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We consider asset pricing models in which the SDF can be factorized into an observable
component and a potentially unobservable one. Using a relative entropy minimization
approach, we nonparametrically estimate the SDF and its components. Empirically, we
find the SDF has a business-cycle pattern and significant correlations with market crashes
and the Fama-French factors. Moreover, we derive novel bounds for the SDF that are
tighter and have higher information content than existing ones. We show that commonly
used consumption-based SDFs correlate poorly with the estimated one, require high risk
aversion to satisfy the bounds and understate market crashrisk. (JELGI11,G12,G13,C52)
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The absence of arbitrage opportunities implies the existence of a pricing
kernel, also known as the stochastic discount factor (SDF), such that the
equilibrium price of a traded security can be represented as the conditional
expectation of the future payoff discounted by the pricing kernel. The standard
consumption-based asset pricing model, within the representative agent and
time-separable power utility framework, identifies the pricing kernel as a simple
parametric function of consumption growth. However, pricing kernels based
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on consumption growth alone cannot explain either the historically observed
levels of returns, giving rise to the equity premium and risk-free rate puzzles
(e.g., [Mehra and Prescotil1983; Meﬂh_%ﬂ) or the cross-sectional d1spers10n of
returns between different classes of financial assets (e.g.,[Ha
[1983: Mankiw and Shapird[1986; [Breeden et al][1089); m@>

Nevertheless, considerable empirical evidence suggests that consumption

risk does matter for explaining asset returns (e.g., Lﬂmu_ﬂL%d
2001d, 2001H; [Parker and Julliard £003; Hansen et all 200d; [Savod Ro11).

Therefore, a burgeoning literature has developed based on modifying the
preferences of investors and/or the structure of the economy. In such models
the resultant pricing kernel can be factorized into an observable component
consisting of a parametric function of consumption growth, and a potentially
unobservable, model-specific component. Prominent examples in this class
include the external habit model in which the additional component consists of

a function of the habit level (Campbell and Cochrand1999;[Menzly et all2004),

the long run risks model based on recursive preferences in which the additional
component consists of the return on total wealth (Bansal and Yaron[2004), and
models with housing risk in which the additional component consists of the
rowth in the expenditure share on nonhousing consumption

). The additional and potentially unobserved component may also capture
deviations from rational expectations (e. [Brunnermeier and Julliard 2007),
models with robust control (e.g., m M) heterogeneous
agents (e.g..[Constantinides and Duffid[199d), ambiguity aversion (e.g.,[UlricH

), and a li(iuidity factor arising from solvency constraints (e.g., Lustig and
Nieuwerburgh ).

In this paper, we propose a new methodology to analyze dynamic asset
pricing models, such as those described above, for which the SDF can be
factorized into an observable component and a potentially unobservable one.
Our no-arbitrage approach allows us to (1) nonparametrically estimate, from the
data, the time series of the unobserved pricing kernel under a set of asset pricing
restrictions, (2) construct entropy bounds to assess the empirical plausibility
of candidate SDFs, and (3) estimate, given a fully observable pricing kernel,
the minimum (in the information sense) adjustment of the SDF needed to
correctly price asset returns. This methodology provides useful diagnostics
tools for studying the ways in which various models might fail empirically,
and allows us to characterize some properties that a successful model must
satisfy.

First, we show that, given a set of asset returns and consumption data,
a relative entropy minimization approach can be used to nonparametrically
extract the time series of both the SDF and the unobservable component of

Recently, [ulliard and GhosHl @013) show that pricing kernels based on consumption growth alone cannot
explain either the equity premium puzzle, or the cross-section of asset returns, even after taking into account the
possibility of rare disasters.

443

120z Areniga G| uo 1senb Ad 96111 vZ/2iz/0E /o101 /SH W00 dno"olWepede//:sdly Woly papeo|umod



[§)

The Review of Financial Studies / v 30 n 2 2017

the SDF (if any). This method is equivalent to maximising the expected risk-
neutral likelihood under a set of no arbitrage restrictions. Moreover, given a
fully observable pricing kernel, this procedure identifies the minimum amount
of extra information that needs to be added to the SDF to enable it to price
asset returns correctly. Along this dimension, our paper is close in spirit to the
long tradition of using asset (mostly options) prices to estimate the risk-neutral
probability measure (see, e.g..llackwerth and Rubinsteinl199€: Ait-Sahalia and
Lo ) and use this information to extract an implied pricing kernel (see,
e.g.,|Ait-Sahalia and 1.d[2000; [Rosenberg and Engld[2002; [Rosd011).

Empirically, our estimated time series for the unobservable pricing kernel is
substantially (but far from perfectly) correlated with the [Fama and Frenchi

) factors, for a variety of sample frequencies and assets used in the

estimation (even using only assets, like the industry and momentum portfolios,
which are not well priced by the Fama-French factors)l This suggests
that our approach successfully identifies the pricing kernel and provides a
rationalization of the empirical success of the Fama and French factors. The
estimated SDF has a clear business-cycle pattern but also shows significant
and sharp reactions to stock market crashes (even if these crashes do not result
in economy-wide contractions). Moreover, we show that, while the SDFs of
most of the equilibrium models tend to adequately account for business-cycle
risk, they nevertheless fail to show significant reactions to market crashes, and
this hampers their ability to price asset returns — that is, all models seem to be
missing a market crash risk component.

Second, we construct entropy bounds that restrict the admissible regions for
the SDF and the unobservable component of the SDF. Our results complement

) (the so-called second Hansen- Jagannathan dlstance) that 1dent1ﬁes the
minimum variance (linear) modification of a candidate pricing kernel needed
for it to be consistent with asset returns. The use of an entropy metric is also

closely related to the works of (Stutzed [1993, [1996), who first suggested to
construct entropy bounds based on asset pricing restrictions, and Alvarez and
Jermann (]EQ! E), who derive a lower bound for the volatility of the permanent
component of investors’ marginal utility of wealth (see also Backus, Chernov,
M o B 251 i and Suizel 003 We
show that a second order approximation of the risk-neutral entropy bounds
(Q-bounds) has the canonical Hansen-Jagannathan bounds as a special case, but
are generally tighter since they naturally impose the nonnegativity restriction
on the pricing kernel. Using the multiplicative structure of the pricing kernel,
we are able to provide novel bounds (M -bounds) that have higher information

content, and are tighter, than both theHmmMagannatha_d d_l_‘z%]) and the

This correlation ranges from 0.45 to 0.81 when Fama-French portfolios are used in the estimation of the minimum
entropy SDF, but is reduced to a range of 0.43—0.70 when considering only Industry or Momentum portfolios.
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risk-neutral entropy bounds. Moreover, our approach improves on Alvarez and
Jermann ) in that a decomposition of the pricing kernel into permanent
and transitory components is not required (but is still possible), and we can
accommodate an asset space of arbitrary dimension.

Our methodology also can be used to construct bounds (¥-bounds) for the
potentially unobserved component of the pricing kernel. We show that for
models in which the pricing kernel is only a function of observable variables,
the W-bounds are the tightest ones, and can be satisfied if and only if the model
is actually able to correctly price assets. Moreover, when the pricing kernel
is fully observable, our W-bounds are closely related to the second Hansen-
Jagannathan distance: HJ identify the minimum variance linear adjustment,
and our approach identifies the minimum entropy multiplicative (or log-
linear) adjustment, that would make a candidate pricing kernel consistent with
observed asset returns. The key difference between the two approaches is that
the entropy one focuses not only on the second moment deviations, but also
on all other higher moments. In an empirical example using stock return data,
we find that these higher moments play an important role in driving about
22%-26% of the entropy of the estimated pricing kernel.

Third, we demonstrate how our methodology provides useful diagnostic tools
to assess the plausibility of some of the most well-known consumption-based
asset pricing models, and lends new insights into their empirical performance.
For the standard time-separable power utility model, we show that the pricing
kernel satisfies the [Hansen and Jagannathad (1991)) bound for large values
of the risk-aversion coefficient and the Q and M bounds for even higher
levels of risk aversion. However, the W-bound is tighter and is not satisfied
for any level of risk aversion. We show that these findings are robust to the
use of the long-run consumption risk measure of [Parker and Julliard (2009),
despite that this measure of consumption risk is able to explain a substantial
share of the cross-sectional variation in asset returns with a small risk-aversion
coefficient. Considering more general models of dynamic economies, such
as models with habit formation, long-run risks in consumption growth, and
complementarities in consumption, we find that the SDFs implied by all of
them (1) correlate poorly with the filtered SDF, (2) require implausibly high
levels of risk-aversion to satisfy the entropy bounds, and (3) tend to understate
market crash risk, in particular, the risk associated with market crashes that
do not result in recessions. Moreover, the empirical application illustrates that
inference based on the entropy bounds delivers results that are much more
stable in evaluating the plausibility of a given model across different sets of
assets and data frequencies than the cross-sectional R? (that, instead, tends to
vary wildly for the same model).

Compared with the previous literature, our nonparametric approach offers
five main advantages: (1) it can be used to extract information not only from
options, as is common in the literature, but also from any type of financial asset,
(2) instead of exclusively relying on the information contained in financial data,
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it allow us to also exploit the information about the pricing kernel contained
in the time series of aggregate consumption, thereby connecting our results to
macrofinance modeling, (3) the relative entropy extraction of the SDF is akin
to a nonparametric maximum likelihood procedure and provides an estimate
of its time series, (4) the methodology has considerable generality, and may be
applied to any model that delivers well-defined Euler equations and for which
the SDF can be factorized into an observable component and an unobservable
one (these include investment-based asset pricing models, and models with
heterogenous agents, limited stock market participation, and fragile beliefs),
(5) it relies not only on the second moment of the pricing kernel but also on all
higher moments.

1. Entropy and the Pricing Kernel

In the absence of arbitrage opportunities, a strictly positive pricing kernel, M, |,
or stochastic discount factor exists, such that the equilibrium price, P;;, of any
asset i delivering a future payoff, X;,,1, is given by

Pit=]Et[Mt+1Xil+1]v (1)

where [E; is the rational expectation operator conditional on the information
available at time ¢. For a broad class of models, the SDF can be factorized as
follows

M=m(0,1) X Y, (2)

where m(0,t) denotes the time ¢ value of a known, strictly positive, function
of observable data and the parameter vector 6 € ® C R¥ with true value 6y, and
Y, is a potentially unobservable component. In the most common case, m(6,t)
is simply a function of consumption growth, that is, m(6,t)=m(0, Ac,), where
Ac, Elog% and C, denotes the time ¢ consumption flow.

Equations (@) and @) imply that, for any set of tradable assets, the following
vector of Euler equations must hold in equilibrium

0=E[m(6,1)y:R¢] E/m(G,t)lp,RfdP, 3)

where E is the unconditional rational expectation operatorE R¢ €RY is a vector
of excess returns on different tradable assets, and P is the unconditional
physical probability measure. Under weak regularity conditions the above
pricing restrictions for the SDF can be rewritten as

0=/m(9,t)%RfdP:/m(@,t)Rfd\IJ =E"[m(0,HR¢],

Our setting can accomodate departures from rational expectations as long as the objective and subjective
probability measures are absolutely continuos (that is, as long as the two measures have the same zero probability
sets). If agents had subjective beliefs of this type, Equation &) would still hold, with E denoting rational
expectations, but ¥; would contain a change of measure element capturing the discrepancy between subjective
beliefs and the rational expectations (see eAg.,lmm).
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where x =E[x;], and % = % is the Radon-Nikodym derivative of ¥ with
respectto P. For the above change of measure to be legitimate, we need absolute
continuity of the measures W and P.

Therefore, given a set of consumption and asset returns data, for any 6, one
can obtain a nonparametric maximum likelihood estimate of the W probability

measure as follows:
dv  dv
W*(@)=argmin D (Y || P)Eargmin/ —In—dP s.t.0=E" [m(@,t)Rf],
v v dP dP
“4)

where, for any two absolutely continuous probability measures A and B, D(A ||
B):=[In%AdA= [94In44d B denotes the relative entropy of A with respect
to B, that is, the Kullback-Leibler Information Criterion (KLIC) divergence
between the measures A and B (m%) Note that D(A || B) is always
nonnegative, and has a minimum at zero reached when A is identical to B.
This divergence measures the additional information content of A relative to
B, and, as pointed out bym (@), it is very sensitive to any deviation
of one probability measure from another. Therefore, the above equation is a
relative entropy minimization under the asset pricing restrictions coming from
the Euler equations. That is, the minimization in Equation @) estimates the
unknown measure W as the one that adds the minimum amount of additional
information needed for the pricing kernel to price assets.

To understand the information-theoretic interpretation of the estimator of
W, let F be the set of all probability measures on RV+V ', where N’ denotes
the dimensionality of the observables in m (6, t), and for each parameter vector
0 € ©, define the following set of probability measures

V@O)={y eF:E'[m@®,nR{]=0},

which are also absolutely continuous with respect to the physical measure P in
Equation (@). If the observable component of the SDF, m(8,1t), correctly prices
assets at the given value of 6, we have that P € ¥(0), and P solves Equation
@, delivering a KLIC value of 0. On the other hand, if m(6,t) is not sufficient
to price assets, P is not an element of W(6), and a positive KLIC distance
D(¥ || P) >0 is attained by the solution W*(#). Thus, the estimation approach
searches for a W*(0) that adds the minimum amount of additional information
needed for the pricing kernel to price asset returns.

The above approach also can be used, as first suggested bym (@),
to recover the risk-neutral probability measure (Q) from the data as

dQ do

Q argmin (Q || ) argmm/ n S / ; Q L [ I]

under the restriction that Q and P are absolutely continuous.

The definition of relative entropy, or KLIC, implies that this discrepancy
metric is not symmetric; that is, generally D(A || B)#D(B || A) unless A and
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B are identical (hence their divergence is always zero)El This implies that for
measuring the information divergence between W and P, as well as between
Q and P, we can also invert the roles of ¥ and P in Equation () and the roles
of Q and P in Equation @) to recover ¥ and Q as

dP
W*(@)=argmin D(P || \P)Eargmin/InEdP s.t. 0=EY [m(@,t)Rf], (6)
v w

dp
Q*=argmin D(P || Q)Eargmin/m—dP s.t. 0=E¢ [Rf] @)
0 0 do

The divergence D(P || ¥) can be thought of as the information loss from
measure W to measure P (and similarly for D(P || Q)). This alternative
approach, once again, chooses W and Q such that assets are priced correctly
and such that the estimated probability measures are as close as possible (that
is minimizing the information loss of moving from one measure to the other)
to the physical probability measure P.

Note that the approaches in Equations @) and (@) identify {y,}”_, only up to
a positive scale constant. Nevertheless, this scaling constant can be recovered
from the Euler equation for the risk-free asset (if one is willing to assume that
such an asset is observable).

But why should relative entropy minimization be an appropriate criterion for
recovering the unknown measures W and Q? We make this choice for several
reasons.

First, as formally shown in Appendix [AJ] the KLIC minimizations in
Equations @)—() are equivalent to maximizing the (expected)l Q and ¥
nonparametric likelihood functions in an unbiased procedure for finding the
pricing kernel or its ¥, component. Note that this is also the rationale behind
the principle of maximum entropy (see, e.g., [layned[1957H,119574d) in physical
sciences and Bayesian probability that states that, subject to known testable
constraints — the asset pricing Euler restrictions in our case — the probability
distribution that best represents our knowledge is the one with maximum
entropy or minimum relative entropy in our notation.

Second, the use of relative entropy, due to the presence of the logarithm in the
objective functions in Equations @)—(Z), naturally imposes the nonnegativity
of the pricing kernel. This, for example, is not imposed in the identification of

the minimum variance pricing kernel of [Hansen and Jagannathar dlﬁﬁll)ﬁ

Information theory provides an intuitive way of understanding the asymmetry of the KLIC: D(A || B) can be
thought of as the expected minimum amount of extra information bits necessary to encode samples generated
from A when using a code based on B (rather than using a code based on A). Hence, generally D(A || B)#D(B || A)
since the latter, by the same logic, is the expected information gain necessary to encode a sample generated from
B using a code based on A.

With expectations under the physical measures proxied by their sample analogs

c 3 {I990) offer an alternative bound that i imposes this restriction, but it is computationally
cumbersome (the minimum variance portfolio is basically an option in this case). See also Hansen, Heaton, and
Luttmer ).
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Third, our approach to uncover the i, component of the pricing kernel
satisfies Occam’s razor, or the law of parsimony, since it adds the minimum
amount of information needed for the pricing kernel to price assets. This is due
to the fact that the relative entropy is measured in units of information.

Fourth, it is straightforward to add conditioning information to construct a
conditional version of the entropy bounds presented in the next section: given
a vector of conditioning variables Z,_, one simply has to multiply (element
by element) the argument of the integral constraints in Equations @), @), @,
and (@) by the conditioning variables in Z;_;.

Fifth, there is no ex ante restriction on the number of assets that can be used
in constructing v, and the approach can naturally handle assets with negative
expected rates of return (cf. |A11amz_a11dicnmand|2mlﬂ)

Sixth, as implied by the work of| m M), the use of entropy
is desirable if we think that tail events are an important component of the risk
measure/[]

Finally, this approach is numerically simple when implemented via duality
(see, e.g., ). That is, when implementing the entropy minimization
in Equation (@) each element of the series {w,}rT=l can be estimated, up to a
positive constant scale factor, as

MO m(.DR]
Wj(9)=T—s Vt9 (8)

Z PRXCHEIICND) 5
t=1

where A(6) € RV is the solution to the following unconstrained convex problem

T
— 1 Am(6,0R¢
A(G):argm;n;il:e r, ©))
1=
and this last expression is the dual formulation of the entropy minimization
problem in Equation ().
Similarly, the entropy minimization in Equation (@) is solved by
. 1
v (0)= t, (10)

T(1+A0)m(0,HRE)’ v

where A(8) e RY is the solution to

T
)L(Q)Eargm/\in—zllog(l +2/m(0,1)RY), (11)
t=
and this last expression is the dual formulation of the entropy minimization
problem in Equation (@).

