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Abstract We study the joint law of Parisian time and hitting time of a drifted Brown-
ian motion by using a three-state semi-Markov model, obtained through perturbation.
We obtain a martingale, to which we can apply the optional sampling theorem and
derive the double Laplace transform. This general result is applied to address prob-
lems in option pricing. We introduce a new option related to Parisian options, being
triggered when the age of an excursion exceeds a certain time or/and a barrier is hit.
We obtain an explicit expression for the Laplace transform of its fair price.

Keywords Parisian options · Excursion time · three state semi-Markov model ·
Laplace transform
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1 Introduction

Parisian options were introduced by Chesney, Jeanblanc-Picqué and Yor [8] in 1997.
They are similar to path-dependent barrier options where the contract is defined in
terms of staying above or below a certain level for a fixed period of time, instead of
just touching the barrier. The so-called excursion time denotes for the time spent be-
tween two crossovers of the fixed barrier. On the other hand, one can also add up all
excursion times and consider the so-called occupation time which leads to the exami-
nation of cumulative Parisian options. This has been studied by Chesney et al. [8] and
Dassios and Wu [13], Cai et al. [6] and Zhang [22]. One motivation of introducing
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Parisian options lies in the insensitivity to influential agents; it is significantly more
expensive to manipulate these kind of options. Variations of the Parisian option can
be found in the double sided Parisian option by Anderluh and Weide [2] or the double
barrier Parisian option by Dassios and Wu [12]. American-style Parisian options have
been studied by Haber et al. [16] and Chesney and Gauthier [7]. Schröder [20], [21]
studies Parisian excursions and finds a convolution representation for the Brownian
minimum-length excursion law. Hedging of Parisian options are developed as conse-
quences of these results.

Even though Parisian options are not exchange traded, they are used as building
blocks in structured products, such as convertible bonds, which offer the holder the
right but not the obligation to convert the bond at any time to a pre-specified num-
ber of shares. Most convertible bonds contain the call provision, allowing the issuer
to buy back the bond at the so-called call price, in order to manage the company’s
debt-equity ratio. Upon issuer’s call, the holder either redeems at call price or con-
verts. Apart from the hard call constraint, which protects the conversion privilege to
be called away too early, the soft call constraint requires the stock price to be higher
than a certain price level. This is sensitive to market manipulation by the issuer, which
can be counteracted with the Parisian feature. The Parisian feature requires the stock
price to stay above a level for a certain time. These callable convertible bonds with
Parisian feature are commonly traded in the OTC market in Hong Kong , see [3], [18].

We introduce a new type of option, the so-called ParisianHit option, which in con-
trast to the Parisian option takes both the excursion time and the hitting time of a pre-
specified barrier into account. One version of this modification, called MinParisianHit
option, is triggered if either the age of an excursion above a level reaches a certain
time or another barrier is hit before maturity. The MaxParisianHit on the other hand
gets activated when both excursion age exceeds a certain time and a barrier is hit. The
key for pricing these kind of options lies in deriving the joint law of excursion and hit-
ting time. Here, we study excursion and hitting time using a three state semi-Markov
model indicating whether the process is in a positive or negative excursion and above
or below a fixed barrier. This will allow us to compute the double Laplace transform
of these two stopping times, which can be inverted numerically using techniques as
in Labart and Lelong [17]. Gauthier [14], [15] studies the first instant when a stan-
dard Brownian motion either spends consecutively more than a certain time above a
certain level, or reaches another level, i.e. the minimum of Parisian and hitting time.
Gauthier’s result are presented as Laplace transforms and coincide with our Lemma
4.1 and Lemma 4.2 by setting µ = 0 and h̃ ≡ 0. In this paper we generalise these
results and the concept of the Parisian time by deriving the joint probability of the
Parisian and hitting time. This allows us to also find the distribution of the maximum
of Parisian and hitting time.

The paper is structured as follows. In section 2 we motivate this paper with the finan-
cial application of pricing ParisianHit options. The pricing problem reduces to finding
the joint distribution of Parisian and hitting time. We use the approach of a three state
semi-Markov model on a perturbed Brownian motion with drift, which has been in-
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troduced by Dassios and Wu [10] and present it in section 3. This perturbed Brownian
motion has the same behaviour as a drifted Brownian motion, except it moves toward
the other side of the barrier by a jump of size ε each time it hits zero, disposing of the
difficulty of the origin being regular. The semi-Markov process allows us to define
an infinitesimal generator where the solution of the martingale problem provides us
with the single Laplace transform of excursion and hitting time in section 4. Divid-
ing up into the two possible cases in section 4.1 and 4.2 we derive an explicit form
of the double Laplace transform of hitting and Parisian time for drifted Brownian
motion. Section 5 is devoted to the application to option pricing and explains the
MinParisianHit and MaxParisianHit option in detail. Using results about the double
Laplace transform we are now able to price ParisianHit options.

2 Motivation

Following the Black-Scholes framework, let (St)t≥0 be the stock price process fol-
lowing a geometric Brownian motion, i.e. solving the stochastic differential equation

dSt = µStdt +σStdWt

and call L the level. We define the times

gL,t(S) = sup{s≤ t : Ss = L},
dL,t(S) = inf{s≥ t : Ss = L}.

The trajectory of S between gL,t(S) and dL,t(S) is the excursion of S at level L, which
straddles time t. The variables gL,t(S) and dL,t(S) are called the left and right ends of
the excursion. Assuming that the interest rate r is constant, the process representing
the risk neutral asset price is given by

St = S0e(r−
σ2
2 )t+σWt ,

solving the stochastic differential equation dSt = rStdt + σStdWt . We denote the
equivalent martingale measure by Q̄.

We define τ
+
L,d(S) as the first time the age of an excursion above L for the price process

is greater or equal to d and HB(S) as the first hitting time of a barrier B > L, i.e.

τ
+
L,d(S) = inf{t ≥ 0|1St>L(t−gS

L,t)≥ d},
HB(S) = inf{t ≥ 0|St = B}.
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We introduce the notation

m =
1
σ

(
r− σ2

2

)
,

l =
1
σ

ln
L
S0

,

b =
1
σ

ln
B
S0

and define the process (Zt)t≥0 = (Wt +mt)t≥0. This process Z contains a drift making
it impossible for us to calculate the probability exactly. Our strategy is now to tilt
the sloped line back to a horizontal line. We write St = S0eσZt with Zt = Wt +mt.
The condition St ≤ L becomes Zt ≤ l. Using Girsanov’s theorem we introduce a new
probability measure Q, which makes Z a Q-Brownian motion. The Radon-Nikodym
derivative is given by

dQ
dQ̄

∣∣∣
FT

= emZT−m2
2 T . (2.1)

We define the first time at which the age of an excursion above the level l for the
process (Zt)t≥0 is greater than or equal to d:

τ
+
l,d(Z) = inf{t ≥ 0|1Zt>l(t−gl,t)≥ d}

gl,t(Z) = sup{u≤ t|Zu = l}

In the case where l = 0, we shall use the shortcut τ
+
d (Z) and gt(Z).

Our so-called MinParisianHit Option is triggered either when the age of an excur-
sion above L reaches time d or a barrier B > L is hit by the underlying price process
S. More precisely, a MinParisianHit Up-and-In is activated at the minimum of both
stopping times, i.e. min{τ+L,d(S),HB(S)}.

The MinParisianHit Up-and-In Call option has payoff

(ST −K)+1min{τ+L,d(S),HB(S)}≤T ,

where K denotes the strike price.
Using risk-neutral valuation and Girsanov’s change of measure (2.1), the price of this
option can be written in the following way.

minPHCu
i (S0,T,K,L,d,r)

= e−(r+
1
2 m2)T

∫
∞

1
σ

ln K
S0

(S0eσz−K)emzQ0
(
ZT ∈ dz,min{τ+d (Z),Hb(Z)} ≤ T

)
(2.2)
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Hence, finding the fair price for a MinParisianHit option reduces to finding the joint
probability of position at maturity and minimum of Parisian and hitting times.

Our so-called MaxParisianHit Option on the other hand is triggered, when both the
barrier B is hit and the excursion age exceeds duration d above L, the payoff becomes

(ST −K)+1{max{τ+L,d(S),HB(S)}≤T},

and the option pricing problem can be reduced in a similar way, i.e.

maxPHCu
i (S0,T,K,L,d,r) =

= e−(r+
1
2 m2)T

∞∫
1
σ

ln K
S0

(S0eσz−K)emzQ0(ZT ∈ dz,max{τ+d (Z),Hb(Z)} ≤ T ).

(2.3)

This will be discussed in further detail in section 5.2.

We can see from equation (2.2) and in further detail in section 5 that both pricing
problems can be solved by determining the joint distribution of hitting and Parisian
time of a drifted Brownian motion. This is our focus for the next sections 3 and 4,
where our main results are presented in Propositions 4.2 and 4.3.

