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Abstract

For discrete panel data, the dynamic relationship between successive observations
is often of interest. We consider a dynamic probit model for short panel data. A
problem with estimating the dynamic parameter of interest is that the model contains
a large number of nuisance parameters, one for each individual. Heckman proposed to
use maximum likelihood estimation of the dynamic parameter, which, however, does
not perform well if the individual effects are large. We suggest new estimators for
the dynamic parameter, based on the assumption that the individual parameters are
random and possibly large. Theoretical properties of our estimators are derived and a
simulation study shows they have some advantages compared to Heckman’s estimator
and the modified profile likelihood estimator(MPL) for fixed effects.

Key Words: Dynamic probit regression; Generalized linear models; Panel data; Probit

models; Static probit regression.

1 Introduction

Short binary-valued time series in the presence of covariates are often available in panel

studies for which observations are taken on a panel of individuals over a short time period.

Dynamic probit regression is one of the most frequently used statistical models to analyse

this type of data. To set the scene, consider a panel of n independently sampled individu-

als. For each individual i, binary observations, denoted by di1, · · · , diT , are taken at time

1, · · · , T , and the observations are assumed to satisfy the latent dynamic model:

di1 = I(τi + x
′

i1β + ǫi1 > 0), · · · , dit = I(τi + γdi t−1 + x
′

itβ + ǫit > 0) for 1 < t ≤ T, (1)

subject to

ǫit ∼iid N(0, 1) (2)
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where I(·) denotes the indicator function, {xit} are k×1 covariate vectors, τi is an unknown

intercept representing the i-th individual effect, and the autoregressive coefficient γ and the

regressive coefficient β are unknown parameters which are assumed to be the same for all

individuals. In (1), only the dit and xit are observable. The goal is often to estimate γ and

β while the τi are treated as nuisance parameters. As with most panel data, the number

of individuals n is large while the length of observed time period T is small. Therefore the

asymptotic approximations are often derived with n → ∞ and T fixed.

Model (1) is a dynamic panel probit regression model, as the dynamic dependence is

reflected by the autoregressive parameter γ which links dit, i.e. the state at time t, to the

state at time t−1. When γ = 0, (1) reduces to a static panel probit regression, as now dit is

independent of di,t−1, di,t−2, · · · . Model (1) has been used for various applications in microe-

conomics by, among others, Heckman (1978), Arellano and Honore (2001), and Hsiao (2003,

Section 7.5). For example, Heckman (1978, 1980) used model (1) to reveal some interesting

dynamics in unemployment data: dit = 0 indicates that individual i is unemployed at time

t, and 1 otherwise, while the covariate xit stands for the factors (such as age, education,

family background etc) which may affect the employment status. These studies tried to

provide statistical evidence to answer questions such as: Does current unemployment cause

future unemployment? If γ > 0 this indicates that being in employment at time t increases

the chances of being in employment at time t+ 1.

Various estimation methods have been proposed for model (1). By treating the individ-

ual effects τ1, · · · , τn as nuisance parameters or incidental parameters (Neyman and Scott,

1948), Heckman (1980) adopted the maximum likelihood estimator of γ as well as β when

ǫit are normally distributed. Chamberlain (1980, 1985), Honore and Kyriazidou (2000),

and Lancaster (2002) considered the models with logistic distributed ǫit. They proposed a

consistent estimator of γ and derived its convergence rate. Bartolucci and Farcomeni (2009)

and Bartolucci and Nigro (2010) considered some extended versions of dynamic logit mod-

els with heterogeneity beyond those reflected by the covariates in the models. A standard

method to deal with incidental parameter problems is to use a conditional likelihood to elim-

inate the incidental parameters by conditioning on sufficient statistics for those parameters;

see, e.g. Chamberlain (1980), Bartolucci and Nigro (2010), and also Lancaster (2000).

An attractive alternative is to treat individual effects τi as random effects with prespec-
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ified priors. But as far as we are aware, the literature on panel probit regression taking

this approach only deals with the static model (i.e. γ = 0 in (1)). For example, Cham-

berlain (1980, 1985) discussed the maximum likelihood estimator for β with a given prior

distribution for τi. Arellano and Bonhomme (2009) showed that this estimator is robust

with respect to the choice of prior when T is large. Manski (1987) proposes maximum score

methods to estimate β when the distribution of the errors is unknown and γ is equal to zero

for model (1). Smoothed maximum score estimators were developed by Horowitz (1992).

See also Arellano (2003) for a survey of static probit models.

In this paper, we propose new estimators of γ and β in model (1) subject to (2) based

on essentially a flat prior for the τi. This gives numerically tractable estimators which we

show perform well in terms of mean squared error. Our methodology is designed for the

cases when the individual effects τ1, · · · , τn are large while T is small. Note that when the τi

are large, there is an innate difficulty in estimating γ and β as the outcome of the random

event {τi + γdi,t−1 + x′
itβ + ǫit > 0} may be dominated by the value of τi. Heckman (1980)

reported that the maximum likelihood estimator for γ behaved poorly when the variance of

the τi is large; see Table 4.2 in Heckman (1980). Our simulation results indicate that our

methods work as well as Heckman’s (1980) method when the variance of the τi is small, for

example, equal to 1 and 4.

The rest of the paper is organized as follows: Section 2 presents the new estimation

methods together with their asymptotic properties for the case T = 2 and Section 3 gives

an outline of the general case. For simplicity of the presentation, we only describe the

case T = 2 in detail. Simulations are reported in Section 4 and an example is analyzed in

Section 5. Some technical proofs are relegated to Appendix 1. Details of the extension of

the proposed methods to the scenario with T = 3 are presented in Appendix 2.