7 Brownand Smi (1990) develop what they call “a Weak Law of Large Numbers for rare events;” that is, they
show that the empirical distribution observed in a very large sample converges to the distribution that minimizes
the relative entropy.
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Note also that the above duality results imply that the number of free
parameters available in estimating {I/I}IT: , 1s equal to the dimension of (the
Lagrange multiplier) A; that is, it is simply equal to the number of assets
considered in the Euler equation.

Moreover, since the A(8)’s in Equations @) and {II)) are akin to extremum
estimators (see, e.g.,II m, Ch. 7), under standard regularity conditions
(see, e.g., mg@ , Theorem 4.1.3), one can construct asymptotic
confidence intervals for both {,}”_, and the entropy bounds presented in the
next section.

To summarize, we estimate the v, component of the SDF nonparametrically,
using the relative entropy-minimizing procedures in Equations @) and (@). The
estimate {KW(Q)},T: , is then multiplied with the observable component m(6,t)
to obtain the overall SDF, M;=m(0,1)y;(0). Since we have proposed two
different relative entropy minimization approaches, we obtain two different
estimates of the SDF given the data. Asymptotically, the two should be identical
given the MLE property of these procedures. Nevertheless, in any finite sample
they potentially could be very different. As shown in our empirical analysis,
the two estimates are very close to each other, suggesting that their asymptotic
behavior is well approximated in our sample.

1.1 Entropy bounds

Based on the relative entropy estimation of the pricing kernel and the component
Y outlined in the previous section, we now turn our attention to the derivation
of a set of entropy bounds for the SDF, M, and the components of the SDF.

Dynamic equilibrium asset pricing models identify the SDF as a parametric
function of variables determined by the consumers’ preferences and the state
variables driving the economy. Substantial research efforts have been devoted to
developing diagnostic methods to assess the empirical plausibility of candidate
SDFs, as well as to provide guidance for the construction and testing of other
— more realistic — asset pricing theories.

The seminal work by [Hansen and Jagannathan (1991) identifies, in a model-
free no-arbitrage setting, a variance-minimizing benchmark SDF, Ml*(M ),
whose variance places a lower bound on the variances of other admissible
SDFs:

Definition 1 (Canonical HJ-bound). For each E[M,]=M. the Hansen and

Jagannathan ) minimum variance SDF is
M;(M)= argmin ,/Var(M,(M)) s.t. 0=E[R; M, (M)].  (12)
{m (1)),

The solution to the above minimization is M;"(M):M +(R¢—E[RS1Y By,
where ﬁM:Cov(Rf)_l(—ME[R_f]), and any ca_ndidate stochastic discount
factor M, must satisfy Var(M,(M))> Var(M;(M)).
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The HJ-bound offers a natural benchmark for evaluating the potential of an
equilibrium asset pricing model since, by construction, any SDF consistent with
observed data should have a variance not smaller than that of M;"( M). However,
the identified minimum variance SDF does not impose the nonnegativity
constraint on the pricing kernel. In fact, since M(M) is a linear function of
returns, the restrction is not generally natlsﬁedﬁ

As noticed in m ), using the Kullback-Leibler Information
Criterion minimization in Equation @), one can construct an entropy bound for
the risk-neutral probability measure that naturally imposes the nonnegativity
constraint on the pricing kernel. We generalize the idea of using an entropy
minimization approach to construct risk-neutral bounds — Q-bounds — for the
pricing kernel. For a given risk-neutral probability measure Q with Radon-

Nikodym derivative dIQ, ,weuse D(P | Q)and D(P || L) interchangeably,

that is, D(P || & )=D(P || 0)= fln( YIP=— fln( )dP Similarly, D( I
P)=D(Q| P)=f1n(j—§)dQ=fj§1n(dp)dP Ik ln(M’ )dP.

Definition 2 (Q-bounds). We define the following risk-neutral probability
bounds for any candidate stochastic discount factor M,:

D(P I Mf) / 1 M’dP>D(P | 0
— | = —In— = ,
M M

where Q* solves Equation ([@).

2. Q2-bound (Stutzel[1993):

D<%||P> /—1 —-dP>D(Q*|| P),
M

where Q* solves Equation (@).

1. Ql-bound:

These bounds, like the HJ-bound, use only the information contained in
asset returns, but, differently from the latter, they impose the restriction that the
pricing kernel must be positive. Moreover, under mild regularity conditions, we
show that (see RemarkDlin Appendix[A2)), to a second-order approximation, the
problem of constructing canonical HJ-bounds and Q-bounds are equivalent, in
the sense that approximated Q-bounds identify the minimum variance bound
for the SDFH The intuition behind this result is simple: (1) a second-order

We call the bound in Definition[[]the “canonical” HJ-bound since (Hansen and Jagannathad [[991, [[997) also
provide an alternative bound, that imposes the non-negativity of the pricing kernel, but that is computationally
more complex.

The (sufficient, but not necessary) regularity conditions required for the approximation result are typically satisfied
in consumption-based asset pricing models.
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approximation of (the loE of) a smooth pdf delivers an approximately Gaussian
distribution (see, e.g., ), (2) the relative entropy of a Gaussian
distribution is proportional to its variance, and (3) the diffusion invariance
principle (see, e.g., , Appendix D) implies that in the continuous
time limit the (equivalent) change of measure does not change the volatility.

Both the HJ and Q bounds described above use only information about asset
returns, but not information about consumption growth or the structure of the
pricing kernel. Instead, we propose a novel approach that, while also imposing
the nonnegativity of the pricing kernel, (1) takes into account more information
about the form of the pricing kernel, therefore delivering sharper bounds, and
(2) allows us to construct information bounds for both the pricing kernel as a
whole and for its individual components.

Consider an SDF that, as in Equation @), can be factorized into two
components, that is, M;=m(0,t) X {,, where m(6,t) is a known nonnegative
function of observable variables (generally consumption growth) and the
parameter vector 6, and , is a potentially unobservable component. A large
class of equilibrium asset pricing models, including ones with time-separable
power utility with a constant coefficient of relative-risk aversion, external
habit formation, recursive preferences, durable consumption goods, housing,
and disappointment aversion fall into this framework. Based on the above
factorization of the SDF, we can define the following bounds.

Definition 3 (M-bounds). For any candidate stochastic discount factor of the
form in Equation @), and given any choice of the parameter vector 8, we define
the following bounds:

1. M1-bound:

( Mt) Mt < m(9,t)1//t*>
M M m(0, 1)y

_ / ey
m0, )y

El

where ¥ solves Equation (@ and m(0,1)y;* =E[m(0,1)y].
2. M2-bound:

D(ﬁ ||P>E/ﬁ1nﬁdP>D<M I P>
M M M m@.0v;
E/m(@,t)l//t*lnm(@,t)lﬂl*dp
m@@,. 0y m@,0y/;

3

where ;" solves Equation (@).
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The above bounds for the SDF are tighter than the Q-bounds since we have
that (the minimum entropy risk-neutral probability measure is denoted Q*)

m©.0v; . m(®.0y; .
( ”maow)z (PO an <—m(0,t)¢t* I17)=D@"11P)
13)

by construction, and are also more informative since not only is the information
contained in asset returns used in their construction but also (1) the structure of
the pricing kernel in Equation @) and (2) the information contained in m(0, ).

Information about the SDF also can be elicited by constructing bounds for
the ¥, component itself. Given the m(6,t) component, these bounds identify
the minimum amount of information that v, should add for the pricing kernel
M; to be able to price asset returns

Definition 4 (V-bounds). For any candidate stochastic discount factor of the
form in Equation (@), and given any choice of the parameter vector 6, two lower
bounds for the relative entropy of v, are defined as

D<P|| ﬁ>z—/1nﬁdp>p(p|| ‘”_f>
v v P

where " solves Equation (@);

2. W2-bound
D(ﬁHP)E ﬁlnﬁdP?D(ﬁ”P)
v vy *

where ;" solves Equation (@).

1. W1-bound:

Besides providing an additional check for any candidate SDF, the W-bounds

are useful in that a simple comparison of D(i—‘: [I P), D(%’;; | P), and

D(Q*|| P) can provide a very informative decomposition in terms of the
entropy contribution to the pricing kernel logically similar to the widely

used variance decomposition analysis. For example, if D(K—’i I P) happens

to be close to D(Q*|| P), while D(% [I P) is substantially smaller, the

decomposition implies that most of the ability of the candidate SDF to price
assets comes from the 1/, component.

Note also_that, in principle, a volatility bound, similar to the Hansen and
J agannathan@) bound for the pricing kernel, can be constructed for the y,

10 As for the Q and M bounds, we use D(P || W) and D(P || %), aswellas D(V || P)and D( % || P), interchangeably.
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component. Such a bound, presented in Definition[Slof Appendix[A.2] identifies
a minimum variance ¥,"(1*) component with standard deviation given by

oy =&*\/E[Rfm(e,z)]’Var(Rfm(e,t))—‘E[Rfm(e,t)]. (14)

This bound, as the entropy-based W-bounds in Definition H] uses information
about the structure of the SDF but, differently from the latter, does not constrain
Y, and M, to be nonnegative as implied by economic theory. Moreover, using
the same approach employed in Remark [ this last bound can be obtained as
a second-order approximation of the entropy-based W-bounds in Definition [

Equation ([[4)), viewed as a second-order approximation to the entropy W-
bounds, also makes clear why bounds based on the decomposition of the pricing
kernel as M;=m(0,t)y, offer sharper inference than do bounds based on only
M. Consider, for example, the case in which the candidate SDF takes the form
M;=m(6,1), that is, ¥, =1 for any ¢. In this case, a § can easily exist such that

Var (M, (0))=Var(m(0.t)) > Var (M; (M)),

where Var(M;(M)) is the [Hansen and Jagannathad (1991)) bound in

Definition[l} that s, a 8 exists such that the HJ -bound is satisfied. Nevertheless,
the existence of such § does not imply that the candidate SDF is able to price
asset returns. This would be the case if and only if the volatility bound for 1, is
also satisfied since, from Equation (I4)), we have that under the assumption of
constant , the bound can be satisfied only if E[R¢m (6p, 1) | =E [R¢ M, (69)] =0,
that is, only if the candidate SDF is able to price asset returns.

1.1.1 Residual ¢ and the second Hansen-Jagannathan distance. If we
want to evaluate a model of the form M; =m(0,t) — that is, a model without an
unobservable component — the W-bounds will offer a tight selection criterion

since, under the null of the model being true, we should have D(;’,—’: I P) =

D (P [I i—’:) =0, and this is a tighter bound than the HJ, Q, and M bounds defined

above. The intuition for this is simple: Q-bounds (and HJ-bounds) require the
model under test to deliver at least as much relative entropy (variance) as the
minimum relative entropy (variance) SDF, but they do not require that the
m(6,t) under scrutiny also should be able to price the assets. That is, it might
be the case — as in practice we will show is the case — that for some values of
6 both the Q-bounds and the HJ-bounds will be satisfied, but nevertheless the
SDF grossly violates the pricing restrictions in the Euler Equation ().

Note that when considering a model of the form M, =m(0,1), the estimated
¥* component is a residual one — that is, it captures what is missed, for pricing
assets correctly, by the pricing kernel under scrutiny. The residual y* and the
entropy bounds are also closely related to the second Hansen and Jagannathan

bound. Given a model that identifies a SDF M [Hansen and Jagannathad (1997)

assume that portfolio payoffs are elements of an Hilbert space and consider the
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minimum squared deviation between M and a pricing kernel g € M (or M™ if
nonnegativity is imposed), where M denotes the set of all admissible SDFs.
That is, the second HJ distance is defined as

d%, :=minE[(M, —q,)*].
HI ;2}81 [( ! QI)]

Note that g € M can be rewritten as g € L2, which satisfies the pricing restriction
(@, that is,

d3, EmiLgE[(M, —q)°] st 0=E[q,R{]=E?[R{].
qge

Note that the constraint in the above formulation is the same one that we impose
for constructing our entropy bounds.

In practice, the second HJ bound looks for the minimum — in a least squares
sense — linear adjustment that makes M, —A’R¢ an admissible SDF (where A
arises from the linear projection of M on the space of returns). This idea of
minimum adjustment of the second HJ distance is strongly connected to our M
and W bounds and residual .

Consider the decomposition M; =m(6, )y, inits extreme form: M; =m(0,1);
that is, the case in which the candidate SDF is fully observable and, under the
null of the model under scrutiny, ¥ (the model-implied ) should simply
be a constant. In this case, we can estimate a residual {;}]_, that should be
constant if the model is correct. In this case, the M 1-bound defines the distance

dyi= min D(P || M,,)—D(P || M)= min D(P||,) s.t.0=E[q,R{],
vl L,
where ¢, := My, and we have normalized v, to have unit mean to simplify
exposition, and note that the second equality is nothing but the W1 bound.
Note that in this case we have logy/, =logg, —log M,. That is, while the second
HJ distance focuses on the deviation between g and M, our entropy approach
focuses on the log deviations. By construction, M;y;" € M (or M™* if M is
nonnegative); that is, once again the relative entropy minimization identifies

an admissible SDF in the [Hansen and Jagannathard (1997) sense. To illustrate

the link between the second HJ distance and the d,;; distance above, we follow

the cumulant expansion approach of [Backus, Chernov, and Zinl (2014). Recall

that the cumulant-generating function (that is, the log of the moment-generating
function) of a random variable Inx; is

K (s)=InE[e™],

and, with appropriate regularity conditions, it admits the power series expansion

o
s/

T e
PRI

where the j-th cumulant, «;, is the j-th derivative of k*(s) evaluated at s =0.
That is, K}‘ captures the j-th moment of the variable Inx,; that is, «7 reflects
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the mean of the variable, 3 the variance, «3 the skewness, «; the kurtosis,
and so on
Using the cumulant expansion, the dy; distance above can be rewritten as

I S S O
dy = o] + 3 + 41 +..., (15)
where K}//* denotes the j-th cumulant of (log) ¥*, and ¥* solves
okl k)
argmin | =+ 2 +-t+..) s.t. 0=E" [m(0,n)R!]. (16)
Wl 21 31 4!

The above implies that the {* component identified by our M1 (and W1)
bound has a very similar interpretation to the second HJ distance: it provides
the minimum — in the entropy sense — multiplicative (or log linear) adjustment
that would make m(6,¢)y;* an admissible SDF. The key difference between
the second HJ bound and our M 1 bound is that the former only focuses on the
minimum second moment deviation, that is, on the variance of g, — M;, and
our bound takes into consideration not only the second moment (captured by
the K;/’ cumulant in Equation (I3)) but also all other moments (captured by
the K}/;z cumulants) of the log deviation logg, —log M, =log;,. This implies
that if skewness, kurtosis, tail probabilities, etc., are relevant for asset pricing,
our approach would be more likely to capture these higher moments more
effectively than the least squares one. Moreover, note that the cumulant-
generating function cannot be a finite-order polynomial of degree greater than
two (see Theorem 7.3.5 of ). That is, if the mean and variance
are not sufficient statistics for the distribution of the true SDF, then all the
other higher moments become relevant for characterizing the SDF, and their
relevance for asset pricing is captured by our entropy approach given the one-to-
one mapping between relative entropy and cumulants. In Table A1 of Appendix
[A3] we compute the minimum adjustment to the CCAPM SDF required to make
it an admissible pricing kernel using both of the above approaches. The results
show that, for a wide variety of test assets, the HID adjustment leads to an SDF
that has a close to Gaussian distribution. The relative entropy adjustment, on
the other hand, results in an SDF having substantial skewness and kurtosis.

The cumulant decomposition also allows us to assess the relevance of higher
moments for pricing asset returns. In particular, with the estimated {Iny;*}’_; at
hand, we can estimate its moments using sample analogs, use these moments
to compute the cumulants, and, finally, compute the contribution of the j-th
cumulant to the total entropy of ¥* as

i k]!
Yk st D(P W)

a7

For instance, if Inx; ~ N (jx; o.,%), we have K'l" =iy, K% =03, K';)z =0.
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as well as the total contribution of cumulants of order larger than j as
Yk /st D v =)k )
>kl st D(P || ¥¥)

These statistics are important for comparing the informativeness of our bounds
relative to the second HJ distance since, if the minimum variance deviation had
all the relevant information for pricing asset returns, we would expect

(18)

D(P || UH—k?" /21 i
PIY =k /2 )

= L >0 v¥j=2.
D(P || W*) D(P || w*)

As we will show in the empirical section below, this is not the case.

2. An Illustrative Example: The C-CAPM with Power Utility

We first illustrate our methodology for the Consumption-CAPM (C-CAPM) of
[Breeden d]ﬂq),m (]_LQZS), and[Rubinstein M), when the utility function
is time and state separable with a constant coefficient of relative-risk aversion.
For this specification of preferences, the SDF takes the form

Mt+1:8(Ct+1/Ct)_y7 (19)

where § denotes the subjective time discount factor, y is the coefficient
of relative-risk aversion, and C;,;/C; denotes the real per capita aggregate
consumption growth. Empirically, the above pricing kernel fails to explain (1)
the historically observed levels of returns, giving rise to the equity premium

and risk-free rate Puzzles (e.g.,MQbLa_a_nd_Emmdh&&j; [Weil[1989), and (2)

the cross-sectional dispersion of returns between different classes of financial

assets ge.ﬁ., [Mankiw and Shapird[1986; [Breeden et al]l1989; ICampbell[1996;
).

Parker and Julliard M) argue that the covariance between contempora-
neous consumption growth and asset returns understates the true consumption
risk of the stock market if consumption is slow to respond to return innovations.
They propose measuring the risk of an asset by its ultimate risk to consumption,
defined as the covariance of its return and consumption growth over the period
of the return and many following periods. They show that, while the ultimate
consumption risk would correctly measure the risk of an asset if the C-CAPM
were true, it may be a better measure of the true risk if consumption responds
with a lag to changes in wealth. The ultimate consumption risk model implies
the following SDF:

M5, =85 (Cratas/C ™ Rl s (20)
where S denotes the number of periods over which the consumption risk is

measured and Rr]:-I,z+l+S is the risk-free rate between periods 7+1 and r+1+5S.

