∆2 + 1] we get that with probability at least 1− exp(−n2/3)

DS(v) =
∆2+1∑
`=1

Z` ≤
∆2+1∑
`=1

(
µ+

n

10(∆2 + 1)εr

)

=

∆2+1∑
`=1

(
|C`|3/(εn) +

n

10(∆2 + 1)εr

)
(25)

≤ 3

εn

4n2

r
+

1

10

n(∆2 + 1)

(∆2 + 1)εr
≤ 14n

εr
.

Finally, another union bound over all v ∈ V shows that (23) is satisfied.
Since the placement of all but at most ∆2 + 1 of the forest vertices is independent of the

placement of z we also get the bounds from (22) and (23) if we condition on h(z) = u. �

Lemma 27. Let z ∈ V (Fi,s) with i ∈ [c] and s ∈ [ki] and v ∈ V (Gi,s) be arbitrary.

P
[
∆(H) >

30∆n

εr

]
≤ 2 exp(−

√
n) and P

[
∆(H) >

30∆n

εr
| h(z) = v

]
≤ 2 exp(−

√
n) .

Proof. This follows from the fact that ∆(H) ≤ ∆ ·maxv(DP (v)+DS(v)) and from Lemma 26.
�
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Lemma 28. We have

P
[
∀i ∈ [c] ∀s ∈ [ki] : |Yi,s| ≤

βn

r

]
≥ 1− exp(−

√
n).

Proof. Fix i ∈ [c] and s ∈ [ki]. By Lemma 23(c), for the number of vertices skipped by
hi,s we have E [|Yi,s|] ≤ αA

2n
r . Note that the number of skipped vertices is ∆-Lipschitz.

McDiarmid’s Inequality (Lemma 17) with t = αA2n/r and k = v(Fi,s) ≤ 2n/r gives that

P
[
|Yi,s| > 2 · αA2n

r

]
≤ 2 · exp(

−8α2
An

2r

r22n∆2 ) = 2 exp(−4α2
An

r∆2 ). Hence using the union bound over all
choices of (i, s) we obtain

P
[
∃i, s : |Yi,s| >

βn

r

]
≤ P

[
∃i, s : |Yi,s| >

4αAn

r

]
≤ exp(−

√
n) . �

Lemma 29. We have

P
[
∀i ∈ [c] ∀s ∈ [ki] : |VCi,s| ≤

20n

εr2d∆

]
≥ 1− exp(−

√
n) .

Proof. Fix i ∈ [c] and s ∈ [ki]. We first observe that

2v(Fi,s)
2

d∆
i,smi,s

+
n

εr2d∆
≤ 4(2n/r)2

9
10d

∆εn
+

n

εr2d∆
≤ 20n

εr2d∆
.

Hence Lemma 25(c) with t = n
εr2d∆ gives that

P
[
|VCi,s| ≥

20n

εr2d∆

]
≤ P

[
|VCi,s| ≥

2v(Fi,s)
2

d∆
i,smi,s

+
n

εr2d∆

]

≤ 2 exp

(
− n2

2ε2r4d2∆(∆ + 1)2ni,s

)
≤ 2 exp

(
− n

4ε2r3d2∆(∆ + 1)2

)
.

Using a union bound over all choices (i, s), we get the statement of the lemma. �

Recall that ECi,s contains all the vertices of Fi,s that are contained in an edge collision.
We define EC∗i,s = {xy ∈ E(Fi,s) : xy is colliding}. Notice that |ECi,s| ≤ 2|EC∗i,s|. EC∗i,s

Lemma 30. Let xy ∈ E(Fi,s) be an edge with x ∈ primi,s and y ∈ seci,s. Let z ∈ V (Fi,s)\{y}
and v ∈ V (Gi,s). Then we have

P
[
xy ∈ EC∗i,s | h(z) = v

]
≤ 61∆

ε2rd∆
and P [y ∈ ECi,s | h(z) = v] ≤ 61∆2

ε2rd∆
,

and hence also P
[
xy ∈ EC∗i,s

]
≤ 61∆

ε2rd∆ .

Proof. Let u = h(x) and z be an arbitrary vertex in Fi,s − y. Let {u1, . . . , up} = h(NFi,s(y) \
{x}). We denote by B the event that {u, u1, . . . , up} forms an αA-bad set. First observe that
p1 = P[xy ∈ EC∗i,s|h(z) = v and B] = 0, because the event B implies that y is skipped and
thus the edge xy is not colliding. On the other hand, if B does not occur, then∣∣NGi,s(u, u1, . . . , up)

∣∣ ≥ (1− αA)(d− αA)∆mi,s ≥
1

2
d∆εn. (26)

Next we define

Ñ(u) =
{
w ∈ NG(u) : ∃i ∈ [c] ∃s ∈ [ki] ∃x′y′ ∈ E(Fi,s) with xy 6= x′y′ and h(x′y′) = uw

}
.
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This means that the edge xy is colliding only if y is mapped to Ñ(u). By Lemma 27 we have

p2 = P
[
|Ñ(u)| > 30∆n

εr

∣∣∣ h(z) = v
]
≤ 2 exp(−

√
n).

Moreover, because z 6= y we have

p3 = P
[
xy ∈ EC∗i,s

∣∣∣ h(z) = v and B and |Ñ(u)| ≤ 30∆n

εr

]
(26)

≤ 30∆n

εr · d∆εn/2
=

60∆

ε2rd∆
.

Since P[xy ∈ EC∗i,s | h(z) = v] ≤ p1 +p2 +p3, we obtain that P[xy ∈ EC∗i,s | h(z) = v] ≤ 61∆
ε2rd∆ .