2 Estimation of γ and β when T = 2

We consider model (1) subject to (2) for T = 2, specifically,

di1 = I(τi + x′
i1β + ǫi1 > 0), di2 = I(τi + γdi1 + x′

i2β + ǫi2 > 0), i = 1, · · · , n, (3)

where the τi are random and independent of the ǫi1 and ǫi2. Furthermore, we assume that

the {τi} are mutually independent with a common density function f(.) in a location-scale
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family:

C1 The density function of τi admits the expression

f(x) =
1

στ
h(

x− µτ

στ
), (4)

where h(·) is a density function with mean 0 and variance 1, h(x) is con-

tinuous at x = 0, and µτ and στ > 0 are constants.

In Section 2.1 we give an estimator of the autoregressive coefficient γ for the case without

covariates (i.e. β = 0), in Section 2.2 we show how the regression coefficient vector β for the

static model (i.e. γ = 0) can be estimated, and in Section 2.3 we give a method to simul-

taneously estimate γ and β. All the methods are based on an asymptotic argument which

involves the variance of the τi going to infinity, and therefore the methods are particularly

relevant when the individual effects are large.

2.1 Estimation of γ when β = 0

When β = 0, model (3) reduces to

di1 = I(τi + ǫi1 > 0), di2 = I(τi + γdi1 + ǫi2 > 0), i = 1, . . . , n. (5)

As τi, ǫi1 and ǫi2 are independent, and ǫi1 and ǫi2 are N(0, 1), it holds that

P{di1 = 0, di2 = 0} =

∫
Φ(−x)Φ(−x)f(x)dx, (6)

P{di1 = 0, di2 = 1} =

∫
Φ(−x)Φ(x)f(x)dx, (7)

P{di1 = 1, di2 = 0} =

∫
Φ(x)Φ(−x− γ)f(x)dx, (8)

P{di1 = 1, di2 = 1} =

∫
Φ(x)Φ(x+ γ)f(x)dx, (9)

where Φ is the standard normal distribution function, and f(·) is the density function of τi.

The integrals can be hard to evaluate, making it hard to estimate γ. However, Proposition

1 shows that the integration can be avoided by assuming a ‘flat’ prior for the τi, i.e., letting

στ in C1 go to infinity. As we show below, this then leads to a simple estimator for γ.

Proposition 1. Suppose C1 holds. Then

lim
στ→∞

P{di1 = 1, di2 = 0}
P{di1 = 0, di2 = 1} = G(γ), (10)
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where

G(γ) = −
√
πγΦ(− γ√

2
) + exp{−γ2

4
}. (11)

Proof. By Lemmas 1 resp. 2 in Appendix 1 we have

lim
στ→∞

P{di1 = 1, di2 = 0}
P{di1 = 0, di2 = 1} = lim

στ→∞

∫
Φ(x)Φ(−x− γ)f(x)dx∫
Φ(−x)Φ(x)f(x)dx

=

∫
Φ(x)Φ(−x− γ)dx∫
Φ(x)Φ(−x)dx

= G(γ),

✷

Proposition 1 suggests the following estimator for γ:

γ̂ = G−1(Ŵ ), (12)

where G(·) is given by (11), and

Ŵ =

n∑
i=1

I(di1 = 1, di2 = 0)

n∑
i=1

I(di1 = 0, di2 = 1)

, (13)

i.e. Ŵ is a plug-in estimator for the ratio of the two probabilities on the left hand side of

(10). Theorem 1 shows an asymptotic normality property of γ̂.

Theorem 1. Suppose C1 holds with στ = a
√
n for some constant a > 0. Then γ̂ is a

consistent estimator of γ, i.e.,

(i) limn→∞ P{|γ̂ − γ| ≥ η} = 0 for all η > 0.

Suppose h(·) has a continuous derivative and

κn =
{ n∑

i=1

I(di1 = 0, di2 = 1)
}1/2

, σ2 =
G(γ) +G2(γ)

[G′(γ)]2
=

G(γ) +G2(γ)

πΦ2(−γ/
√
2)

. (14)

Then it holds that as n → ∞, κn(γ̂ − γ) converges in distribution to a normal random

variable with mean zero and variance σ2, i.e.,

(ii) limn→∞ P{κn(γ̂ − γ) ≤ x} = Φ(x/σ) for all x ∈ R.

Remark 1. The convergence rate of γ̂ under the conditions of the theorem is O(n−1/4),

as can be seen as follows. From the proof of Theorem 1 in Appendix 1, we have

P (di1 = 0, di2 = 1) = f(µτ )

∫
Φ(u)Φ(−u)du+op(1/στ ) =

h(0)

a
√
n

∫
Φ(u)Φ(−u)du+op(1/

√
n).
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This and the law of large numbers implies κn = O(n1/4).

Remark 2. Note that the observations with (di1, di2) = (0, 0) or (1, 1) do not contribute

to γ̂. In fact, when στ is large, these observations provide little information on γ, since

lim
στ→∞

P{di1 = 0, di2 = 0} = lim
στ→∞

∫
Φ(−x)Φ(−x)

1

στ
h(

x− µτ

στ
)dx

= lim
στ→∞

∫
Φ(−στ t− µτ )Φ(−στ t− µτ )h(t)dt = H(0),

and similarly

lim
στ→∞

P{di1 = 1, di2 = 1} = 1−H(0).

where H(x) is cumulative distribution function of h(x).