Note that the standard C-CAPM obtains when S =0.[Parker and Julliard (IZDLH)
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Figure 1

The figure plots the KLIC of the model SDF, M; :B(CC . )—y’ and the model v (equal to zero in this case),

as well as the Q, M, and W bounds as a function of the risk-aversion coefficient. The Q (M) bound is satisfied
when the KLIC of M; is above it, and the W bound is satisfied when the KLIC of y; is above it. Results when
¥;¥ is estimated using the relative entropy minimization procedures in Equations (@) and @), respectively, using
quarterly data for 1947:Q1-2009:Q4 and the 25 Fama-French portfolios as test assets are shown (A and B).

show that the specification of the SDF in Equation @0), unlike the one in
Equation (I9), explains a large fraction of the variation in expected returns
across assets for low levels of the risk-aversion coefficient.

The functional forms of the above two SDFs fit into our framework in
Equation @)). For the contemporaneous consumption risk model, 8 =y, m (6,t)=
(C,/C,—1)77, and y/" =8, a constant, for all . For the ultimate consumption risk
model, 0=y, m(0,t)=(Cirs/C,—1)" ", and Y} =81+SRZJ;+S. Therefore, for each
model, we construct entropy bounds for the SDF and the components of the
SDF using quarterly data on per capita real personal consumption expenditures
on nondurable goods and returns on the 25 Fama-French portfolios over the
postwar period 1947:1-2009:4 and compare them with the HJ bound A3 we
also obtain the nonparametrically extracted (called “filtered” hereafter) SDF
and the components of the SDF for y =10. For the ultimate consumption risk
model, we set S=11 quarters because the fit of the model is the greatest at this
value as shown in[Parker and Julliard M).

Figure [Tl panel A, plots the relative entropy (or KLIC) of the filtered and
model-implied SDFs and their 1 components as a function of the risk-aversion
coefficient y and the HJ, Q1, M1, and W1 bounds for the contemporaneous
consumption risk model in Equation (I9). The black curve with circles shows
the relative entropy of the model-implied SDF as a function of the risk-aversion

See Appendix Al for a thorough description of the data.

We use the 25 Fama-French portfolios as test assets because they have been used extensively in the literature to
test the C-CAPM and also constituted the set of base assets in[Parker and Julliard 003).
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coefficient. For this model, the missing component of the SDF, /;, is a constant,
and hence, it has zero relative entropy for all values of y, as shown by the
gray straight line with triangles. The gray dashed curve and the gray dotted
curve show, respectively, the relative entropy as a function of the risk-aversion
coefficient of the filtered SDF and its missing component. The model satisfies
the HJ bound for very high values of y >64. It satisfies the Q1 bound for
even higher values of y >72, as shown by the intersection of the horizontal
dotted-dashed line and the black curve with circles. The minimum value of y,
at which the M 1 bound is satisfied, is given by the value corresponding to the
intersection of the gray dashed curve and the black curve with circle; that is, it
is the minimum value of y for which the relative entropy of the model-implied
SDF exceeds that of the filtered SDF. The figure shows that this corresponds
to y =107. Finally, the W1 bound identifies the minimum value of y for which
the missing component of the model-implied SDF has a higher relative entropy
than the missing component of the filtered SDF. Since the former has zero
relative entropy, while the latter has a strictly positive value for all values of y,
the model fails to satisfy the W1 bound for any value of y

Panel B shows that very similar results are obtained for the 02, M2, and W2
bounds. The Q2 and M2 bounds are satisfied for values of y at least as large
as 73 and 99, respectively, while the W2 bound is not satisfied for any value
of y. Overall, as suggested by the theoretical predictions, the Q-bounds are
tighter than the HJ-bound, the M-bounds are tighter than the Q-bounds, and
the W-bounds are tighter than the M -bounds.

We also construct confidence bands for the above relative entropy bounds
using 1,000 bootstrapped samples. The 95% confidence bands for the Q1
and Q2 bounds extend over the intervals [70.0,109.0] and [69.5,109.0],
respectively, and those for the M1 and M2 bounds cover the intervals
[94.5,157.5] and [86.0, 150.0], respectively. Finally, the W1 and W2 bounds
are not satisfied for any finite value of the risk-aversion coefficient in any
of the bootstrapped samples. The bootstrap results reveal two points. First, it
demonstrates the robustness of our approach: the two different definitions of
relative entropy produce very similar results. Second, the confidence bands are
quite tight in contrast with the large values of the standard error typically
obtained when using GMM-type approaches to estimate the risk-aversion
parameter.

Figurelpresents analogous results to Figure[lfor the ultimate consumption
risk model in Equation @0). Panel A shows that the Q1, and M1 bounds

Note that Figure 1 plots the relative entropy of the different components of the SDF as functions of the CRRA.
The Q, M, and ¥ bounds are directly expressed in terms of the risk-aversion coefficient (vertical lines). The
Q-bound could have been alternatively expressed in terms of entropy, that is, as a horizontal line at D(Q* || P)
and D(P || Q*) in panels A and B, respectively. One could then have determined what the required minimum
CRRA was to satisfy these bounds by computing the minimum CRRA such that the relative entropy of the
resulting SDF was at least as large as D(Q* || P) or D(P || 0*). However, note that the M and ¥ bounds depend
on the CRRA and, therefore, cannot be expressed as horizontal lines. We, therefore, choose to represent all the
bounds directly in terms of the CRRA (as vertical lines).
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The figure plots the KLIC of the model SDF, M, =8!+S ( %)_y Rtf bt 45 and their unobservable components

(%" and the model  (equal to zero in this case), as well as the O, M and ¥ bounds as function of the risk-aversion
coefficient. The Q (M) bound is satisfied when the KLIC of M; is above it, and the ¥ bound is satisfied when
the KLIC of v is above it. Results when 1" is estimated using the relative entropy minimization procedures in
Equations @ and @, respectively, using quarterly data for 1947:Q1-2009:Q4 and the 25 Fama-French portfolios
as test assets are shown (A and B).

are satisfied for y >22, 23, and 46, respectively. These are almost three
times, more than three times, and more than two times smaller, respectively,
than the corresponding values in Figure [Il panel A, for the contemporaneous
consumption risk model. As for the latter model, the W1 bound is not satisfied
for any value of y. Panel B shows that the 02 and M2 bounds are satisfied
for y >24 and 47, respectively, while the W2 bound is not satisfied for any
value of y. The bootstrapped 95% confidence bands for the Q1 and Q2 bounds
extend over the intervals [23.0,35.0] and [24.0,37.0], respectively, and those
for the M1 and M2 bounds cover the intervals [36.0,60.0] and [40.0,74.0],
respectively. Also, similar to the contemporaneous consumption risk model,
the W1 and W2 bounds are not satisfied for any finite value of the risk-aversion
coefficient in any of the bootstrapped samples.

It is important to notice that, even though the best fitting level for the
RRA coefficient for the ultimate consumption risk model is smaller than 10
(y =1.5), and at this value of the coefficient the model is able to explain about
60% of the cross-sectional variation in returns across the 25 Fama-French
portfolios, all the bounds reject the model for low RRA, and the ¥ bounds
are not satisfied for any level of RRA. This stresses the power of the proposed
approach.

The above results indicate that our entropy bounds are not only theoretically
tighter but also are empirically tighter than the HJ variance bounds. Using the
cumulants decomposition introduced in the previous section, we can identify
the information content added by taking into account higher moments of the
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The relative contribution of the cumulants of ¥ to D(P || W*) is plotted (A). The densities of m; := ( th’ - )—y

e . . . . e .
and M/ = ( CC’ N ) ¥/ are plotted (B). ¥;" is estimated using the relative entropy minimization procedure in
—

Equation (@), using quarterly data for 1947:Q1-2009:Q4 and the 25 Fama-French portfolios as test assets, for the
standard CCAPM with y =10.

SDF and the components of SDF. In particular, the statistics in Equations (I7)
(dashed-dotted line) and (I8) (dashed line) are plotted in the left panels of
Figures [ (for S=0) and[ (for S=11).

The figures show that the contribution of the second moment to D(P || ¥*)
is large — in the 74%-78% range — but that higher moments also play a very
important role, with their camulated contribution in the 22% —26% range.
Among these higher moments, the lion’s share goes to skewness, with individual
contribution of skewness about 18% for both §=0 and S=11.

The relevance of skewness is also outlined in the right panels of Figures 3]
(for $=0) and [ (for S=11), where the (Epanechnikov kernel estimates of the)

d Tt — [ Cixs -10 f *._ [ Crss -0 f *
ensities of m; := (H) R/, s and M := (H) R, sV, are reported.
The figures illustrate, besides the increase in variance generated by ¢*, a
substantial increase in the skewness of our estimated pricing kernel. This point
is also outlined in Figures B (for S=0) and[@ (for S=11), where the left panels
report the cumulant decomposition of the entropy of m, := (%) " RZ 145
while the right panel reports the cumulant decomposition for M, :=m, . The
figures show that the sources of entropy of our filtered pricing kernel (m, ") are
very different than the ones for the consumption growth component alone (1, ):
almost all (99%) the entropy of m, is generated by its second moment, while
higher cumulants have basically no role; instead, about a quarter (24% —25%)
of the entropy of m, " is generated by the third and higher cumulants.

We now turn to the analysis of the time-series properties of the candidate

SDFs considered. Figure [l panel A, plots the time series of the filtered
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The relative contribution of the cumulants of W,* to D(P||¥*) is plotted (A). The densities of m;:=

(%)—y Rtj.rt+S and M} := (%)_V Rtj:HSl//t* are plotted (B). v is estimated using the relative entropy

minimization procedure in Equation (@), using qarterly data for 1947:Q1-2009:Q4 and the 25 Fama-French
p q 2 g y

portfolios as test assets, for the ultimate consumption risk CCAPM of[Parker and Julliard 003) with S=11 and

y=10.
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'
The contribution of the cumulants of ( C::[ . ) to D <P I (Ct

-V
Cr N ) ) is plotted (A). The contribution of

-v -y
the cumulants of <CtC[1 ) ¥ to D (P Il (thl ) w,*) is plotted (B). y* is estimated using the relative

entropy minimization procedure in Equation (@, using qarterly data for 1947:Q1-2009:Q4 and the 25 Fama-
French portfolios as test assets, for the standard CCAPM with y =10.

SDF and the components of SDF estimated using Equation @) for y =10
for the contemporaneous consumption risk model (S=0). The dashed line
plots the component of the SDF that is a parametric function of consumption
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-y -y
The contribution of the cumulants of <g;*j> sz,z+s to D(P I (%) RfH_S) is plotted (A). The

Y -y
cumulants of <%> R(HSII/I* to D (P I (%) Ri[jr+S‘//;k> is plotted (B). ¥/ is estimated using the

relative entropy minimization procedure in Equation (@, using qarterly data for 1947:Q1-2009:Q4 and the 25
Fama-French portfolios as test assets, for the ultimate consumption risk CCAPM of [Parker and Julliard 003)
with S=11 and y =10.

growth, m(6,t)=(C,;/C,;—1)~". The dotted line with circles plots the filtered
unobservable component of the SDF, ¥/, estimated using Equation (@). The
black solid line plots the filtered SDF, M;*=(C,/C,_1)~7¥,". The gray shaded
areas represent NBER-dated recessions, and the dashed-dotted vertical lines
correspond to_the major stock market crashes identified in Mishkin and
White -). The figure reveals two main points. First, the estimated
SDF has a clear business-cycle pattern, but also shows significant and sharp
reactions to financial market crashes that do not result in economy-wide
contractions. Second, the time series of the SDF almost coincides with that
of the unobservable component. In fact, the correlation between the two time
series is 0.996. The observable consumption growth component of the SDF, on
the other hand, has a correlation of only 0.06 with the SDF. Therefore, most of
the variation in the SDF comes from variation in the unobservable component,
Y, and not from the consumption growth component. In fact, the volatility
of the SDF and its unobservable component are very similar, with the latter
explaining about 99% of the volatility of the former, while the volatility of the
consumption growth component accounts for only about 1% of the volatility of
the filtered SDF. Similar results are obtained in panel B that plots the time series

15 [MishKin and Whitd @003) identify a stock market crash as a period in which the Dow Jones Industrial, the S&P

500, or the NASDAQ index drops by at least 20% in a time window of either one day, five days, one month,
three months, or one year. Consequently, in yearly figures, we classify a given year as having a stock market
crash if any such event was recorded in that year. Similarly, in quarterly figures, we identify a given quarter as
being a crash period if either a crash was registered in that quarter or the entire year (containing the quarter) was
identified by Mishkin and White as a stock market crash year.
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Figure 7

The figure plots the (demeaned) time series of the filtered SDF, M/ =m(6;1)y;*, and its components for the
standard CCAPM for y =10. Results when ;" is estimated using the relative entropy minimization procedures
in Equations (@) and @, respectively, using qarterly data for 1947:Q1-2009:Q4 and the 25 Fama-French portfolios
as test assets are shown (A and B). Shaded areas are NBER recession periods. Vertical dot-dashed lines are the

stock market crashes identified bym 2002).

of the filtered SDF and the components of SDF estimated using Equation (@)
for y =10.

Finally, Figure Bl panel A, plots the time series of the filtered SDF and
the components of SDF estimated using Equation @) for y =10 for the
ultimate consumption risk model (S=11). The figure shows that, as in the
contemporaneous consumption risk model, the estimated SDF has a clear
business-cycle pattern, but also shows significant and sharp reactions to
financial market crashes that do not result in economy-wide contractions.
However, different from the latter model, the time series of the consumption
growth component is much more volatile and more highly correlated with the
SDF. The volatility of the consumption growth component is 21.7%, more than
2.5 times higher than that for the standard model. The correlation between the
filtered SDF and the consumption growth component of the SDF is 0.37, an
order of magnitude larger than the correlation of 0.06 in the contemporaneous
consumption risk model. This explains the ability of the model to account for
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The figure plots the (demeaned) time series of the filtered SDF, M/ =m(6;1)y;*, and its components for the

ultimate consumption risk CCAPM of [Parker_and Julliard ©003) for y =10. Results when 1//,* is estimated

using the relative entropy minimization procedures in Equations @ and @, respectively, using qarterly data

for 1947:Q1-2009:Q4 and the 25 Fama-French portfolios as test assets are shown (A and B). Shaded areas are

i%? recession periods. Vertical dot-dashed lines are the stock market crashes identified by
).

a much larger fraction of the variation in expected returns across the 25 Fama-
French portfolios for low levels of the risk-aversion coefficient. In fact, the
cross-sectional R? of the model is 54.1% (for y =10), an order of magnitude
higher than the value of 5.2% for the standard model. However, the correlation
between the ultimate consumption risk SDF and the unobservable component
of the SDF is still very high at 0.92, showing that the model is missing important
elements that would further improve its ability to explain the cross-section of
returns. Similar results are obtained in panel B that plots the time series of the
filtered SDF and the components of the SDF estimated using Equation ) for
y=10.

Overall, the results show that our methodology provides useful diagnostics
for dynamic asset pricing models. Moreover, the very similar results obtained
using the two different types of relative entropy minimization in Equations @)
and (@) suggest robustness of our approach.
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3. Application to More General Models of Dynamic Economies

Our methodology provides useful diagnostics to assess the empirical
plausibility of a large class of consumption-based asset pricing models in which
the SDF, M,, can be factorized into an observable component consisting of
a parametric function of consumption, C;, as in the standard time-separable
power utility model and a potentially unobservable one, v, that is model-
specific. In this section, we apply it to a set of “winner” asset pricing models,
that is, frameworks that can successfully explain the equity premium and the
risk-free rate puzzles with “reasonable” calibrations. In particular, we consider

the external habit formation models of [Campbell and Cochrand 1%99 and
[Menzly et all (2004), the long-run risks model of ),
and the housing model of[Piazzesi et all (2007). We apply our methodology to
assess the empirical plausibility of these models in two ways. First, since our
approach delivers an estimate of the time series of the SDF, for each model
considered we compare the estimated time series with the model-implied one.
Second, for each model we compute the values of the power coefficient, y, at
which the model-implied SDF satisfies the HJ, Q, M, and W bounds.

In the next subsection we present the models considered. The reader familiar
with these models can go directly to Section [3.2] which reports the empirical
results, without loss of continuity. A detailed data description is presented in
Appendix A4

3.1 The models considered

3.1.1 External habit formation model: Campbell and Cochrane (1999). In
this model, identical agents maximize power utility, defined over the difference
between consumption and a slow-moving habit or time-varying subsistence
level. The SDF is given by

M =(C,/Cr—) " 8(S:/Se-1)7 2y

m(6,r) y"

where 6 is the subjective time discount factor, y is the curvature parameter
that provides a lower bound on the time-varying coefficient of relative-risk
aversion, S, = C’gt Xt denotes the surplus consumption ratio, and X is the habit
component. Note that the ¥ component depends on the surplus consumption
ratio, S, not directly observed. To obtain the time series of {™, we extract the
surplus consumption ratio from observed data using two different procedures.

First, we extract the time series of the surplus consumption ratio from
consumption data. In this model, the aggregate consumption growth is assumed

to follow an i.i.d. process:

Ac;=g+uy, U;"’i.i.d.N(O,O‘Z).

The log surplus consumption ratio evolves as a heteroscedastic A R(1) process:

si=(1—=@)s+ds;_1+A(s;— vy, (22)
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where s, :=InS; and 5 is the steady-state log surplus consumption ratio and

)\(st):{ %\/ 1_2(5'1_5)_1, ifstfsmax

0, if §; > Spax

smax=§+% (1 —§2>, S=c /ﬁ.

For each value of y, we use the calibrated values of the model preference
parameters (§,¢) in Eamphd]_a.u.dmm;a.ud (]_LQQQ), the sample mean (g)
and volatility (o) of the consumption growth process, and the innovations in
real consumption growth, U, = Ac¢, — g, to extract the time series of the surplus
consumption ratio using Equation (22) and, thereby, obtain the time series of
the model-implied SDF and its ¥ component.

Second, in this model, the equilibrium market-wide price-dividend ratio is
a function of the surplus consumption ratio alone, although the form of the
function is not available in closed form. Using numerical methods, we invert
this function to extract the time series of the surplus consumption ratio from
the historical time series of the price-dividend ratio and thereby obtain the time
series of the model-implied SDF and its ¥/ component from Equation €I).

