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Summary. Ecological momentary assessment (EMA) is used to measure subjects’ mood and 

behaviour repeatedly over time, leading to intensive longitudinal data. Variability in EMA 

assessment schedules creates an analytical challenge because predictors are measured more 

frequently than responses. We consider this problem in a study of the effect of stress on the 

cognitive function of telephone helpline nurses, where stress is measured for each call and 

cognitive outcomes are measured at the end of a shift.  We propose a flexible structural equation 

model which can handle multiple levels of clustering, measurement error, time trends, and mixed 

variable types.   

Keywords: ecological momentary assessment; real-time assessment; high-frequency data; 

intensive longitudinal data; multilevel latent variable model; simultaneous equation model; 

occupational stress 

 

1. Introduction 

Increasingly, social and medical researchers are interested in determining how people’s thoughts, 

feelings and actions in everyday life influence their behaviour and their likelihood of health-

related events.  For example, how exposure to stress can lead to relapses in smoking; how the 

experience of pain over time determines patient’s treatment decisions; how workplace events 

affect employee performance; how social interactions influence mental health; and so on.   In 

order to assess the relationships between these real-world exposures and events of interest, 

researchers must be able to collect and analyse longitudinal data.  ‘Ecological momentary 

assessment’ (EMA; Stone and Shiffman 1994) is one such methodological approach.  EMA relies 

on the repeated assessment of participants’ current states in their natural environment, and as 

such maximizes the ecological validity of data while avoiding problems traditionally associated 

with retrospective recall  (Tourangeau 2000).  EMA assessment schedules vary widely, from 

collecting infrequent data over an extended time period (e.g. Jamison et al. (2001); daily data over 

1 year) to extremely frequent data collection over a more compressed period (e.g. Shapiro et al. 

(2002); data collection every 45 minutes for 4 days).  The flexibility of the EMA approach allows 

researchers to examine dynamic temporal associations between variables over time, but the use 

of different measurement schedules for different variables leads to complex longitudinal data that 

are often challenging to analyse (Bolger and Laurenceau 2013, Walls and Schafer 2006).   
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The particular question we consider is how to analyse the relationship between a predictor and 

an outcome using EMA data which contain frequent measures of the predictors but relatively 

infrequent measures of the outcomes.  This question is motivated by data from an investigation 

into the effect of stress (predictor) on the cognitive function (outcome) of nurses who work on 

the Scottish NHS24 healthcare telephone service.  For each nurse, EMA data were collected over 

two working shifts, with stress measured after each call, and cognitive function measured at the 

start and the end of each shift (Allan et al. 2009, Farquharson et al. 2012).  While these data have 

a three-level hierarchical structure (with calls at level 1 nested within shifts at level 2 and nurses 

at level 3), the design is nonstandard because the outcome is defined at level 2 rather than level 

1. 

In this paper, motivated by the richness of the NHS24 data set and the analytical problems it 

poses, we develop a family of multilevel structural equation models (SEM) for analysing data with 

the aforementioned structure.  Following the approach of Preacher et al. (2010), we specify an 

SEM which comprises two multilevel models: a measurement model for a latent variable 

representing the ‘true’ level of the predictor over the observation period; and a structural model 

in which the latent variable predicts the outcome.  However, there are features of the NHS24 

study design which require us to extend the model as follows:   

 First, stress is the level 1 predictor in NHS24 and it is measured on an ordinal scale, but 

previous models for level 1 predictors and higher-level outcomes have treated both the 

predictor and outcome as continuous variables (Croon and van Veldhoven 2007, Griffin 1997, 

Preacher, et al. 2010).  Hence, we propose a model that allows for the ordinal measurement 

of stress and non-continuous outcomes.    

 Second, each nurse is recorded over two shifts and so the data have a three-level structure.  

However, in the case of a level 1 predictor and higher-level outcome, most previous research 

has focussed on two-level designs where the model for the outcome is a single-level model, 

which means it is not possible to separate the between and within effects of a level 1 predictor.  

But it is generally desirable to separate the effect of a level 1 predictor into between-cluster 

and within-cluster components (e.g. Curran and Bauer 2011).  This decomposition is 

particularly important for NHS24 because both types of effect are of interest: the between-

nurse component represents time-invariant influences on stress, such as the nature of the job 

and the nurse’s ability to cope with stressful situations; and the within-nurse component 

represents influences specific to a particular shift, which make that shift more or less stressful 

than is usual for a given nurse; for example, the nature of the calls handled during a shift and 

external influences which vary from day to day.  When both the predictor and outcome 

variables are self-reported, as with NHS24, we argue that the within-subject effect is of 

greater interest because it represents the effect of the predictor adjusted for unobserved 

time-invariant reporting tendency (captured by the between-subject effect).  Hence, we 

propose a three-level model that allows these effects to be identified. 
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 Third, previous research has used a measurement model which ignores all temporal 

information on the predictors and requires us to assume that the predictor is constant over 

the observation period.  Curran and Bauer (2011) show that, in a 2-level longitudinal design 

with both predictor and outcome at level 1, the usual between-within decomposition assumes 

a random intercepts model and fixed measurement occasions. This assumption is less 

realistic in the NHS24 study, where it is more plausible to hypothesise that stress changes 

over a shift.  Thus, as suggested by Curran and Bauer, we extend the measurement model to 

a latent growth curve model by including random slopes so that temporal information can be 

incorporated and trends allowed to vary between individuals. 

In terms of the novelty of the second extension, it should be noted that Preacher (2011) does 

consider three-level models for level-1 predictors and a level-2 outcome in a brief simulation 

study, but does not apply these models to real data: the main concern of that paper is with three-

level models for designs where all variables are measured at level 1.  It should also be pointed out 

that the models we describe can be viewed as special cases of the general multilevel SEM 

frameworks developed by Skrondal and Rabe-Hesketh (2004) and Muthén and Asparouhov 

(2009), and can be estimated in a range of statistical software packages.  

The remainder of the paper is structured as follows.  Section 2 provides background on the central 

substantive question – the consequences of workplace stress for nurses’ ability to process 

information quickly and accurately – and a description of the NHS24 study.  In Section 3 we set 

out the measurement model for stress and its assumptions.  This model forms part of the 

multilevel SEM for the estimation of the effects of stress on cognitive function which is described 

in Section 4.  Section 5 presents applications of various specifications of the SEM in analyses of 

the effects of stress on three measures of nurses’ cognitive function that were collected in the 

NHS24 study.  Finally we discuss the implications of our results and possible directions for future 

research in Section 6. 

2. Background and overview of the NHS24 Study 

2.1 Stress and cognitive function among nurses 

Nursing is a stressful profession (Health Care Commission 2011, Jones and Johnston 2000, 

McVicar 2003), with high stress levels attributed to factors such as the need to deal with difficult 

patients, frequent contact with death and bereavement, high workload, conflicting demands, and 

inadequate resources and support (Chang et al. 2005). In addition to the consequences that 

occupational stress has for nurses themselves, stress in nurses is associated with poorer patient 

outcomes (Aiken et al. 2002) , and more frequent mistakes and accidents in the workplace 

(Johnston and Pollard 1991, Nolting et al. 2002). Changes in these performance-related outcomes 

may stem from stress-related changes in cognitive function.  Stress can lead to difficulties in 

maintaining concentration (Maslach and Schaufeli 2000, Schaufeli and Enzmann 1998), to 

changes in decision making processes (Keinan 1987) and to more frequent failures of attention 

and memory (van der Linden et al. 2005).  As nursing is a dynamic and responsive occupation, 
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reductions in the speed and accuracy with which information can be processed and evaluated 

would have clear implications for job performance.  The present NHS24 study assessed the 

relationship between stress and cognitive function in a sample of nurses employed by the Scottish 

NHS24 service, a telephone helpline that members of the public can access around the clock for 

advice on symptoms (Allan, et al. 2009, Farquharson, et al. 2012).  Nurses working for NHS24 face 

unusually high cognitive demands as they must evaluate symptoms and make decisions based 

solely on the verbal information that they are given (Edwards 1998).  Good performance in this 

context is contingent upon nurses’ ability to maintain concentration during calls, to quickly and 

accurately process information received and to make appropriate decisions.  Consequently, the 

NHS24 study set out to investigate the association between nurses’ stress levels and three key 

cognitive variables – speed of information processing, accuracy of information processing, and 

frequency of cognitive slips and errors during shifts.  