Instead of finding a closed form solution for the joint density of hitting and Parisian
time, we focus on deriving the double Laplace transform which uniquely determines
the probability distribution.

3 Perturbed Brownian motion and the Martingale problem

This section is the most technical one and we give a brief outline of the steps that
we follow: The property of the sample path of Brownian motions of being regular
around the origin zero results in the occurrence of infinitely many small excursions.
In order to counteract this problem we perturb the Brownian motion by a small jump
at the origin. The construction can be found in equations (3.5) - (3.8) and follows
Dassios and Wu [10]. Next, we construct a continuous time finite state Markov pro-
cess in equation (3.9), which distinguishes between whether the process is below 0 or
above 0 or the barrier b. This Markov process has an associated infinitesimal genera-
tor and we can formulate the martingale problem in equation (3.16). We construct a
martingale of the form fi (Ut(X), t) = e−β thi(Ut(X)). This function f looks arbitrary
at first sight, however it is chosen in such a way that after applying Doob’s optional
sampling theorem in equation (3.19) it yields the Laplace transform of the desired
stopping times.
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What is important to note is that this outlined procedure is not limited to ParisianHit
option pricing within the Black-Scholes framework but can be used to solve similar
problems where the stochastic process does not follow a Brownian motion.

3.1 Definition

For any stochastic process Y we define for fixed t > 0 the times

gt(Y ) = sup{s≤ t|sgn(Ys) 6= sgn(Yt)}, (3.1)
dt(Y ) = inf{s≥ t|sgn(Ys) 6= sgn(Yt)}, (3.2)

τ
+
d (Y ) = inf{t > 0|(t−gt(Y ))1Yt>0 ≥ d}, (3.3)

Hb(Y ) = inf{t ≥ 0|Yt = b}. (3.4)

The time interval (dt(Y ),gt(Y )) is the excursion interval straddling time t and the
time gt(Y )−dt(Y ) is called excursion time. τ

+
d (Y ) denotes the first time the process

Y spends time d above zero, the so-called Parisian time above zero.

Let W µ , with W µ

t = Wt + µt, be a Brownian motion with drift µ ≥ 0 and W µ

0 = 0,
where W is a standard Brownian motion under the probability measure Q. We notice
that the origin zero is a regular point of the process, resulting in the occurrence of
infinitely many small excursions. In order to counteract this problem, the perturbed
Brownian motion W ε,µ has been introduced by Dassios and Wu [10] as follows. De-
fine the sequence of stopping times for ε > 0 and n ∈ N0,

δ0 = 0, (3.5)

σn = inf{t > δn|W µ

t =−ε}, (3.6)

δn+1 = inf{t > σn|W µ

t = 0}. (3.7)

Define the perturbed drifted Brownian motion

W ε,µ
t =

{
W µ

t + ε , if δn ≤ t < σn

W µ

t , if σn ≤ t < δn+1
(3.8)

By introducing the jumps of size ε towards the other side of zero whenever zero is
hit by W µ we get a process W ε,µ with a very clear structure of excursions above and
below zero, making zero an irregular point. This construction has been introduced by
Dassios and Wu [10]. See Figure 3.1 for illustration. With the superscript ε we denote
quantities based on the perturbed process W ε,µ , e.g. Hb(W ε,µ)= inf{t ≥ 0|W ε,µ

t = b}.
By construction we have W ε,µ

t
a.s.−→W µ

t for all t ≥ 0, as ε approaches zero. The quan-
tities defined based on W ε,µ

t also converge to those of the drifted Brownian motion
W µ

t . This has been proven in Dassios and Wu [10], [11] and Lim [19].
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Fig. 3.1 Sample paths of W µ and W ε,µ , see Dassios and Wu [10]

3.2 Markov Process construction

It is clear from the definition above that we are actually considering two states,
namely the state when the stochastic process W ε,µ is below zero and the state when it
is above zero. Our final goal is to find the joint density of the Parisian time above or
below zero and the hitting time of a specified barrier b, Hb(W µ). Hence, we construct
an artificial absorbing state for the time the process W ε,µ spends above barrier b > 0.
For each state above and below zero we are now interested in the time it spends in it.
We introduce a new process based on W ε,µ by

Xt =


2 , if W ε,µ

t ≥ b
1 , if 0 <W ε,µ

t < b
−1 , if W ε,µ

t ≤ 0.
(3.9)

Clearly, definitions (3.1), (3.2), (3.3), and (3.4) hold similarly for the process X . We
define state 2 to be an absorbing state, i.e. once b is hit, the process does not return to
state 1 anymore.

Define Ut(X) := t−gt(X) to be the time elapsed in the current state, either state−1 or
state 1 and 2 combined. Note, that Ut(X) only distinguishes between above or below
zero and converges to Ut(W µ) = t−gt(W µ), the time elapsed above or below zero in
the current excursion of the drifted Brownian motion W µ . If the notation is unambigu-
ous, we will abbreviate the definition of the time elapsed for the Brownian motion,
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Ut =Ut(W µ). (Xt ,Ut(X)) becomes a Markov process. Hence, X is a three-state semi-
Markov process with state space {2,1,−1}. The transition intensities λi, j(u) for X
satisfy

Q(Xt+∆ t = j, i 6= j|Xt = i,Ut(X) = u) = λi, j(u)∆ t +o(∆ t) (3.10)

Q(Xt+∆ t = i|Xt = i,Ut(X) = u) = 1−∑
j 6=i

λi, j(u)∆ t +o(∆ t) (3.11)

for i, j = 2,1,−1. Define the survival probability and transition density by

Q̄i(t) = e
−
∫ t

0 ∑
j 6=i

λi, j(v)dv
, (3.12)

qi, j(t) = λi, j(t)Q̄i(t). (3.13)

In order to simplify notations we define Q̂i, j(β ) and Q̃i, j(β ) to be

Q̂i, j(β ) =
∫ d

0
e−β sqi, j(s)ds, (3.14)

Q̃i, j(β ) =
∫

∞

0
e−β sqi, j(s)ds. (3.15)

3.3 Martingale problem

Having constructed the process X and its time elapsed in the current state, we now
consider a bounded function f : {2,1,−1}×R2→R. The infinitesimal generator A
is an operator making

f (Xt ,Ut(X), t)−
∫ t

0
A f (Xs,Us(X),s)ds (3.16)

a martingale. We shall use the shortcut fi(z,u) = f (i,z,u) and A fXt (Ut(X), t) =
A f (Xt ,Ut(X), t).

Hence, solving A f = 0, subject to certain conditions, will provide us with martin-
gales of the form fXt (Ut(X), t), to which we can apply the optional sampling theorem
to obtain the Laplace transforms of interest. We have for the generator

A f1(u, t) =
∂ f1

∂ t
+

∂ f1

∂u
+λ1,1(u)( f−1(0, t)− f1(u, t))+

+λ1,2(u)( f2(u, t)− f1(u, t)) ,

A f−1(u, t) =
∂ f−1

∂ t
+

∂ f−1

∂u
+λ−1,1(u)( f1(0, t)− f−1(u, t)) .

Since we are not interested in what happens after the absorbing state 2 has been
reached, we do not define A f2, the generator starting from state 2.
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We assume the function f having the form fi(u, t) = e−β thi(u), where β ∈ R+ is a
positive constant, and solve A f ≡ 0 with the constraints h1(d) = B and h−1(∞) = 0
with constant B. Since state 2 is an absorbing state, we may assign any bounded
function at will. We choose h2(u) = Ah̃(u), where A is an arbitrary constants. The
function h̃ will be motivated and defined in the proof of Proposition 4.2. The intu-
ition behind choosing the constraint h−1(∞) = 0 is, that in we are not concerned with
the time elapsed below zero, hence, we let the excursion window below zero approach
infinity. A and B on the other hand are constants, indicating different scenarios and
clarified in Lemma 3.2.

The reason for choosing this form for the function f is our objective to derive the
Laplace transform of stopping times.

Lemma 3.1. Using the conditions above, the initial value of the function f1(0,0) =
h1(0) is given by

h1(0) =
Be−βdQ̄1(d)+A

∫ d
0 e−βwh̃(w)q1,2(w)dw

1− Q̃−1,1(β )Q̂1,−1(β )
. (3.17)

Proof A f ≡ 0 transforms into

dh1(u)
du

− (β +λ1,−1(u)+λ1,2(u))h1(u)+λ1,−1(u)h−1(0)+Aλ1,2(u)h̃(u) = 0,

dh−1(u)
du

− (β +λ−1,1(u))h−1(u)+λ−1,1(u)h1(0) = 0.