3.1.2 External habit formation model: Menzly et al. (2004). In this model,

the SDF is analogous to thelCampbell and Cochrand (1999) one disussed above.

The aggregate consumption growth is also assumed to follow an i.i.d. process:

de,=p.dt+o.dB;,

where p. is the mean consumption growth, o, >0 is a scalar, and B, is a

Brownian motion. The point of departure from the [Campbell and Cochrand
(1999) framework is that Menzly et all ©004) assume that the inverse

surplus consumption ratio, Y, := sL,’ follows a mean-reverting process perfectly
negatively correlated with innovations in consumption growth:

dY,:k(Y—Yt)dt—oz(Y,—A)[dc,—E(dc,)], (23)

where Y is the long-run mean of the inverse surplus consumption ratio and
k controls the speed of mean reversion. To obtain the time series of ™ (the
model-implied vy component), we extract the surplus consumption ratio from
observed data using two different procedures.

First, for each value of yE we use the calibrated values of the model

parameters (3, k, Y, a, 1) in [Menzly et all (2004), the sample values of i,

Note that the [Menzly et all €004) model assumes that the representative agent has log utility, that is, y is set
equal to 1, to derive the closed-form solution for the price-consumption ratio. For other values of y, the model
does not admit a closed-form solution. Nevertheless, the pricing kernel is well defined even if y is different than
one; hence we will be considering this more general case.
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and o,, and the innovations in real consumption growth, j]? M , to

extract the time series of the surplus consumption ratio, and this allows us to
compute the time series of the model-implied SDF.

Second, in this model, the equilibrium price-consumption ratio of the total
wealth portfolio is a function of the surplus consumption ratio alone. However,
this function is not available in closed form except for y =1. Therefore, we
rely on log-linear approximations to the return on the total wealth portfolio to
express the equilibrium log price-consumption ratio as an affine function of
the log surplus consumption ratio for all values of y. Details of this procedure
are described in Appendix We then invert this affine function to extract
the time series of the surplus consumption ratio from the historical time series
of the market-wide price-dividend ratio and thereby obtain the time series of
the model-implied SDF and its 1™ component from Equation ). Note that
approximating the total wealth price-consumption ratio by the market-wide

price-dividend ratio is the approach used by [Menzly et all (2004).

3.1.3 Long-run Risks model: Bansal and Yaron (2004). Bansal and Yaron’s
(2004) long-run risks model assumes that the representative consumer has the
version of Porteud (1978) preferences adopted by

(@) and @,), for which the SDF is given by

where R, ;;1 is the unobservable gross return on an asset that delivers aggregate
consumption as its dividend each period, § is the subjective time discount
factor, p is the elasticity of intertemporal substitution, 6 := and y is the
relative-risk aversion coefficient.

The aggregate consumption and dividend growth rates, Ac;.; and Ad;,q,
respectively, are modeled as containing a small persistent expected growth rate
component, x,, which follows an AR(1) process with stochastic volatility, and
fluctuating variance, 0,2, which evolves according to a homoscedastic linear
mean-reverting process.

Appendix [A.f] shows that, for the log-linearized model, the log of the SDF
and its ¥ component are given by

l/’

InM”"

1= +C5X, +c6o 24)

=y AcCi4] +C1+C3 X141 +C4O’l+]
——

Inm(0,t+1) Iy,

where the parameters (cy, ¢z, ¢3, ¢4, C5, C¢) are known functions of the underlying
time series and preference parameters of the model.

To obtain the time series of the SDF and ", we extract the state variables,
x; and 0,2, from observed data using two different procedures. First, we extract
them from consumption data. Second, we extract them from asset market data,
in particular, from the market-wide price-dividend ratio and the risk-free rate.
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The extraction of the state variables using these two procedures is described
in Appendix[A.Q Finally, for each value of y, we use the calibrated parameter
values from[Bansal and Yaror] (]ZJX)AI) and the time series of the state variables

to obtain the time series of the SDF and its ¥/ component from Equation @4).

3.1.4 Housing: Piazzesi et al. (2007). In this model, the pricing kernel is
given by

_ yp—1
M;"=5(C,/C,_|) V(A JAZ) T,
where A, is the expenditure share on nonhousing consumption, y~! is the
intertemporal elasticity of substitution, and p is the intratemporal elasticity of
substitution between housing services and nonhousing consumption.
Taking the logs, we have

—1
InM"=—y Ac,+Ins+ 12 ~Aa. (25)
—— 0 —
Inm@,t) S———~—————r
Iny/"

Note that, in this model, ¥ depends on observable variables alone and,
therefore, does not need to be extracted from consumption or asset market
data. For each value of y, we use the calibrated values of the model parameters
(8, p) in [Piazzesi et all (2007) to obtain the time series of the model-implied
SDF and its 1™ component from Equation @3).

3.2 Empirical results

For our empirical analysis, we focus on two data samples: an annual data sample
starting at the onset of the Great Depression (1929 —2009), and a quarterly
data sample starting in the post-World War 1II period (1947: Q1 —2009: Q4).
A detailed data description is presented in Appendix [A-4] Note that, in any
finite sample, the extracted time series of the SDF, as well as the information
bounds on the SDF and the unobservable component of the SDF, depend on
the set of test assets used for their construction. Since the Euler equation holds
for any traded asset, as well as for any adapted portfolio of assets, this gives
an infinitely large number of moment restrictions. Nevertheless, econometric
considerations necessitate the choice of only a subset of assets to be used. As
a consequence, in our empirical analysis, we compute bounds and filter the
time series of the SDF and the components of the SDF, using a broad cross-
section of test assets. In particular, at the quarterly frequency, the test assets
include the 6 size and book-to-market-equity-sorted portfolios of Fama-French,
10 industry-sorted portfolios, and 10 momentum-sorted portfolios. Due to the
smaller available time series at the annual frequency, we restrict the cross-
section of test assets to include the 6 size and book-to-market-equity-sorted
portfolios, 5 industry-sorted portfolios, and the smallest and largest deciles of
the 10 momentum-sorted portfolios.
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Table 1

Correlation of filtered and model SDFs, 1947:Q1-2009:Q4

Correlation of filtered

Cross-sectional

and model SDF
p(Iny Iny]") p(InM; InM]™) No Free
intercept intercept

A. State variables extracted from consumption
cc 0.10/0.07 0.13/0.09 -1.19 0.002

[ —0.09,0.18] [—0.11,0.18] [—0.07,0.20] [—0.09,0.19] [—3.14,0.02] [0.00,0.38]
MSV —0.01/0.003 0.05/0.04 —0.79 0.002

[—0.07,0.18] [—0.09,0.18] [—0.07,0.20] [—0.09,0.19] [—2.72,0.06] [0.000,0.37]
BY —0.02/0.03 0.16/0.09 —0.71 0.005

[—0.14,0.12] [-0.11,0.18] [—0.03,0.25] [—0.12,0.18] [—2.83,0.02] [0.00,0.35]
PST —0.12/-0.14 —0.03/-0.04 —-0.91 0.03

[—0.24,0.02] [—-0.24,0.03] [—0.16,0.09] [—0.21,0.09] [—3.21,0.14] [0.00,0.36]
B. State variables extracted from asset prices
cc 0.17/0.16 0.18/0.17 —0.77 0.31

[ —0.10,0.18] [—0.10,0.18] [—0.10,0.18] [—0.10,0.19] [—3.13,0.08] [0.00,0.39]
MSV 0.18/0.23 0.19/0.24 —0.46 0.04

[—0.10,0.19] [-0.10,0.22] [—0.10,0.20] [—0.10,0.22] [—3.78,0.00] [0.00,0.48]
BY 0.03/0.06 0.04/0.07 —1.26 0.24

[—0.11,0.17] [ —0.11,0.21] [—0.11,0.17] [-0.10,0.21] [—3.23,-0.39] [0.00,0.52]

The table reports the correlation between the filtered and the model-implied v-components of the SDFs
(Column 1), the correlation between the filtered and the model-implied SDFs (Column 2), the cross-sectional R2
implied by the model-specific SDFs when no intercept is allowed in the cross-sectional regression (Column 3),
and the cross-sectional R2 when an intercept is allowed in the regression (Column 4), using quarterly data for
1947:Q1-2009:Q4. The bootstrapped 95% confidence intervals are reported in brackets. Each cell in Columns
1 and 2 has two entries corresponding to whether the filtered y*-component and, therefore, the filtered SDF is
estimated using Equation (@), reported on the left, or Equation @, reported on the right. Panel A reports results
when the models’ state variables and, therefore, the model-implied SDFs are extracted from consumption data,
and panel B reports the same when the state variables are extracted from asset prices. CC, MSV, BY, and PST
denote, respectively, the models of [Campbell and Cochrand (1999), [Menzly et all 004), [Bansal and Yarod
©009), and [PlazzesTerall @O0D).

3.2.1 The time series of the filtered SDF. Our first approach for assessing
the empirical plausibility of these models is based on the observation that our
method identifies the minimum entropy time series of the SDF, which we call
the filtered SDF. That is, given a candidate SDF with observable component
m(8,1), we use the relative entropy-minimizing procedures in Equations @) and
(@ to estimate a time series for the unobservable (or residual, if the SDF is fully
observable) component {1/ft*(9)}lT= , and obtain the filtered SDF as m(6,¢)y;".

Note that the filtered SDF and its missing component depend on the local
curvature of the utility function y, since changing y modifies the constraints in
Equations @) and (@. Therefore, for each model, we fix y at the authors’
calibrated value and extract the time series of the filtered SDF and the
components of the SDF. We compare the filtered SDF (m(60,1)v") with the
model-implied SDF (m(6,t)y,") for each model.

Table[[reports the results at the quarterly frequency. Panel A reports results
when the model-implied SDF and its components are obtained by extracting the
state variable(s) from consumption data, and panel B presents results when asset
market data are used to extract the state variable(s). The first column reports
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the correlation between the filtered time series of the missing component,
{Inyrf ;T=1’ of the SDF, and of the corresponding model-implied time series,
{Iny" ;T= - The second column shows the correlation between the filtered
SDF, {lnM;‘=ln(m(0,t)1ﬁ;")}tT=1, where m(6,t)=(C,/C,_1)~7, and the model-
implied SDF, {lnM{"zln(m(G,t)w,’”)}tT:l. The 95% confidence intervals for
these correlations are obtained by bootstrapping with replacement from the
data.

Consider first the results for the CC external habit model presented in the
first row of each panel. For this model, the utility curvature parameter is set to
the calibrated value of  =2. Column 1 in panel A shows that when the model-
implied state variable is extracted from consumption, the correlation between
the filtered and model-implied v is only 0.10 when * is estimated using
Equation (@). Column 2 shows that the correlation between the filtered and
model-implied SDFs is marginally higher at 0.13. When ¢ * is estimated using
Equation @), the correlations are very similar at 0.07 and 0.09, respectively.
Panel B shows that the correlations between the filtered and model-implied
SDFs and v’s remain small when the model state variable is extracted from
the market-wide price-dividend ratio.

The second row in each panel presents the results for the MSV external
habit model. In this case, y is set equal to 1, which is the calibrated value in
the model. Row 2 in each panel shows that the results for the MSV model are
similar to those for the CC model. When v/ * is estimated using Equation (@), the
correlations between the filtered and model-implied 1 components of the SDFs
are small, varying from —0.01, when the surplus consumption ratio is extracted
from consumption data, to 0.18, when the state variable is extracted using the
price-dividend ratio. The correlations between the filtered and model-implied
SDFs are marginally higher, varying from 0.05, when the surplus consumption
ratio is extracted from consumption data, to 0.19 when it is extracted using the
price-dividend ratio. Similar results are obtained when 1* is estimated using
Equation ).

The third row in each panel presents the results for the BY long-run risks
model. The parameter y is set equal to the BY calibrated value of 10. Row 3
and Column 1 of panel A, shows that when the state variables are extracted
from consumption, the correlation between the filtered and model-implied
¥ components is —0.02 (0.03) when v * is estimated using Equation (&)
(Equation (@)). Column 2 shows that the correlation between the filtered and
model-implied SDFs is 0.16 (0.09). Similar results are obtained in panel B,
where the state variables are extracted from the market-wide price-dividend
ratio.

The fourth row in panel A presents the results for the PST housing model.
Note that, in this model, the SDF and its /" component are directly observable
and thereby do not need to be extracted from either consumption or asset market
data. Therefore, we do not have a fourth row in panel B. The risk-aversion
parameter, y, is set equal to 16, which is the calibrated value in the original
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Table 2
Correlation of filtered and model SDFs, 1929-2009

Correlation of filtered Cross-sectional
and model SDF R?
p(InyF, Iny") p(InM} InM™) No Free
intercept intercept

A. State variables extracted from consumption

cc 0.35/0.31 0.39/0.34 0.082 0.504
[—0.04,0.44] [—0.04,0.41] [—0.00,0.48] [—0.02,0.92] [—2.19,0.74] [0.00,0.81]
MSV 0.33/0.22 0.41/0.34 0.76 0.82
[—0.02,0.41] [ —0.04,0.37] [0.06,0.46] [—0.02,0.96] [—2.05,0.76] [0.00,0.80]
BY —0.17/-0.028 0.27/0.20 0.45 0.47
[—0.31,0.22] [-0.44,0.21] [—0.03,0.48] [-0.16,0.77] [—2.25,0.75] [0.00,0.80]
PST —0.09 / —0.001 —0.004/ —0.013 -0.73 0.09
[—0.23,0.24] [ —0.25,0.25] [—0.20,0.21] [—0.26,0.26] [—2.39,0.09] [0.00,0.40]
B. State variables extracted from asset prices
CcCc 0.19/0.14 0.24/0.17 —0.20 0.60
[—0.12,0.35] [-0.10,0.28] [—0.11,0.37] [-0.08,0.29] [—2.86,0.53] [0.00,0.63]
MSV —0.04/0.13 0.01/0.18 —0.16 0.001
[—0.10,0.33] [—0.10,0.27] [—0.08,0.35] [—0.09,0.28] [—2.69,0.27] [0.00,0.52]
BY —0.01/0.10 —0.02/0.09 —0.15 0.005
[—0.21,0.34] [-0.23,0.31] [—0.21,0.29] [-0.29,0.32] [—0.77,0.25] [0.00,0.27]

The table reports the correlation between the filtered and the model-implied v -components of the SDFs
(Column 1), the correlation between the filtered and the model-implied SDFs (Column 2), the cross-sectional
R2 implied by the model-specific SDFs when no intercept is allowed in the cross-sectional regression (Column
3), and the cross-sectional R? when an intercept is allowed in the regression (Column 4), using annual data for
1929-2009. The bootstrapped 95% confidence intervals are reported in brackets. Each cell in Columns 1 and 2
has two entries corresponding to whether the filtered ¥ *-component and, therefore, the filtered SDF is estimated
using Equation (@), reported on the left, or Equation @), reported on the right. Panel A reports results when the
models’ state variables and, therefore, the model-implied SDFs are extracted from consumption data, and panel
B reports the same when the state variables are extracted from asset prices. CC, MSV, BY, and PST denote,
respectively, the models of [Campbell and Cochrand (1999), [Menzly et all (2004), [Bansal and Yarod @004), and
[DPlazzesT et all @007).

paper. Column 1 shows that the correlations between the filtered and model-
implied ¥ components of the SDFs are very small and have the wrong sign,
varying from —0.12 to —0.14, when v/ * is estimated using Equations (&) and @).
The correlations between the filtered and model-implied SDFs are marginally
higher varying from —0.03 to —0.04.

TablePlreports results analogous to those in Table[T]at the annual frequency.
The results are largely similar to those in Table[Il The two habit models, when
the state variable is extracted from consumption data, are notable exceptions.
In these two cases the correlations between filtered and model-implied SDFs
and ¥ components are much higher than at the quarterly frequency, being in
the 0.31-0.39 range for CC and 0.22-0.41 for MSV.

The last two columns of Tables[MandRlreport the cross-sectional R>’s, along
with 95% confidence bands, in brackets, implied by the model-specific SDFs at
the quarterly and annual frequencies, respectively. The cross-sectional R? are
obtained by performing a cross-sectional regression of the historical average
returns on the model-implied expected returns. Column 3 reports the cross-
sectional R? when there is no intercept in the regression, and Column 4 presents
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results when an intercept is included. The results reveal that the cross-sectional
R?’s wildly vary for the same model, and often take on large negative values
when an intercept is not allowed in the cross-sectional regression, or when the
model-implied state variables are extracted using either consumption or asset
market data. Moreover, they have very wide confidence intervals. As we show
in the next subsection, this is in stark contrast with the results based on entropy
bounds in Tables[@and [/l that tend instead to give consistent results and tighter
confidence bands for each model across different samples and procedures used
to extract the model state variables.

Overall, Tables [[] and Pl make two main points. First, they demonstrate the
robustness of our estimation method — very similar results are obtained using
either Equation @) or @) to filter v *and M*. Second, they show that, regardless
of the data frequency and the procedure used to extract the model-implied
SDFs, all the asset pricing models considered imply SDFs that tend to have low
correlation with the filtered ones. While the results in Tables[[landPlare obtained
using the combined set of size and book-to-market-equity-sorted, momentum-
sorted, and industry-sorted portfolios, very similar results are obtained using
the 25 Fama-French portfolios as test assets

The correlations between model-specific SDFs and filtered SDFs discussed
above would have little significance if the filtered discount factors had no
clear economic interpretation. To address this concern, we show below that our
filtered pricing kernel has clear economic content since (1) it is always highly
correlated with the Fama-French factors, that can be interpreted as proxies for
the true unknown sources of systematic risk, (2) it implies that the SDF should
have a strong business-cycle pattern, and (3) it significantly reacts to financial
market crashes.