2.2 Estimation of β when γ = 0

Let Dn be the set of pairs (di1, di2) equal to (0, 1) or (1, 0), i.e.,

Dn = {(di1, di2)
′
: di1 + di2 = 1 for i = 1, · · · , n},

and denote the number of elements in Dn by m. Without loss of generality, suppose that

di1 + di2 = 1 for i = 1, · · · ,m.

We find the conditional probability

P{di1 = 1, di2 = 0|di1 + di2 = 1, xi1,xi2}

=

∫
Φ(x

′

i1β + t)Φ(−x
′

i2β − t)f(t)dt∫
Φ(x

′

i1β + t)Φ(−x
′

i2β − t)f(t)dt+
∫
Φ(−x

′

i1β − t)Φ(x
′

i2β + t)f(t)dt
.

Under (4), we can prove analogously to the proof of Proposition 1 that

lim
στ→∞

P{di1 = 1, di2 = 0|di1 + di2 = 1, xi1,xi2} =
G((xi2 − xi1)

′
β)

G((xi2 − xi1)
′
β) +G(−(xi2 − xi1)

′
β)

.

where G is given by (11). Hence for sufficiently large στ , a good approximation of the

conditional likelihood of β given Dn is

L(β) =

m∏

i=1

pzii (1− pi)
1−zi (15)

where zi = I(di1 = 1, di2 = 0) and 1− zi = I(di1 = 0, di2 = 1), and

pi =
G((xi2 − xi1)

′
β)

G((xi2 − xi1)
′
β) +G(−(xi2 − xi1)

′
β)

. (16)
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Note that pi = K((xi2 − xi1)
′
β) for the monotone function K defined as

K(t) =
G(t)

G(t) +G(−t)
,

Hence, (16) is a generalized linear model of the form

K−1(pi) = (xi2 − xi1)
′
β.

So iterative reweighted least squares methods for generalized linear models given by McCul-

lagh and Nelder (1989) can be applied to (15) to estimate the parameter β. Under some

regularity conditions consistency of β can be shown by letting στ → ∞.

2.3 Simultaneous estimation of γ and β

As in Section 2.2, we have

lim
στ→∞

P{di1 = 1, di2 = 0|di1+di2 = 1, xi1,xi2} =
G(γ + (xi2 − xi1)

′
β)

G(γ + (xi2 − xi1)
′
β) +G(−(xi2 − xi1)

′
β)

.

where G is given by (11). For large στ , we replace the conditional likelihood of γ and β

given Dn by

L(β) =
m∏

i=1

pzii (1− pi)
1−zi (17)

where zi = I({di1 = 1, di2 = 0) and 1− zi = I(di1 = 0, di2 = 1), m is the number of di1+ di2

which are equal to 1 and

pi =
G(γ + (xi2 − xi1)

′
β)

G(γ + (xi2 − xi1)
′
β) +G(−(xi2 − xi1)

′
β)

. (18)

Let

X∗ = (x12 − x11,x22 − x21, · · · ,xm2 − xm1)

Theorem 2. Let (p1, . . . , pm) be a given probability distribution in (18). Then (17) has

a unique solution for γ and β if the following conditions hold:

(a) The rank of X∗ is equal to k (the dimension of x2i − x1i);

(b) There exist j and 1 ≤ s1, · · · , sk ≤ m such that

xj2 − xj1 = a1(xs12 − xs11) + a2(xs22 − xs21) + · · ·+ ak(xsk2 − xsk1)

where a1, · · · , ak are non-positive real numbers.
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The conditions in Theorem 2 are sufficient and can be satisfied with probability close to 1

for a large sample size n if the covariate xi2−xi1 is a continuous variable and its covariance

matrix is positive definite.

Corollary. Under the conditions in Theorem 2, and with 1m be the m−dimensional

vector with all components 1, the rank of (1m,X∗′
) is k + 1.

From the Corollary, it seems that the identifiability condition relating to (18) is stronger

than that of linear models since that the rank of design matrix being equal to the number

of parameters is sufficient for linear models to be identified.

3 Outline of the general case: estimating γ and β when T ≥ 2

The methods of Section 2 can be extended in a fairly straightforward manner to more than

two time points. Below we give an outline, further technical details are given in Appendix

2 where the case T = 3 is described in some detail.

First let us define the following probability function p:

p(di1, di2, · · · , diT |di1 + · · · + diT = 0,xi1, · · · ,xiT ) ≡ 1,

p(di1, di2, · · · , diT |di1 + · · ·+ diT = T,xi1, · · · ,xiT ) ≡ 1,

and for s = 1, 2, · · · , T − 1,

p(di1, di2, · · · , diT |di1 + · · ·+ diT = s,xi1, · · · ,xiT )

= cs

∫
Φ
(
(2di1 − 1)(u+ x

′

i1β)
)
× · · · × Φ

(
(2diT − 1)(u+ x

′

iTβ + γdi T−1)
)
du

where cs is a normalizing constant chosen so that

∑

di1+···+diT=s

p(di1, di2, · · · , diT |di1 + · · · + diT = s,xi1, · · · ,xiT ) = 1.

is satisfied.

Using methods analogous to the ones of Section 2 and Appendix 1, we can show that

limστ→∞ P{di1, di2, · · · , diT |di1 + · · ·+ diT = s,xi1, · · · ,xiT }

= p(di1, di2, · · · , diT |di1 + · · ·+ diT = s,xi1, · · · ,xiT ).
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By the asymptotic argument used in Section 2, we can estimate γ and β by the maximizer

of
n∏

i=1

p(di1, di2, · · · , diT |di1 + · · ·+ diT = s,xi1, · · · ,xiT ). (19)

This maximization is computationally straightforward.