Using the integrating factor method for ordinary differential equations and the con-
straints we find

h1(u) = Be−
∫ d

u βλ1,−1(v)+λ1,2(v)dv +
∫ d

u

(
λ1,−1(w)h−1(0)+

+Aλ1,2(w)h̃(w)
)
e−

∫ w
u βλ1,−1(v)+λ1,2(v)dvdw , 0≤ u≤ d

h−1(u) = h1(0)
∫

∞

u
λ−1,1(w)e−

∫ w
u β+λ−1,1(v)dvdw , u≥ 0.

Setting u = 0 and solving the system of equations gives us

h1(0) =
Be−

∫ d
0 β+λ1,−1(v)+λ1,2(v)dv +A

∫ d
0 λ1,2(w)h̃(w)e−

∫ w
0 β+λ1,−1(v)+λ1,2(v)dvdw

1−
∫

∞

0 λ−1,1(w)e−
∫ w

0 β+λ−1,1(v)dvdw
∫ d

0 λ1,−1(w)e−
∫ w

0 β+λ1,−1(v)+λ1,2(v)dvdw

=
Be−βdQ̄1(d)+A

∫ d
0 e−βwh̃(w)q1,2(w)dw

1− Q̃−1,1(β )Q̂1,−1(β )
,

where Q̄i(t), q1,2(t), λi, j(u), Q̂i, j(β ) and Q̃i, j(β ) have been defined in (3.12), (3.13),
(3.10), (3.14) and (3.15).
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For the transition densities we use results from Borodin and Salminen [5] (formula
(2.0.2) and formulae (3.0.2), (3.0.6)). Without loss of generality we assume b> ε > 0.
Therefore, it is not possible to go straight from state −1 to state 2 and vice versa, i.e.
q−1,2(t) = q2,−1(t) = 0.

With the definition Ha,b(Y ) = inf{t ≥ 0|Yt = a or Yt = b} for the first exit time of
interval (a,b) with a,b ∈ R and a < b by a general stochastic process Y , and the
function

sst(x,y) =
∞

∑
k=−∞

(2k+1)y− x√
2πt3

e−
((2k+1)y−x)2

2t ,

(see e.g. Borodin and Salminen [5], Appendix 2, 9. Theta functions of imaginary
argument and related functions), the quantities qi, j(t), Q̂i, j(β ), Q̃i, j(β ) and Q̄i(d) can
be calculated:

q1,−1(t) =
1
dt
Pε(H0,b(W ε,µ) ∈ dt,W ε,µ

H0,b
= 0) = e−µε− µ2t

2 sst(b− ε,b)

= e−µε− µ2t
2

∞

∑
k=−∞

ε +2kb√
2πt3

e−
(ε+2kb)2

2t

= e−µε− µ2t
2

∞

∑
k=0

[
2kb+ ε√

2πt3
e−

(2kb+ε)2
2t − 2kb− ε√

2πt3
e−

(2kb−ε)2
2t

]
− ε√

2πt3
e−

(ε+µt)2
2t

q−1,1(t) =
ε√

2πt3
e−

(ε−µt)2
2t

q1,2(t) =
1
dt
Pε(H0,b(W ε,µ) ∈ dt,W ε,µ

H0,b
= b) = eµ(b−ε)− µ2t

2 sst(ε,b)

= eµ(b−ε)− µ2t
2

∞

∑
k=−∞

b− ε +2kb√
2πt3

e−
(b−ε+2kb)2

2t

= eµ(b−ε)− µ2t
2

∞

∑
k=0

(2k+1)b− ε√
2πt3

e−
((2k+1)b−ε)2

2t − (2k+1)b+ ε√
2πt3

e−
((2k+1)b+ε)2

2t

Q̂1,2(β ) =
∞

∑
k=0

e(µ−(2k+1)
√

2β+µ2)b

[
eε(
√

2β+µ2−µ)N

(
− (2k+1)b− ε√

d
+
√
(2β +µ2)d

)
−

− e−ε(
√

2β+µ2+µ)N

(
− (2k+1)b+ ε√

d
+
√

(2β +µ2)d
)]

+

+ e(µ+(2k+1)
√

2β+µ2)b

[
e−ε(
√

2β+µ2+µ)N

(
− (2k+1)b− ε√

d
−
√
(2β +µ2)d

)
−

− eε(
√

2β+µ2−µ)N

(
− (2k+1)b+ ε√

d
−
√

(2β +µ2)d
)]
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Q̃−1,1(β ) = e(µ−
√

2β+µ2)ε

Q̂1,−1(β ) =

d∫
s=0

e−β se−µε− µ2s
2

∞

∑
k=0

[
2kb+ ε√

2πs3
e−

(2kb+ε)2
2s − 2kb− ε√

2πs3
e−

(2kb−ε)2
2s

]
−

− e−β s ε√
2πs3

e−
(ε+µt)2

2s ds

= e−µε

{
∞

∑
k=0

[
e−
√

2β+µ2(2kb+ε)N

(
−2kb+ ε√

d
+
√

(2β +µ2)d
)
+

+ e
√

2β+µ2(2kb+ε)N

(
−2kb+ ε√

d
−
√
(2β +µ2)d

)
− e−
√

2β+µ2(2kb−ε)×

×N

(
−2kb− ε√

d
+
√
(2β +µ2)d

)
− e
√

2β+µ2(2kb−ε)N

(
−2kb− ε√

d
−
√
(2β +µ2)d

)]
−

− e−
√

2β+µ2εN

(
− ε√

d
+
√

(2β +µ2)d
)
− e
√

2β+µ2εN

(
− ε√

d
−
√
(2β +µ2)d

)}

Q̄1(d) = Pε(H0(W ε,µ)> d,Hb(W ε,µ)> d)

=
∫

∞

d
e−

µ2t
2

(
e−µε sst(b− ε,b)+ eµ(b−ε)sst(ε,b)

)
dt

=
∞

∑
k=0

{
e−µ(2kb+2ε)N

(
2kb+ ε√

d
−µ
√

d
)
− e2kbµN

(
−2kb+ ε√

d
−µ
√

d
)
−

− e−2kbµN

(
2kb− ε√

d
−µ
√

d
)
+ eµ(2kb−2ε)N

(
−2kb− ε√

d
−µ
√

d
)
+

+ e−2kbµN

(
(2k+1)b− ε√

d
−µ
√

d
)
− e2kbµ+2µ(b−ε)N

(
− (2k+1)b− ε√

d
−µ
√

d
)
−

− e−2kbµ−2µεN

(
(2k+1)b+ ε√

d
−µ
√

d
)
+ e2kbµ+2µbN

(
− (2k+1)b+ ε√

d
−µ
√

d
)}
−

− e−2µεN

(
ε√
d
−µ
√

d
)
+N

(
− ε√

d
−µ
√

d
)

Remark 3.1. With the subscript behind the expected value we denote the starting
position of any stochastic process Y , i.e. for any function f

Ex( f (Y )) = E( f (Y );Y0 = x)
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In the case of no subscript we assume the process to start at zero. The superscript
announces under which probability measure we take the expectation, i.e.

EP( f (Y )) =
∫

∞

−∞

f (x)P(Y ∈ dx).

If not specified the notation should be clear.

3.4 An important Lemma

In the following we present an important lemma which is the main building block in
pricing ParisianHit options.

Lemma 3.2. For the perturbed Brownian motion with drift, we find the Laplace
transform to be

AEQ
ε

(
e−βHb(W ε,µ )h̃(UHb(W

ε,µ))1Hb(W ε,µ )<τ
+
d (W ε,µ )

)
+BEQ

ε

(
e−βτ

+
d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )

)
=

Be−βdQ̄1(d)+A
∫ d

0 e−βwh̃(w)q1,2(w)dw
1− Q̃−1,1(β )Q̂1,−1(β )

, (3.18)

where A and B are arbitrary constants.

Proof Solving A f ≡ 0 with constraints h1(d) = B and h−1(∞) = 0, provides us with
a martingale of the form M̂t := fXt (Ut(X), t) = e−β thXt (Ut(X)). Recall that state 2,
denoting for the perturbed Brownian motion above barrier b, is an absorbing state.
Hence, we may choose h2 to be any arbitrary bounded function. We assign h2 to be
h2(u) = Ah̃(u), where A is a constant and h̃ is a bounded function, which will be
specified in the proof of Proposition 4.2.
Let τ(W ε,µ) = min{Hb(W ε,µ),τ+d (W ε,µ)}, then optional sampling theorem on mar-
tingale M̂ with stopping time τ(W ε,µ)∧ t yields

EQ
ε

(
M̂τ(W ε,µ )∧t

)
= EQ

ε (M̂0). (3.19)

h1(u) is a continuous function and therefore bounded on the compact interval [0,d].
Hence, there exists a constant K, such that |h1(Ut(X))| ≤K for all Ut(X)∈ [0,d]. Fur-
thermore, we have assumed that h2(u) is a bounded function. Therefore Lebesgue’s
Dominated Convergence Theorem applies, yielding for the l.h.s. of (3.19):
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lim
t→∞

EQ
ε

(
M̂τ(W ε,µ )∧t

)
= EQ

ε

(
M̂τ(W ε,µ )

)
= EQ

ε

(
e−βHb(W ε,µ )h2(UHb(W ε,µ )(W

ε,µ))1Hb(W ε,µ )<τ
+
d (W ε,µ )

)
+

+EQ
ε

(
e−βτ

+
d (W ε,µ )h1(Uτ

+
d (W ε,µ )(W

ε,µ))1
τ
+
d (W ε,µ )<Hb(W ε,µ )

)
= AEQ

ε

(
e−βHb(W ε,µ )h̃(UHb(W ε,µ )(W

ε,µ))1Hb(W ε,µ )<τ
+
d (W ε,µ )

)
+

+BEQ
ε

(
e−βτ

+
d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )

)
.