In addition,

P [y ∈ ECi,s | h(z) = v] ≤
∑

x∈NFi,s (y)

P[xy ∈ EC∗i,s | h(z) = v] ≤ ∆
61∆

ε2rd∆
. �

Lemma 31. We have

P
[
∃i ∈ [c], s ∈ [ki] : |ECi,s| >

300∆n

ε2r2d∆

]
≤ exp(−

√
n) .

Proof. Fix an arbitrary i ∈ [c] and an arbitrary s ∈ [ki]. Combining Lemma 30 and (21), we
get E[|ECi,s|] ≤ 2E[|EC∗i,s|] ≤ 244∆n

ε2r2d∆ .
Changing the value at a single coordinate in (17) leads to a change of the placement of at

most ∆2 edges. A change of a placement of a single edge can change the number of colliding
edges by at most 2, which can result in a change of at most 4 in |ECi,s|. We conclude that
|ECi,s| is 4∆2-Lipschitz.

McDiarmid’s Inequality (Lemma 17) gives that

P
[
|ECi,s| ≥

300∆n

ε2r2d∆

]
≤ 2 exp

(
−

2( 56∆n
ε2r2d∆ )2

16∆4 · 2n
r

)
≤ exp(−n0.9) .

The lemma then follows by a union bound over i and s. �

Lemma 32. We have

P
[
∃v ∈ V : |FN(v)| > 104∆3n

ε3r2d2∆

]
≤ exp(−

√
n) .

Proof. Fix a vertex v ∈ V . Fix i ∈ [c] and s ∈ [ki].

Claim 32.1. Let xy ∈ E(Fi,s). Then P[h(x) = v and y is faulty] ≤ 103∆2

ε3rd2∆n
.

Proof of Claim 32.1. We shall use

P[h(x) = v and y is faulty] = P[h(x) = v] · P[y is faulty | h(x) = v] . (27)

First consider the case that x is primary. The secondary vertex y is faulty if it is colliding, or
if it is in an edge collision (due to either xy colliding, or yz colliding with z ∈ NFi,s(y) \ {x}).
For vertex collisions, by Lemma 25(b), we have

P[y ∈ VCi,s | h(x) = v] ≤ 2ni,s
d∆mi,s

(19),(21)

≤ 8

εrd∆
.

For edge collisions, Lemma 30 gives P[y ∈ ECi,s | h(x) = v] ≤ 61∆2

ε2rd∆ . Hence

P[y is faulty | h(x) = v] ≤ 8

εrd∆
+

61∆2

ε2rd∆
≤ 70∆2

ε2rd∆
.
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Since P[h(x) = v] = 1
mi,s
≤ 2

εn by Lemma 23(a), we get together with (27) that

P[h(x) = v and y is faulty] ≤ 140∆2

ε3rd∆n
,

which gives the claim in this case.

Next, consider the case that x is secondary. We denote by A1 the event that y is in a
vertex collision. We denote by A2 the event that y together with some vertex z ∈ N(y) \ {x}
forms a colliding edge. We denote by A3 the event that xy is colliding. The primary vertex
y is faulty if at least one of the events A1, A2, or A3 occurs.

By Lemma 25(a) we have

P[A1 | h(x) = v] ≤ 2ni,s

d∆ 1
2mi,s

≤ 16

rd∆ε
. (28)

For z ∈ N(y) \ {x} fixed, Lemma 30 gives P[yz ∈ ECi,s | h(x) = v] ≤ 61∆
ε2rd∆ . Hence we obtain

P[A2 | h(x) = v] ≤ ∆
61∆

ε2rd∆
. (29)

In order to obtain a similar bound for the event A3, let A′3 be the event that xy is in an
edge collision with an edge from a different forest Fi′,s′ . Let H ′ be the graph formed by the
images of all forests but Fi,s, that is, H − E(hi,s). Now fix a mapping of all forests but Fi,s.

By Lemma 27, with probability at least 1 − 2 exp(−
√
n) we have ∆(H ′) ≤ 30∆n

εr (and this
is independent of the event h(x) = v). Assume that this is the case and let Pi,s,H′ be (the
measure on) the conditional probability space associated with the limping homomorphism
for Fi,s. We have,

Pi,s,H′ [A′3 | h(x) = v] = Pi,s,H′ [h(y) ∈ NH′(v) | h(x) = v]

≤
∑

u∈NH′ (v)

Pi,s,H′ [h(y) = u | h(x) = v] .

For a fixed vertex u ∈ V we have

Pi,s,H′ [h(y) = u | h(x) = v] = Pi,s,H′ [h(y) = u and h(x) = v]/Pi,s,H′ [h(x) = v] ,

which by Lemma 23(d) and Lemma 23(e) is at most ( 2
dm2

i,s
)/ 1

2mi,s
= 4

dmi,s
. Hence,

Pi,s,H′ [A′3 | h(x) = v] ≤ 30∆n

εr
· 4

dmi,s
≤ 120∆

ε2dr
.

Returning to our original probability space we thus obtain P[A′3 | h(x) = v] ≤ 2 exp(−
√
n) +

120∆
ε2dr

. Since

P[A3 | h(x) = v] ≤ P[A′3 | h(x) = v] + P[y ∈ VCi,s | h(x) = v] ,

we conclude from Lemma 25(a) that

P[A3 | h(x) = v] ≤ 121∆

ε2dr
+

2ni,s

d∆ 1
2mi,s

≤ 121∆

ε2dr
+

16

rd∆ε
≤ 150∆

ε2rd∆
. (30)

Finally, since P[h(x) = v] ≤ 2
mi,s

≤ 4
εn by Lemma 23(e), we get from (27), (28), (29)

and (30) that

P[h(x) = v and y is faulty] ≤ 4

εn

( 16

εrd∆
+

61∆2

ε2rd∆
+

150∆

ε2rd∆

)
≤ 4

εn
· 200∆2

ε2rd∆
,
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which also gives the claim in this case. �

For x ∈ V (Fi,s) let Ex,v be the event that h(x) = v and that there exists a vertex y ∈ NFi,s(x)
such that y is faulty.