2.2 The NHS24 study and measurement of stress and cognitive function 

The analysis presented in this paper is based on 147 NHS24 telephone-advice nurses from four 

Scottish call centres.  This sample represents approximately 35% of the NHS24 workforce.  The 

mean age was 44 years and nine of the nurses were male.  Nurses were observed over two 

working shifts on two separate days during 2008/09.  Nurses’ incoming and outgoing calls 

(nurses phoning non-urgent patients back) were date and time stamped. The data can be viewed 

as a three-level hierarchy with 4913 calls (at level 1) nested within 270 shifts (level 2) within 147 

nurses (level 3). Not all nurses provided useable data on both days: 136 did on Day 1, and 134 

nurses on Day 2. The mean shift duration was 7 hours and the mean number of calls per shift was 

18. However, shift length ranged from 2.9 to 10.8 hours. Similarly, the number of calls per shift 

ranged from as few as two calls to as many as 39 calls. The average call was 15 minutes long and 

29% of calls were outgoing calls.  

The stress variable used in the analysis is measured at the end of each call.  Nurses reported how 

stressful they found each call on a five-point scale, with higher scores indicating a more stressful 

call. The average call was rated 1.5 out of 5. Table 1 shows the full distribution of stress across all 

calls and for the first and last call in each shift.  The probability of rating a call as ‘not all stressful’ 

is slightly higher for the last call than for the first, but the probability of a highly stressful call is 

low at both ends of the shift.  Nevertheless, these average probabilities mask substantial 

heterogeneity between nurses and their shifts. 

We considered three cognitive function outcomes which were all measured at the end of each 

shift: two objective measures from computerised tasks to assess the speed and accuracy of 

information processing, and the self-reported number of cognitive failures made during the shift.  

To assess speed and accuracy of information processing, the nurses each completed a 

computerized version of a classic choice reaction time task (Smith 1968) immediately before and 

after both of their shifts. Nurses were presented with 100 single and randomly ordered words 

one after another and were asked to use designated computer keys to categorize each word, as 

quickly and accurately as possible, as an animate or inanimate object. The words used were 
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drawn randomly from a pool of items matched for word length and frequency of use (Kučera and 

Francis 1967) in order to minimize practice and familiarity effects. Reaction time (RT) was 

defined as the time taken (in milliseconds) to correctly categorize each word.  The number of 

errors made when categorising words (out of 100) was used to measure the accuracy of 

information processing.  The third measure of cognitive function used is the self-reported 

frequency of lapses in concentration or memory experienced over the shift, which is assessed 

using the 15-item work-specific cognitive failures questionnaire (Wallace and Chen 2005).   

Although, as expected, quicker reaction times in the post-shift task were associated with more 

classification errors (r = -0.17), the three outcomes were not highly correlated. 

All models for the post-shift RT and accuracy outcomes conditioned on the corresponding pre-

shift measure.  In the analysis of the self-reported cognitive outcomes,  social desirability bias and 

dispositional negative and positive affect were considered as covariates to control for variability 

in reporting style. Social desirability bias was assessed with the 17-item Social Desirability Scale 

(Stober 2001), which is designed to quantify respondents’ tendency to answer questions in a 

socially desirable manner.  Positive and negative affect were assessed using the Positive and 

Negative Affect Schedule (PANAS; Watson et al. 1988), which has been shown to be a valid and 

reliable self-report measure of dispositional affect (Crawford and Henry 2004).  

Table 1 shows summary statistics for all three cognitive function outcomes, call stress and 

covariates.  As with all repeated cognitive tasks, reaction times improve from first to second 

administration (as participants acquire more practice at the task).  However, if stress negatively 

impacts on cognitive efficiency, there should be a measurable attenuation in this practice effect, 

that is, stress should lead to slower post-shift reaction times after controlling for pre-shift 

reaction times. 

3. Approaches to estimating effects of level 1 variables on higher-level outcomes 

In this section, we review some existing approaches for modelling the effect of a level 1 variable 

on a level 2 outcome, and highlight some of the implicit assumptions made by these models in 

their application to our study of the influence of stress on cognitive function.  This review is used 

to motivate our novel approach, which we introduce in Section 4. 

Any useful model must address two main issues.  The first is that it should reflect our scientific 

understanding about stress and cognition, and enable us to test hypotheses regarding this 

relationship.  The second is that stress is measured imperfectly and so measurement error must 

be accounted for to avoid bias. 

Modelling assumptions 

We begin by considering the first of these issues and assume that we are able to measure stress 

perfectly and treat it as a continuous variable; in reality, stress is a latent variable which we do 

not directly observe.  We further take it that each nurse is observed only during a single shift 

before extending to two shifts further on.   
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Now suppose that the relationship between cognitive function 𝑦𝑘  and stress 𝑠𝑘
∗  for nurse 𝑘 follows 

the linear model 

𝑦𝑘 = 𝛽 + 𝛾𝑠𝑘
∗ + 𝜖𝑘            (1) 

𝜖𝑘  ~ 𝑁(0, 𝜎𝜖
2) 

where the superscript * is used to indicate that stress is a latent variable.  But what is 𝑠𝑘
∗  given 

that, as we have already discussed, stress is measured more frequently than cognition, and is 

therefore defined at a lower level?   

Cognitive function is measured only at the start and end of each shift but, thinking conceptually, 

we can view stress for nurse 𝑘 as varying continuously over the shift in response to the allocated 

calls according to function 𝑠𝑘
∗(𝑡).  While the design only allows us to observe 𝑠𝑖𝑘

∗ = 𝑠𝑘
∗ (𝑡𝑖𝑘), where 

𝑡𝑖𝑘 is the time at which nurse 𝑘 was measured following call 𝑖, this is not problematic if we can 

assume that between-call stress fluctuations do not influence cognition.  However, to use a 

strategy based on model (1), we must chose 𝑠𝑘
∗  to be a summary of 𝑠𝑖𝑘

∗  for each nurse that reflects 

the way in which call stress affects cognition.     

The resulting data lead to what is sometimes referred to as a ‘micro-macro’ design (Snijders and 

Bosker 2012, Chapter 2).  Multilevel models were originally developed for ‘macro-micro’ designs 

where the outcome is at level 1 and covariates are a mixture of level 2 and level 1 variables.  The 

usual approach for micro-macro designs is to use aggregated level 1 covariates as level 2 

covariates, and estimate a regression model of the level 2 outcome on the aggregated level 2 

covariates.  The most common method is to specify 𝑠𝑘
∗  to be �̅�.𝑘

∗  , namely, the level 2 mean of 𝑠𝑖𝑘
∗ .  