4 Simulation study

In this section, we use simulations to estimate the root mean squared errors (RMSEs) of

the estimators proposed in Section 2. In Table 1, RMSEs of γ in Model (5) are given for

different distributions of the individual effects. In Table 2, RMSEs of γ and β in Model

(1) are given, with the xi1 sampled from the standard normal distribution and xi2 = xi1 +

N(0, 1); the individual effects are normally distributed with mean 0 and variance 2. For

normally distributed individual effects with mean 0 and variance σ2 in Model (1), Heckman

(1980) has proposed the maximum likelihood estimation of the dynamic parameter γ and

σ2. In Tables 3 and 4 the RMSE of our new estimator is compared with the RMSE of

Heckman’s estimator, in the former table for normally distributed individual effects and in

the latter for individual effects with a mixture normal distribution. We see that our estimator

is comparable to Heckman’s for normally distributed effects with moderate variance, but

greatly outperforms it when individual effects are mixed normal distributions. We also

compare our proposed estimator with the modified profile likelihood estimator(MPL) for

fixed effects, which is given by Bartolucci, Bellio, Salvan and Sartori (2014). Since the

modified profile likelihood estimator does not exist for T = 2, we do simulations with T = 3.

No covariates are assumed and the individual effects are assigned a Student t-distribution

with df = 3. Simulation results are listed in In Table 5.

5 Real data example

We analyze the data set listed in Table 6 which has previously been considered by Heck-

man (1981). The dynamics of female labor supply is investigated based on panel data from

the years 1968 to 1970, and 1971 to 1973. Model (1) is applied to estimate the dynamic

parameter with T = 3 and xit ≡ 0. Let nrst be the number of observations of runs pattern
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Table 1: Simulated RMSEs of the new estimator of the dynamic parameter γ in Model (5)
( T = 2 and 100 replications)

n = 1000 n = 5000
Distribution of the τi γ RMSE Distribution of the τi RMSE

-2 0.16 0.21
-1.5 0.24 0.19
-1 0.23 0.14

-0.5 0.20 0.15
U(-3,3) 0 0.15 U(-10,10) 0.13

0.5 0.21 0.31
1 0.18 0.14

1.5 0.15 0.15
2 0.25 0.18

-2 0.30 0.16
-1.5 0.15 0.19
-1 0.20 0.13

-0.5 0.15 0.12
N(0,4) 0 0.15 N(0,25) 0.11

0.5 0.16 0.10
1 0.17 0.11

1.5 0.18 0.12
2 0.23 0.17

Table 2: Simulated RMSEs of new estimators of γ and β for Model (1) ( T = 2, 200
replicates and n = 1000)

γ β RMSE(γ̂) RMSE(β̂) γ β RMSE(γ̂ ) RMSE(β̂)

-1 0 0.20 0.08 0 -1 0.20 0.15
-0.5 0 0.17 0.08 0 -0.5 0.18 0.10
0 0 0.14 0.08
0.5 0 0.16 0.08 0 0.5 0.16 0.10
1 0 0.16 0.09 0 1 0.19 0.13

-1 1 0.22 0.13 1 1 0.25 0.16
-0.5 0.5 0.19 0.10 0.5 0.5 0.15 0.09
0.5 -0.5 0.16 0.10 -0.5 -0.5 0.17 0.10
1 -1 0.22 0.18 -1 -1 0.24 0.13
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Table 3: Comparison of RMSE of new estimator γ̂G and Heckman’s γ̂H for normally dis-
tributed individual effects ( T = 2, 200 replicates for sample size n = 1000).

Distribution of the τi γ RMSE(γ̂G) RMSE(γ̂H) RMSE(σ̂H)

-1 0.16 0.13 0.13
-0.5 0.14 0.11 0.12

N(0, 1) 0 0.12 0.09 0.11
0.5 0.13 0.10 0.11
1 0.13 0.10 0.12

-1 0.20 0.16 0.25
-0.5 0.18 0.15 0.21

N(0, 4) 0 0.15 0.12 0.18
0.5 0.17 0.14 0.26
1 0.17 0.15 0.20

Table 4: Comparison of RMSE of new estimator γ̂G and Heckman’s γ̂H for individual effects
distributed as 0.5N(−6, 9) + 0.5N(6, 9) ( T = 2, 200 replicates with sample size n = 3000).

γ RMSE(γ̂G) RMSE(γ̂H) RMSE(σ̂H)

-1 0.37 0.81 3.81
-0.5 0.29 0.75 3.82
0 0.30 0.64 3.86
0.5 0.29 0.59 3.81
1 0.30 0.53 3.85
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Table 5: Comparison of RMSE of new estimator γ̂G and the MPL estimator γ̂MPL for
individual effects with t-distributions with df = 3 (T = 3, and 100 replicates)

γ RMSE(γ̂G) RMSE(γ̂MPL) γ RMSE(γ̂G) RMSE(γ̂MPL)

-1 0.51 0.25 -1 0.16 0.15
-0.5 0.36 0.38 -0.5 0.13 0.27

n=100 0 0.24 0.43 n=500 0 0.12 0.38
0.5 0.25 0.44 0.5 0.11 0.36
1 0.32 0.47 1 0.13 0.37

-1 0.27 0.18 -1 0.11 0.13
-0.5 0.19 0.32 -0.5 0.09 0.28

n=200 0 0.18 0.39 n=1000 0 0.09 0.36
0.5 0.18 0.41 0.5 0.09 0.35
1 0.19 0.42 1 0.09 0.35

(r, s, t) in Table 6 for r, s, t = 0, 1. The resulting estimates are listed in Table 7, where γ̂G

is the new estimator and γ̂H and σ̂H are Heckman’s estimators.