Claim 32.2. For each x ∈ V (Fi,s) we have P[Ex,v] ≤ 103∆3

ε3rd2∆n
.

Proof of Claim 32.2. This follows immediately from ∆(Fi,s) ≤ ∆ and Claim 32.1. �

We now return to the proof of Lemma 32 and recall that FN(v) =
⋃
i,s{x ∈ V (Fi,s) : Ex,v}.

Thus, combining the above claim and e.g. (25), we get

E[|FN(v)|] ≤ 103∆3

ε3rd2∆n
· 4n2

r
. (31)

Next, we argue that |FN(v)| is 4(∆ + 1)2-Lipschitz. To see this, we need to control the effects
a change of a single variable in (17) may have (a) on the number of vertices that are mapped
to v, and (b) on the number of vertices that are faulty. Observe that a change of a single
vertex being faulty or not may lead to a change up to ∆ in the value |FN(v)|.
(a) A change of a single variable in (17) can alter the position of at most ∆ + 1 vertices.
(b) A change in the position of a single vertex can alter the total number of faulty vertices

by at most 4. By (a), we get that a change of a single variable in (17) can alter the
number of faulty vertices by at most 4(∆ + 1).

Thus by (a) and (b) we get that |FN(v)| is (∆ + 1) + ∆ · (4(∆ + 1))-Lipschitz.
Next, fix Λ ∈ N and assume that |FN(v)| ≥ Λ for a particular realization in (17). We claim

that there is a set of at most Λ · 3(∆ + 1) coordinates that certifies that |FN(v)| ≥ Λ. Indeed,
each elementary contribution to |FN(v)| corresponds to some vertex x mapped to v whose
neighbour is faulty. To certify that a vertex is faulty, we need to encode its position (or the
position of the colliding edge incident to this vertex) and the position of the vertex (edge)
with which it collides. To encode the position of a secondary vertex y, we need to know ∆+1
coordinates from (17). These coordinates also give the position of any primary vertex that
may be incident to any colliding edge containing y. So we need at most 2(∆ + 1) coordinates
to certify that a secondary vertex is faulty. The number of coordinates needed to certify that
a primary vertex is faulty is also bounded by 2(∆ + 1). So, to increase |FN(v)| by one, we
need at most (∆+1) coordinates to certify the position of x and at most 2(∆+1) coordinates
to certify that x has a faulty neighbour. The claim follows.

Therefore |FN(v)| satisfies all the conditions of Talagrand’s Inequality (Lemma 18). We
get

P
[
|FN(v)| > 104∆3n

ε3r2d2∆

]
≤ P

[
|FN(v)| > E[|FN(v)|] +

104∆3n

2ε3r2d2∆

]
≤ exp(−Θ(n)) .

The lemma follows by a union bound over all choices of v.
�

Lemma 33. We have

P
[
∃v ∈ V : |YN(v)| > βn

r

]
≤ exp(−

√
n) .
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Proof. We proceed similarly as in the proof of the previous lemma. Fix v ∈ V . For x ∈ V (Fi,s)
denote by Ex,v the event that h(x) = v and that there exists a vertex in NFi,s(x) that is skipped.
By Lemma 23(a) and Lemma 23(b) we have

P[Ex,v] ≤
∑

y∈NFi,s (x)

P[y is skipped | h(x) = v] · P[h(x) = v] ≤ ∆ · αA ·
2

εn
. (32)

Observe that YN(v) =
⋃
i,s{x ∈ V (Fi,s) : Ex,v}. Moreover, for x, x′ ∈

⋃
i,s V (Fi,s) of distance

at least 6 the events Ex,v and Ex′,v are independent. Therefore we consider the 6-th power F 6

of
⋃
i,s Fi,s. Since F 6 has maximum degree less than ∆6 this graph has a ∆6-colouring⋃

i,s V (Fi,s) = C1∪̇ . . . ∪̇C∆6
. For ` ∈ ∆6 let Z` be the number of x ∈ C` such that Ex,v holds.

By (32) the random variable Z` is stochastically dominated by Bin(|C`|, 2∆αA
εn ). Thus we can

apply Chernoff’s inequality (7) with

µ =
2∆αA

εn
|C`| , δ′ = 1 +

ε

8∆7
and t = µ+

αAn

r∆6
,

which is possible because δ′µ ≤ µ + ε
8∆7 · 2∆αA

εn · 4n2

r = t. We conclude that there is δ′′ > 0
such that

P
[
Z` ≥ 2∆αA

εn
|C`|+ αAn

r∆6

]
≤ exp

(
− δ′′αAn

r∆6

)
.

Hence with probability at least 1−∆6 · exp
(
− δ′′ αAn

r∆6

)
we have

|YN(v)| =
∑
`∈[∆6]

Z` ≤ 2∆αA

εn
· 4n2

r
+ ∆6αAn

r∆6
≤ 9

∆αAn

εr
<
βn

r
.

The lemma follows by a union bound over v ∈ V . �

Lemma 34. We have

P
[
∃v ∈ V : |XN(v)| > βn

r

]
≤ exp(−

√
n) .

Proof. Fix v ∈ V . For i ∈ [c] and s ∈ [ki] let Qi,s =
⋃
x∈Xi,s NFi,s(x). By definition each

y ∈ Qi,s is primary, hence y gets mapped to v with probability at most 2
εn by Lemma 23(a).