For the r.h.s. of (3.19) we have EQ
ε (M̂0) = h1(0) and the claim follows from Lemma

3.1.

4 Double Laplace transform of Parisian and Hitting times

This section is the main part of the paper and devoted to finding the double Laplace
transform of Parisian and hitting times. We firstly derive the limiting Laplace trans-
form through results on the perturbed process and distinguish between the two possi-
ble scenarios Hb(W µ)< τ

+
d (W µ) and τ

+
d (W µ)< Hb(W µ).

Proposition 4.1. The Laplace transform of the hitting and Parisian times for drifted
Brownian motion W µ is given by

AEQ
0

(
e−βHb(W µ )h̃(UHb)1Hb(W µ )<τ

+
d (W µ )

)
+BEQ

0

(
e−βτ

+
d (W µ )1

τ
+
d (W µ )<Hb(W µ )

)
=

=

{
Be−βd

(
∞

∑
k=0

2
[

z(k,0,µ)− eµbz(k+
1
2
,0,µ)

]
− z(0,0,µ)

)
+

+A
∫ d

0
e−βwh̃(w)

√
2

πw3 eµb− µ2w
2

∞

∑
k=0

(
(2k+1)2b2

w
−1
)

e−
(2k+1)2b2

2w dw

}
×

×

{
∞

∑
k=0

2
[
z(k,β ,µ)+

√
2β +µ2e−

√
2β+µ22kb

]
− z(0,β ,µ)−2

√
2β +µ2

}−1

,

where the function z is defined as

z(k,β ,µ) =√
2

πd
e−

(2β+µ2)d
2 − 2(kb)2

d −
√

2β +µ2

(
e
√

2β+µ22kbN

(
−2kb√

d
−
√

(2β +µ2)d
)
+

+ e−
√

2β+µ22kbN

(
2kb√

d
−
√

(2β +µ2)d
))

. (4.1)
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Proof In order to find the Laplace transform for the drifted Brownian motion, we take
the limit from results about W ε,µ and therefore we let ε approach zero in equation
(3.18). In particular, notice that by construction we have W ε,µ

t
a.s.−→W µ

t for all t ≥ 0
as ε approaches zero. The quantities defined based on W ε,µ

t also converge to those of
the drifted Brownian motion W µ

t . Furthermore, e−βHb(W µ )h̃(UHb) and e−βτ
+
d (W µ ) are

both bounded functions. Recall, that UHb is the abbreviation for UHb(W µ )(W µ). Thus
dominated convergence applies to get the result for W µ

t ,

AEQ
0

(
e−βHb(W µ )h̃(UHb)1Hb(W µ )<τ

+
d (W µ )

)
+BEQ

0

(
e−βτ

+
d (W µ )1

τ
+
d (W µ )<Hb(W µ )

)
= lim

ε→0
AEQ

ε

(
e−βHb(W ε,µ )h̃(UHb(W ε,µ )(W

ε,µ))1Hb(W ε,µ )<τ
+
d (W ε,µ )

)
+

+BEQ
ε

(
e−βτ

+
d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )

)
= lim

ε→0

Be−βdQ̄1(d)+A
∫ d

0 e−βwh̃(w)q1,2(w)dw
1− Q̃−1,1(β )Q̂1,−1(β )

(4.2)

We refer to Dassios and Wu [10], [11] and Lim [19] for further details. Therefore,
letting ε go to zero in the result of Lemma 3.2 will provide us with the Laplace
transform for the drifted Brownian motion. In order to apply L’Hôpital’s rule, we
take the derivative with respect to ε and find for the denominator of (3.18):

∂

∂ε

(
1− Q̃−1,1(β )Q̂1,−1(β )

)
−→
ε→0

∞

∑
k=0

(
2
√

2β +µ2

[
e−
√

2β+µ22kbN

(
−2kb√

d
+
√

(2β +µ2)d
)
−

− e
√

2β+µ22kbN

(
−2kb√

d
−
√
(2β +µ2)d

)]
+2

√
2

πd
e−

(2β+µ2)d
2 − 2(kb)2

d

)
−

−2
√

2β +µ2N

(√
(2β +µ2)d

)
−
√

2
πd

e−
(2β+µ2)d

2

=
∞

∑
k=0

(
2
√

2β +µ2

[
e−
√

2β+µ22kb− e−
√

2β+µ22kbN

(
2kb√

d
−
√
(2β +µ2)d

)
−

− e
√

2β+µ22kbN

(
−2kb√

d
−
√
(2β +µ2)d

)]
+2

√
2

πd
e−

(2β+µ2)d
2 − 2(kb)2

d

)
−

−2
√

2β +µ2N

(√
(2β +µ2)d

)
−
√

2
πd

e−
(2β+µ2)d

2 (4.3)
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For the numerator we find

∂

∂ε
Q̄1(d)−→

ε→0

∞

∑
k=0

{
2

√
2

πd
e−

(2kb)2
2d − µ2d

2 −2

√
2

πd
e−

(2k+1)2b2
2d − µ2d

2 +µb+

+2µ

[
e(2k+1)µb+µbN

(
− (2k+1)b√

d
−µ
√

d
)
+e−(2k+1)µb+µbN

(
(2k+1)b√

d
−µ
√

d
)
−

−e2kµbN

(
−2kb√

d
−µ
√

d
)
−e−2kµbN

(
2kb√

d
−µ
√

d
)]}

−
√

2
πd

e−
µ2d

d +2µN
(
−µ
√

d
)

(4.4)

and
∂

∂ε
q1,2(t)−→

ε→0

√
2

πt3 eµb− µ2t
2

∞

∑
k=0

(
(2k+1)2b2

t
−1
)

e−
(2k+1)2b2

2t (4.5)

Inserting calculations (4.3), (4.4) and (4.5) into equation (4.2) yields the proposition.

4.1 Case Hb(W µ)< τ
+
d (W µ)

In the case where the barrier b is hit before the excursion above zero of length d
is completed, we have found the single Laplace transform of the hitting time of the
drifted Brownian motion in Proposition 4.1.

Lemma 4.1.

EQ
0

(
e−βHb(W µ )h̃(UHb)1Hb(W µ )<τ

+
d (W µ )

)

=

∫ d
0 e−βwh̃(w)

√
2

πw3 eµb− µ2w
2

∞

∑
k=0

(
(2k+1)2b2

w −1
)

e−
(2k+1)2b2

2w dw

∞

∑
k=0

2
[
z(k,β ,µ)+

√
2β +µ2e−

√
2β+µ22kb

]
− z(0,β ,µ)−2

√
2β +µ2

,

where z is defined as in (4.1)

z(k,β ,µ) =√
2

πd
e−

(2β+µ2)d
2 − 2(kb)2

d −
√

2β +µ2

(
e
√

2β+µ22kbN

(
−2kb√

d
−
√

(2β +µ2)d
)
+

+ e−
√

2β+µ22kbN

(
2kb√

d
−
√

(2β +µ2)d
))

. (4.6)
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We are now interested in finding the double Laplace transform of hitting and Parisian
times in the case that b is hit before excursion exceeds d. We will now make an ap-
propriate choice of the bounded function h̃, where the intuition will become clear in
the proof of the following Proposition.