In other words, the stress experienced during each call is assumed to influence end-of-shift 

cognition equally, whether it is the first or final call.  Two examples of alternative choices for 

model (1) are that only the most stressful call affects cognition (i.e. 𝑠𝑘
∗ = max (𝑠𝑖𝑘

∗ )), and that only 

the final call has any effect (i.e. 𝑠𝑘
∗ = 𝑠𝑛𝑘𝑘

∗  where 𝑛𝑘 is the number of calls handled by nurse 𝑘). 

Note that it is assumed throughout that the allocation of calls to nurses is made irrespectively of 

how stressed a nurse is at the time, or any other of the characteristics included as covariates when 

elaborating model (1).  This is a reasonable assumption for the NHS24 study because calls were 

simply allocated to the first available nurse. 

Measurement error 

Even if stress were measured on a continuous scale, we would not observe latent 𝑠𝑖𝑘
∗  but only an 

imperfect measure 𝑠𝑖𝑘 = 𝑠𝑖𝑘
∗ + 𝑚𝑖𝑘, where 𝑚𝑖𝑘 indicates measurement error at call 𝑖.  Croon and 

van Veldhoven (2007) considered estimating model (1) using mean stress measured for nurse 𝑘 

�̅�.𝑘 rather than his/her true average stress �̅�.𝑘
∗ .  They show that the estimated coefficient of  �̅�.𝑘 is 

biased for  𝛾, where the extent of the bias depends on the reliability of the sample mean as a 

measure of the true mean; the bias decreases as both the intra-class correlation in 𝑠𝑖𝑘 (i.e. the 

within-shift correlation in stress across calls) and the number of calls per shift increase.   
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To remedy this problem, they propose a stepwise estimation procedure based on an ordinary 

least squares (OLS) regression of 𝑦𝑘  on an adjusted level 2 mean of 𝑠𝑖𝑘, followed by a standard 

error correction to allow for heteroskedasticity when the number of level 1 units (calls) varies 

across level 2 units (shifts).  Griffin (1997) proposes an alternative approach in which we estimate 

a multilevel model for 𝑠𝑖𝑘 with a nurse-level random effect.  Empirical Bayes estimates of the 

nurse-level random effects are then substituted for 𝑠𝑘
∗  in (1) and the model estimated via OLS as 

before. 

Implicit in both of these approaches is the assumption that latent stress at each call can be 

decomposed as 

𝑠𝑖𝑘
∗ = 𝛼 + 𝑣𝑘 ,          (2) 

where 𝛼 is the mean stress experienced among the population of nurses, and 𝑣𝑘 is a nurse-level 

effect satisfying 𝐸(𝑣𝑘) = 0 that indicates how much greater/less the stress experienced by nurse 

𝑘 is than the average.  In other words, it is assumed that a nurse experiences a ‘blip’ of stress after 

a call and that this nurse’s blip is the same for every call.  The full model for observed stress is 

thus 

𝑠𝑖𝑘 = 𝛼 + 𝑣𝑘 + 𝑚𝑖𝑘 , 

where it is assumed that 𝐸(𝑚𝑖𝑘|𝑣𝑘) = 0, that is, a classical measurement error model in which 

the measurement errors cancel out over the distribution of calls that could be experienced by a 

nurse.  Curran and Bauer (2011) show that for the 2-level case the standard approach of 

estimating the between and within components of 𝑠𝑖𝑘 by �̅�.𝑘 and 𝑠𝑖𝑘 − �̅�.𝑘 assumes an underlying 

measurement error model of this form. Both of the above approaches can be described as two-

stage aggregation methods where the first stage involves deriving an estimate of 𝑠𝑘
∗  which is then 

included as a predictor of 𝑦𝑘  in a second-stage regression, thus accounting for measurement 

error. 

4. Multilevel structural equation models for stress and cognitive function  

Croon and van Veldhoven’s method is a form of SEM comprising two submodels: ‘structural 

model’ (1) and a ‘measurement model’ for 𝑠𝑖𝑘. Rather than estimating these submodels in two 

separate stages, it is generally more efficient and convenient to estimate a joint multilevel 

structural equation model (SEM) for the measurement and structural submodels (e.g. Preacher, 

et al. 2010).   

We now generalise this joint modelling approach to allow for (i) the observation of nurses in 

multiple shifts, leading to a three-level hierarchical structure; and (ii) ordinal measurement of 

stress, which may be combined with a discrete measure of cognitive function.  We note that our 

approach can be framed as an extension of the two-level latent covariate model described by 

Lüdtke et al. (2008) in which ordinal 𝑠𝑖𝑘 are treated as indicators of the level 2 latent construct 

𝑠𝑘
∗  .  In so doing, we assume that the primary purpose of recording stress at each call is to measure 

𝑠𝑘
∗  , using the between-call within-person variance in 𝑠𝑖𝑘 to allow for measurement error in 𝑠𝑘

∗ .  



8 
 

The model we present can also be viewed as a generalisation of the multilevel multivariate model 

for mixed responses at different levels proposed by Goldstein and Kounali (2009), where we 

allow the random effects from the model for one response to predict another response. 

4.1 Measurement model for stress 

Suppose that nurses were observed for more than one shift, and denote by 𝑠𝑖𝑗𝑘
∗  the true latent 

stress of call 𝑖 in shift 𝑗 of nurse 𝑘.  We can extend (2) to decompose 𝑠𝑖𝑗𝑘
∗  into shift and nurse 

components 

𝑠𝑖𝑗𝑘
∗ = 𝛼 + 𝑣𝑘 + 𝑢𝑗𝑘 ,          (3) 

where 𝛼 is the intercept or mean stress, 𝑣𝑘 is a nurse-level effect representing the time-invariant 

component of stress that is fixed across shifts, and 𝑢𝑗𝑘 is a shift-level effect for nurse 𝑘 capturing 

factors that vary across shifts for a given nurse.  In other words, 𝑢𝑗𝑘 represents the level of stress 

experienced during a particular shift as a deviation from a nurse’s overall (across-shift) level of 

stress, and may be interpreted as the degree to which shift 𝑗 is more or less stressful than usual 

for nurse 𝑘. 

Under (3), it is assumed that a nurse experiences the same blip of stress during every call on the 

same shift, but the size of these blips varies between shifts within the same nurse as well as 

between nurses. 

The measurement model discussed in Section 3 is applicable if observed stress 𝑠𝑖𝑗𝑘 for call 𝑖 of 

shift 𝑗 of nurse 𝑘 is measured on a continuous scale.  However, in our application, 𝑠𝑖𝑗𝑘 is measured 

on an ordinal scale and so we must develop an ordinal model for stress.  To define our multilevel 

ordinal model, we define the following latent variable model 

𝑠𝑖𝑗𝑘
∗∗ = 𝛼 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑚𝑖𝑗𝑘       (4) 

= 𝑠𝑖𝑗𝑘
∗ + 𝑚𝑖𝑗𝑘  

where 𝑠𝑖𝑗𝑘
∗∗  is a continuous variable underlying the observed ordinal measure 𝑠𝑖𝑗𝑘 which is 

assumed to be measured with error. 