These events are independent, and thus the number of vertices in
⋃
i,sQi,s which are mapped

to v is stochastically dominated by Bin( 2
εn ,
∑

i,s |Qi,s|). We have
∑

i,s |Qi,s| ≤ ∆
∑

i,s |Xi,s| ≤
∆ · 2nαnr . Thus, by Chernoff’s inequality (5) applied with µ = 2

εn ·
2∆αn2

r = 4∆αn
εr and δ = 1

we have

P
[
|XN(v)| > βn

r

]
≤ P

[
|XN(v)| > 8∆αn

εr

]
≤ 2 exp

(
− 4∆αn

3εr

)
.

The lemma follows by taking the union bound over all choices of v. �

We now prepare for the proof of (C7).

Definition 35 (important group). We say that i ∈ [c] is an important group if ki >
√
αnr
2 . important g.

The set of important groups is denoted by IG ⊆ [c]. IG

Lemma 36. The total number of edges in forests (Fi,s)i,s from non-important groups is less
than βn2/16.
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Proof. By definition there are at most
√
αnr
2 forests in each non-important groups and each

such forest has at most 2n
r edges. The number of non-important groups is at most c. As

c
√
α < β/16, the claim follows. �

Definition 37 (typical). Let i ∈ [c]. A pair uv ∈
(
V
2

)
is called i-typical if (load(u, v,Ui) − i-typical

µ(Ui))2 ≤
√
αn2, and i-atypical, otherwise. An edge uv ∈ E is called typical, if it is i-typical i-atypical

typicalfor each i ∈ [c], and atypical otherwise.
atypical

Lemma 38. For each i ∈ [c] there are at most 4
√
αn2 pairs in

(
V
2

)
that are i-atypical. Con-

sequently, there are at most βn2/16 atypical edges in the graph G.

Proof. For each group i ∈ [c], we have σ(Ui) < αn4 by assumption, and thus at most
√
αn2

pairs satisfy (load(u, v,Ui) − µ(Ui))2 >
√
αn2 and are thus i-atypical. As c

√
α < β/16, the

second assertion follows. �

For showing the quasirandomness of G̃ we shall use the following easy error bound.

Lemma 39. For each M ∈ (0, 1] and each a ∈ (−0.5,∞), we have M−|a| ≤M1+a ≤M+|a|.

Proof. Suppose that M is fixed. The claim holds trivially for a = 0. Thus it suffices to prove
that within the range of a, the derivative of M1+a with respect to a is at most 1 in absolute
value. We have | d

daM
1+a| = |M1+a lnM | ≤ |

√
M lnM |. It can be numerically checked, that

for each M ∈ (0, 1], we have
√
M lnM ∈ (−0.8, 0]. The claim follows. �

Lemma 40. With probability at least 1− exp(−
√
n), we have that G̃ is β-quasirandom.

Proof. By the definition of quasirandomness (Definition 8) we need to show that with high
probability there exists a number pG̃ such that for each set B ⊆ V , we have that

e(G̃[B]) = pG̃

(
|B|
2

)
± βn2 .

As G is α-quasirandom, it is enough to show that with high probability there is a number ph
such that each set B ⊆ V satisfies∣∣∣E(h) ∩

(
B

2

)∣∣∣ = ph

(
|B|
2

)
± βn2

2
.

Let us fix a set B ⊆ V . We first show that with high probability |E(h) ∩
(
B
2

)
| is close to its

expectation λB = E[|E(h)∩
(
B
2

)
|]. Note that the random variable |E(h)∩

(
B
2

)
| is ∆2-Lipschitz.

McDiarmid’s Inequality, Lemma 17, gives that

P
[∣∣∣∣∣∣∣E(h) ∩

(
B

2

)∣∣∣− λB∣∣∣∣ ≥ βn2

8

]
≤ 2 exp

(
−2β2n4

64∆4
· r

4n2

)
≤ exp(−n19/10) .

Since there are 2m ≤ 4n choices of the set B, the lemma will follow from a union bound, if
we show that for each set B we have

E
[∣∣∣E(h) ∩

(
B

2

)∣∣∣] = ph

(
|B|
2

)
± βn2

4
. (33)

By Lemmas 36 and 38, the total contribution to the number of edges in E(h) from non-
important groups and from atypical edges is at most βn2/8. Thus (33) follows if for each
typical edge uv of G the probability that there is an edge of a forest in an important group
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that gets mapped to uv is ph ± αD. We shall prove that this is the case in Claim 40.2, which
will conclude the proof of the lemma.

Before turning to this claim, we consider a fixed important group i and bound the proba-
bility that a typical edge uv is the image of any edge of a forest of this group. Observe that
it suffices to consider forests Fi,s with Ui,s ∩ {u, v} = ∅. Let xy ∈ E(Fi,s) for such a forest.
Denote by A(x, y, u, v) the event that h(x) = u and h(y) = v. Then by Lemma 23(d) we have

P [A(x, y, u, v)] =
(
1± αA(

1

d
)∆
)∆+2 1

dm2
i,s

(20)
= (1± αB)

1

dm2
i

. (34)

Let H i
uv be the set of all ordered pairs (x, y) such that xy ∈ E(Fi,s) for s with Ui,s∩{u, v} =

∅ and

Mi(u, v) =
∏

(x,y)∈Hi
uv

P
[
A(x, y, u, v)

]
. (35)

Note that Mi(u, v) is the probability that uv is not used by any forest from group i in an
alternative random experiment where the forest edges are mapped to G independently. Our
next goal is to show that in our random experiment the corresponding probability does not
deviate much from Mi(u, v).