Proposition 4.2. The double Laplace transform of hitting and Parisian times of a
drifted Brownian motion W µ , where Hb(W µ)< τ

+
d (W µ), is

EQ
0

(
e−βHb(W µ )−γτ

+
d (W µ )1Hb(W µ )<τ

+
d (W µ )

)
=∫ d

0
e−βw

[
e−γd

(
1− e−2µbN

(
µ(d−w)−b√

d−w

)
−N

(
−µ(d−w)−b√

d−w

))
+

+EQ
0 (e
−γτ̂

+
d )

(
e−(
√

2γ+µ2+µ)bN

(√
(2γ +µ2)(d−w)− b√

d−w

)
+

+ e
√

2γ+µ2−µ)bN

(
−
√
(2γ +µ2)(d−w)− b√

d−w

))]
×

×
√

2
πw3 eµb− µ2w

2

∞

∑
k=0

(
(2k+1)2b2

w
−1
)

e−
(2k+1)2b2

2w dw×

×

{
∞

∑
k=0

2
[
z(k,β ,µ)+

√
2β +µ2e−

√
2β+µ22kb

]
− z(0,β ,µ)−2

√
2β +µ2

}−1

,

where

EQ
0 (e
−γτ̂

+
d (W µ )) =

2µe−γdN
(

µ
√

d
)
+
√

2
πd e−γd− µ2d

2

2
√

2γ +µ2N
(√

(2γ +µ2)d
)
+
√

2
πd e−

(2γ+µ2)d
2

=
e−γd(z(0,0,µ)+2µ)

z(0,γ,µ)+2
√

2γ +µ2
,

and the function z is defined in equation (4.1).

Proof In order to find the double Laplace transform

EQ
0

(
e−βHb(W µ )e−γτ

+
d (W µ )1Hb(W µ )<τ

+
d (W µ )

)
in the case where Hb(W µ)< τ

+
d (W µ), we define our previously generic function h̃ to

be
h̃(UHb) = EQ

0

(
e−γτ

+
d (W µ )

∣∣FHb(W µ )

)
,
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where {Ft}t≥0 denotes the standard filtration associated with the Brownian motion.
Hence, the l.h.s. of Lemma 4.1 becomes

EQ
0

(
e−βHb(W µ )h̃(UHb)1Hb(W µ )<τ

+
d (W µ )

)
= EQ

0

(
e−βHb(W µ )EQ

0

(
e−γτ

+
d (W µ )

∣∣FHb(W µ )

)
1Hb(W µ )<τ

+
d (W µ )

)
= EQ

0

(
e−βHb(W µ )e−γτ

+
d (W µ )1Hb(W µ )<τ

+
d (W µ )

)
with our choice of h̃. On the other hand, we have

h̃(UHb) = EQ
0

(
e−γ(Hb(W µ )+d−UHb )1H̃0(W µ )>d−UHb

∣∣FHb(W µ )

)
+

+EQ
0

(
e−γ(Hb(W µ )+H̃0(W µ )+τ̂

+
d (W µ ))1H̃0<d−UHb

∣∣FHb(W µ )

)
= e−γHb(W µ )

[
e−γ(d−UHb )Pb(H̃0(W µ)> d−UHb)+

+EQ
b

(
e−γH̃0(W µ )1H̃0(W µ )<d−UHb

)
EQ

0 (e
−γτ̂

+
d (W µ ))

]
,

where H̃0(W µ) is the first hitting time of zero restarted at time Hb(W µ) and hence
independent of Hb(W µ) and τ̂

+
d (W µ) is the first time the excursion lasts time d above

zero restarted at time H̃0(W µ) and therefore also independent of Hb(W µ). For the
derivation of the Laplace transform of τ̂

+
d (W µ), we set A = 0, B = 1 and let b ap-

proach infinity in Proposition 4.1. Notice that τ̂
+
d (W µ) and τ

+
d (W µ) are identically

distributed, due to the strong Markov property of the Brownian motion. It immedi-
ately yields

EQ
0

(
e−γτ

+
d (W µ )

)
=

e−γd(z(0,0,µ)+2µ)

z(0,γ,µ)+2
√

2γ +µ2
,

where the 2µ in the numerator comes in from the odd case in equation (4.4).
For the other quantities, straightforward calculation yields

Pb(H̃0(W µ)> d−UHb) =
∫

∞

d−UHb

b√
2πt3

e−
(b+µt)2

2t dt

= 1− e−2µbN

(
µ(d−UHb)−b√

d−UHb

)
−N

(
−µ(d−UHb)−b√

d−UHb

)

EQ
b

(
e−γH̃0(W µ )1H̃0<d−UHb

)
= e−(

√
2γ+µ2+µ)bN

(√
(2γ +µ2)(d−UHb)−

b√
d−UHb

)

+ e
√

2γ+µ2−µ)bN

(
−
√
(2γ +µ2)(d−UHb)−

b√
d−UHb

)
Inserting these calculations into Lemma 4.1 yields the proposition.
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4.2 Case τ
+
d (W µ)< Hb(W µ)

In the case where the excursion has exceeded length d before hitting the barrier b> 0,
we conclude from Proposition 4.1

Lemma 4.2.

EQ
0

(
e−βτ

+
d (W µ )1

τ
+
d (W µ )<Hb(W µ )

)

=

e−βd
{

∞

∑
k=0

2
[
z(k,0,µ)− eµbz(k+ 1

2 ,0,µ)
]
− z(0,0,µ)

}
∞

∑
k=0

2
[
z(k,β ,µ)+

√
2β +µ2e−

√
2β+µ22kb

]
− z(0,β ,µ)−2

√
2β +µ2

where the function z is defined in equation (4.1).

This lemma allows us to compute the probability, that the Parisian time happens be-
fore the hitting time of b by setting β = µ = 0, as outlined in the following corollary.

Corollary 4.1. For the standard Brownian motion W the probability that the excur-
sion exceeds time d before hitting barrier b is given by

Q
(
τ
+
d (W )< Hb(W )

)
= 1− 2∑

∞
k=0 e−

(2k+1)2b2
2d −1

2∑
∞
k=0 e−

(2kb)2
2d −1

Now, the double Laplace transform of hitting and Parisian times in the case where
the excursion has exceeded length d before hitting b, can be derived.

Proposition 4.3. The double Laplace transform of hitting and Parisian times for the
drifted Brownian motion W µ in the case where τ

+
d (W µ)< Hb(W µ) is given by

EQ
0

(
e−βτ

+
d (W µ )−γHb(W µ )1

τ
+
d (W µ )<Hb(W µ )

)
={

e−βd

[
e−b(
√

2γ+µ2−µ)N

(
b√
d
−
√

(2γ +µ2)d
)
− eb(

√
2γ+µ2−µ)×

×N

(
− b√

d
−
√
(2γ +µ2)d

)]
∞

∑
k=0

2
[

z(k,0,µ)− eµbz(k+
1
2
,0,µ)

]
−z(0,0,µ)

}
×

×

{[
∞

∑
k=0

2
[

z(k,β + γ,µ)+
√

2(β + γ)+µ2e−
√

2(β+γ)+µ22kb
]
−

−z(0,β +γ,µ)−2
√

2(β + γ)+µ2

][
1−N

(
µd−b√

d

)
− e2µbN

(
−µd−b√

d

)]}−1

,

where the function z is defined by (4.1).
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Proof In order to find the double Laplace transform in this case, we define a new in-
finitesimal generator for the perturbed Brownian motion W ε,µ starting at time τ

+
d (W ε,µ).

We can do this due to the strong Markov property of the Brownian motion. State 2,
which stands for W ε,µ above barrier b, is an absorbing state, hence nothing comes
back from there. Also, we are not concerned with state −1, denoting for W ε,µ be-
low zero, because our excursion has already exceeded time d and we are now only
interested in hitting b. With this motivation the generator becomes

A f1(u, t) =
∂ f1

∂ t
+

∂ f1

∂u
+λ1,2(u)( f2(u, t)− f1(u, t)) ,

where we choose f2 to be f2(u, t) = e−γt . Since state 2 is absorbing, the function f2
can be assigned arbitrarily. Note, that our choice of f2 is a bounded function.

Furthermore, at time τ
+
d (W ε,µ) we are in state 1. Similar to the proof of Lemma 3.2,

we solve A f ≡ 0 in order to derive a martingale of the form M̂t := fXt (Ut(X), t) =
e−β thXt (Ut(X)). However, notice that we have f1(d,0) = h1(d), because per defi-
nitionem our time elapsed at starting time τ

+
d (W ε,µ) is d. Since we have already

achieved an excursion above zero of length d, we are not concerned about any ex-
cursions any longer, hence we choose the constraint h1(∞) = 0. Solving A f ≡ 0
yields

h1(u) =
∫

∞

u
λ1,2(w)e−

∫ w
u γ+λ1,2(v)dvdw , 0≤ u≤ ∞,

where

λ1,2(t)e−
∫ t

0 λ1,2(v)dv = p12(t) = Pε(Hb(W µ) ∈ dt) =
b− ε√

2πt3
e−

(b−ε−µt)2
2t .