To define the multilevel model, we assume 𝑣𝑘~𝑁(0, 𝜎𝑣
2) and 𝑢𝑗𝑘~𝑁(0, 𝜎𝑢

2) where 𝜎𝑣
2 is the 

between-nurse variance in stress, and 𝜎𝑢
2  is the between-shift within-nurse variance.  In addition 

we assume that 𝑚𝑖𝑗𝑘  follows a standard logistic distribution which has mean zero and variance 

𝜎𝑚
2  (the between-call within-shift variance) fixed at  𝜋2 3⁄ = 3.29.  This leads to an ordered logistic 

model, also known as a proportional odds model.   

The level of stress of each call 𝑠𝑖𝑗𝑘 is reported on a 5-point ordinal scale.  This ordinal 

measurement is related to the underlying latent variable 𝑠𝑖𝑗𝑘
∗∗  via a set of threshold parameters 

𝜏1, … 𝜏4 such that  
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𝑠𝑖𝑗𝑘 = {

1 if 𝑠𝑖𝑗𝑘
∗∗ < 𝜏1

𝑟 if 𝜏𝑟−1 ≤ 𝑠𝑖𝑗𝑘
∗∗ < 𝜏𝑟   (𝑟 = 2, 3, 4)

5 if 𝑠𝑖𝑗𝑘
∗∗ ≥ 𝜏4

 

Denoting the response probabilities by 𝜋𝑟𝑖𝑗𝑘 = Pr (𝑠𝑖𝑗𝑘 = 𝑟), 𝑟 = 1, … , 5, the proportional odds 

model is specified in terms of the cumulative response probabilities 𝛾𝑟𝑖𝑗𝑘 = Pr(𝑠𝑖𝑗𝑘 > 𝑟) =

𝜋𝑟+1,𝑖𝑗𝑘 + ⋯ +  𝜋5𝑖𝑗𝑘.  The decomposition of  𝑠𝑖𝑗𝑘
∗∗  in (4), with the identification constraint 𝛼 = 0, 

then leads to the random effects proportional odds model 

log (
𝛾𝑟𝑖𝑗𝑘

1 − 𝛾𝑟𝑖𝑗𝑘

) = 𝑣𝑘 + 𝑢𝑗𝑘 − 𝜏𝑟, 𝑟 = 1, … 4              (5) 

𝑣𝑘~ 𝑁(0, 𝜎𝑣
2), 𝑢𝑗𝑘~ 𝑁(0, 𝜎𝑢

2) 

The measurement model given by (5) can be viewed as a multilevel model, specifically a three-

level random intercept model (Skrondal and Rabe-Hesketh 2004, Chapter 10, Snijders and Bosker 

2012, Chapter 4).  It can also be formulated as a type of multilevel item response theory model 

where the repeated measures 𝑠𝑖𝑗𝑘 are multiple indicators of the latent variables (or random 

effects) 𝑣𝑘 and 𝑢𝑗𝑘 (Liu and Hedeker 2006, Liu et al. 2013).  

Covariates may be added to (5) to investigate whether observed characteristics of calls and 

nurses predict stress; for example incoming calls are more stressful than outgoing calls, and older 

nurses report lower levels of stress.  However, our objective is to estimate the total (unadjusted) 

effects of stress on cognitive function, rather than the effects of the component of stress that is 

unexplained by call (and possibly shift and nurse) characteristics.  After establishing whether 

there is an association between stress and cognitive function, it may then be of interest to 

determine whether that association can be explained by covariates.  Another situation where 

covariates may be included is when both stress and the outcome are self-reported, in which case 

individual-level measures of personality traits can be included to adjust for reporting tendency.  

We consider this approach in our analysis of the subjective measure of accuracy during the shift.   

4.2 Multilevel SEM for effect of stress on cognitive function 

Specifying 𝑠𝑗𝑘
∗ , the true latent stress for shift 𝑗 of nurse 𝑘 , to be the shift-level mean �̅�.𝑗𝑘

∗ , the 

decomposition of (3) implies that the mean-centred true latent stress for shift 𝑗 of nurse 𝑘 is 

�̅�.𝑗𝑘
∗ − 𝛼 = 𝑣𝑘 + 𝑢𝑗𝑘  

and thus the stress experienced in a given shift can be represented by 𝑣𝑘 + 𝑢𝑗𝑘 in a model for the 

effect of shift-level stress on a shift-level measure of cognitive function 𝑦𝑗𝑘 .  For continuous 𝑦𝑗𝑘  

we specify the linear two-level random effects model  

𝑦𝑗𝑘 = 𝜷𝑇𝒙𝑗𝑘 + 𝜆(𝑣𝑘 + 𝑢𝑗𝑘) + 𝑤𝑘 + 𝜖𝑗𝑘        (6) 
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𝑤𝑘~ 𝑁(0, 𝜎𝑤
2 ), 𝜖𝑗𝑘~ 𝑁(0, 𝜎𝜖

2) 

where 𝒙𝑗𝑘 is a vector of covariates with coefficients 𝜷, 𝑤𝑘 is a nurse-level random effect allowing 

for dependency in 𝑦𝑗𝑘  across shifts for the same nurse, and 𝜖𝑗𝑘 is a shift-specific residual. The 

covariates 𝒙𝑗𝑘 may be defined at the shift or nurse level and include a pre-shift measure of 𝑦𝑗𝑘  for 

the cognitive test responses (reaction time and number of errors).  The combination of 𝒙𝑗𝑘,  𝑤𝑘 

and 𝜖𝑗𝑘 capture all observed and latent influences on 𝑦𝑗𝑘  other than stress. 

The availability of repeated measures on stress over calls in the same shift and for two shifts per 

nurse allows the effect of stress to be decomposed into between-nurse and within-nurse effects, 

leading to  

𝑦𝑗𝑘 = 𝜷𝑇𝒙𝑗𝑘 + 𝜆𝐵𝑣𝑘 + 𝜆𝑊𝑢𝑗𝑘 + 𝑤𝑘 + 𝜖𝑗𝑘         (7) 

where 𝜆𝐵 is the between-nurse effect of stress and 𝜆𝑊 is the within-nurse between-shift effect of 

stress.  The separation of between and within effects is common in multilevel models (Curran and 

Bauer 2011, Neuhaus and Kalbfleisch 1998).  Here, the between effect represents the nurse-level 

relationship between stress and cognitive function (conditional on 𝒙𝑗𝑘), that is the effect of nurse-

level stress on the nurse-level mean of 𝑦𝑗𝑘 .  The within effect is the shift-level relationship 

between stress and 𝑦𝑗𝑘 , adjusted for the effect of the nurse-level component of stress.  As our 

measure of stress is self-reported, the separation of the effect of stress into between and within 

nurse effects is of particular importance when 𝑦𝑗𝑘  is also self-reported.  This is because 

unmeasured nurse-level characteristics related to reporting tendency will be absorbed into both 

𝑣𝑘 and 𝑤𝑘, leading to a non-zero correlation between the latent predictor 𝑣𝑘 and residual 𝑤𝑘 in 

(7) and thus a biased estimate of 𝜆𝐵.  As 𝑢𝑗𝑘 varies within but not between individuals, 

cov(𝑢𝑗𝑘, 𝑤𝑘) = 0 and the estimator of the within effect 𝜆𝑊 will be unbiased.  Nevertheless, the 

effect of the total shift-level stress 𝑣𝑘 + 𝑢𝑗𝑘 is also of interest because 𝑣𝑘 captures not only 

reporting tendency but factors related to the true level of stress experienced by a nurse that are 

constant across shifts, for example the stressfulness of the job and sensitivity to stress.  In the 

analyses presented in Section 5, we consider both the effect of total stress and the effects of the 

shift-specific and nurse-level components of stress. 