Claim 40.1. For each uv ∈ E(G) and each important group i we have

P[h−1(uv) ∩
⋃
s∈[ki]

E(Fi,s) = ∅] = (1± α)Mi(u, v) .

Proof of Claim 40.1. We want to use Suen’s inequality. Let uv ∈ E be fixed and abbreviate
A(x, y) = A(x, y, u, v). We set up a superdependency graph for the events {A(x, y)}(x,y)∈Hi

uv

as follows. For (x, y), (x′, y′) ∈ H i
uv, define (x, y) ∼ (x′, y′) if dist(xy, x′y′) ≤ 4. Notice

that the embedding of a primary vertex influences only the embedding of the vertices in
its neighbourhood (and itself). The embedding of a secondary vertex on the other hand is
independent of the embedding of all vertices of distance at least 3. As a consequence, we get
that ∼ indeed defines a superdependency graph for the events A(x, y). The degrees in the
superdependency graph are at most 1 + 4∆5 ≤ 5∆5. For (x, y), (x′, y′) ∈ H i

uv, set

νxy,x′y′ =
P[A(x, y) ∩A(x′, y′)] + P[A(x, y)] · P[A(x′, y′)]∏

(1− P[A(x̃, ỹ)])
, (36)

where the product in the denominator ranges through all (x̃, ỹ) ∈ H i
uv such that (x, y) ∼ (x̃, ỹ)

or (x′, y′) ∼ (x̃, ỹ). We next upper-bound (36) in the case that (x, y) 6= (x′, y′) are such that
(x, y) ∼ (x′, y′). The denominator in (36) has at most 10∆5 factors, each of which is at least

1− 1+αB

dm2
i

by (34). Similarly, by (34) the terms P[A(x, y)] and P[A(x′, y′)] are at most 1+αB

dm2
i

.

The event A(x, y)∩A(x′, y′) is empty when x′ = y, or x = y′. If x = x′ ∈ sec or y = y′ ∈ sec,
the event A(x, y) ∩A(x′, y′) puts requirements on the placement of two primary vertices and
one secondary vertex t ∈ {x′, y′}. Analogously to the proof of Lemma 23(d), we can show
that in this case this event has probability

P[A(x, y) ∩A(x′, y′)] =

(
1± αA(2

d)∆
)∆+2

dm3
i,s

(20)
=

1± αB

dm3
i

.

It remains to consider the case when {x′, y′} \ {x, y} contains a secondary vertex. Without
loss of generality assume that y′ is secondary. We first expose the limping homomorphism
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entirely, except for y′. Two cases may occur: either y′ is skipped, and therefore, A(x′, y′) can-
not occur, or the image of y′ is selected uniformly among at least d∆mi/2 vertices. Using (34)
we have

P[A(x′, y′) ∩A(x, y)] = P[A(x′, y′)|A(x, y)] · P[A(x, y)] ≤ P[h(y′) = v|A(x, y)] · P[A(x, y)]

≤ 2

d∆mi
· 1 + αB

dm2
i

≤ 3

d∆+1m3
i

.

Thus, for all (x, y) 6= (x′, y′) with (x, y) ∼ (x′, y′) we have

νxy,x′y′ ≤
4

d∆+1m3
i

· 1(
1− 1+αB

dm2
i

)10∆5 ≤
5

d∆+1(εn)3
. (37)

Suen’s inequality (Lemma 19) states that∣∣∣∣P[h−1(uv) ∩
⋃
s∈[ki]

E(Fi,s) = ∅
]
−Mi(u, v)

∣∣∣∣ =

∣∣∣∣P[ ∧
(x,y)∈Hi

uv

A(x, y)
]
−Mi(u, v)

∣∣∣∣
≤Mi(u, v)

(
exp

( ∑
(x,y)∼(x′,y′)

νxy,x′y′
)
− 1

)
.

(38)

We use (37), the bound 5∆5 on the degrees in the superdependency graph, and the fact that
we have at most 4n2/r edges in

⋃
sE(Fi,s) to obtain that

∑
xy∼x′y′

νxy,x′y′ ≤
5

d∆+1ε3n3
· 4n2

r
· 5∆5 =

100∆5

d∆+1ε3rn
.

In particular, as n ≥ n0 is large, we get
∑

xy∼x′y′ νxy,x′y′ <
α
2 < 1. We use that exp(a)−1 ≤ 2a

for each a ∈ (0, 1) and get P[h−1(uv) ∩
⋃
s∈[ki]

E(Fi,s) = ∅] = (1± α)Mi(u, v). �

Claim 40.2. There exists ph > 0 such that for each typical edge uv ∈ E we have

P[h−1(uv) ∩
⋃
i∈IG

⋃
s∈[ki]

E(Fi,s) = ∅] = ph ± αD .

Proof of Claim 40.2. First fix i ∈ IG and a typical edge uv ∈ E. Let S =
{
s ∈ [ki] : Ui,s ∩

{u, v} = ∅
}

. Observe that |S| = ki − load(u, v,Ui) and

|H i
u,v| =

∑
s∈S

2(ni,s − 1) = |S|2(1± α)(ni)− 1 = 2
(
ki − load(u, v,Ui)

)
(ni − 1)± 3nαni .