TablesBlandHlreport the correlations between the filtered and model-implied
log SDFs and the three Fama-French (FF) factors at the quarterly and annual
frequencies, respectively. Column 1 presents the correlation between the model-
implied SDF, when the state variables are extracted from consumption data,
and the three FF factors. This is computed by performing a linear regression

of the model-implied time series of the SDF, {In (th)}lT:l, on the three FF
factors and computing the correlation between In(M™) and the fitted value
from the regression. Column 2 reports the correlation when the model-implied
state variables are extracted from asset market data. Columns 3 and 4 present
the correlations of the filtered SDF and its missing component with the three
FF factors, respectively.

Consider Table [ first. Column 3, panel A, shows that the log of the
filtered SDF, M;"=m(0,t)v;, strongly correlates with the FF factors, having
correlation coefficients ranging from 0.49 to 0.59 when the set of test assets

17" The results are available from the authors on request.
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Table 3
Correlations with FF3, 1947:Q1-2009:Q4

Correlation with FF3

(ln M;n )cons (ln M;ﬂ )prices In Mt* In Vf;‘
A. 25 Fama-French
cC 0.18 0.20 0.54/0.59 0.54/0.59
MSV 0.21 0.95 0.54/0.59 0.54/0.59
BY 0.25 0.45 0.54/0.58 0.52/0.57
PST 0.07 - 0.49/0.52 0.45/0.50
B. 10 Momentum
cC 0.18 0.20 0.52/0.52 0.51/0.51
MSV 0.21 0.95 0.52/0.52 0.51/0.51
BY 0.25 0.45 0.55/0.53 0.50/0.50
PST 0.07 - 0.53/0.51 0.43/0.43
C. 10 Industry
cC 0.18 0.20 0.65/0.69 0.64/0.68
MSV 0.21 0.95 0.65/0.69 0.65/0.68
BY 0.25 0.45 0.66/0.69 0.62/0.65
PST 0.07 - 0.53/0.55 0.47/0.51

The table reports the correlations between the 3 Fama-French factors and (/) the model-implied SDF with state
variables extracted from consumption (Column 1) and stock market (Column 2) data, (2) the filtered SDF (Column
3), and (3) the filtered ¥* component of the SDF (Column 4), using quarterly data for 1947:Q1-2009:Q4 and a
different set of portfolios in each panel. Each cell in Columns 3 and 4 has two entries corresponding to whether
the filtered ¥ *-component and, therefore, the filtered SDF is estimated using Equation (@), reported on the left,
or Equation (4], reported on the right. P S i the models of Campbell
and Cochrane (1999),Menzly et all @

consists of the 25 size and book-to-market-equity-sorted portfolios of Fama-
French. Column 4 reveals that this high correlation is almost entirely due to the
Y¥* component, and nottom (6, t), since the correlation between the filtered SDF
and the FF factors is the same as that between the filtered missing component
of the SDF and the FF factors.

The above results are perhaps not surprising because the FF factors are known
to be quite successful in explaining a large fraction of the cross-sectional
variation in the returns of the 25 size and book-to-market-equity-sorted
portfolios. However, panels B and C reveal that the filtered SDF strongly
correlates with the FF factors independently of the set of test assets used
to extract the filtered SDF. When the set of test assets consists of the 10
momentum-sorted portfolios, the correlations vary from 0.51 to 0.55. For the 10
industry-sorted portfolios, the correlations vary from 0.53 to 0.69. Column 4 of
panels B and C reveals that this high correlation is almost entirely driven by the
missing component of the SDF, and not the consumption growth component.

Row 1, Column 1, of each panel shows that, for the CC model, while the
filtered SDF correlates strongly with the FF factors, the model-implied SDF has
a small correlation coefficient of 0.18, when the surplus consumption ratio is
extracted from consumption data. Row 1, Column 2, shows that the correlation
only rises marginally to 0.20 when the state variable is extracted from the
market-wide price-dividend ratio.
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Table 4
Correlations with FF3, 1929-2009

Correlation with FF3

(lanm)(-unx (ln Mlm )pricex In ZM;‘< In wl*
A. 6 Fama-French
cC 0.19 0.12 0.73/0.78 0.72/0.77
MSV 0.26 0.87 0.73/0.78 0.72/0.77
BY 0.38 0.73 0.77/0.77 0.68/0.72
PST 0.35 - 0.81/0.76 0.65/0.67
B. 10 Momentum
cc 0.19 0.12 0.55/0.63 0.58/0.61
MSV 0.26 0.87 0.55/0.62 0.57/0.61
BY 0.38 0.73 0.69/0.69 0.51/0.57
PST 0.35 - 0.73/0.70 0.50/0.55
C. 10 Industry
cC 0.19 0.12 0.49/0.53 0.49/0.53
MSV 0.26 0.87 0.50/0.54 0.50/0.55
BY 0.38 0.73 0.42/0.39 0.38/0.42
PST 0.35 - 0.41/0.27 0.34/0.37

The table reports the correlations between the 3 Fama-French factors and (/) the model-implied SDF with
state variables extracted from consumption (Column 1) and stock market (Column 2) data, (2) the filtered SDF
(Column 3), and (3) the filtered ¥* component of the SDF (Column 4), using annual data for 1929-2009 and a
different set of portfolios in each panel. Each cell in Columns 3 and 4 has two entries corresponding to whether
the filtered y*-component and, therefore, the filtered SDF is estimated using Equation (@), reported on the left,

For the MSV model, the correlation between the model-implied SDF and
the FF factors is small at 0.21 when the surplus consumption ratio is extracted
from consumption data. However, when the state variable is extracted from the
price-dividend ratio, the correlation between the model-implied SDF and the
FF factors is very high at 0.95 - much higher than the correlation between the
filtered SDF and the FF factors for each set of test assets.

Row 3 in each panel shows that for the BY model, the correlation between
the model-implied SDF and the FF factors is 0.25 when the state variables are
extracted from consumption data. The correlation increases to 0.45 when asset
price data are used in the extraction of the model-implied state variables.

Finally, Row 4 in each panel shows that for the PST model, the correlation
between the model-implied SDF and the FF factors is very small at 0.07.

TableHlreveals that very similar results are obtained at the annual frequency.
TablesBlandEldemonstrate the soundness of our estimation method: the filtered
time series of the SDF and its ¥* component are quite robust, in terms of their
correlations with the FF factors, to the choice of the utility curvature parameter
y, the set of assets, and the data frequency considered. Moreover, our filtered
SDF and v * are consistently highly correlated with the FF factors independently
of the sample frequency and the cross-section of assets used for the estimation
(even assets, like the industry and momentum portfolios, that are not well priced
by the FF factors). This finding has several important implications. First, it
suggests that our estimation approach successfully identifies the unobserved
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pricing kernel, since there is substantial empirical evidence that the FF factors
do proxy for asset risk sources. Second, our finding provides a rationalization
of the empirical success of the FF factors in pricing asset returns. Finally,
although the filtered SDF is highly correlated with the FF factors, the correlation
coefficient is substantially smaller than unity, particularly for the industry and
momentum portfolios (see, €.g., TableH)), suggesting that the FF factors cannot
fully capture all the underlying sources of systematic risk that are important in
pricing these assets.

The reason behind the stable correlation results between our filtered SDFs
and the three Fama French factors seems to be the fact that, independently of the
set of assets used for the filtering, the filtered SDF tends to have a very similar
time series behavior. In particular, it shows a clear business-cycle pattern, and
significant and sharp reactions to stock market crashes (even if these crashes
do not necessarily result in economy wide contractions). This feature of the
filtered SDFs is illustrated in Figures [9] (annual frequency) and [LOl (quarterly
frequency). In each figure we report the business-cycle component (panel A)
and the residual component of the filtered M* for the different models[§ At
both data frequencies, of from the model considered, both the business-cycle
and residual components are extremely similar across the models.

In Table [8 we compare the business-cycle and market crash properties of
the filtered SDFs with the model-implied ones. For each model considered,
and for both the filtered (M*) and model-implied (M™) pricing kernels, the
table reports the risk-neutral probabilities of recessions (Column 1), and stock
market crashes nonconcomitant with recessions (Column 2), as well as in the
first row of each panel, the sample frequency of these events[™ For the model-
implied pricing kernels, we present the probabilities when the state variables are
extracted using consumption data as well as using asset price data (in brackets
below).

Focusing on quarterly data (panel A), Column 1 shows that the filtered SDFs
(M*) imply a risk-neutral probability of a recession in the 25%—-26% range.
Comparing this with the model-implied probabilities reveals that, whether
the state variables are extracted using consumption or asset market data, all
the model-implied pricing kernels deliver a similar risk-neutral probability
of recessions that is similar to the one of our filtered SDFs (with the notable
exception of the BY pricing kernel that, extracting the state variables using asset

The decomposition into a business-cycle and a residual component is obtained by applying the Hodrick and
Prescott ) filter to the estimated M*.

To compute the risk-neutral probabilities, note that for any quantity A; and function f(.), we have that
EQ[f(A,)]:ff(A,)Z—%dP:ff(A,)%dP‘ Hence, given an SDF M; (either filtered or model-implied)

the risk-neutral expectation can be estimated (assuming ergodicity) using the sample analog EQ[f(A)]=
%Z,T f(A,)%. For instance, to estimate the probability of a recession, we replace f(A;) with an index

function that takes value 1 if the economy was in an NBER-designated recession at time ¢ and zero otherwise.
See also Remark[Ilin Appendix Al
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Panel A: Business Cycle components of M*
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Panel B: Residual components of M*
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Figure 9

a \7 .
L ¥ ) filtered using

Business-cycle (A) and residual (B) components of the filtered (log) SDF (M= (

the relative entropy-minimizing procedure in Equation (@) using annual data over the perlod 1929-2009 for
the different models considered: [Bansal and Yaron
etal. 4) (MSV), and 2007) (PST). The difference between the models is drlven by the value
of the utility curvature parameter y that is set to the authors’ original calibrations. The decomposition into a
business-cycle and a residual component is obtained by applying the [Hodrick and Prescod {1997 filter to the
estimated M*. The set of test assets used in the filtering consists of the six size and book-to-market-equity-sorted
portfolios, ten industry-sorted portfolios, and the ten momentum-sorted portfolios. Shaded areas denote NBER
recession years, and vertical dashed lines indicate the major stock market crashes identified by Mishkin and
White 2003).

market data, implies a risk-neutral probability of recession of about 55%). More
interestingly, Column 2 shows that the model-implied kernels fail to show the
significant and sharp reaction to stock market crashes exhibited by the filtered
SDFs: the probabilities of stock market crashes nonconcomitant with recessions
implied by the filtered SDFs are between 104% and 207% higher than those
implied by the model specific kernels when the model-implied state variables
are extracted from consumption data and between 44% and 207% higher when
the state variables are extracted from asset price data. Panel B reports similar
findings at the annual frequency, but also shows that MSV and PST imply too
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Panel A: Business Cycle components of M*
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Panel B: Residual components of M*
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Figure 10

Ct
G-
the relative entropy-minimizing procedure in Equation (@) using quarterly data over lhe period 1947:Q1-2009:Q4
for the different models considered:IBansal and Yarord (2004) (BY).K CC), Menzly
etal. 4) (MSV), and 2007) (PST). The difference between the models is driven by the value
of the utility curvature parameter y that is set to the authors’ original calibrations. The decomposition into a
business-cycle and a residual component is obtained by applying the [Hodrick and Prescod {1997 filter to the
estimated M*. The set of test assets used in the filtering consists of the six size and book-to-market-equity-sorted
portfolios, ten industry-sorted portfolios, and the ten momentum-sorted portfolios. Shaded areas denote NBER
recession years, and vertical dashed lines indicate the major stock market crashes identified by Mishkin and
White 2007).

-V
Business-cycle (A) and residual (B) components of the filtered (log) SDF (M = ¥/ ) filtered using

low of probablities for recessions and BY — only when extraxted from asset
prices — implies a very high probability of market crashq

Overall, the above results suggest that the explanatory power of these models
for asset pricing would be improved by augmenting the pricing kernels with a
component that exhibits sharp reactions to market crashes that are not perfectly
correlated with the business cycle.

Note that, at the annual frequency, a year is designated as a recession year if at least one of its quarters is in an
NBER recession period.
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Table 5
Recession and market crash probabilities of M™ and M*

Recession Market crash without
Recession probability recession probability
A. Quarterly Data, 1947:01-2009:04
Sample .022 0.024
ccC mm 0.25[0.24] 0.024[0.025]
M* 0.25/0.25 0.054/0.059
BY mm 0.22[0.55] 0.024[0.034]
M* 0.26/0.26 0.049/0.057
MSV M™ 0.22[0.22] 0.024[0.028]
M* 0.25/0.25 0.055/0.059
PST mm 0.21 0.028
M* 0.25/0.25 0.086/0.065
B. Annual Data, 1929-2009
Sample 0.375 0.088
cC Mm" 0.61[0.49] 0.055[0.068]
M* 0.58/0.56 0.092/0.119
BY mm 0.41[0.59] 0.083[0.227]
M* 0.59/0.59 0.085/0.097
MSV mM™ 0.38[0.39] 0.086[0.098]
M* 0.57/0.56 0.094/0.122
PST mm 0.37 0.067
M* 0.60/0.60 0.103/0.093

The table reports the risk-neutral probability of recessions (Column 1) and stock market crashes nonconcomitant
with recessions (Column 2) implied by the model (M™) and filtered (M *) SDFs at quarterly (panel A) and annual
(panel B) frequencies. Each cell in the rows corresponding to the model SDF has two entries corresponding to
whether the models’ state variables are extracted from consumption data, reported on the left, or from asset market
data, reported on the right. Each cell in the rows corresponding to the filtered SDF has two entries corresponding
to whether the filtered v *-component and, therefore, the filtered SDF is estimated using Equation (@, reported
on the left, or Equation @, reported on the right.

3.2.2 Entropy Bounds Analysis. Our second approach to assess the empirical
plausibility of the asset pricing models considered relies on the entropy bounds
derived in Section[I.I] For each model we compute the minimum values of the
power coefficient, y, at which the model-implied SDF satisfies the HJ, Q, M,
and W bounds. We also compute 95% confidence bands via bootstrap. Table @]
reports the results at the quarterly frequency. Panels A and B report results when
the state variables needed to construct the time series of the model-implied SDF
and its components are extracted from consumption (panel A) and asset market
data (panel B). Consider first the results for the HJ, Q1, M1, and 1 bounds.
The first row in each panel presents the bounds for the CC model. Panel A
shows that when the surplus consumption ratio is extracted from consumption
data, the minimum values of y at which the pricing kernel satisfies the HJ, Q1,
M1, and W1 bounds are 10.2, 16.1, 16.4, and 23.2, respectively. Therefore, as
suggested by the theoretical predictions, the Q-bound is tighter than the HJ -
bound, and the M-bound is tighter than the Q-bound. Note that in this model,

the curvature of the utility function is S , where S; is the surplus consumption
ratio, and this ratio is almost identical to 'the coefficient of relative-risk aversion

(see, e.g., the discussion in [Campbell and Cochrand (1999)). For y =2, the

calibrated value in CC, the curvature varies over [19.7, c0). Panel A reveals that
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Table 6

Bounds for RRA, quarterly data, 1947:Q1-2009:Q4

HJ-bound Q1/Q2-bounds M1/M2-bounds W1/ W2-bounds
A. State variables extracted from consumption
cc 10.2 16.1/15.7 16.4/16.0 23.2/239
[16.0,38.0][14.4,34.8] [16.0,38.0][14.6,36.8] [23.0,>100][21.2,>100]
MSV 32.6 40.8/40.4 43.4/435 61.3/62.8
[38.0,62.01[38.0,59.0] [40.0,64.01[40.0,64.0] [59,113][59.0,>100]
BY >100 >100/>100 >100/>100 >100/>100
[>100,>100][>100,>100] [>100,>100][>100,>100] [>100,>100][>100,>100]
PST 73.8 99.0/92.6 111.1/102.2 96.2/90.5

[96.0,172.0][88.0,161.0]

[102.0,183.0][93.0,172,1]

[94.0,187.01[86.0,176.0]

B. State variables extracted from asset prices

cc 19 431/46 46746 47148
[43.0,50.0][46.0,49.0] [46.0,50.0][46.0,49.0] [47.0,51.0][48.0,50.0]
MSV 733 90.3/90.0 >100/>100 >100/>100
[92.0,>100][89.5,>100] [>100,>100][>100,>100] [>100,>100][>100,>100]
BY 4.0 5/5 5/5 5/5
[5.0,6.0](5.0,6.0] [5.0,6.0]5.0,6.0] [5.0,6.0][5.0,6.0]

The table reports the minimum values of the utility curvature parameter y at which the model-implied SDF
satisfies the HJ (Column 1), Q (Column 2), M (Column 3), and ¥ (Column 4) bounds using quarterly data for
1947:Q1-2009:Q4. The bootstrapped 95% confidence intervals are reported in brackets below. Columns 2-4 has
two entries in each cell that correspond to whether the filtered ¥ *-component of the SDF and, therefore, the
filtered SDF are estimated using equation (@, reported on the left, or Equation @), reported on the right. Panels
A and B present results when the models’ state variables are extracted from consumptlon data and asset market
data, respectively. CC, MSV, BY, and PST denote, respectively, the models of [Cam {099,
[Menzly etall ©004). Bansaland Yarod @004). and PlazzesTetall ©00).

the Q-bound is satisfied for y > 16.1, implying that the curvature varies over
[56.6,00), the M-bound is satisfied for y > 16.4, implying that the curvature
varies over [57.2,00), and the W-bound is satisfied for y >23.2, implying that
the curvature varies over [68.5, 00). A similar ordering of the bounds is obtained
when the surplus consumption ratio is extracted from the market-wide price-
dividend ratio in panel B, except that, in this case, even higher values of risk
aversion are needed to satisfy the bounds. Also, very similar results are obtained
for the 02, M2, and W2 bounds, stressing the robustness of our approach.

The second row in each panel presents the bounds for the MSV model. When
the surplus consumption ratio is extracted from consumption data, the HJ, Q1,
M1, and W1 bounds are satisfied for a minimum value of y =32.6, 40.8, 43.4,
and 61.3, respectively. Very similar results are obtained for the 02, M2, and
W2 bounds. Therefore, this model requires much higher values of risk aversion
than CC to be consistent with observed asset returns. Note, however, that for
both models and both procedures used to extract the model-implied SDFs,
the risk-aversion coefficients at which the models satisfy the bounds are very
high.