Models (6) and (7) can be replaced by generalised linear multilevel models if 𝑦𝑗𝑘  is a discrete 

variable.  In our application, for example, the number of failures in the post-shift cognitive test is 

a count variable which is analysed using a log-linear Poisson multilevel model. The combination 

of models (5) and (7), or (5) and (6), form a multilevel SEM.   

Specifying a measurement model for 𝑠𝑖𝑗𝑘 and estimating it jointly with a model for 𝑦𝑗𝑘  offers 

several advantages over two-stage estimation procedures.  First, as described in Section 3, two-

stage methods may produce biased estimates of the coefficients and standard errors must be 

corrected to account for the uncertainty in estimation of 𝑣𝑘 and 𝑢𝑗𝑘 .  SEM allows for effects on 

𝑦𝑗𝑘  of latent stress variables which represent ‘true’ nurse and shift-level stress.  Second, the 
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measurement model can be adapted to reflect the measurement and distribution of 𝑠𝑖𝑗𝑘.  Third, 

the SEM is more easily generalised to allow for covariate effects on 𝑠𝑖𝑗𝑘 or 𝑦𝑗𝑘 , and for the effects 

of change in stress over the shift on cognitive function.  In Section 5, we demonstrate how 

covariates can be included in the model for 𝑠𝑖𝑗𝑘 in an effort to adjust for reporting tendency when 

𝑦𝑗𝑘  is also self-reported.   

We next consider how the measurement model (5) can be extended to a latent growth model with 

individual-specific random intercepts and slopes for call number to allow for change in stress 

over a shift; these are then included as predictors of 𝑦𝑗𝑘  in models (6) and (7). 

4.3 Multilevel SEM for effect of change in stress on cognitive function 

As was discussed in Section 3, the measurement model for stress given by (5) assumes that stress 

is the same after each call during a shift.  This random intercept model is implied by the model 

for true latent stress 𝑠𝑖𝑗𝑘
∗  of (3) where each nurse has equal blips in stress during every call on a 

given shift.  A more realistic model would include call effects to allow for heterogeneity in these 

blips across calls.  Curran and Bauer (2011) consider, for a 2-level design, a growth curve model 

for a time-varying predictor and show how estimates of its between and within components can 

be adjusted to allow for a subject-specific time trend.  These adjusted estimates can form part of 

a two-stage approach, but we follow Curran and Bauer’s suggestion of specifying a joint model 

for the predictor and outcome.  

Previous research has found that, rather than remaining constant, stress tends to change over the 

course of a shift (Johnston et al. 2013).  We therefore extend the measurement model of (5)  to 

allow stress to change as a linear function of call number 𝑐𝑖𝑗𝑘  with variation between nurses in 

both the level of stress at the first call (the intercept) and the rate of change over the shift (the 

slope of 𝑐𝑖𝑗𝑘), as follows:   

log (
𝛾𝑟𝑖𝑗𝑘

1 − 𝛾𝑟𝑖𝑗𝑘

) = 𝛿 𝑐𝑖𝑗𝑘 +  𝑣0𝑘 + 𝑢0𝑗𝑘 +  𝑣1𝑘𝑐𝑖𝑗𝑘 + 𝑢1𝑗𝑘𝑐𝑖𝑗𝑘 − 𝜏𝑟, 𝑟 = 1, … 4              (8) 

(
𝑣0𝑘

𝑣1𝑘
) ~ 𝑁(𝟎, 𝛀𝒗),   𝛀𝒗 =  (

𝜎𝑣0
2

𝜎𝑣01 𝜎𝑣1
2 ) 

(
𝑢0𝑗𝑘

𝑢1𝑗𝑘
) ~ 𝑁(𝟎, 𝛀𝒖),   𝛀𝒖 =  (

𝜎𝑢0
2

𝜎𝑢01 𝜎𝑢1
2 ) 

Equation (8) is a 3-level random slope growth model.  If call number is coded such that 𝑐𝑖𝑗𝑘 = 0 

at the first call in a shift, 𝑣0𝑘 is the time-invariant component of stress at the start of any shift for 

nurse 𝑘 and 𝑢0𝑗𝑘 is the deviation between her stress at the start of shift 𝑗 and her usual initial 

stress;  𝜎𝑣0
2  and 𝜎𝑢0

2  are the between-nurse and between-shift within-nurse variances at the first 

call.  The change in stress for each additional call during shift 𝑗 of nurse 𝑘 is 𝛿 + 𝑣1𝑘 + 𝑢1𝑗𝑘,  where 

𝑣1𝑘 and 𝑢1𝑗𝑘 allow the change in stress over the shift to vary between nurses and between shifts 
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worked by the same nurse respectively.  Figure 1 shows three regression lines depicting the 

relationship between the latent stress response 𝑠𝑖𝑗𝑘
∗∗  and call number for the first three calls in 

shift 𝑗 of nurse 𝑘 at the population level (with slope 𝛿), the nurse level (slope 𝛿 + 𝑣1𝑘) and the 

shift level (slope 𝛿 + 𝑣1𝑘 + 𝑢1𝑗𝑘). The relationship between the intercepts and slopes of the 

between-nurse and within-nurse regressions are captured by the covariances  𝜎𝑣01 and 𝜎𝑢01.  For 

example, the combination of a negative overall slope and negative intercept-slope covariance at 

the nurse level (𝛿 < 0  and  𝜎𝑣01 < 0 ) would imply that nurses with above-average stress at the 

start of a shift (𝑣0𝑘 > 0) tend to report a faster-than-average decline in stress over the course of 

a shift (𝑣1𝑘 < 0).  

The model given by (6) for cognitive outcome  𝑦𝑗𝑘  is then extended to allow for effects of initial 

stress and change in stress over the shift as follows 

𝑦𝑗𝑘 = 𝜷𝑇𝒙𝑗𝑘 + 𝜆0(𝑣0𝑘 + 𝑢0𝑗𝑘) + 𝜆1(𝑣1𝑘 + 𝑢1𝑗𝑘) + 𝑤𝑘 + 𝜖𝑗𝑘          (9) 

𝑤𝑘~ 𝑁(0, 𝜎𝑤
2 ), 𝜖𝑗𝑘~ 𝑁(0, 𝜎𝜖

2) 

where 𝜆0 is the effect of stress at call 1 and 𝜆1 the effect of change in stress. 

We can also separate the effects of the nurse and shift level random effects, leading to a 

generalisation of (7): 

𝑦𝑗𝑘 = 𝜷𝑇𝒙𝑗𝑘 + 𝜆𝐵0𝑣0𝑘 + 𝜆𝐵1𝑣1𝑘 + 𝜆𝑊0𝑢0𝑗𝑘 + 𝜆𝑊1𝑢1𝑗𝑘 + 𝑤𝑘 + 𝜖𝑗𝑘          (10) 

We now distinguish two types of between-nurse effect: the effect of a nurse’s average stress at 

call 1 (𝜆𝐵0) and the effect of the average amount of change in stress over the course of a shift (𝜆𝐵1) 

on her average cognitive outcome, where ‘average’ refers to a typical shift.  The between effects 

describe the nurse-level relationship between 𝑦 and stress at the start and during a shift. The 

within-nurse effects 𝜆𝑊0 and 𝜆𝑊1 are the effects of initial stress and change in stress on 𝑦𝑗𝑘  for a 

given shift, adjusted for the effects of the corresponding nurse-level component of stress. They 

describe the shift-level relationship between 𝑦 and stress, holding constant time-invariant 

influences on stress. 