Let us write `uv = 2
(
ki − load(u, v,Ui)

)
(ni − 1). Further, we write `i = 2(ki − µ(Ui))(ni − 1),

and Mi = (1 − 1
dm2

i
)`i . Note that ε2n2 ≤ `uv ≤ 2nni because ki ≥

√
αnr/2 as i ∈ IG.
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Plugging (34) into (35), we get

Mi(u, v) =
(

1− 1± αB

dm2
i

)|Hi
uv |

= exp

(
(`uv ± 3αnni) · ln

(
1− 1± αB

dm2
i

))
= exp

(
(`uv ± 3αnni) · (1± 2αB) · ln

(
1− 1

dm2
i

))
= exp

(
(`i ± αCnni) · ln

(
1− 1

dm2
i

))
= exp

(
`i(1± αD) · ln

(
1− 1

dm2
i

))
=
(

1− 1

dm2
i

)(1±αD)`i
= M1±αD

i ,

(39)

where the third equality uses that

ln
(
1− (1± αB)λ)

)
= −(1± 1.5αB)λ = (1± 2αB) ln(1− λ) for |λ| � αB ,

and the fourth equality uses that uv is typical. In total we get that for each typical edge
uv ∈ E we have

P
[
h−1(uv) ∩

⋃
i∈IG

⋃
s∈[ki]

E(Fi,s) = ∅
]

=
∏
i∈IG

M1±αD
i =

∏
i∈IG

Mi ± αD , (40)

where we used Lemma 39. The claim follows by setting ph =
∏
i∈IGMi. �

This finishes the proof of Lemma 40. �

Recall that Ũi = (Ũi,s)s∈[ki] with Ũi,s = Ui,s ∪ V (hi,s).

Lemma 41. We have

P[∀i ∈ [c] : σ(Ũi) ≤ βn4] ≥ 1− exp(−
√
n).

Proof. Fix i ∈ [c]. Let L∗i (u, v) = load(u, v, Ũi)− load(u, v,Ui) and µ∗i = µ(Ũi)− µ(Ui).

Claim 41.1. With probability at least 1− 1
c exp(−

√
n) we have that∑

uv∈(V2)

(L∗i (u, v)− µ∗i )2 ≤ αEn
4 . (41)

Proof of Claim 41.1. Fix an arbitrary i-typical pair uv ∈
(
V
2

)
. Let s be such that Ui,s ∩

{u, v} = ∅ and let x ∈ V (Fi,s) be arbitrary. Denote by Ax the event that h(x) ∈ {u, v}.
Lemma 23(a) and (e) and (20) give that

P[Ax] =
2(1± αB)

mi
≤ 3

mi
. (42)

Set M =
∏
x∈V (Fi,s)

(1− P[Ax]). We have M =
(

1− 2±2αB
mi

)ni,s
. Recall that ni,s = (1± α)ni.

We can now manipulate the error bounds as in (39), (40) and get

M =

(
1− 2

mi

)ni
± αC . (43)

We shall approximate the values pi,s(u, v) = P[h−1({u, v}) ∩ V (Fi,s) = ∅] using Suen’s
Inequality, similarly as in the proof of Claim 40.1. We define a superdependency graph on
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vertex set V (Fi,s) for the events {Ax}x∈V (Fi,s) by letting x ∼ y whenever dist(x, y) ≤ 3.

Notice that the superdependency graph has degree at most ∆3. Let

νxy =
P[Ax ∩Ay] + P[Ax] · P[Ay]∏

(1− P[Az])
, (44)

where the product in the denominator is over all z with z ∼ x or z ∼ y. By Lemma 24 we

have P[Ax ∩ Ay] ≤ 4
(

3
d

)4∆2
1

m2
i,s
≤ 5

(
3
d

)4∆2
1
m2
i
. Notice that the product in the denominator

has at most 2∆3 factors, corresponding to the size of the union of the neighbourhoods of x
and y. Together with (42), we get for each x ∼ y that

νxy ≤
5(3
d)4∆2 1

m2
i

+ 9
m2
i

(1− 3
mi

)2∆3 ≤ 10
(3

d

)4∆2 1

m2
i

.

Note that for each s ∈ [ki], there are at most (∆ + 1)3mi,s pairs x, y ∈ V (Fi,s) with x ∼ y.
Hence Suen’s Inequality (Lemma 19) gives

pi,s(u, v) = P
[ ∧
x∈V (Fi,s)

Ax

]
= M ±M ·

(
exp

(
(∆ + 1)311(3

d)4∆2

mi

)
− 1

)
(43)

≤
(

1− 2

mi

)ni
± 2αC .

(45)

Set pi =
(

1− 2
mi

)ni
. We will show that

P[L∗i (u, v) ≥ (ki − µ(Ui)) · pi + 4αCn] ≤ exp(−α2
Cn) . (46)

The random variable L∗i (u, v) has law
∑

s : Ui,s∩{u,v}=∅Be(pi,s(u, v)). Using (45), we get that

L∗i (u, v) is stochastically dominated by
∑

Be(pi + 2αC), where the sum runs through all s
such that Ui,s ∩ {u, v} = ∅. The number of summands is ki − load(u, v,Ui), which is at
most ki − µ(Ui) + 4

√
αn, as uv is i-typical. Observe that (ki − µ(Ui) + 4

√
αn)(pi + 2αC) ≤

(ki − µ(Ui)) · pi + 3αCn. By Chernoff’s inequality (6) and because ki ≤ 2n, we obtain (46).
The computation that P[L∗i (u, v) ≤ (ki−µ(Ui)) ·pi−4αCn] ≤ exp(−α2

Cn) is done analogously.