The third row in each panel presents the bounds for the BY model. Panel
A shows that when the model-implied state variables are extracted from
consumption data, the model-implied pricing kernel fails to satisfy the HJ,
0, M, and ¥ bounds for any value of the risk-aversion parameter smaller than
100. On the contrary, when the model-implied state variables are extracted from
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asset market data (panel B), the HJ bound is satisfied for a minimum value of
y =4.0, while the Q1, M1, and W1 bounds are all satisfied by a relative risk-
aversion as small as 5. Similar results are obtained for the 02, M2, and W2
bounds. Therefore, the results reveal that the empirical performance of the BY
framework crucially depends on how the latent state variables are extracted
from the data.

Finally, the fourth row of panel A presents the bounds for the PST model.
Note that, in this model, the SDF is a function of observable data alone, hence
there is no need to extract any state variable from asset market data. Therefore,
we do not have a fourth row in panel B. The model satisfies the HJ, Q1(Q2),
M1(M?2), and ¥1(¥2) bounds for minimum values of y =73.8, 99.0(92.6),
111.1(102.2), and 96.2(90.5), respectively. Therefore, this model requires very
high levels of risk-aversion to be consistent with observed asset returns.

Overall, Table[@ldemonstrates that, in line with the theoretical underpinnings
of the various bounds, the Q-bound is generally tighter than the HJ-bound
because it naturally exploits the restriction that the SDF is a strictly positive
random variable. The M-bound is tighter than the Q-bound because it formally
takes into account the ability of the SDF to price assets and the dependency
of the pricing kernel on consumption. Furthermore, the results suggest that
all the models considered require very high levels of risk-aversion to satisfy
the bounds, with the only exception being the long-run risks model of BY
(but only when the model state variables are extracted from asset price
data).

Table D reports analogous bounds as in Table[f at the annual frequency. The
table shows that, at this frequency, all the bounds tend to be satisfied with
smaller values of the utility curvature parameter, suggesting that the models
considered can more easily rationalize asset pricing dynamics at the annual,
rather than quarterly, frequency. However, once again in line with the theoretical
predictions, the Q-bound is tighter than the HJ-bound, and the M-bound is
tighter than the Q-bound.

Note that the above bound results have tight confidence bands and are much
more consistent, in evaluating the plausibility of a given model across different
procedures used to extract the model-implied SDF and its components, than
the cross-sectional R? measures reported in Tables[land @ that wildly vary for
the same model and have very wide confidence intervals.

Note that the results in Tables [l and [ are obtained by allowing only the
utility curvature parameter, y, to vary while holding constant all the other model
parameters at the authors’ calibrated values. Note that most consumption based
asset pricing models, including the ones considered in this paper, are highly
parameterized. Since the state variables are not directly observed in many of
the models, the parameters governing their dynamics are typically chosen to
match some moments of the data. Consequently, the properties of the SDF are
quite sensitive to not only y but also the values of all the other parameters.
Therefore, we also compute the minimum values of the power coefficient, y,

481

120z Areniga G| uo 1senb Ad 96111 vZ/2iz/0E /o101 /SH W00 dno"olWepede//:sdly Woly papeo|umod



The Review of Financial Studies / v 30 n 2 2017

Table 7
Bounds for RRA, annual data, 1929-2009
HJ-bound Q1/Q2-bounds M1/M2-bounds W1/W2-bounds
A. State variables extracted from consumption
cc 0.7 5.1/2.7 52727 7.6/ 3.6
[4.0,41.0][3.0,8.0] [4.0,41.0](3.0,8.0] [5.0,>100][4.0,23.2]
MSV 17 28.7/24.4 30.3/26.6 >100/76.5
[19.0,53.3][23.7,35.0] [20.0,53.3][ 24.7,35.4] [>100,>100][ 81.0,>100]
BY 50 53/71 60 />80 55/ >80
[22.0,71.0][69.7,>80] [24.0,72.0][>80,>80] [49.0,>80][ 2.0,>80]
PST 17.1 28.6/24.1 31.4/27.0 22.0/18.6

[19.0,51.7][23.0,35.4]

[20.0,51.3][24.0,35.4]

[14.0,42.7][19.7,29.0]

B. State variables extracted from asset prices

cc 4 776 776 8/17
[4.0,12.0][6.0,9.0] [4.0,12.0][6.0,9.0] [4.0,14.0][7.0,11.0]
MSV 23.7 39.1/33.4 42.2/37.0 >100/ >100
[22.0,69.51[29.5,45.0] [26.0,69.5][30.5,45.0] [>100,>100][>100,>100]
BY 5 6/6 6/6 6/6
[5.0,6.0][2.0,7.0] [5.0,6.0][2.0,6.0] [5.0,6.0][2.0,6.0]

The table reports the minimum values of the utility curvature parameter y at which the model-implied SDF
satisfies the HJ (Column 1), Q (Column 2), M (Column 3), and ¥ (Column 4) bounds using annual data for
1929-2009. The bootstrapped 95% confidence intervals are reported in brackets. Columns 2-4 has two entries in
each cell that correspond to whether the filtered v*-component of the SDF and, therefore, the filtered SDF are
estimated using equation @), reported on the left, or Equation @), reported on the right. Panels A and B present
results when the models’ state variables are extracted from consumption data and asset market data, respectively.
CC, MSV, BY, and PST denote, respectively, the models of [Campbell and Cochrand (1999), Menzly et all
©004), Bansal and Yarod @004), and [PlazzesT et all @00D).

at which the model-implied SDFs satisfy the HJ, Q, M, and ¥ bounds while
allowing the remaining model parameters to simultaneously vary over two
standard-error intervals around their calibrated values. The results, reported in
Table A2 of Appendix[A7Z]] remain qualitatively unchanged. In particular, for
each model, the HJ, Q, M, and W bounds are satisfied for smaller values of
y when the other parameters are allowed to vary simultaneously compared to
Tables [6] and [7] where the other parameters are held fixed. However, as in the
latter tables, the CC, MSV, and PST models still require much larger values of
risk-aversion to satisfy the bounds compared to the authors’ calibrated values
at the quarterly frequency.

Also note that we have used excess returns (in excess of the risk-free rate) on
a broad cross section of risky assets to extract SDF and obtain entropy bounds
on the SDF and its components. However, it is well known that the level of
the risk-free asset constrains models quite dramatically. Therefore, in order
to check the robustness of our results, we repeat the empirical exercise using
as test assets the gross returns (instead of excess returns) on the same assets
considered so far plus the risk-free asset. The methodology needs to be slightly
modified in this case and is described in Appendix[A.7.2] The results, reported
in Table A3 of Appendix show that the inclusion of the risk-free rate
as an additional asset leaves the HJ, Q, M, and ¥ bounds on the SDF and
its components very similar to those obtained in Tables [l and [7] without the
risk-free rate, for all the models considered.
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Table 8
Relative entropy of SDF and SDF components

KLIC(\//tre‘Yid)

KLICM]) KLiC (e ) KLic(up )
1 t

A. Quarterly, 1947:0Q1-2009:Q4

cc 0.035/0.037 0.26/0.32 0.772/0.786
[0.018][0.019] [0.30][0.33] [0.909][0.859]
MSV 0.0002/0.0002 0.31/0.36 0.992/0.996
[0.004][0.004] [0.30][0.35] [0.950][0.953]
BY 0.003/0.003 0.30/0.35 0.957/0.971
[1.69][1.70] [0.59][0.39] [0.647][0.448]
PST 0.008,/0.008 0.39/0.39 1.01/0.989
B. Annual, 1929-2009
cc 0.379/0.660 0.66/0.69 0.688/0.676
[0.164][0.169] [0.76]1[0.73] [0.815][0.767]
MSvV 0.001/0.001 0.85/0.85 0.972/0.974
[0.023][0.023] [0.85][0.81] [0.973][0.906]
BY 0.023/0.022 0.82/0.84 0.932/0.959
[2.66][1.75] [2.33][1.02] [1.44][0.712]
PST 0.19/0.27 0.96/0.91 1.06/0.996

The table reports the KLIC of the model-implied SDF (Column 1), the KLIC of the residual psi (Column 2),
and the ratio of the KLIC of the residual psi and the KLIC of the product of the model-implied SDF and the
residual psi (Column 3) at the quarterly (panel A) and annual (panel B) frequencies. Each cell has four entries
that correspond to whether the models’ state variables are extracted from consumption data, reported at the top,
or from asset market data, reported at the bottom, and to whether the KLIC between measure A and the physical
measure P is computed as D(P || A), reported on the left, or as D(A H P), reporled on the right. CC, MSV, BY,
and PST denote respectivel g )). [ g 2004). Bansal and

3.2.3 What Are The Consumption-Based Models Missing?. As shown
in Section [LT.1l modeling the SDF as fully observable, that is, setting
m(6,t)=M", where M]" is the entire pricing kernel of the model under
consideration (given in Equations @I), @4), and @3)), we can extract a
residual " component such that M;*:= M™ x ¢/ correctly prices assets.
The ¥"*“ component can once again be estimated using the relative entropy
minimization procedures in Equations @) and (@) replacing m with M™. The
Yeid multiplicative adjustment of the pricing kernel: (1) still has an maximum
likelihood interpretation, (2) adds the minimum amount of information needed
for M* to be able to price assets correctly, and (3) most importantly, as
the second Hansen-Jagannathan distance, it provides a useful diagnostic for
detecting what the pricing kernels are missing to be consistent with observed
asset returns.

We first examine the relative importance of the two components of M*, M™
and ¥’ in pricing a broad cross-section of assets. We do this by computing
the contribution of each component to the overall entropy of the pricing kernel.
The results are reported in Table[§l Columns 1 and 2 present the relative entropy,
or KLIC, of the model-implied SDF, M", and the residual component, w"’”d
respectively. Column 3 reports the KLIC of ¥/ as a fraction of the KLIC of
the overall filtered kernel M x /¢,
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Eachrow of Column 1 reports the KLIC, or relative entropy, of M;". There are
four numbers for this quantity since there are two possible ways of computing
the KLIC (as D(P || M™), reported on the left, and D(M™ || P), reported on the
right), and two possible ways of extracting the models’ state variables (from
consumption, top numbers, and from asset market data, bottom numbers in
brackets). Similarly, four numbers with the same ordering are reported in the
remaining two columns. First, consider panel A, that presents results obtained
at the quarterly frequency. Columns 1 and 2 show that, for the CC model,
the relative entropy of " is an order of magnitude bigger than that of
M™, regardless of whether ¥/ is estimated using Equation @) or (@), or
whether M]" is obtained by extracting the state variable from consumption or
asset market data. This point is further highlighted in Column 3 that shows
that the KLIC of /%" accounts for a lions share of the KLIC of the overall
kernel: 77.2%-78.6% when the model-implied state variable is extracted from
consumption data and 85.9%-90.9% when it is extracted from asset price data.
Very similar results are obtained for the MSV, BY, and PST models in Rows 2-4,
and also at the annual frequency in panel B. Overall, the results suggest that, for
each model considered, most of the ability of the kernel to price assets comes
from the residual component and very little from the model-implied component,
that is all the pricing kernels under consideration seem to miss a substantial
share of the information needed to price correctly the observed asset returns.

In order to assess whether these models are missing similar features of the
data, Table @ reports the correlations between the 1//’“’” of different models at
the quarterly (panel A) and annual (panel B) frequencies. As in the previous
table, for all the entries we have four number given by the two ways of
computing relative entropy (left and right numbers corresponding to Equations
@ and (@) and the two ways of extracting the models’ state variables (from
consumption in the top numbers and from asset prices for the numbers below
in brackets). Panel A shows that, when the models’ state variables are extracted
from consumption data, the correlations between the residual ¥ ’s are extremely
high, varying from 0.85 (between CC and PST) to (almost) 1.0 (between MSV
and BY) when the " component is estimated using Equation (&). When
the ¥’ component is estimated using Equation (@), the correlations are very
similar, varying from 0.93 to (almost) 1.0. When the models’ state variables
are extracted from asset prices the correlations among the various ¥’ are
almost unchanged with one important exception: in this case the correlation
between the residual component of the BY model and all other models becomes
much smaller ranging from 0.1 to 0.41. This implies that the BY pricing kernel
changes a lot depending on whether its state variables are extracted from market
or consumption data. Similar results are obtained at the annual frequency in
panel B, although the correlations are generally smaller at this frequency

Note that the estimates at the annual frequency are inherently more imprecise, due to the small available sample
size, than those at the quarterly frequency.
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Table 9
Correlation between residual y’s

cC MSV BY PST
A. Quarterly, 1947:Q1-2009:04
cc 1.0 0.96/0.93 0.97/0.96 0.85/0.93
[0.96][0.95] [0.32][0.10] [0.93][0.94]
MSV - 1.0 1.0/1.0 0.91/0.97
[0.41][0.20] [0.891[0.94]
BY - - 1.0 0.91/0.97
[0.26][.10]
PST - - - 1.0
B. Annual, 1929:2009
cc 1.0 0.87/0.66 0.88/0.77 0.80/0.51
[0.91][0.78] [0.40][0.22] [0.83][0.53]
MSV - 1.0 0.99/0.95 0.92/0.71
[0.52][0.27] [0.89][0.62]
BY - - 1.0 0.88/0.62
[0.38]1[—0.03]
PST - - - 1.0

The table reports the correlations between the residual v’s of the different asset pricing models using quarterly
data for 1947:Q1-2009:Q4 (panel A) and annual data for 1929-2009 (panel B). Each cell has four entries that
correspond to whether the models’ state variables are extracted from consumption data, reported at the top, or
from asset market data, reported at the bottom, and to whether the residual psi is estimated using Equation (&),
reported on the left, or using equation @, reported on the right. CC, MSV, BY, and PST denote, respectively,

the models of[Campbelland Cochrand (T999). [Menzly etall (2004). [Bansaland Yarod €004), andPlazzesTerall
Cood.

Figure [[T] plots the time series of the residual v’s for the four models at
the quarterly (panel A) and annual (panel B) frequencies, with state variables
extracted from consumption data and /" estimated using Equation (@). The
results suggest that these models are all missing a very similar component that
would improve their ability to explain asset return dynamics. In particular, all
the 1" have a clear business-cycle pattern, but also show significant and
sharp reactions to financial market crashes that do not result in economy wide
contractions.

To further illustrate this point, Table [[Q reports the changes in the model-
implied risk-neutral probabilities need to rationalize stock returns according to
Y thatis, the percentage change caused by replacing M" with M™ x "%
As before, we have four entries per model since we compute probabilities
when state variables are extracted using consumption data as well as using
asset price data (in brackets below), and two minimum entropy methods (left
and right numbers). Focusing on quarterly data in panel A, three patterns
emerge. First (Column 1), " implies a relatively small increase in the risk-
neutral probability of recessions, suggesting that the models considered tend to
adequately capture business-cycle risk at this frequency (with the exception of
BY, when the sate variables are extracted from asset prices, that seems to imply
too much recession risk). Second (Column 2), all the models seem to imply
a too low risk-neutral probability of market crash that is 1" increases this
quantity by about 53%-98% (with again the exception of BY that seems to imply
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Figure 11

The (log) residual ¥ components, ln( ’”’d) of the SDFs (M =M]" w’”id) filtered using the relative entropy-

mmlmlzmg procedure in Equation @ using quaner]y ddtd for 1947: Ql -2009:Q4 (A) and annual data over
2 (2004

and White

NBER recession ears, and vertical dashed lines indicate the major stock market crashes identified by Mishkin
o)

too much crash risk). Third (Column 3), all the models imply a much too low
probability of market crashes not concomitant with recessions: ¥ increases
the risk-neutral likelihood of these events by about 72%-232%. Panel B shows
a similar patter, albeit the probability of market crashes without recessions are
harder to identify at this frequency. Overall, Table [[Qsuggests that the models
do not seem to price correctly market crash risk, especially market crashes that
do not lead to large real economic contractions.

To summarize, the results in this section suggest that the consumption
based asset pricing models we have considered would benefit from being
augmented with a component that exhibits significant reactions to financial
market crashes, in particular crashes that do not result in macroeconomic
contractions. Moreover, not only the standard C-CAPM with power utility, but
also most of the more recent models that have been proposed in the literature,
seem to be missing this component.
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Table 10
Percentage change in risk-neutral probabilities due to residual y’s

Recession Market crash Market crash without
probability probability recession probability
A. Quarterly Data, 1947:0Q1-2009:04
cc 10/11 60/59 72/105
[9/14] [78/78] [133/144]
BY 14/15 69/68 107/136
[-65/-67] [-31/-32][84/144]
MSV 15/15 78/74 124/144
[12/11] [53/53] [93/126]
PST 17/20 98/75 232/148
B. Annual Data, 1929-2009
cc -1/~1 -2/1 10/36
[21/17] [73/85] [11/81]
BY 42/37 84/86 —2/37
[-22/-8] [-45/43] [5/-24]
MSV 50/46 92/92 7/39
[43/39] [61/63] [3/33]
PST 58/57 64/71 —3/69

The table reports the percentage changes in risk-neutral probabilities generated by the the residual ¥ component.
recession probabilities. Columns 1 to 3 focus, respectively, on recession, market, and market crash without
recession, probabilities. Each cell has four entries that correspond to whether the models’ state variables are
extracted from consumption data, reported at the top, or from asset market data, reported at the bottom, and to
whether the residual psi is estimated using Equation (@), reported on the left, or u%mg Equatlon @, reported on

a 1999). Menzly

4. Conclusion

In this paper, we propose an information-theoretic approach as a diagnostic tool
for dynamic asset pricing models. The models we consider are characterized
by having a pricing kernel that can be factorized into an observable component,
consisting of a parametric function of observable variables, and a potentially
unobservable one that is model specific. Based on this decomposition of the
pricing kernel, we provide three major contributions.