4.4 Estimation  

The multilevel SEMs described above can be specified as generalisations of a multilevel 

multivariate response model.  In the simplest multivariate model, the responses are all 

continuous and defined at level 1 and the coefficients of all random effects are constrained to 1.  

Such a model can be estimated as a standard multilevel model after stacking the responses into a 

single vector and including binary response indicators as explanatory variables with random 

coefficients at each level (Snijders and Bosker 2012, Chapter 16).  The models considered in 

Sections 4.2 and 4.3 extend the basic multivariate model in three ways.  First, the responses in the 

application are not all continuous: 𝑠𝑖𝑗𝑘 is ordinal and 𝑦𝑗𝑘  is either continuous or a count.  Second, 
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𝑠𝑖𝑗𝑘 and 𝑦𝑗𝑘  are defined at different levels in the hierarchical structure.  Third, the coefficients of 

the stress random effects in the model for 𝑦𝑗𝑘  are unconstrained parameters.  

The multilevel SEM for 𝑠𝑖𝑗𝑘 and 𝑦𝑗𝑘  combines a multilevel generalised linear model for 

multivariate mixed response types (e.g. Goldstein et al. 2009, Skrondal and Rabe-Hesketh 2004, 

Chapter 14) with a multilevel factor model (e.g. Goldstein 2010, Chapter 7, Muthén 1991, Steele 

and Goldstein 2006) and falls within the ‘generalised linear latent and mixed models’ (GLLAMM) 

framework of Skrondal and Rabe-Hesketh (2004) and the growth mixture modelling framework 

of Muthén and Asparouhov (2009).  For example, the joint model specified by (5) and (7) can be 

framed as a multilevel factor model for the multivariate response formed of 𝑛1𝑘 + 𝑛2𝑘 

measurements of stress for calls over two shifts and two cognitive measurements for nurse 𝑘, 

where the random effects 𝑢𝑗𝑘, 𝑣𝑘 and 𝑤𝑘 are shift and nurse-level factors.  The factor loadings 

(coefficients) of 𝑢𝑗𝑘 and 𝑣𝑘  are constrained to 1 for the stress responses and freely estimated for 

the cognitive response, while the loadings of the second nurse-level factor 𝑤𝑘 are constrained to 

zero for the stress responses.  The model is completed by including i.i.d. residuals 𝑚𝑖𝑗𝑘  and 𝜖𝑗𝑘 for 

the stress responses and cognitive responses respectively. 

All models were estimated using maximum likelihood with numerical integration via Guassian 

quadrature to ‘integrate out’ the random effects for the discrete responses (stress and number of 

errors in the computerised task), as implemented in the aML software (Lillard and Panis 1998-

2003).  Other software options include Mplus, Stata (gllamm and gsem), SAS (proc nlmixed) and, 

using MCMC, WinBUGS. Details of the required data structure and annotated aML syntax and 

output files for selected models are provided as online supplementary materials. 

 

5. Application  

5.1 Random intercept SEM for overall effect of stress on cognitive function 

We begin with an application of the multilevel SEMs defined by (5) and (6), and by (5) and (7).  In 

these random intercept models mean stress is permitted to vary between nurses and between 

shifts within nurses but, for all nurses, stress is assumed to be constant across a shift apart from 

random fluctuations represented by 𝑚𝑖𝑗𝑘  in (4). 

Table 2 shows estimates from fitting the measurement model (5).  Estimates of the intra-shift and 

intra-nurse correlations in the underlying continuous latent variable stress 𝑠𝑖𝑗𝑘
∗∗   can be derived 

by expressing the multilevel ordinal logit model as a linear model for 𝑠𝑖𝑗𝑘
∗∗  , as in (4), where 𝑚𝑖𝑗𝑘  

follows a standard logistic distribution (with variance 3.29) and 𝑣𝑘 and 𝑢𝑗𝑘 are normally 

distributed as before. The correlation between stress responses for two randomly selected calls 

in the same shift (for the same nurse) is estimated as (1.3272 + 0.6152)/(1.3272 + 0.6152 +

3.29) = 0.39, which suggests substantial intra-shift variation in reported stress levels across 

calls.  The correlation between the mean shift-level stress for two shifts from the same nurse is 
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1.3272/(1.3272 + 0.6152) = 0.82.  Thus, although nurses report similar levels of stress for each 

shift, there is some within-nurse variation.  This is important for distinguishing the between-

nurse and within-nurse between-shift effects of stress on cognitive outcomes as in (7).  

Estimates of the effects of stress on each cognitive outcome 𝑦𝑗𝑘  were obtained from multilevel 

SEMs fitted to each cognitive measure in turn.  As the distribution of accuracy of information 

processing in the computerised task was highly positively skewed with 0-2 categorisation errors 

made in almost 70% of shifts, this outcome was analysed using a Poisson regression model.  The 

distribution of the self-reported number of errors was also positively skewed, but the log-

transformed variable had an approximately normal distribution.  Both reaction time and the 

logarithm of the self-reported number of errors were analysed using linear models of the same 

form as equations (6) and (7).  A different model was fitted to each cognitive outcome due to the 

weak correlations between the outcomes. In each case the measurement model (5) was estimated 

jointly with either equation (6) (Model M1) or equation (7) (Model M2).   All models for reaction 

time and number of errors in the post-shift computerised tasks included the corresponding pre-

shift score as a covariate to adjust for pre-existing differences between nurses in their cognitive 

function at the start of the shift.  In addition, a dummy variable for shift was included and 

interacted with pre-shift scores to allow the mean post-shift-pre-shift change in reaction time and 

accuracy to vary across shifts.   

Table 3 shows the estimated effects of stress on the three cognitive outcomes.  Model M1 includes 

the total shift-level latent stress, 𝑣𝑘 + 𝑢𝑗𝑘, which combines the nurse-specific and shift-specific 

components of stress. The effect of stress is then decomposed into between-nurse and within-

nurse between-shift effects in Model M2 by including 𝑣𝑘 and 𝑢𝑗𝑘 as separate predictors.  Starting 

with reaction times in the post-shift computerised tasks (adjusted for pre-shift scores), the effect 

of total shift-level stress is almost significant at the 5% level with longer reaction times observed 

among nurses who reported higher levels of stress during the shift.  When shift-level stress is 

decomposed into between and within nurse components, however, we find that this effect is 

largely due to nurse-specific factors: nurses with higher overall stress levels (across both shifts) 

tend to have longer reaction times, but there is little evidence to suggest that having a more 

stressful shift than usual affects reaction times.    

Turning to accuracy of information processing, we find no effect of stress on the number of errors 

made in the post-shift computerised task.  In contrast, there is a positive association between the 

perceived level of stress during a shift and the self-reported number of errors or lapses in 

concentration during a shift, a subjective measure of accuracy.  However, after separating the 

nurse-level and shift-level components of stress, nurse-specific factors are again found to 

dominate.  As both stress and the number of cognitive failures during the shift are self-reported, 

the apparent effect of nurse-level stress could be due to differences between nurses in their 

reporting style rather than differences in the level of stress experienced or sensitivity to stress. 