Hence,
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h1(d) =
eγd ∫ ∞

d e−γw p12(w)dw

1−
∫ d

0 p12(s)ds

=

{
eγd

[
e−(b−ε)(

√
2γ+µ2−µ)N

(
b− ε√

d
−
√
(2γ +µ2)d

)
− e(b−ε)(

√
2γ+µ2−µ)×

×N

(
−b− ε√

d
−
√
(2γ +µ2)d

)]}
×

{
1−N

(
µd− (b− ε)√

d

)
−

− e2µ(b−ε)N

(
−µd− (b− ε)√

d

)}−1

ε→0−→

{
eγd

[
e−b(
√

2γ+µ2−µ)N

(
b√
d
−
√

(2γ +µ2)d
)
− eb(

√
2γ+µ2−µ)×

×N

(
− b√

d
−
√
(2γ +µ2)d

)]}
×

{
1−N

(
µd−b√

d

)
−

− e2µbN

(
−µd−b√

d

)}−1

.

As a result, we have found a martingale M̂t := fXt (Ut(X), t) with M̂0 = f1(d,0) =
h1(d). Also, with ˆ̂Hb(W ε,µ) being the first hitting time of b of our process restarted
at τ

+
d (W ε,µ) and hence Hb(W ε,µ) = τ

+
d (W ε,µ) + ˆ̂Hb(W ε,µ). Furthermore, note the

following:

M̂ ˆ̂Hb(W ε,µ )
= f2(U ˆ̂Hb(W ε,µ )

(X), ˆ̂Hb(W ε,µ)) = e−γ
ˆ̂Hb(W ε,µ )

Notice that at hitting time of b, the process W ε,µ is in state 2.
Hence, the optional sampling theorem on martingale M̂t with stopping time ˆ̂Hb(W ε,µ)∧
t yields

EQ
ε

(
M̂ ˆ̂Hb(W ε,µ )∧t

)
= EQ

ε (M̂0).

Notice, that by construction
EQ

ε (M̂0) = h1(d).

Furthermore, h1(u) is continuous and decreasing due to the integral limit. Hence,
there exists a constant K, such that |h1(Ut(X))| ≤K for all Ut(X). Therefore, Lebesgue’s
Dominated Convergence Theorem applies and we derive

lim
t→∞

EQ
ε

(
M̂ ˆ̂Hb(W ε,µ )∧t

)
= EQ

ε

(
M̂ ˆ̂Hb(W ε,µ )

)
= EQ

ε

(
e−γ

ˆ̂Hb(W ε,µ )
)
.
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Hence, h1(d) = EQ
ε (e−γ

ˆ̂Hb(W ε,µ )) and the double Laplace becomes

EQ
ε

(
e−βτ

+
d (W ε,µ )e−γHb(W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )

)
= EQ

ε

(
e−βτ

+
d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )E

Q
ε (e
−γHb(W ε,µ )

∣∣τ+d (W ε,µ))
)

= EQ
ε

(
e−βτ

+
d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )E

Q
ε (e
−γ(τ+d (W ε,µ )+ ˆ̂Hb(W ε,µ ))

∣∣τ+d (W ε,µ))
)

= h1(d)EQ
ε

(
e−(β+γ)τ+d (W ε,µ )1

τ
+
d (W ε,µ )<Hb(W ε,µ )

)
.

Together with Lemma 4.2 we conclude the proposition.

5 Pricing ParisianHit Options

Let (St)t≥0 be the stock price process following a geometric Brownian motion and
we recall all definitions from section 2.

5.1 Option triggered at Minimum of Parisian and Hitting times

Our so-called MinParisianHit Option is triggered either when the age of an excur-
sion above L reaches time d or a barrier B > L is hit by the underlying price process
S. More precisely, a MinParisianHit Up-and-In is activated at the minimum of both
stopping times, i.e. min{τ+L,d(S),HB(S)}. This time is illustrated by the blue line in
Figure 5.1.

Fig. 5.1 Minimum of Parisian and hitting times
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To simplify calculations we assume from now on that the underlying process starts at
the barrier, i.e. S0 = L or equivalently l = 0, hence we can use results from our three
states Semi-Markov model. The more general case, where S0 6= L and the strong
Markov property of the Brownian motion applies, will be discussed in the Appendix.

The MinParisianHit Up-and-In Call option has payoff

(ST −K)+1min{τ+L,d(S),HB(S)}≤T ,

where K denotes the strike price.
Using risk-neutral valuation and Girsanov’s change of measure (2.1), the price of this
option can be written in the following way.

minPHCu
i (S0,T,K,L,d,r) = e−rTEQ̄

S0

(
(ST −K)+1min{τ+L,d(S),HB(S)}≤T

)
= e−(r+

1
2 m2)TEQ

0

(
(S0eσZT −K)+emZT 1min{τ+d (Z),Hb(Z)}≤T

)
= e−(r+

1
2 m2)T

∫
∞

1
σ

ln K
S0

(S0eσz−K)emzQ0
(
ZT ∈ dz,min{τ+d (Z),Hb(Z)} ≤ T

)
(5.1)

Hence, finding the fair price for a MinParisianHit option reduces to finding the joint
probability of position at maturity and minimum of Parisian and hitting times.

Remark 5.1. We fix the notation for inverse Laplace transforms. Given a function
F(β ), the inverse Laplace transform of F , denoted by L −1{F(β )}, is the function f
whose Laplace transform is F , i.e.

f (t) = L −1
β
{F(β )}|t ⇐⇒ Lt{ f (t)}(β ) :=

∫
∞

0
e−β t f (t)dt = F(β ).

Note, that we consider the inverse Laplace transform with respect to the transforma-
tion variable β at the evaluation point t. If not otherwise stated we take from now on
L −1

β
{F(β )}|t as a function of the time variable t.

Proposition 5.1. The joint density of position at maturity and minimum of hitting
and Parisian times for standard Brownian motion is

Q0(ZT ∈ dz,min{τ+d (Z),Hb(Z)} ≤ T ) =
T∫

t=0

b∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t)×

×

[ ∞

∑
k=−∞

w+2kb
d e−

(w+2kb)2
2d

2
∞

∑
k=0

(
e−

(2kb)2
2d − e−

(2k+1)2b2
2d

)L −1
β
{H1(β )}|t +δ(w−b)L

−1
β
{H2(β )}|t

]
dw dt
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with

H1(β ) =

e−βd
(

2
∞

∑
k=0

[
z(k,0,0)− z(k+ 1

2 ,0,0)
]
− z(0,0,0)

)
2

∞

∑
k=0

[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β

H2(β ) =

2
∞

∑
k=0

z(k+ 1
2 ,β ,0)+

√
2βe−(2k+1)

√
2βb

2
∞

∑
k=0

[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β

and z defined by (4.1) and δx being the Dirac delta function.

Proof Let Z denote a standard Brownian motion and τ(Z) := min{τ+d (Z),Hb(Z)}.
The joint probability of position at maturity and minimum of Parisian and hitting
times can be decomposed in the following way:

Q0(ZT ∈ dz,min{τ+d (Z),Hb(Z)} ≤ T ) =
T∫

t=0

b∫
w=−∞

Q0(ZT ∈ dz,τ(Z) ∈ dt,Zτ ∈ dw)

=

T∫
t=0

b∫
w=−∞

Q0(ZT ∈ dz|τ(Z) = t,Zτ ∈ dw)Q0(τ(Z) ∈ dt,Zτ ∈ dw)

=

T∫
t=0

b∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t) dzQ0(τ(Z) ∈ dt,Zτ ∈ dw)

=

T∫
t=0

b∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t) dz
[
Q0(τ(Z) ∈ dt,Zτ ∈ dw|Hb(Z)< τ

+
d (Z))×

×Q0(Hb(Z)< τ
+
d (Z))+Q0(τ(Z) ∈ dt,Zτ ∈ dw|τ+d (Z)< Hb(Z))×

×Q0(τ
+
d (Z)< Hb(Z))

]
We find

Q0(τ(Z) ∈ dt,Zτ ∈ dw|τ+d (Z)< Hb(Z))Q0(τ
+
d (Z)< Hb(Z))

=Q0(Zτ
+
d
∈ dw|τ(Z) = t,τ+d (Z)< Hb(Z))Q0(τ(Z) ∈ dt|τ+d (Z)< Hb(Z))×

×Q0(τ
+
d (Z)< Hb(Z))

=Q0(Zτ
+
d
∈ dw|τ(Z) = t,τ+d (Z)< Hb(Z))Q0(τ(Z) ∈ dt,τ+d (Z)< Hb(Z)).