From the analyzed results in the age group 49-59 and runs pattern from 1971 to 1973, nei-

ther Heckman’s method nor the proposed method yield evidence of a dynamic relationship,

and perhaps more data needs to be collected. However, the difference for the older group

between the period 1968-170 and 1971-1973 is significant; the difference for the younger

group between the period 1968-170 and 1971-1973 is not significant. For age group 30-44,

both the proposed method and Heckman’s method yield a significant dynamic relationship,

with a positive estimated value of γ (here, positivity of γ implies the unsurprising result

that currently holding a job increases the likelihood of holding a job in future).
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Table 6: Runs patterns in the data (1 corresponds to work in the year, 0 corresponds to no
work)

Runs patterns No. of Runs pattern No.of
1968 1969 1970 observations 1971 1972 1973 observations

women aged 45-59 in 1968

0 0 0 87 0 0 0 96
0 0 1 5 0 0 1 5
0 1 0 5 0 1 0 4
1 0 0 4 1 0 0 8
1 1 0 8 1 1 0 5
0 1 1 10 0 1 1 2
1 0 1 1 1 0 1 2
1 1 1 78 1 1 1 76

women aged 30-44 in 1968

0 0 0 126 0 0 0 133
0 0 1 16 0 0 1 13
0 1 0 4 0 1 0 5
1 0 0 12 1 0 0 16
1 1 0 24 1 1 0 8
0 1 1 20 0 1 1 19
1 0 1 5 1 0 1 8
1 1 1 125 1 1 1 130

Table 7: Comparison of new estimator (γ̂G) with Heckman’s (γ̂H) for data in Table 6

panel data (1969-1970) panel data (1971-1973)

γ̂G (s.e.) γ̂H (s.e.) σ̂H (s.e.) γ̂G (s.e.) γ̂H (s.e.) σ̂H (s.e.)

women aged 45-59 in 1968

0.62 (0.20) 0.54 (0.27) 3.24 (0.65) −0.16 (0.26) −0.28 (0.36) 5.59 (1.33)

women aged 30-44 in 1968

0.48 (0.13) 0.47 (0.17) 2.15 (0.28) 0.51 (0.14) 0.43 (0.19) 2.63 (0.37)
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Appendix 1: Technical proofs

Lemma 1. If f(x) satisfies the conditions given in Theorem 1, then

∫
Φ(x)Φ(−x− γ)f(x)dx = f(µτ )

∫
Φ(x)Φ(−x− γ)dx+ o(σ−1

τ )

and ∫
Φ(−x)Φ(x)f(x)dx = f(µτ )

∫
Φ(−x)Φ(x)dx+ o(σ−1

τ ).

Proof.

∣∣∣∣στ
[∫

Φ(x)Φ(−x− γ)f(x)dx− f(µτ )

∫
Φ(x)Φ(−x− γ)dx

]∣∣∣∣

=

∣∣∣∣
∫

Φ(x)Φ(−x− γ)h(
x− µτ

στ
)dx− h(0)

∫
Φ(x)Φ(−x− γ)dx

∣∣∣∣

≤
∫

x>M
Φ(x)Φ(−x− γ)h(

x− µτ

στ
)dx+

∫

x<−M
Φ(x)Φ(−x− γ)h(

x− µτ

στ
)dx

+h(0)

∫

x>M
Φ(x)Φ(−x− γ)dx+ h(0)

∫

x<−M
Φ(x)Φ(−x− γ)dx

+

∫

|x|≤M
Φ(x)Φ(−x− γ)

∣∣∣∣h(
x− µτ

στ
)− h(0)

∣∣∣∣ dx

≤ Φ(−M − γ) + Φ(−M) + h(0)

∫

x>M
Φ(x)Φ(−x− γ)dx

+h(0)

∫

x<−M
Φ(x)Φ(−x− γ)dx+

∫

|x|≤M
Φ(x)Φ(−x− γ)

∣∣∣∣h(
x− µτ

στ
)− h(0)

∣∣∣∣ dx.

For given γ , Φ(−M−γ) and Φ(−M) can be arbitrary small for sufficient largeM . Further-

more
∫
Φ(x)Φ(−x−γ) is integrable, and so

∫
x<−M Φ(x)Φ(−x−γ)dx and

∫
x>M Φ(x)Φ(−x−

γ)dx can also be arbitrary small for sufficient large M . For given M ,
∫
|x|≤M Φ(x)Φ(−x −

γ)
∣∣∣h(x−µτ

στ
)− h(0)

∣∣∣ dx can also be arbitrary small for sufficient large στ . So

∫
Φ(x)Φ(−x− γ)f(x)dx = f(µτ )

∫
Φ(x)Φ(−x− γ)dx+ o(σ−1

τ ).

Similarly, the other part can be proved.
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Lemma 2. ∫
Φ(−x)Φ(x+ β)dx = βΦ(

β√
2
) +

1√
π
exp{−β2

4
}.