In an attempt to adjust for self-report bias, we therefore extended both the measurement model 

(5) for stress and model (7) for the number of cognitive failures to include predictors of reporting 
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tendency measured before the first shift as covariates.  Three measures were considered: social 

desirability bias and negative and positive affect (see Section 2.2 for details). To adjust for change 

in the between-nurse variance in stress (𝜎𝑣
2) when nurse-level covariates are added to the model, 

we compare estimates of the standardised between-nurse effect of stress (𝜆𝐵𝜎𝑣) before and after 

inclusion of covariates.  The addition of covariates led to a reduction in the standardised between 

effect from 0.334 to 0.246, but the effect remained strongly significant at the 1% level.  As 

expected, the addition of nurse characteristics had no effect on the standardised within-nurse 

effect of stress (𝜆𝑊𝜎𝑢).  To the extent that these three measures capture reporting tendency, the 

adjusted effect of nurse-level stress is more likely to represent the effects of time-invariant 

sources of stress such as differences between nurses in the characteristics of their job or 

individual differences in the ability to cope with stressful situations.  

5.2 Random slope SEM for effect of baseline stress and change in stress on cognitive 

function 

We next consider the extended measurement model of equation (8).  This random slope model 

allows stress to change over a shift as a linear function of call number, and for the rate of change 

to vary between nurses and between shifts for the same nurse.  It was necessary to fit a restricted 

version of (8) with a single random slope effect that combined nurse and shift factors because of 

convergence problems when the slope was decomposed into between-nurse and within-nurse 

between-shift effects. The fitted model has the form 

log (
𝛾𝑟𝑖𝑗𝑘

1 − 𝛾𝑟𝑖𝑗𝑘

) = 𝛿 𝑐𝑖𝑗𝑘 +  𝑣0𝑘 + 𝑢0𝑗𝑘 + �̃�1𝑗𝑘𝑐𝑖𝑗𝑘 − 𝜏𝑟 , 𝑟 = 1, … 4              (8a) 

�̃�1𝑗𝑘 = 𝑣1𝑘 + 𝑢1𝑗𝑘 

𝑣0𝑘~ 𝑁(0, 𝜎𝑣0
2 ) 

(
𝑢0𝑗𝑘

�̃�1𝑗𝑘
) ~ 𝑁(𝟎, 𝛀�̃�),   𝛀�̃� =  (

𝜎𝑢0
2

𝜎�̃�01 𝜎�̃�1
2 ) 

The above specification still allows the rate of change in stress with call number to vary across 

shifts, but does not separate slope variation due to unmeasured factors that are fixed across shifts 

for the same nurse and unmeasured factors that vary between shifts.  Thus the random slope 

effect �̃�1𝑗𝑘 is no longer a within-nurse effect, but combines unobserved factors at the shift and 

nurse level that affect the rate of change.  As in the full specification (8), variation at call 1 (the 

intercept) is partitioned into nurse-level and shift-specific components.  

The estimates for the model of equation (8a) are shown in Table 4.  There is a negative linear 

effect of call number, suggesting that on average stress declines over a shift.  Variation in the rate 

of decline between shifts is captured by 𝜎�̃�1 and, based on the normality assumption for �̃�1𝑗𝑘, we 

would expect the rate of change to lie in the range -0.027 ± 1.96 �̂��̃�1 = (−0.152, 0.098) for the 

middle 95% of shifts.  Thus, although the slope of the average prediction line is negative, there is 
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substantial variation across shifts in the direction and amount of change in stress over a shift.  

The negative estimate of -0.324 for the intercept-slope correlation, 𝜌�̃�01 = 𝜎�̃�01/(𝜎𝑢0𝜎�̃�1),  

indicates that nurses who report higher-than-average stress at the start of the shift (𝑢0𝑗𝑘 > 0) 

tend to have a faster-than-average decline in stress over the shift (�̃�1𝑗𝑘 < 0).  The variation in 

intercepts and slopes of stress trajectories is illustrated in Figure 2 which shows the predicted 

log-odds of reporting some stress (𝑠𝑖𝑗𝑘 > 1) for selected shifts. 

The measurement model in equation (8a) was then estimated jointly with models for each post-

shift cognitive outcome 𝑦𝑗𝑘  to investigate the effects on 𝑦𝑗𝑘  of stress at the start of the shift and 

change in stress over the shift.  Table 5 shows estimates of the effects of stress on two of the 

cognitive outcomes.  (The same model was fitted to the number of errors in the post-shift task 

but, as in the simpler model of Table 3, no effects of stress were found.)  As in the random 

intercepts analysis of Section 5.1, the model for reaction time in the post-shift computerised task 

includes pre-shift reaction time as a covariate. The model for self-reported number of errors (and 

the jointly estimated measurement model) includes nurse-level covariates as an adjustment for 

reporting tendency. The models for both outcomes are SEMs in which stress and change in stress 

are represented by latent variables; these latent variables are the nurse and shift random effects 

from the random slopes measurement model of equation (8a).  Both Models M3 and M4 include 

an effect of change in stress on cognitive outcomes, but they differ in the treatment of stress at 

the start of the shift. Model M3 includes an overall effect which combines nurse-level and shift-

specific influences on stress, as in equation (9).  Model M4 separates the effect of 𝑣0𝑘 (the 

between-nurse effect of stress in call 1) from the effect of 𝑢0𝑗𝑘 (the within-nurse between-shift 

effect of stress in call 1), in a restricted form of equation (10) without the between-within 

decomposition of the effects of change in stress (i.e. with 𝜆𝐵1 = 𝜆𝑊1 = 𝜆1).   

The positive estimate for 𝜆0 in Model M3 for speed in the computerised task indicates that higher 

stress at the start of a shift is associated with a longer reaction time at the end, conditional on 

reaction time at the start.  From the decomposition into between-nurse and within-nurse 

between-shift effects (Model M4), we find that this is driven by a between-nurse effect (𝜆𝐵0) 

rather than a within-nurse effect (𝜆𝑊0).  Nurses reporting above-average stress at the first call in 

a shift tend to perform worse in the post-shift task than nurses who start less stressed.  This may 

be because nurses who come onto a shift in a stressed state (i.e. who have experienced high levels 

of stress outside of the workplace) are more cognitively depleted and may be less able to rapidly 

process information after a full shift at work. Cognitive resources are finite, and become depleted 

with use (Schmeichel 2007).  There is evidence to suggest that the efficiency of the cognitive 

processes involved in information processing and decision making reduces as people work, only 

becoming replenished during breaks from work (Danziger et al. 2011). There is little evidence of 

an effect of rate of change in stress over the shift on post-shift reaction time. 

Turning to the subjective measure of cognitive failures during the shift, we again find that higher 

initial stress is associated with a poorer cognitive outcome (more errors or lapses in 

concentration).  Again, this turns out to be a between-nurse effect (𝜆𝐵0 in Model M4), that is an 
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effect of the nurse-level component of stress rather than factors specific to a particular shift.  The 

positive estimate of the coefficient for the slope random effect (𝜆1) suggests that nurses whose 

stress declines more rapidly than average over a shift (�̃�1𝑗𝑘 < 0) report making fewer errors 

during that shift. In contrast, nurses with fairly constant stress levels (�̃�1𝑗𝑘 > 0) tend to report 

more errors.  A faster decline in stress over a shift could indicate the speed at which nurses are 

habituating to work, and those who do this most efficiently process information faster. Although 

attitudinal and personality measures have been included as covariates, we cannot rule out the 

possibility that our estimates of the effects of stress are subject to self-report bias.  Suppose, for 

example, that nurses who overstate their level of stress in any call also tend to report making 

more errors during the shift.  If not fully captured by covariates, this reporting tendency will lead 

to a positive correlation between 𝑣0𝑘 and the nurse-level residual 𝑤𝑘 in the model for 𝑦𝑗𝑘 , and 

thus a biased estimate of 𝜆𝐵0 the coefficient of 𝑣0𝑘 in the model for 𝑦𝑗𝑘  .  However, it is less 

plausible that reporting tendency would affect a nurse’s change in reported stress over a shift.  