(5.2)

For the first term on the r.h.s. we notice
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Q0(Zτ
+
d
∈ dw|τ(Z) = t,τ+d (Z)< Hb(Z))

= lim
ε→0

Qε(Zd ∈ dw| inf
0<s<d

Zs > 0, sup
0<s<d

Zs < b)

= lim
ε→0

Qε(Zd ∈ dw, inf
0<s<d

Zs > 0, sup
0<s<d

Zs < b)

Qε( inf
0<s<d

Zs > 0, sup
0<s<d

Zs < b)

= lim
ε→0

∞

∑
k=−∞

e−
(w−ε+2kb)2

2d − e−
(w+ε+2kb)2

2d

∞

∑
k=−∞

b∫
0

e−
(z−ε+2kb)2

2d − e−
(z+ε+2kb)2

2d dz
dw

=

∞

∑
k=−∞

w+2kb
d e−

(w+2kb)2
2d

2
∞

∑
k=0

(
e−

(2kb)2
2d − e−

(2k+1)2b2
2d

)dw. (5.3)

Notice that the first equality results from the position at Parisian time, Z
τ
+
d

, being in-

dependent of time τ
+
d (Z) = t. See Chesney et al. [8], section 8.3.1, for further details.

Formulae for the third line can be found in Borodin and Salminen [5], Chapter 1.
Brownian motion, formulae (1.15.4) and (1.15.8). The second term on the r.h.s. of
equation (5.2) can be calculated via inverting the Laplace transform of the minimum
of hitting and Parisian times. The Laplace transform has been found in Lemma 4.2.
With µ = 0 we derive

Q0(τ(Z) ∈ dt,τ+d (Z)< Hb(Z)) = L −1
β

{
EQ

0

(
e−βτ

+
d (Z)1

τ
+
d (Z)<Hb(Z)

)}∣∣∣
t

dt

= L −1
β


e−βd

(
∞

∑
k=0

2
[
z(k,0,0)− z(k+ 1

2 ,0,0)
]
− z(0,0,0)

)
∞

∑
k=0

2
[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β


∣∣∣∣∣
t

dt,

where z(k,β ,µ) is defined as in (4.1) to be

z(k,β ,µ) =√
2

πd
e−

(2β+µ2)d
2 − 2(kb)2

d −
√

2β +µ2

(
e
√

2β+µ22kbN

(
−2kb√

d
−
√

(2β +µ2)d
)
+

+ e−
√

2β+µ22kbN

(
2kb√

d
−
√
(2β +µ2)d

))
.
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We also have in the case that Hb(Z)< τ
+
d (Z),

Q0(τ(Z) ∈ dt,Zτ ∈ dw|Hb(Z)< τ
+
d (Z))Q0(Hb(Z)< τ

+
d (Z))

=Q0(ZHb ∈ dw|τ(Z) = t,Hb(Z)< τ
+
d (Z))Q0(τ(Z) ∈ dt,Hb(Z)< τ

+
d (Z)).

Since ZHb conditionally on Hb(Z) is deterministic the probability becomes the Dirac
delta function at point b, hence

Q0(ZHb ∈ dw|τ(Z) = t,Hb(Z)< τ
+
d (Z)) = δ(w−b)dw,

where the Dirac delta function is defined for all x ∈ R as

δx =

{
0 , if x 6= 0
∞ , if x = 0,

and also satisfying the identity

∫
∞

−∞

δx dx = 1.

By inversion of the Laplace transform in Lemma 4.1 with h≡ 1, we firstly derive for
the numerator

∂

∂ε
Q̂1,2(β )−→

∞

∑
k=0

2

√
2

πd
eµb− (2k+1)2b2

2d − (2β+µ2)d
2 +2

√
2β +µ2eµb

[
e−(2k+1)

√
2β+µ2b×

×N

(
− (2k+1)b√

d
+
√

(2β +µ2)d
)
− e(2k+1)

√
2β+µ2bN

(
− (2k+1)b√

d
−
√

(2β +µ2)d
)]

= 2eµb
∞

∑
k=0

z(k+
1
2
,β ,µ)+

√
2β +µ2e−(2k+1)

√
2β+µ2b.

Setting µ = 0, we yield

Q0(τ(Z) ∈ dt,Hb(Z)< τ
+
d (Z)) = L −1

β

{
EQ

0

(
e−βHb(Z)1Hb(Z)<τ

+
d (Z)

)}∣∣∣
t

dt

= L −1
β


2

∞

∑
k=0

z(k+ 1
2 ,β ,0)+

√
2βe−(2k+1)

√
2βb

2
∞

∑
k=0

[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β


∣∣∣∣∣
t

dt.

Putting things together the proposition follows.
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We are now able to price a MinParisianHit option by combining Proposition 5.1 and
equation (5.1), in particular the fair price of a MinParisianHit Up-and-In Call option
can be calculated via evaluating the integral

minPHCu
i (S0,T,K,L,d,r)

= e−(r+
1
2 m2)T

∫
∞

1
σ

ln K
S0

(S0eσz−K)emzQ0
(
ZT ∈ dz,min{τ+d (Z),Hb(Z)} ≤ T

)
, (5.4)

where the joint probability has been derived in Proposition 5.1.

5.2 Option triggered at Maximum of Parisian and Hitting times

Our so-called MaxParisianHit Option is triggered, when both the barrier B is hit and
the excursion age exceeds duration d above L. Hence, the payoff of a Call option with
strike K becomes

(ST −K)+1{τ+L,d(S)≤T,HB(S)≤T} = (ST −K)+1{max{τ+L,d(S),HB(S)}≤T}.

The maximum of Parisian and hitting times is illustrated by the blue line in Figure
5.2.

Fig. 5.2 Maximum of Parisian and hitting times

As in the previous case the problem reduces to finding the joint density of hitting and
Parisian times and position for a drifted Brownian motion which then can be related
to the joint density of hitting and Parisian time for standard Brownian motion due to
Girsanov. We also assume S0 = L, thus τ

+
l,d(Z) = τ

+
d (Z), and discuss the more general

case S0 6= L in the Appendix. The fair price becomes



Joint distribution of Parisian and Hitting time of Brownian motion 27

maxPHCu
i (S0,T,K,L,d,r) = e−rTEQ̄

S0

(
(ST −K)+1{τ+L,d(S)≤T,HB(S)≤T}

)
= e−(r+

1
2 m2)TEQ

0

(
(S0eσZT −K)+emZT 1{τ+d (Z)≤T,Hb(Z)≤T}

)
= e−(r+

1
2 m2)T

∞∫
1
σ

ln K
S0

(S0eσz−K)emzQ0(ZT ∈ dz,max{τ+d (Z),Hb(Z)} ≤ T ).

(5.5)

Hence, finding the fair price of a MaxParisianHit option reduces to finding the joint
probability of position at maturity and maximum of Parisian and hitting times.

Proposition 5.2. The joint probability of position at maturity and maximum of hitting
and Parisian times of standard Brownian motion is

Q0(ZT ∈ dz,max{τ+d (Z),Hb(Z)} ≤ T )

=

T∫
t=0

∞∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t)

{
|w|

π
√

(t−d)d3
e−

w2
2d −

−

∞

∑
k=−∞

w+2kb
d e−

(w+2kb)2
2d

∞

∑
k=−∞

(
e−

(2kb)2
2d − e−

(2k+1)2b2
2d

)L −1
β
{H1(β )}|t dt+δ(w−b)L

−1
γ {H3(γ)}|t

}
dw dt dz,

where

H1(β ) =

e−βd
(

2
∞

∑
k=0

[
z(k,0,0)− z(k+ 1

2 ,0,0)
]
− z(0,0,0)

)
2

∞

∑
k=0

[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β

,

H3(γ) =

{[
e−
√

2γbN

(
b√
d
−
√

2γd
)
− e
√

2γbN

(
− b√

d
−
√

2γd
)]
×

×
∞

∑
k=0

2

[
z(k,0,0)− z(k+

1
2
,0,0)

]
− z(0,0,0)

}
×

×

{[
∞

∑
k=0

2
[
z(k,γ,0)+

√
2γe−

√
2γ2kb

]
−z(0,γ,0)−2

√
2γ

]
×
[

1−2N

(
− b√

d

)]}−1

,

with z defined by (4.1) and δx denoting the Dirac delta function.



28 Angelos Dassios, You You Zhang

Proof Let τ̄(Z) = max{τ+d (Z),Hb(Z)}, we again have the following decomposition:

Q0(ZT ∈ dz,max{τ+d (Z),Hb(Z)} ≤ T ) (5.6)

=

T∫
t=0

∞∫
w=−∞

Q0(ZT ∈ dz, τ̄(Z) ∈ dt,Zτ̄ ∈ dw)

=

T∫
t=0

∞∫
w=−∞

Q0(ZT ∈ dz|τ̄(Z) = t,Zτ̄ ∈ dw)Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw)

=

T∫
t=0

∞∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t) Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw)dz

=

T∫
t=0

∞∫
w=−∞

1√
2π(T − t)

e−
(z−w)2

2(T−t)
[
Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw,Hb(Z)< τ

+
d (Z))+

+Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw,τ+d (Z)< Hb(Z))
]
dz. (5.7)

For the second part of the r.h.s. of equation (5.7) we have

Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw,τ+d (Z)< Hb(Z))

=Q0(ZHb ∈ dw|Hb(Z) = t,τ+d (Z)< Hb(Z))Q0(Hb(Z) ∈ dt,τ+d (Z)< Hb(Z))

= δ(w−b) L −1
γ {H3(γ)}|tdw,

where we know from Proposition 4.3 with µ = 0 and β = 0

H3(γ) = E(e−γHb(Z)1
τ
+
d (Z)<Hb(Z)

) =

{[
e−
√

2γbN

(
b√
d
−
√

2γd
)
−

− e
√

2γbN

(
− b√

d
−
√

2γd
)] ∞

∑
k=0

2

[
z(k,0,0)− z(k+

1
2
,0,0)

]
− z(0,0,0)

}
×

×

{[
∞

∑
k=0

2
[
z(k,γ,0)+

√
2γe−

√
2γ2kb

]
−z(0,γ,0)−2

√
2γ

]
×
[

1−2N

(
− b√

d

)]}−1

.