Proof. By the fact d(xΦ(x) + φ(x)) = Φ(x) and integration by parts,

∫
Φ(−x)Φ(x+ β)dx =

∫
φ(x)[(x+ β)Φ(x+ β) + φ(x+ β)]dx

= β

∫
φ(x)Φ(x+ β)dx+

∫
xφ(x)Φ(x+ β)dx+

∫
φ(x)φ(x + β)dx

= βΦ(
β√
2
) + 2

∫
φ(x)φ(x+ β)dx

= βΦ(
β√
2
) +

1√
π
exp{−β2

4
}.

Lemma 3. Suppose στ = a
√
n(a > 0). Then

1

n1/4




n∑
i=1

[
I{di1=1,di2=0} − EI{di1=1,di2=0}

]

n∑
i=1

[
I{di1=0,di2=1} − EI{di1=0,di2=1}

]




d−→ N(0,Σ)

where

Σ =
h(0)

a



∫
Φ(x)Φ(−x− γ)dx 0

0
∫
Φ(x)Φ(−x)dx


 .

Proof: For c1, c2 ∈ R, let

Ui n = c1
[
I{di1=1,di2=0} −EI{di1=1,di2=0}

]
+ c2

[
I{di1=0,di2=1} − EI{di1=0,di2=1}

]

Then

E(Ui n) = 0,
√
nE(U2

i n) =
h(0)

a

[
c21

∫
Φ(x)Φ(−x− γ)dx+ c22

∫
Φ(x)Φ(−x)dx

]
+ o(1).

By simple computations,

E[exp{Ui nt/n
1/4}] = 1 +

t2

2
√
n
E(U2

i t) + E[o(
U2
i n

n1/2
)]

= 1 +
t2

2
√
n
E(U2

i t) + o(n−1)

= 1 +
h(0)

[
c21

∫
Φ(x)Φ(−x− γ)dx+ c22

∫
Φ(x)Φ(−x)dx

]
t2

2an
+ o(n−1).
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The moment generating function of
n∑

i=1
Ui n/n

1/4 is

φn(t) = E[exp{
n∑

i=1

Ui nt/n
1/4}]

= [E(exp{Ui nt/n
1/4})]n

=

{
1 +

h(0)
[
c21

∫
Φ(x)Φ(−x− γ)dx+ c22

∫
Φ(x)Φ(−x)dx

]
t2

2an
+ o(n−1)

}n

−→ exp{ah(0)
[
c21

∫
Φ(x)Φ(−x− γ)dx+ c22

∫
Φ(x)Φ(−x)dx

]
t2

2a
}

which implies the Lemma holds.

Lemma 4. Suppose στ = a
√
n(a > 0) and the first derivative of h(x) is continuous.

Then

n1/4




n∑

i=1

I{di1=1,di2=0}

√
n

− h(0)
a

∫
Φ(x)Φ(−x− γ)dx

n∑

i=1

I{di1=0,di2=1}

√
n

− h(0)
a

∫
Φ(x)Φ(−x)dx




d−→ N(0,Σ)

where

Σ =
h(0)

a



∫
Φ(x)Φ(−x− γ)dx 0

0
∫
Φ(x)Φ(−x)dx


 .

Proof: Since the first derivative of h(x) is continuous and στ = a
√
n, we have

√
n× EI{d11=1,d12=0} =

√
n×

∫
Φ(x)Φ(−x− γ)f(x)dx

=
√
n×

∫
Φ(x)Φ(−x− γ)

1

στ
h(

x− µτ

στ
)dx

=
√
n×

∫
Φ(x)Φ(−x− γ)

1

a
√
n
h(

x− µτ

στ
)dx

=
1

a

∫
Φ(x)Φ(−x− γ)h(

x − µτ

στ
)dx

=
h(0)

a

∫
Φ(x)Φ(−x− γ)dx+O(σ−1

τ )

=
h(0)

a

∫
Φ(x)Φ(−x− γ)dx+O(n−1/2).

Similarly, we can obtain

√
n× EI{d11=0,d12=1} =

h(0)

a

∫
Φ(x)Φ(−x)dx+O(n−1/2).
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n1/4




n∑

i=1

I{di1=1,di2=0}

√
n

− h(0)
a

∫
Φ(x)Φ(−x− γ)dx

n∑

i=1

I{di1=0,di2=1}

√
n

− h(0)
a

∫
Φ(x)Φ(−x)dx




= n1/4




n∑

i=1

[I{di1=1,di2=0}−EI{di1=1,di2=0}]

√
n

+
√
nEI{d11=1,d12=0} − h(0)

a

∫
Φ(x)Φ(−x− γ)dx

n∑

i=1

[I{di1=0,di2=1}−EI{di1=0,di2=1}]

√
n

+
√
nEI{d11=0,d12=1} − h(0)

a

∫
Φ(x)Φ(−x)dx




= n1/4




n∑

i=1

[I{di1=1,di2=0}−EI{di1=1,di2=0}]

√
n

n∑

i=1

[I{di1=0,di2=1}−EI{di1=0,di2=1}]

√
n




+ n1/4




√
nEI{d11=1,d12=0} − h(0)

a

∫
Φ(x)Φ(−x− γ)dx

+
√
nEI{d11=0,d12=1} − h(0)

a

∫
Φ(x)Φ(−x)dx




= n−1/4




n∑
i=1

[I{di1=1,di2=0} − EI{di1=1,di2=0}]

n∑
i=1

[I{di1=0,di2=1} − EI{di1=0,di2=1}]




+ o(1)

which implies the Lemma holds by Lemma 3.