First, using a relative entropy minimization approach, we show how to
extract the time series of both the SDF and its unobservable component
nonparametrically. Moreover, given a fully observable pricing kernel, this
procedure delivers the minimal (in the entropy sense) modification of the SDF
that would enable it to price asset returns correctly. Applying this method to
the data, we find that the estimated SDF has a clear business-cycle pattern,
but also shows significant and sharp reactions to financial market crashes
that do not result in economy wide contractions. Moreover, we find that the
nonparametrically extracted SDF, independently of the set of assets used for
its construction, is substantially (yet not perfectly) correlated with the risk
factors proposed in|Eama and FrencH (1993). This provides a rationalization of
the empirical success of the Fama-French factors in pricing asset returns and
suggests that our filtering procedure does successfully identify the unobserved
component of the SDF.
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Second, we construct a new set of entropy bounds that build on and improve
the ones suggested in the previous literature in that (1) they naturally impose
the nonnegativity of the pricing kernel, (2) they are generally tighter and have
higher information content, and (3) allow us to utilize the information contained
in consumption data and a large cross-section of asset returns jointly.

Third, applying the methodology developed in this paper to a large class of
dynamic asset pricing models, we find that the SDFs implied by all of these
models poorly correlate with our filtered SDF, require implausibly high levels
of risk-aversion to satisfy our entropy bounds, and are all missing a similar
component that exhibits significant reactions to financial market crashes that
do not result in economy-wide macroeconomic contractions. These results are
robust to the choice of test assets used, as well as the frequency of the data.

The methodology developed in this paper is considerably general, and may be
applied to any model that delivers well-defined Euler equations like models with
heterogenous agents, limited stock market participation, and fragile beliefs.

A. Appendix

A.1 Maximum Likelihood Analogy
To formally show the analogy between our estimation approach for the measures ¥ and Q and
an MLE procedure, we have to consider the two definition of relative entropy (and corresponding
estimators) separately.

First, consider the entropy minimization problem of the type D (P || x), with x being either the
Q or the ¥ measures, used to contruct the estimators in Equations (@) and @. Let the vector z,
be a sufficient statistic for the state of the economy at time ¢. That is, z, can be thought of as an
augmented state vector (e.g., containing the beginning of period state variables, as well as the time
t realizations of the shocks and expectations about the future). Given z;, the equilibrium quantities,
such as returns R¢ and the sdf M, are just a mapping from z on to the real line, that is,

M(z):z— Ry, R(z):z—RY, M,=M(z), R‘=R%z),

where z, is the time 7 realization of z.
Equipped with the above definition, we can rewrite the Euler equation (@) as

0=E[R;’M,]E/RfM,dP=/R9(z)M(z)p(z)dz, (Al)

where p(z) is the pdf associated with the physical measure P. Moving to the risk-neutral measure
we have

0=E[R¢M,|=E2[R{] =/R€ (z)q (z)dz, (A2)
where ¢ (z) is the pdf associated with the risk-neutral measure Q and M =dQ/dP. Note that
dP
D(P| Q)=/1n @dP=/p(z)lnp(z)dz—/p(z)lnq(z)dz.

Since the first term on the right-hand side of the above expression does not involve g, D(P || Q) is
minimized, with respect to g, by choosing the distribution that maximizes the second term, that is,

Q*=argminD(P || Q)=argmax E[Ing (z)] s.t. EC [Rf]:().
Q q

That is, the minimum entropy estimator in Equation (Z) maximizes the expected — risk-neutral —log
likelihood. Following m@, I@I M), approximating the continuous distribution ¢ (z)
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with a multinomial distribution {g, },Tzl that assigns probability weight ¢, to the time ¢ realizations
of z, a NPMLE of Q can be obtained as

T
1
{q,"}tT:1 =argmax ?Zlnqt (A3)

t=1

T

st.q e AT=1(q1, 42 q7):¢: 20, )y gi=1} and @2 holds,
t=1

provided that

T
1 ».
- ;lnq, > Elng(2)].

Note also that the NPMLE of p(z) is simply p;=1/T Vt (see, e.g., {Qwed, [[088, 1991, 2001))
which is the maximum entropy distribution. Therefore ¢g* contains all the necessary information
to recover the state-price density from the Radon-Nykodin deivative dQ/dP.

Similarly, we have that

W* =argminD (P || \p)Eargmin/p(z)lnp(z)dzf‘/p(z)lml/(z)dz
v 14
=argmax E[lny (2)] s.t. EY [R¢m, ] =0,
v

where ¥ (2) is the pdf associated with the measure W. That is, the W* estimator in Equation (@) is
also an MLE. Moreover, in a very similar fashion, one can show that ¥ *m provides a MLE of ¢
under the restrition that the pricing kernel has the multiplicative reppresentation M =mr.

Hence, the estimates Q* and W* maximize the log likelihoods of the data, but not the physical
ones: the risk-neutral log likelihood in the first case and an intermediate one in the second case
(and W* also can be interpreted as maximizing the risk-neutral log likelihood under the constraint
that M; =m; ;).

Remark 1. The above implies that, for any equilibrium quantity A;, we have that A; = A(z;).
Hence, the risk-neutral expectation of any function f(.) of A, defined as

EQ[f(Ar)]E/f(A(Z))q(Z)dz,
can be estimated as (see, e.g‘,m)

T
EC[f(ANI=)_ f(ADg],

t=1

where ¢, is the relative entropy-minimizing risk-neutral measure. For instance, the risk-neutral
probability of a recession in a given year that is E2 [l(recessmn in year ,)], where 1recession in year } 1S
an indicator function that takes the value one if time r was an NBER-designated recession and zero
otherwise, can be estimated as ZLI Lirecession in year 14} -

Second, consider the entropy minimization problem of the type D(x || P) with x being either
the Q or the ¥ measures. This alternative definition of relative entropy in Equations (&) and @)
also deliver nonparametric maximum likelihood estimates of the Q and W measures, respectively.
We establish this result for W* since for Q* the same result can be shown by a simplified version
of the same argument.

To see why the estimation problem in Equation (@) delivers an MLE of ¥, consider the following
procedure for constructing (up to a scale) the series {l/f[};r:l. First, given an integer N >>0,
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distribute to the various points in time t=1,...,7, at random and with equal probabilities, the
value 1/N in N independent draws. That is, draw a series of values (probability weights) {1/7}[11
given by o

Ipl = N s
where n, measures the number of times that the value 1/N has been assigned to time ¢. Second,
check whether the drawn series {lﬁ }thl satisfies the pricing restriction ZL] m(®,1)R¢ P, =0. If it
does, use this series as the estimator of {1//,}th1 ,and if it does not draw another series. Obviously,
a more efficient way of finding an estimate for ¥, would be to choose the most likely outcome
of the above procedure. Noticing that the distribution of the v, is, by construction, a multinomial
distribution with support given by the data sample, we have that the likelihood of any particular

sequence {; }[T=l is

_ N! N!
L({i))= NY (PP LE——
=) pylng!ng! N1 INY ! .N7!

Therefore, the most likely value of {1&, }IT:1 maximizes the log likelihood

L ({#},) o % (mzv! —tZ:l:ln(N&,z)> :

Since the above procedure of assigning probability weights will become more and more accurate
as N grows bigger, we would ideally like to have N — oo. But in this case one can show thaf4

T
IJiinmlnL<{¢,}i])=—§lprlﬂ¢t-

Therefore, taking into account the constraint for the pricing kernel, the MLE of ¢, solves

or o B T B
{w,} 1Eargmax721//,lm//,, s.t. {w,}thleAT, Zm(e,t)Rflﬂt:Q

1=
=1 =1

But the solution of the above MLE problem is also the solution of the relative entropy minimization
problem in Equation @ (see, e.g.,@). That is, the KLIC minimization is equivalent to
maximizing the likelihood in an unbiased procedure for finding the v; component of the pricing
kernel.

A.2 Additional Bounds and Derivations

Remark 2 (HJ-bounds as approximated Q-bounds). Let p and ¢ denote the densities of the
state x associated, respectively, with the physical, P, and the risk-neutral, Q, probability
measures 23 Assuming that

Recall that from Stirling’s formula, we have

R L /1 S—"
Ny —o0 Ng ANV
V2 Ny (T’)

For expositional simplicity, we focus on a scalar state variable, but the result is straightforward to extend to a
vector state.
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A.1 g and p are twice continuously differentiable
and that there exists a i, <oo and a p, < 00 such that:

A.2 (Existence of maxima)

dlnp _ dlng -0 (Ad)
dx x=ip ax =g
A.3 (Finite second moments)
) -1 ) -1
— 97Inp =02 <00, — 9"Ing =02 <00 (AS)
ax2 vy o ’ x2 x=iig e ’

We hﬁ that, in the limit of the small time interval, a second-order approximation of the Q-bounds
yields

D<P I %)dVar(M,), (A6)

D<% I P>ocVar(M,). (A7)

Proof. [Proof of Remark[J] The densities associated, respectively, with the physical probability
measure P and the risk-neutral measure Q are denoted p and g. We can then rewrite the Q1 and
0?2 bounds, respectively, as

M, dP
D(P ||T’)E/1n—d1>:/p1nﬁdx (A8)
M dQ q
and
M, dQ  do / do / 9
D|—=|P)=| —=In—dP= | In—dQ= | gln=dx. A9
(M”) /a’PndP ngpe= [t dx (A9)
Given conditions A.1-A.3, we have from a second-order Taylor approximation that
. 1 3%Ing ( )2 1 (xf,uq)2
ng o« — 5 X—g) =—s g
2 ox x=ig 2 o
| o<1 9%Inp ( )2 1 (x—/Lp)2
npx— xX— =————"
Pes 92 ey Hp 2 o2

That is, g and p are approximately (to a second-order) Gaussian
q@N(quaqz), p“N(Mp;q%).

Note also that in the limit of the small time interval, by the diffusion invariance principle, we have

aqz = aﬁ =02, Therefore, plugging the above approximation into Equation ), we have that in the

24 For the 02 bound only, using the dual objective function of the entropy minimization problem, [Stutze (I993)

provides an approximation result similar to the one in Equation (&Z) that is valid when the variance bound is
sufficiently small. Moreover, for the case of Gaussian iid returns, [Kitamura and Stutzed 2007) show that the
approximation of the 02 bound in Equation (&7) is exact.
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limit of the small time interval

[pandx%/[_l(x_ﬂ”)2+1(x_ﬂq)2i|pdx

2 o2 2 o2

1
=53 |:—02+/(x—uq)2pdx]

1
= 3ozt [ [r=m) 4 1y~ 1,)’
+2(p—1g) (x—pp)] pdx}

: otoi= 1ot

2
=3z i) =552

where the density £ is a (strictly positive) martingale defined by & = Z—g, and the one to the last

equality comes from the change of drift implied by the Girsanov’s Theorem (see, e.g., m,
, Appendix D)).
Similarly, from Equation (A9) we have

1
/qlnzdx: 7052.
p 2

Since Q and P are equivalent measures, M; c&;. Therefore, in the limit of the small time interval
Var(M,;)oxo?, implying

p(P1M\ovaramy. p(MpP)xvarm
( Hﬁ)d ar(M;), (ﬁ“ )0( ar(My).

Definition 5 ( Volatility bound for ). For each E[y,]=1, the minimum variance ¥, is

¥ (W) =argmin /Var (¥, (¥)) s.t. 0=E[Rfm (0,0 ()],
A

and any candidate SDF must satisfy the condition Var (y;) = Var (y; (¥)).

The solution of the above minimization for a given 6 is
U (W) =9+ (Rfm(0.0—E[Rm(©.0)]) By

where 8; =Var (Rm(6,1) - —yE[R¢m(6,1)]) and the lower volatility bound is given b
v 1 1 y g y

Oyx E\/Var(wr" (V) =1/}\/E[Rfm(9,z>]’Var(Rfm(e,z))*‘E[R;'m(e,t)].

A.3 HJ Kernel Versus Minimum Entropy Kernel

‘We compute the minimum adjustment to the CCAPM SDF required to make it an admissible pricing
kernel using (1) the HID approach and (2) the relative entropy minimization approach. Table A1l
presents the moments of the resultant SDFs extracted using both these approaches for a variety of
different sets of test assets.
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Table A1
Moments of SDF, 1947:Q1-2009:Q4

o (M) Sk (M) Kurt (M}')
A. HID kernel
25 FF 0.45 —0.01 3.12
Market 0.22 0.61 391
10 momentum 0.41 0.05 3.41
10 industry 0.32 0.54 4.21
B. Minimum entropy kernel
25 FF 0.91/0.71 4.53/2.07 28.4/9.31
Market 0.26/0.24 3.14/1.84 19.1/8.59
10 momentum 0.69/0.57 3.82/1.78 22.0/7.22
10 industry 0.45/0.39 5.08/2.32 39.6/11.8

The table reports the moments of the SDF computed using the (1) the HID minimum linear adjustment (panel A)
and (2) the minimum relative entropy log-linear adjustment (panel B). The test assets used in the estimation of
the minimum adjustment consist of the 25 size and book-to-market-equity-sorted portfolios (Row 1), the market
portfolio (Row 2), the ten momentum-sorted portfolios (Row 3), and the ten industry-sorted portfolios (Row 4).
The data are quarterly for 1947:Q1-2009:Q4.

A.4 Data Description

At the quarterly frequency, we use six different sets of assets: (1) the market portfolio, (2) the 25
Fama-French portfolios, (3) the 10 size-sorted portfolios, (4) the 10 book-to-market-equity-sorted
portfolios, (5) the ten momentum-sorted portfolios, and (6) the ten industry-sorted portfolios. At
the annual frequency, we use the same sets of assets, except the 25 Fama-French portfolios are
replaced by the 6 portfolios formed by sorting stocks on the basis of size and book-to-market-equity
because of the small time-series dimension available at the annual frequency.

Our proxy for the market return is the Center for Research in Security Prices (CRSP) value-
weighted index of all stocks on the NYSE, AMEX, and NASDAQ. The proxy for the risk-free rate
is the one-month Treasury-bill rate obtained from the CRSP files. The returns on all the portfolios
are obtained from Kenneth French’s data library. Quarterly (annual) returns for the above assets are
computed by compounding monthly returns within each quarter (year), and converted to real using
the personal consumption deflator. Excess returns on the assets are then computed by subtracting
the risk-free rate.

Finally, for each dynamic asset pricing model, the information bounds and the nonparametrically
extracted and model-implied time series of the SDF depend on consumption data. For the standard
Consumption-CAPM of M @) and m m), the external habit models of
Kamnbﬂ%gﬁm_ §§§; andlziéiz § EE E l 1IE“] E!: and the long-run risks model of Bansal
and Yaron ), we use per capita real personal consumption expenditures on nondurable goods
from the National Income and Product Accounts (NIPA). We make the standard “end-of-period”
timing assumption that consumption during quarter ¢ takes place at the end of the quarter. For the
housing model of mﬁ ), aggregate consumption is measured as expenditures on
nondurables and services excluding housing services.

A.5 Extracting the Model-Implied SDF for the Menzly et al. (2004) Model
The SDF in this model is given by
M;=8(C,/Cr—1) V(81 /Si-1)7, (A10)
where § is the subjective time discount factor, y is the utility curvature parameter, S;= C‘C;tx’
denotes the surplus consumption ratio, and X; is the habit component.
The inverse surplus, ¥; = SL,’ follows a mean-reverting process:

dY,=k(Y=Y,)dt—a(Y,—1)o.dB,.

493

120z Areniga G| uo 1senb Ad 96111 vZ/2iz/0E /o101 /SH W00 dno"olWepede//:sdly Woly papeo|umod



The Review of Financial Studies / v 30 n 2 2017

Therefore, using Ito’s lemma, s; =In(S;)=—In(Y;) follows the process
1 1
ds;=——dY,+— (dY,)
t Yt 1 2Yt2( I)
——lkﬁ—y)dHi (¥, = 2)0ed By —— o (¥, 2P odi
=7y, DAy A T OB S @ A T AT O

t t

Toy, L 2 2 2
=|k(1 —YS,)+§oz (1=AS8)°07 |di+a(1—AS)ocdB;.

Therefore, discretizing the process, we have

— 1

As1=k(1-YS,)+ 5o¢2(1 — S22 +a(1—A8) 08141,
where g,41 ~i.i.d. N(0,1).
Now, the Euler equation for the return on the aggregate consumption claim is
E, (emH-l*rc,tH—l):l’ (All)

where r. ;+1 denotes the continuously compounded return on the consumption claim. We rely on
log-linear approximations for r. ;+1, as in Campbell and Shiller (1988):

Tet+1 =KO+K1Zi41 — 2t + AC141, (A12)

where z; is the log price-consumption ratio. In Equation (AL2), «| = 157
€

and «o=log(1l +e“2) —

K1€%, where 7 denotes the long-run mean of the log price-consumption ratio. We conjecture that z,
is affine in the single state variable s;:

Z=Ag+A1s:. (A13)

To verify the conjecture and also solve for Ap and A, we substitute the expressions for rc ;41
and z; from Equations (A12) and (AT3), respectively, into the Euler equation (ALT):

E, (exp{lné—yACHl —VASip1 +K0+K1Ze 41 — 2+ AC11 }): L

8=y pe—yoce —vk(1=YS) = 3 ya? (1 =157 02 —ya(1—18,)0cers1

= Efepd waotir Aot A [k(1-TS)+ Je2(1=a8)P02+a(l = AS)oeem+s | | =1.

—A0— A1+ e +0cEr41
Using the properties of conditionally lognormal random variables, we have

2

— 1 1
0=Ind —yu.—yk+ykY S — Eyozzof - EyazkzaL.zSt2+yazac AS;+K0+K1 Ao

_ 1 1
+/qAlk—/qukYS,+§lqA1(x2(fcz+5/(1Alazag)»zS,z—K1A10{20€2)~S,+K1A1s,

1
—Ag—Als,+uC+§[—y—yoz(1 — A8+ Ara(1—A8)+11%62,

which implies

0= <1n87yuc —yk— %ya203+K0+K1A0+K1A1k+ %KlAlazoL?)

—Ao+ e+ % [—y —ya+k1 Ao+ 1]20[?

+ yk7+ya2(rczk —K1 A]k?-/q Alazafk
+[lyar—k1Ajaer][—y —ya+k1 Aja+ l]o(,.z !