So with probability at least 1 − 2
(
m
2

)
· exp(−α2

Cn) ≥ 1 − 1
c exp(−

√
n), all i-typical pairs uv

satisfy L∗i (u, v) = (ki − µ(Ui))pi ± 4αCn. Suppose this is the case. Then

µ∗i =
1(
m
2

) ∑
uv∈(V2)

=
1(
m
2

) ∑
uv i-typical

((ki − µ(Ui))pi ± 4αCn) +
1(
m
2

) ∑
uv i-atypical

L∗i (u, v)

= (ki − µ(Ui))pi ± 4αCn±
4
√
αn2 · 2n(
m
2

) = (ki − µ(Ui))pi ± 5αCn ,

where we used Lemma 38. So with probability at least 1− 1
c exp(−

√
n) we have∑

uv∈(V2)

(L∗i (u, v)− µ∗i )2 ≤
∑

uv i-typical

(9αCn)2 +
∑

uv i-atypical

n2

≤ n2 · 100α2
Cn

2 + 4
√
αn2 · n2 ≤ αEn

4 ,

where we used Lemma 38 again. �

Claim 41.2. If (41) holds, then σ(Ũi) ≤ βn4.
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Proof of Claim 41.2. Let Wi be the set of all pairs uv ∈
(
V
2

)
such that uv is i-atypical or

(L∗i (u, v) − µ∗i )2 >
√
αEn

2. From Lemma 38 and (41) we get that |Wi| ≤ 4
√
αn2 +

√
αEn

2 <
2 4
√
αEn

2. So,

σ(Ũi) =
∑

uv∈(V2)

(load(u, v,Ui) + L∗i (u, v)− µ(Ui)− µ∗i )2

=
∑

uv∈(V2)

(load(u, v,Ui)− µ(Ui))2 +
∑

uv∈(V2)

(L∗i (u, v)− µ∗i )2

+
∑

uv∈(V2)

2(load(u, v,Ui − µ(Ui))(L∗i (u, v)− µ∗i )

(41)

≤ αn4 + αEn
4 + 2

( ∑
uv∈Wi

n2 +
∑

uv∈(V2)\Wi

( 4
√
αn · 4

√
αEn)

)
≤ αn4 + αEn

4 + 2(2 4
√
αEn

2 · n2 + n2 ·
√
αEn

2) < βn4 .

�

Claims 41.1 and 41.2 and a union bound over all i ∈ [c] imply Lemma 41. �

Lemma 42. With probability at least 1 − exp(−
√
n) we have for each i ∈ [c] that

∣∣|Ũi,s| −
|Ũi,s′ |

∣∣∣ ≤ βn, for all s, s′ ∈ [ki].

Proof. We first compute the expected size of the image V (hi,s). More than the exact value
of the expected size, we need to show that it does not depend much on s ∈ [ki]. This is done
in (49). Then we show the concentration.

Fix (i, s) and fix v ∈ V (Gi,s). For x ∈ V (Fi,s) denote by Ax the event that x is mapped
to v. By Lemma 23(a) and (e) we have that

P[Ax] =
(1± αA)∆+3

mi,s

(20)
=

1± αB

mi
. (47)

Using Suen’s Inequality, we shall approximate P[h−1
i,s (v)∩ V (Fi,s) = ∅] = P

[∧
x∈V (Fi,s)

Ax
]

by

M =
∏
x∈V (Fi,s)

P[Ax]. Manipulating the error bounds same as in (43), we have that

M =

(
1− 1± αB

mi

)ni,s
=

(
1− 1

mi

)ni
± αC . (48)

For x, y ∈ V (Fi,s), we write x ∼ y if dist(x, y) ≤ 2. Note that this defines a superdependency
graph for the events {Ax}x∈V (Fi,s). Let

νxy =
P[Ax ∩Ay] + P[Ax] · P[Ay]∏

(1− P[Az])
,

where the product in the denominator is over all z with z ∼ x or z ∼ y. The product in
the denominator has at most 2(∆2 + 1) terms. We infer from (47) that the denominator
is at least 1/2 and that P[Ax] · P[Ay] is at most (1 + 3αB)/m2

i . Lemma 24 and (20) give

P[Ax ∩ Ay] ≤ (3
d)4∆2 1

m2
i,s
≤ (4

d)4∆2 1
m2
i
. Thus, we get that νxy ≤ (5

d)4∆2 1
m2
i
. Suen’s Inequality
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(Lemma 19) gives that

P[h−1
i,s (v) ∩ V (Fi,s) = ∅] = M

(
1±

(
exp(∆2ni,s ·

(5

d

)4∆2 1

m2
i

)
− 1
))

(48)
=

((
1− 1

mi

)ni
± αC

)(
1±

(
exp

(
∆2
(5

d

)4∆2

· 8

rε2n

)
− 1
))

=
(

1− 1

mi

)ni
± 2αC .

Therefore the expected size of the image V (hi,s) is

E[|V (hi,s)|] =
∑

v∈V (Gi,s)

P[h−1
i,s (v) ∩ V (Fi,s) 6= ∅] = mi,s ·

(
1−

(
1− 1

mi

)ni
± 2αC

)
(20)
= mi

(
1−

(
1− 1

mi

)ni
± 3αC

)
.

(49)

Now we use McDiarmid’s Inequality to show the concentration of |V (hi,s)|. Note that |V (hi,s)|
is (∆ + 1)-Lipschitz. Hence by McDiarmid’s Inequality, Lemma 17, we have

P[
∣∣E[|V (hi,s)|]− |V (hi,s)|

∣∣ > βn/4] ≤ 2 exp
(
− 2β2n2

16(∆ + 1)2ni,s

)
= exp

(
− n2/3

)
.

Set Hi = mi

(
1−

(
1− 1

mi

)ni)
. Then E[|V (hi,s)|] = Hi ± 6αCn. As

∣∣|Ui,s| − |Ui,s′ |∣∣ ≤ αn, by

a union bound over all s ∈ [ki] we obtain that

P[∃s, s′ ∈ [ki] :
∣∣|Ũi,s| − |Ũi,s′ |∣∣ > βn] ≤ 1

c exp(−
√
n) .