Proof of Theorem 1. To demonstrate (i), by Lemma 4, we have

n∑
i=1

I{di1=1,di2=0}
√
n

− h(0)

a

∫
Φ(x)Φ(−x− γ)dx = op(1)

and
n∑

i=1
I{di1=0,di2=1}

√
n

− h(0)

a

∫
Φ(x)Φ(−x)dx = op(1).

Then

Ŵ =

n∑
i=1

I{di1=1,di2=0}

n∑
i=1

I{di1=0,di2=1}

=

n∑
i=1

I{di1=1,di2=0}/
√
n

n∑
i=1

I{di1=0,di2=1}/
√
n

→p G(γ).

(i) follows immediately from the continuity of G−1(x).

To prove (ii), it follows from the delta method and Lemma 4 above that
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n1/4
(
Ŵ −G(γ)

)
= n1/4




n∑
i=1

I{di1=1,di2=0}/
√
n

n∑
i=1

I{di1=0,di2=1}/
√
n

−
h(0)
a

∫
Φ(x)Φ(−x− γ)dx

h(0)
a

∫
Φ(x)Φ(−x)dx




d−→ N(0, σ∗2)

where

σ∗2 =
a
∫
Φ(x)Φ(−x− γ)dx

h(0)[
∫
Φ(x)Φ(−x)dx]2

+
a[
∫
Φ(x)Φ(−x− γ)dx]2

h(0)[
∫
Φ(x)Φ(−x)dx]3

.

Then

n1/4 (γ̂ − γ) = n1/4
(
G−1(W )−G−1(G(γ))

) d−→ N(0,
σ∗2

[G′(γ)]2
).

So √√√√
n∑

i=1

I{di1=0, di2=1} (γ̂ − γ)
d−→ N(0, σ2)

by
n∑

i=1
I{di1=0, di2=1}

√
n

p−→ h(0)
∫
Φ(x)Φ(−x)dx

a
.

Lemma 5. Let x1,x2, · · · ,xk,xk+1 ∈ Rk satisfy: (a) x1,x2, · · · ,xk are linearly indepen-

dent; (b) xk+1 = −c1x1 − c2x2 − · · · − ckxk where c1, · · · , ck are non-negative real number,

and r1, · · · , rk, rk+1 be positive real number, then the equation





G(x
′

1β + α)− r1G(−x
′

1β) = 0

G(x
′

2β + α)− r2G(−x
′

2β) = 0

· · · · · ·

G(x
′

kβ + α)− rkG(−x
′

kβ) = 0

G(x
′

k+1β + α)− rk+1G(−x
′

k+1β) = 0

(20)

has a unique solution β and α.

Proof: For fixed α, let

uα(z) =
G(z + α)

G(−z)

18



and

duα(z)

dz
=

G
′
(z + α)G(−z) +G(z + α)G

′
(−z)

G2(−z)

= −
√
π
Φ(−(z + α)/

√
2)G(−z) +G(z + α)Φ(z/

√
2)

G2(−z)

< 0.

So uα(z) is decreasing in z and lim
z→−∞

uα(z) = ∞ and lim
z→∞

uα(z) = 0. Thus for fixed α, the

equation 



G(x
′

1β + α)− r1G(−x
′

1β) = 0

G(x
′

2β + α)− r2G(−x
′

2β) = 0

· · · · · ·

G(x
′

kβ + α)− rkG(−x
′

kβ) = 0

(21)

has a unique solution when x1, · · · ,xk are linearly independent.

Let β∗ = (β1(α), · · · ,βk(α))
′
the solution of (21). Then

dβ∗

dα
= −X

′−1
δ

where

δ = (δ1, · · · , δk)
′
, δi =

Φ(−(x
′

iβ
∗ + α)/

√
2)

Φ(−(x
′

iβ
∗ + α)/

√
2) + riΦ(x

′

iβ
∗/
√
2)

and

X = (x1,x2, · · · ,xk).

Define

t(α) = G(x
′

k+1β
∗ + α)− rk+1G(−x

′

k+1β
∗).

Then

dt(α)

dα
= −

√
π

{[
Φ(−

x
′

k+1β
∗ + α√
2

) + rk+1Φ(
x

′

k+1β
∗

√
2

)

]
x

′

k+1

dβ∗

dα
+Φ(−

x
′

k+1β
∗ + α√
2

)

}

= −
√
π





[
Φ(−

x
′

k+1β
∗ + α√
2

) + rk+1Φ(
x

′

k+1β
∗

√
2

)

]


k∑

j=1

cjδi


+Φ(−

x
′

k+1β
∗ + α√
2

)





< 0,

which implies t(α) = 0 has an unique solution and the lemma is proved.
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Proof of Theorem 2. By Lemma 5 given in the above, it can be proved with ri =

pi/(1− pi) and xi = xi2 − xi1.

Proof of Corollary. Without loss of generality, suppose that x12 − x11, · · · ,xk2 − xk1

are linearly independent and

xk+1 2 − xk+1 1 = a1(x12 − x11) + · · ·+ ak(xk2 − xk1)

where a1, · · · , ak is a non-positive real number. Then the determinant

∣∣∣∣∣∣∣∣∣∣∣

x
′

12 − x
′

11 1

x
′

22 − x
′

21 1
...