+(k1 A1 —Ap)s:

1 1 1
+ (—E)/OZZAQUCZ+5K1A1(¥20'¢.2)\.2+5()/()l}\.—l(lAl(l)»)ZUf) S,z.
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Table A2

Bounds for RRA when all parameters are allowed to vary

HJ-bound Q1/Q2-bounds M 1/M2-bounds

W1/ W2-bounds

A. Quarterly data, 1947:Q1-2009:04

cc 2.2 4.0/3.8 4.0/3.8 4.3/4.2
MSV 29.0 36.2/35.9 38.0/38.1 50.9/52.5
BY 3.0 4.0/4.0 4.0/4.0 4.0/4.0
PST 19.1 25.2/24.0 25.4/24.1 24.1/23.1
B. Annual data, 1929-2009

cc 0.1 0.1/0.1 0.1/0.1 0.1/0.1
MSV 11.3 18.6/16.2 19.3/17.2 28.6/27.2
BY 4.0 4.0/4.0 4.0/4.0 4.0/4.0
PST 43 6.8/5.8 6.8/5.8 6.3/5.4

The table reports the minimum values of the utility curvature parameter y at which the model-implied SDF
satisfies the HJ (Column 1), Q (Column 2), M (Column 3), and ¥ (Column 4) bounds using quarterly data for
1947:Q1-2009:Q4 (panel A) and annual data for 1929-2009 (panel B). Columns 2-4 has two entries in each cell
that correspond to whether the filtered v*-component of the SDF and, therefore, the filtered SDF are estimated
using Equation (@), reported on the left, or Equation @, reported on the right. CC, MSV, BY, and PST denote,

respectively, the models of |[Campbell and Cochrand

[PlazzesT et all R00D).

Using the approximations s; ~ S; — 1 and S,2 ~ —§2 +25S;, we have

2

0= <ln57yuc —yk— %yazau +Ko+Kk1 Ao+ Ark+ %K1A1a203>

—Ao+ e+ % [—y —ya+ki Ao+ 1]20(,,2

yk7+ya2crczk—/(| A]k?—lﬂ Alazaczk
+lyar—k1Ajar][—y —ya+k1 Aja+ l]ol,2 !

+x1 A1 —AD(S —1)

(1999), [Menzly e al] 2004), Bansal and Yarod @004), and

1 1 1 o
+ (—Eyazkza(.2+§K1A1a203A2+5(yaA—KlAlot)»)ZUf) (—SZ+ZSS,).

We use the method of undetermined coefficients and set to zero the constant term and the coefficient
of S; to obtain two equations in the two unknowns Ao and Aj:

and

0= (ln&—yuc—yk— %yOlZU(.2+K0+K1AQ+K1A1k+%K}A]O{ZUCZ)

—A0+;LC+%[—)/—}/Ol+K1A]0l+1]ZO'CZ

—(k1A1—Ay)

1 1 1 _
— (—Eyazkzaf+ EK] A|a20312+ E(]/OZ)L—K] Alak)203> Sz.

0= yk7+yazoczk—xlA1k7—K1A1a203A
“\+lyar—kiAjar][—y 7ya+/qA1(x+1]JC2

+(k1A1—Ap)

/1 1 1
+28 (—Eya2k203+ £K1A1a203ﬁ+ 3 (yoar —KlAlaA)zaL?) .

(Al4)

(A15)
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Solving the equations for Ap and A gives the equilibrium solution for the log price-consumption
ratio in Equation (AT3). Note that Equation (AT3) implies a quadratic equation for A;:

0= (—Klzaz)xacz +§K12()l2)»20‘62> A3

+ —KIkY—K1a263A+yaAK1aJC2—/qa)»[—y—ya+1]af A
+Kx1—1 +S/<1012c702)»2 —ZS)/O{Z)»O'CZIQ !

+ (yk7+ yalo2r+yarl—y —ya+l1lo? —Sya®r’c? +§y2a2)\2(rcz> .
We choose the smaller root of the quadratic equation as the economically meaningful solution
because it implies a positive relation between the log price-consumption ratio and the surplus
consumption ratio, unlike the bigger root that implies a negative relation between the variables.

We proxy the log price-consumption ratio using the observable log price-dividend ratio and use
Equation (A13) to extract the time series of the state variable s,. This extracted time series can then
be used to obtain the time series of the model-implied SDF and its missing component.

Note that the model is calibrated at the quarterly frequency. Since we evaluate the empirical
plausibility of models at the quarterly, as well as annual, frequencies, we obtain the annual estimates
of the model parameters as follows. As a first step, we simulate a long sample (five million
observations) of the state variable Y from

AYq 1=k (Yqo—Yq 1) —aq (Ygr —Ag)0g.c6r41, Ers1 ~i.i.d.N(0,1),
treating the calibrated quarterly parameter values as the truth. The subscript ¢ in the above equation

denotes quarterly. As a second step, we aggregate the simulated data into annual nonoverlapping
observations:

Ya’, :Yqu+Yq’r,1 +Yq,r72+Yq,1737 for = 1,2,3,...

AY(!,[+1 = Ya.t+l - Ya,t’

where 7 denotes quarter T and ¢ denotes year 7. As a final step, we estimate the model parameters
at the annual frequency from the equation

AYq 141 =kq (?a - Ya.t) —0q (Ya,t _}“a)o'a,ceHla &r41~1.i.d.N(0,1),
treating the state variable Y, , as observed and using the method of moments approach. This
step produces the following annual estimates of the parameters: Y, =33.99531, k,=.8689003,
0, =3.49499, A,=29.843719. The mean , u, ., and volatility , o, ., of aggregate consumption
growth are set equal to their sample values.

A.6 Extracting the Model-Implied SDF for the Menzly et al. (2004) Model
The SDF in this model is given by

6
Co1\ P g
prms (Gt

c,t+1°
t

where R, ;41 is the unobservable gross return on an asset that delivers aggregate consumption as
its dividend each period.
Using the Campbell-Shiller log-linearization for r. ;41 =In (RC,,H):

e+l =K0+K1Z0+1 — 2+ ACr+1,

where z; is the log price-consumption ratio. Noting that the model implies that the equilibrium
z=Ag+A1x;+Ar02, we have

InM;=[01né+(0 —1)(ko+K1A0— Ap)] — Y Acts1

+(0— Dt Arxpa +(0 — Dict Ago 2y — (0 — 1) Arx, — (0 — 1) Azo. (A16)

This is Equation @4) in the text. To obtain the time series of the SDF and its ¥ component, we
extract the state variables, x; and a,z, from observed data using two different procedures.
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First, we extract the state variables from consumption data. To do so, we assume the same
time-series specification for the aggregate consumption growth process as in

M), with a square-root process for the variance (as inm 2007) as the only exception:

Acie1 = R+X+0 M40 (A17)

Xi+1=PXt +PeOr €141, (A18)
2 _ 2 2

01=0"(1=v)+V10; +0y0; Wiy (A19)

Note that them M) model is calibrated at the monthly frequency with the monthly
parameter values being ©=.0015, p=.979, ¢,=.044, 0 =.0078, v; =.987,and o,,=.00029487.
We need to extract the quarterly state variables x; , and U[%q. As a first step, we simulate a long
sample (five million observations) from the above system, treating the given parameter values as
the truth and retaining the simulated state variables. As a second step, we aggregate the simulated
data into quarterly nonoverlapping observations:

Actg=Aci+Aci—1+Aci—2, for1=3,6,9,...
Xp,g=Xt+X—1+X-2
2 _ 2, 2 2
01 ¢=0; +0;_1+0; 5.

As a third step, we estimate the model parameters in Equations (AIZ)—(AT9) using these quarterly
observations and treating the state variables as observed. This step produces the following quarterly
estimates of the parameters:

pg=p5 =.9383137,
Vg =01, =.9615048,
Mg =3 X Ly =.0045,

o= Mean (o7, ) = 0001822490,

Var (x,+1,q —pqx,,q)

Peq= 2 =.1084845,
q
~ Var(alz_ﬂﬁq—aflz(l—vl,q)—vl,qa,%q) B
Oy,qg= 2 =0.0007328592,
q

where the variables with subscript m are the monthly calibrated values, and the means and variances
are the ones obtained in the simulated sample. As a fourth step, we run a Bayesian smoother through
the historical quarterly consumption growth treating the quarterly parameters as being known with
certainty. The smoother produces estimates of the quarterly state variables %; , and 6,2_q.

The same steps can be applied to obtain the parameter estimates and, therefore, the time series
of the state variables at the annual frequency. In this case, we have p,=.7751617, vy , =.8546845,
a =018, 02 =.0007299038, ¢, ., =.3853643, and o, , =.00270020.

Using the point estimates of the parameters and the extracted time series of the state variables
at the relevant frequency, the SDF and its missing ¥ component are obtained from Equation @4).

Our second procedure for extracting the state variables relies on asset market data. For the
log-linearized version of the model, the observable log market-wide price-dividend ratio, z, ;, and
the log gross risk-free rate, r ¢, are affine functions of the state variables, x; and 0,2. Therefore,

ini ) argue that these affine functions may be inverted to express
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Table A3
Bounds for RRA, quarterly data, 1947:Q1-2009:Q4

HJ-bound Q1/Q2-bounds M1/M2-bounds W1/ W2-bounds
A. State variables extracted from consumption
ccC 9 16/14 14/14 19/21
MSV 31 41/38 41/42 60/61
BY > 100 >100/> 100 >100/> 100 >100/ > 100
PST 69 93/86 112/106 86/85
B. State variables extracted from asset prices
ccC 18 39/43 33/46 47/48
MSV 69 90/84 > 100/ > 100 > 100/ > 100
BY 4 5/5 5/5 5/5

The table reports the minimum values of the utility curvature parameter y at which the model-implied SDF
satisfies the HJ (Column 1), Q (Column 2), M (Column 3), and ¥ (Column 4) bounds using quarterly data
for 1947:Q1-2009:Q4. Columns 2-4 has two entries in each cell that correspond to whether the filtered v *-
component of the SDF and, therefore, the filtered SDF are estimated using equation (@, reported on the left, or
Equation @), reported on the right. Panels A and B present results when the models’ state variables are extracted
from consumption data and asset market data, respectively. CC, M SV, BY, and PST denote, respectively, the
models of [Campbell and Cochrand (1999), [Menzly et all 2004), [Bansal and Yarod ©@004), and Plazzesi crall
€00

the unobservable state variables, x; and a,z, in terms of the observables, z,,; and r,,. Following
this approach, the pricing kernel in Equation (A16) can be expressed as a function of observable
variables:

1 1
lnMr:C/] _VACY"'C% (rf,l - Erf,t71> +C:1 (Zm,r - Ezm,rfl> 5 (AZO)

where the parameters (c|,c},c}) are functions of the underlying time-series and preference
parameters.

Since the model is calibrated at the monthly frequency, we obtain the pricing kernels at the
quarterly and annual frequencies by aggregating the monthly kernels. For instance, the quarterly
pricing kernel, M4, is obtained as

InM/ =—y Alc,+Inyf,
where A9¢, denotes the quarterly log-consumption difference and Inv; is given by

2

Iny =3¢| + Z (5 (rpu—i —r1r po—iz1)+ ¢y (Zmami —K1Zm1—i-1)]-
i=0

Therefore, using the monthly calibrated parameter values fromm ) and the
historical monthly time series of the market-wide price-dividend ratio and risk-free rate, we obtain
the time series of the SDF and its missing component at the quarterly and annual frequencies from
the above two equations.

A.7 Additional Robustness Checks

A.7.1 Entropy bounds when all model parameters are simultaneously allowed to vary. In
the empirical analysis on the entropy bounds, we have focused on one-dimensional bounds as
a function of the risk-aversion parameter, y, while fixing the other parameters at the authors’
calibrated values. In other words, we have computed the minimum values of y at which the model-
implied SDFs satisfy the HJ, Q, M, and ¥ bounds, while holding the remaining model parameters
fixed at their calibrated values. As a robustness check, in this section, we compute the minimum
values of y at which the model-implied SDFs satisfy the bounds, while allowing the remaining
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model parameters to simultaneously vary over two standard error intervals around their calibrated
values.

For the external habit models of Klamplmﬂ_an_d@_chmnd @) and m (M),
the model-implied SDFs are obtained by extracting the surplus consumption ratio from aggregate
consumption data. While the state variable also may be extracted from the price-dividend ratio,
the ) model admits a closed-form solution for the price-dividend ratio only for
y =1, and this motivates our choice for the extraction of the state variable in the external habit
models. For them ) long-run risks model, on the other hand, we extract the
two state variables by inverting the closed-form solutions for the price-dividend ratio and risk-
free rate. While the state variables also can be extracted from aggregate consumption data using
Bayesian smoothing procedures, the computing time makes it prohibitively expensive to do this,
while allowing all the parameters to vary simultaneously (since the Bayesian smoothing would
have to be computed for each of set of parameter values considered). Finally, for the

) model, the state variable is directly observable from the BEA tables and, therefore, does
not need to be extracted from either consumption or asset market data.

The results are presented in Table A2. The table shows that, for each model, the HJ, Q, M,
and W bounds are satisfied for smaller values of y when the other parameters are allowed to vary
simultaneously compared to Tables[@and[Zlwhere the other parameters are held fixed. However, as
in the latter tables, the CC, M SV, and P ST models still require much larger values of risk aversion
to satisfy the bounds compared with the authors’ calibrated values at the quarterly frequency.

A.7.2 Entropy bounds when the risk-free rate is included as an additional test asset. In the
empirical analysis, we have used the excess returns (in excess of the risk-free rate) on a broad
cross-section of risky assets to extract the SDF and obtain entropy bounds for the SDF and its
components. As a robustness check, we repeat the empirical exercise using as test assets the gross
returns (instead of excess returns) on the cross section of size- and book-to-market-equity-sorted,
momentum-sorted, and industry-sorted portfolios, and the return on the risk-free asset.

In this case, the relevant Euler equation is

1y =E[m (0,0 y:R],

where R; € RY is a vector of gross returns and 1y is an N-dimensional vector of ones. Under weak
regularity conditions, the above pricing restrictions for the SDF can be rewritten as

¥ "1y =E?[m(6,0)R]

or as B
M~"1y=EC[R,],
where x=E[x,], % = %, and % = %. Therefore, Equations @-@ can be reformulated,
respectively, as Equations (AZT)—(A24) below:
A . . dv  dv -1 w
VU=argminD(V¥ || P)=argmin [ — In——dP s.t. ¥~ 1y=E" [m(0,)R,], (A21)
w w dP  dP

with its dual solution given (up to a positive scale constant) by

SO [m@.0R—7"1y] OV m©.0R;

= , vt
A(0) [m<9 DR~ 11 ] s ,
e . N Zew) m(0,0)Ry
t=1

t=1

where 1(0) € R is the solution to the following unconstrained convex problem

m(a.t)RtﬂrllN]

)

T
1 Y
r0)= argm)‘ln T ;e [
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Q—argmlnD(Qll P)= axgmmf—an—QdP s.t. M~ "1y=E2[R,], (A22)

with its dual solution given (up to a positive scale constant) by

. MR
M= ———, V1,
T

>
t=1

where 1 € RY is the solution to

T -
A0)= argmAin % ;e)",[RﬁM llN] ;

. dp -
W=argminD(P || W)Eargminfln ﬁdP sty "y=EY [m6,)R,], (A23)
v v

with its dual solution given (up to a positive scale constant) by

R 1
vi= T[1+20) (m@,0R, — ¥ '1y)]’

vt,

where A(8) e RV is the solution to

T

A(B)Eargni\ianlog<l+}J (m(e,t)R, —nﬁ*'lN));

1=1
A . . dp - 0
Q=argminD(P || Q)=argmin lnEdP s.t. M~ 1y=E¥[R;] (A24)
Q Q

with its dual solution given (up to a positive scale constant) by

. 1
M, = _ v
TT[1420) (R - M 1y)] !

where A(9) e RY is the solution to

A(@)Eargrr}\in—ilog(l+)»/ (R, —M*‘lN)).
t=1

Two observations are in order about the above results. First, looking at the dual optimizations,
it is clear that different M and ¥ will now matter in determining the solution; that is, changes in
the means will change the estimated SDF, and not simply as a scaling. Second, M can be calibrated
easily, since from the Euler equation we have

M =Em@,0y1=E[1/R]],

and, therefore, can be estimated using a sample analog. lﬁ, on the other hand, can be recovered
from
M=E[m(0,0):]1=Cov(m(0,1); ) +m,

M—Cov(m(0,1); ;)
—

=
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Therefore, to calibrate 1, we can follow the following iterative procedure:

_txLyve/
+ X m@.0)

=

1. Sety =X as a starting guess.

3

- T
2. Given ¥, use the above entropy minimization procedures to estimate {w,} . (up to a
t=
positive constant «).

3. Identify the scaling constant x using the fact that, from the Euler equation for the risk-free
rate, we have (as T — 00)

T T T f

1 ~ 1 f Zt:]l/R,
K=Y m@.0%=— Y 1/R] =x=—F=000
T = Ym0

1=1
4. Compute an updated ¥ using

i M—Kc/‘o\v(m(e,z);xﬁ,) ¥ X0 1/R] —kCov(m@.0); 1/7,)
' E - F2 m®.0),

where 65(.) is the sample analogue based covariance estimator.

5. With the new  at hand, go back to Step 2 and repeat until convergence of ¥ is achieved.
Once converge is achieved, the exact estimate (no more up to a constant) of v, is given
by k x 1/7,,

Table A3 repeats the analysis in Table 6 when the set of assets consists of the gross returns
(instead of excess returns) on the 6 size and book-to-market-equity-sorted portfolios of Fama-
French, 10 industry-sorted portfolios, 10 momentum-sorted portfolios, and the risk-free asset. The
table shows that the inclusion of the risk-free rate as an additional asset in the estimation leaves
the HJ, Q, M, and ¥ bounds on the SDF and its components virtually unchanged for all the asset
pricing models considered.

The results in the other tables also remain largely similar on inclusion of the risk-free rate and
are omitted for the sake of brevity.
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