Notice the Dirac delta function which is motivated by the deterministic behaviour of
ZHb conditioned on Hb(Z) = t.

For the first part of the r.h.s of equation (5.7) we have
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Q0(τ̄(Z) ∈ dt,Zτ̄ ∈ dw,Hb(Z)< τ
+
d (Z))

=Q0(τ
+
d (Z) ∈ dt,Z

τ
+
d
∈ dw,Hb(Z)< τ

+
d (Z))

=Q0(Zτ
+
d
∈ dw,τ+d (Z) ∈ dt)−Q0(Zτ

+
d
∈ dw,τ+d (Z) ∈ dt,τ+d (Z)< Hb(Z)).

We have found in section 5.1, that with equation (5.2) and (5.3) combined we derive

Q0(Zτ
+
d
∈ dw,τ+d (Z) ∈ dt,τ+d (Z)< Hb(Z))

=

∞

∑
k=−∞

w+2kb
d e−

(w+2kb)2
2d

2
∞

∑
k=0

(
e−

(2kb)2
2d − e−

(2k+1)2b2
2d

)L −1
β
{H1(β )}|t dw dt.

Also, [9] provides us with

Q0(Zτ
+
d
∈ dw,τ+d (Z) ∈ dt) =

|w|
π
√
(t−d)d3

e−
w2
2d dw dt.

Hence, putting terms together we derive the proposition.

Proposition 5.2 allows us to derive the price of a MaxParisianHit option, in particular
with equation (5.5) we find the fair price of a MaxParisianHit Up-and-In Call option

maxPHCu
i (S0,T,K,L,d,r)

= e−(r+
1
2 m2)T

∞∫
1
σ

ln K
S0

(S0eσz−K)emzQ0(ZT ∈ dz,max{τ+d (Z),Hb(Z)} ≤ T ), (5.8)

where the joint probability has been found in Proposition 5.2.

In Proposition 4.2 and 4.3 we have derived the double Laplace transform of hitting
and Parisian times for drifted Brownian motion. This main result leads to finding
the joint distribution of the final position of Brownian motion and the minimum
or maximum of hitting and Parisian time. We have established pricing formulae for
MinParisianHit and MaxParisianHit options. These fair prices contain single Laplace
transforms which need to be inverted numerically using techniques as in Labart and
Lelong [17], Abate and Whitt [1] and Bernard et al. [4].
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A Appendix

In the case where the underlying asset does not start at the level L, i.e. S0 6= L, we want to make use of the
strong Markov property of the Brownian motion. We distinguish between two possible scenarios, S0 < L
and S0 > L. From a financial point of view, we are only concerned with L < B, and therefore l < b.

The price of the MinParisianHit Up-and-In Call option (5.4) can be rewritten in the following form,

minPHCu
i (S0,T,K,L,d,r)

= e−(r+
1
2 m2)T

∫
∞

1
σ

ln K
S0

(S0eσz−K)emzQ0

(
ZT ∈ dz,min{τ+l,d(Z),Hb(Z)} ≤ T

)
,

whereas the MaxParisianHit Up-and-In Call option (5.8) becomes

maxPHCu
i (S0,T,K,L,d,r)

= e−(r+
1
2 m2)T

∞∫
1
σ

ln K
S0

(S0eσz−K)emzQ0(ZT ∈ dz,max{τ+l,d(Z),Hb(Z)} ≤ T ).

The proofs of Propositions 5.2 and 5.2 suggest, that the pricing reduces to finding the Laplace transforms
of hitting and Parisian time. This can be achieved by decomposing the stopping times and using known
results for S0 = L.

We look at the case S0 < L first. By definition it follows l > 0. Define the first hitting time of l for the Q -
Brownian motion Z, with Z0 = 0, to be Hl(Z) = inf{t ≥ 0|Zt = l}. By definition, we have

τ
+
l,d(Z) = Hl(Z)+ τ

+
l,d(Z̃),

where Z̃ stands for a restarted Brownian motion at time Hl(Z), i.e. Z̃0 = l. Hence, we have equality in
distribution of τ

+
l,d(Z̃) and τ

+
d (Z). By the strong Markov property of the Brownian motion, we therefore

have

EQ
0

(
e−βτ

+
l,d (Z)1

τ
+
l,d (Z)<Hb(Z)

)
= EQ

0

(
e−βHl (Z)

)
EQ

l

(
e−βτ

+
l,d (Z̃)1

τ
+
l,d (Z̃)<Hb(Z̃)

)
.

Clearly, Q0 (Hl(Z)< Hb(Z))= 1 due to l < b. Notice, that Q0

(
τ
+
l,d(Z)< Hb(Z)

)
=Ql

(
τ
+
l,d(Z̃)< Hb(Z̃)

)
,

since l < b and τ
+
l,d is concerned with the Parisian time above l. It is not difficult to see that

EQ
l

(
e−βτ

+
l,d (Z̃)1

τ
+
l,d (Z̃)<Hb(Z̃)

)
= EQ

0

(
e−βτ

+
d (Z)1

τ
+
d (Z)<Hb(Z)

)
,

which has been calculated in Lemma 4.2 with µ = 0. Also, according to [5], Chapter 1. Brownian motion,
formula (2.0.1), we have

EQ
0

(
e−βHl (Z)

)
= e−l

√
2β ,

yielding

EQ
0

(
e−βτ

+
l,d (Z)1

τ
+
l,d (Z)<Hb(Z)

)
=

e−l
√

2β−βd
{

∞

∑
k=0

2
[
z(k,0,0)− z(k+ 1

2 ,0,0)
]
− z(0,0,0)

}
∞

∑
k=0

2
[
z(k,β ,0)+

√
2βe−

√
2β2kb

]
− z(0,β ,0)−2

√
2β

.
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In the second case where S0 > L, we have by definition l < 0 < b. Then τ
+
l,d(Z) can be decomposed into

τ
+
l,d(Z) =

{
d , if Hl(Z)≥ d
Hl(Z)+ τ

+
l,d(Z̃) , if Hl(Z)< d

where Z̃ is a restarted Brownian motion at l. Hence,

EQ
0

(
e−βτ

+
l,d (Z)1

τ
+
l,d (Z)<Hb(Z)

)
= EQ

0

(
e−βd1

τ
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l,d (Z)<Hb(Z)

1Hl (Z)>d

)
+EQ

0

(
e−βHl (Z)−βτ
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l,d (Z̃)1

τ
+
l,d (Z)<Hb(Z)

1Hl (Z)<d
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= e−βdQ0 (Hb(Z)> d,Hl(Z)> d)+EQ

0

(
e−βHl (Z)1Hl (Z)<d

)
EQ

l

(
e−βτ
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l,d (Z̃)1

τ
+
l,d (Z̃)<Hb(Z̃)

)
According to [5], Chapter 1. Brownian motion, formula (1.15.4),

Q0 (Hb(Z)> d,Hl(Z)> d) =Q0

(
l < inf

0≤s≤d
Zs, sup

0≤s≤d
Zs < b

)

=
1√
2πd

∞

∑
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b∫
a

(
e−

(z+2k(b−l))2
2d − e−

(z−2l+2k(b−l))2
2d

)
dz.

Also, we can calculate

EQ
0

(
e−βHl (Z)1Hl (Z)<d

)
=

d∫
0

e−β t |l|√
2πt3

e−
l2
2t dt
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+ e
√

2β |l|N
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.

Again, we have the equality in distribution

EQ
l

(
e−βτ

+
l,d (Z̃)1

τ
+
l,d (Z̃)<Hb(Z̃)

)
= EQ

0

(
e−βτ

+
d (Z)1

τ
+
d (Z)<Hb(Z)

)
,

which has been calculated in Lemma 4.2 with µ = 0. Altogether, it becomes
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Analogously, similar results when Hb(Z)< τ
+
l,d(Z), l < b, can be achieved.
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