...

x
′

k2 − x
′

k1 1

x
′

k+1 2 − x
′

k+1 1 1

∣∣∣∣∣∣∣∣∣∣∣

(22)

is equal to

∣∣∣∣∣∣∣∣∣

x
′

12 − x
′

11

x
′

22 − x
′

21
...

x
′

k2 − x
′

k1

∣∣∣∣∣∣∣∣∣



1− (xk+1 2 − xk+1 1)

′




x
′

12 − x
′

11

x
′

22 − x
′

21
...

x
′

k2 − x
′

k1




−1

1k




=
∣∣x12 − x11,x22 − x21, · · · ,xk2 − xk1

∣∣
[
1−

k∑

i=1

ai

]
6= 0

by the assumption. This implies that the rank of (22) is k + 1.

Since the rank of (1m,X∗′
) is equal to that of (X∗′

,1m), which is a m× (k + 1) matrix,

and (22) is a matrix obtained by the first k+1 rows of (X∗′
,1m), thus the rank of (1m,X∗′

)

is k + 1.

Appendix 2: Extension to T = 3

To generalize the proposed methods given in Section 2 to the case T > 3, we recap the

main idea for T = 2 first. It follows from (12) that G(γ̂) = Ŵ . Thus

G(γ̂) =

∫
Φ(x)Φ(−x− γ̂)dx∫
Φ(x)Φ(−x)dx

=

n∑
i=1

I(di1 = 1, di2 = 0)

n∑
i=1

I(di1 = 0, di2 = 1)

= Ŵ .

20



Then

∫
Φ(x)Φ(−x− γ̂)dx∫

Φ(x)Φ(−x)dx+
∫
Φ(x)Φ(−x− γ̂)

=

n∑
i=1

I(di1 = 1, di2 = 0)

n∑
i=1

I(di1 = 0, di2 = 1) +
n∑

i=1
I(di1 = 1, di2 = 0)

.

If we let

p(γ) =

∫
Φ(x)Φ(−x− γ)dx∫

Φ(x)Φ(−x)dx+
∫
Φ(x)Φ(−x− γ)

= lim
στ→∞

P{di1 = 1, di2 = 0}
P{di1 = 0, di2 = 1}+ P{di1 = 1, di2 = 0}

= lim
στ→∞

P{di1 = 1, di2 = 0
∣∣di1 + di2 = 1},

then

p(γ̂) = argmax{[p(γ)]n10 [1− p(γ)]n01}

where

n10 =

n∑

i=1

I(di1 = 1, di2 = 0), n01 =

n∑

i=1

I(di1 = 0, di2 = 1).

Here γ̂ is the conditional maximum likelihood estimation of γ under di1 + di2 = 1, based

on the likelihood obtained from p(γ). Based on the above results, we can generalize our

results to the case T > 2. To illustrate how this is done, we consider the case of T = 3

without covariates. The more general case can be derived analogously but requires more

complex notation. In the case T = 3 there are three observations for each individual

di1 = I(τi + ǫi1 > 0), di2 = I(τi + γdi1 + ǫi2 > 0), di3 = I(τi + γdi2 + ǫi3 > 0).

For each individual i, di1 + di2 + di3 = 0, 1, 2 or 3. As for T = 2, units for which there is no

change (i.e., for T = 3, if di1 + di2 + di3 is equal to 0 and 3) provide little information about

γ, so we delete these cases.

For di1 + di2 + di3 = 1 or 2, we can prove analogously to Lemma 1

p100(γ) = lim
στ→∞

P{di1 = 1, di2 = 0, di3 = 0
∣∣di1 + di2 + di3 = 1} =

∫
Φ(t)Φ(−t− γ)Φ(−t)dt

K1
,

p010(γ) = lim
στ→∞

P{di1 = 0, di2 = 1, di3 = 0
∣∣di1 + di2 + di3 = 1} =

∫
Φ(−t)Φ(t)Φ(−t− γ)dt

K1
,

21



p001(γ) = lim
στ→∞

P{di1 = 0, di2 = 0, di3 = 1
∣∣di1 + di2 + di3 = 1} =

∫
Φ(−t)Φ(−t)Φ(t)dt

K1
,

p110(γ) = lim
στ→∞

P{di1 = 1, di2 = 0, di3 = 0
∣∣di1+di2+di3 = 2} =

∫
Φ(t)Φ(t+ γ)Φ(−t− γ)dt

K2
,

p101(γ) = lim
στ→∞

P{di1 = 0, di2 = 1, di3 = 0
∣∣di1 + di2 + di3 = 2} =

∫
Φ(t)Φ(−t− γ)Φ(t)

K2
,

p011(γ) = lim
στ→∞

P{di1 = 0, di2 = 0, di3 = 1
∣∣di1 + di2 + di3 = 2} =

∫
Φ(−t)Φ(t)Φ(t+ γ)dt

K2

where

K1 =

∫
Φ(t)Φ(−t− γ)Φ(−t)dt+

∫
Φ(−t)Φ(t)Φ(−t− γ)dt+

∫
Φ(−t)Φ(−t)Φ(t)dt

and

K2 =

∫
Φ(t)Φ(t+ γ)Φ(−t− γ)dt+

∫
Φ(t)Φ(−t− γ)Φ(t) +

∫
Φ(−t)Φ(t)Φ(t+ γ)dt.

Thus the conditional maximum likelihood estimation of γ, conditioning on di1 + di2 + di3

being equal to 1 or 2, is

γ̂ = argmax
γ

{[p100(γ)]n100 [p010(γ)]
n010 [p001(γ)]

n001 [p110(γ)]
n110 [p101(γ)]

n101 [p011(γ)]
n011}

where

nrst =

n∑

i=1

I(di1 = r, di2 = s, di3 = t), r, s, t = 0, 1.
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