A union bound over all i ∈ [c] leads to the statement of the lemma. �

9. Concluding remarks

In this section we discuss various ways how our main result, Theorem 3, could be extended.

9.1. Strengthening Theorem 3: approximation. Theorem 3 does not hold for ε = 0.
To see this, fix ∆ ≥ 3 odd, let ` ≥ 2 be arbitrarily large, and consider the full ∆-regular
tree of depth ` as in Figure 1(a), that is, each vertex in this tree has degree either 1 or ∆.
This tree has an even number of leaves and an even number of internal vertices, hence its
order n is even. Consider a family of n

2 copies of this tree. This family has
(
n
2

)
edges in

(a) The 3-regular tree of depth 2. (b) An example of the modified 3-regular tree.

Figure 1. Regular trees and modified regular trees

total. If it does not pack into Kn we are done. Otherwise, in any such packing a vertex v of
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Kn accommodates exactly c1 leaves and c2 internal vertices of the trees, where c1 and c2 are
integral and determined by the system

c1 + c2 = n
2 (each tree uses v),

c1 + ∆c2 = n− 1 (each edge incident with v is used).

This system has a unique solution (and thus the same for all vertices v) where c1 is half the
number of leaves of one tree and c2 is half the number of internal vertices.

Now, we modify one of the trees by chopping off one leaf and appending it to another leaf;
see Figure 1(b) (the resulting tree is not uniquely determined). This modified family does not
pack into Kn. Indeed, if it did then the vertex of Kn hosting the unique vertex of degree 2
would have to host c̃1 leaves and c̃2 vertices of degree ∆, with

1 + c̃1 + c̃2 = n
2 ,

2 + c̃1 + ∆c̃2 = n− 1 .

The integrality of the solution of the original system implies that the current one is not
integral, contradiction.

On the other hand, the following strengthening of Theorem 3 may be true: Any family of
trees of orders at most n and maximum degrees at most ∆ whose total number of edges is at
most

(
n
2

)
packs into Kn+C∆

, for a suitable constant C∆ depending on ∆ only.

9.2. Strengthening Theorem 3: maximum degree. We are convinced that at an expense
of a more involved analysis, our techniques would allow to prove a version of Theorem 3 (for
each fixed ε > 0) for ∆ growing with n, possibly as big as ∆ = O(logα n) for some α > 0.

We believe that Theorem 3 holds even for ∆ = n
2 . (New techniques would be necessary for

a proof.) The following example shows that the n
2 barrier can essentially not be exceeded.

Suppose that ε ∈ (0, 10−3) is fixed. Let us consider a family of ` =
⌊(
n
2

)
/((1

2 + 2
√
ε)n)

⌋
copies

of the star of order (1
2 + 2

√
ε)n + 1. Note that ` < (1 − 3

√
ε)n. The total number of edges

in this family is between
(
n
2

)
− n and

(
n
2

)
. We claim it does not pack into K(1+ε)n. Suppose

it does, and let us fix a packing. Let W ⊆ V (K(1+ε)n) be the vertices that do not host the

centres of the stars. Observe that |W | > 3
√
εn. Observe also that no edge of the packing

lies inside W . That means that all the edges of the stars must be accommodated in the set
E(K(1+ε)n) \

(
W
2

)
. We have (

n

2

)
− n >

(
(1 + ε)n

2

)
−
(

3
√
εn

2

)
,

a contradiction.

Note that if the orders of the trees are at most half of the order of the host graph, no
example analogous to that in Section 9.1 can be found. Moreover, in Ringel’s Conjecture
(Conjecture 2), it follows from the assumption on the order of the tree that its maximum
degree is at most half of the order of the host graph. Thus we propose the following strength-
ening of Conjecture 2.

Conjecture 43. Any family of trees of individual orders at most n+ 1 and total number of
edges at most

(
2n+1

2

)
packs into K2n+1.
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9.3. Different host graphs in Theorem 3. Hobbs, Bourgeois, and Kasiraj [16] modified
Conjecture 1 to the setting of complete bipartite graphs.

Conjecture 44. If n is even then any family of n trees (Tj)j∈[n] with v(Tj) = j packs into
Kn−1,n/2. If n is odd then any family of n trees (Tj)j∈[n] with v(Tj) = j packs into Kn,(n−1)/2.

Our proof of Theorem 3 can be adjusted with only minor modifications to the bipartite
setting. Thus, the very same method yields an asymptotic solution of Conjecture 44 for trees
of bounded maximum degree. In that setting, the ratio of the host graph’s colour classes does
not have to be 1 : 2; one just needs them to be of the same order of magnitude.

Theorem 45. For any ε > 0 and any ∆ ∈ N there is an n0 ∈ N such that for any a, b ≥ n0,
a
b ∈

(
ε, ε−1

)
the following holds. Any family of trees (Ti)i∈[t] with maximum degree at most

∆ and order at most min{a, b} satisfying
∑t

i=1 e(Ti) ≤ ab packs into K(1+ε)a,(1+ε)b.

Also, it is clear that the proof of Theorem 3 goes through when the graph K(1+ε)n is
replaced by an arbitrary dense quasirandom graph (and the condition on the total number
of edges in the family of trees is adjusted accordingly). Packing in random and quasirandom
graphs is an important direction of research for its own sake, see e.g. [2].

9.4. The tree-packing process. We expect that the random embedding process described
in Section 2 performs well even as a dynamic process on an evolving graph. That is, we
believe that the quasirandomness of the host graph is also maintained by a sequential random
embedding of the trees, where we forbid the edges (globally) and vertices (just for that
particular tree) immediately after they are used. This would yield another proof of Theorem 3,
but we believe the analysis of this process would also be interesting in its own right.
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