Under the assumption that any overstatement or understatement of stress is the same for each 

call, apart from random fluctuations unrelated to call number, the estimate of 𝜆1 the coefficient 

of �̃�1𝑗𝑘 will be unaffected by self-report bias. 

6. Discussion  

In this paper, we considered the problem of analysing multilevel data where the predictors are 

defined at a lower level than the outcome variable.  Traditional multilevel models cannot be 

applied in this situation, but such ‘micro-macro’ designs are common in longitudinal studies.  For 

instance, trials involving repeated measures of exposure and confounders are now regularly 

analysed using marginal structural models to allow for time-varying confounding (e.g. Daniels et 

al. 2013).  Our motivating example used intensive longitudinal data collected using EMA methods 

with different assessment schedules for different variables.  Another application is to analyses of 

the effect of childhood physical and cognitive development on adult outcomes (e.g. Sayers et al. 

2015). Such studies are usually based on birth cohort data where individuals are measured at 

several time points in childhood, but far less frequently in adulthood. Micro-macro designs also 

arise in cross-sectional studies where groups of individuals form the higher-level units. For 

example, Sampson et al. (1997) used a multilevel SEM to investigate the effect of individuals’ 

perceptions of their neighbourhood on neighbourhood-level violent crime. In organisational 

psychology there is interest in the effect of individual attitudes and work practices on team 

productivity.  Other examples can be found in Croon and van Veldhoven (2007). 

Previous research has shown that simply aggregating the covariate to the level of the outcome 

variable leads to biased effects of the covariate and its standard error.  This has led to the use of 

SEMs where, in the longitudinal case, repeated measurements of the covariate are treated as 

indicators of an individual-level latent variable.  We have considered several generalisations of 

this approach in our analysis of the effect of stress on nurses’ cognitive function, which have 

widespread potential applications in social and health research.  The first of these extensions was 

to allow for additional levels of clustering in either or both the covariate and outcome.  In our 
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application the availability of stress measures for calls over two shifts and post-shift cognitive 

outcomes leads to a three-level structure for stress and a two-level structure for cognitive 

outcomes.  We show how this enables the effect of stress on cognitive outcomes to be decomposed 

into between-nurse and within-nurse (between-shift) effects.  Three-level designs are common 

in EMA data where participants are often observed repeatedly over several days, and we have 

argued that the between-within decomposition is especially useful when both the covariate(s) 

and outcome are self-reported measures. Our second extension was to allow the level 1 covariates 

and higher-level outcomes, treated as responses in the SEM approach, to be mixtures of 

continuous and discrete variables.  The final generalisation was to specify the measurement 

model for ‘true’ stress as a random slopes growth curve model and to allow the random intercept 

and slopes from this model to influence cognitive effects.  

In our analysis of the effect of stress on cognitive outcomes, there was a suggestion that higher 

stress levels reported during a shift were associated with longer reaction times in a post-shift 

task, but a decomposition into between-nurse and within-nurse between-shift effects revealed 

that this was due to nurse-level factors rather than shift-specific factors.  There was strong 

evidence that higher stress was associated with reporting more errors and lapses in 

concentration, but this was largely a between-nurse effect which may reflect individual 

differences in the ability to cope with stress or reporting tendency rather than a true effect of 

stress exposure per se.  Using a random slopes model, we found a significant effect of the rate of 

change in stress over the shift, with nurses whose stress declined more rapidly than average 

reporting fewer errors.  While we have argued that effects of change in stress are less susceptible 

to self-report bias than effects of the level of stress, our conclusions are limited because we were 

unable to estimate the between-within decomposition of the effect of change.  The convergence 

problems for the most complex within-effects random slopes model may indicate that these 

effects are inestimable for the NHS24 design.  Alternatively, it may indicate that these effects are 

non-identified for designs of this type and so cannot be estimated unless we observe further shifts 

on each nurse: a referee noted the similarity of the NHS24 design to the more conventional one 

with two repeated measurements per individual, and that it is possible to estimate the random 

intercept or the random slope of a two-level model but not both.  This requires further work to 

resolve.     

The multilevel SEM framework is highly flexible and the model presented here can be extended 

in a number of ways.  We have shown how the measurement model for stress can be extended to 

a random slopes model to allow shift and nurse-specific stress trajectories.  A further extension 

is to specify a random slopes model for the structural model to allow the effect of shift-level stress 

to vary across nurses (see Preacher, et al. (2010) for further details in the two-level case). Another 

extension would be to specify the measurement model as a growth mixture model (Muthén and 

Asparouhov 2009) where individual stress trajectories over a shift are grouped into latent classes 

with between-individual variance in intercepts and slopes within classes. It is also possible to fit 

a joint model for stress and all three cognitive outcomes in a multilevel multivariate SEM.  Another 

generalisation would be to model the variability in nurses’ stress levels during a shift and to allow 
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both the mean level of stress over a shift and the within-subject variance in stress to influence 

their subsequent cognitive performance.  Mixed-effects location scale models have been 

developed for this purpose and have been applied in analyses of EMA data on adolescent mood 

variability and smoking (Hedeker et al. 2012); see also Leckie et al. (2014) for applications in 

educational research.  
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Table 1 Descriptive statistics for cognitive function outcomes, call stress and covariates 

Cognitive function  Mean SD n 
Reaction time in post-shift computerized task (ms) 605.0 88.5  270 
No. errors in post-shift computerized task (out of 100) 2.1 2.3 270 
Self-reported no. errors during shift (max = 75) 25.6 8.4  247a 

Stressfulness of call  Percentage 
 All calls 

(n=4913) 
First call 
(n=270) 

Last call 
(n=270) 

1 (not at all) 65.0 57.4 63.7 
2 24.1 30.7 23.7 
3 9.0 10.4 9.3 
4 1.6 1.1 3.0 
5 (extremely) 0.3 0.4 0.4 
Covariates Mean SD n 

Reaction time in pre-shift computerized task (ms) b 616.9 90.2 270 

No. errors in pre-shift computerized task (out of 100) b 2.6 5.8 270 

Social desirability bias c 9.2 2.7 147 

Positive affect c 32.2 7.2 147 

Negative affect c 16.0 6.4 147 

 

a The self-reported number of errors was missing for 23 nurses; b Pre-shift reaction time and 

number of errors were included as predictors in models for their corresponding post-shift 

measure; c These nurse-level variables are included in the analysis of self-reported number of 

errors during a shift in an attempt to adjust for differences in nurses’ reporting tendencies.  
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Table 2 Estimates from multilevel ordered logit model of call stress, the variance components 

measurement model of equation (5)  

Parameter Estimate (SE) 
Thresholds   
  𝜏1  0.796 (0.126) 
  𝜏2 2.850 (0.135) 
  𝜏3 5.101 (0.173) 
  𝜏4 7.102 (0.301) 
   
Random effect standard deviations   
Between-nurse (𝜎𝑣) 1.327 (0.097) 
Between-shift within-nurse (𝜎𝑢) 0.615 (0.073) 
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Table 3 Effects of stress on measures of cognitive function from random intercept multilevel 

structural equation models  

Parameter Estimate (SE) p-value Stan. est.e 

Reaction time in post-shift task a     

M1. Overall between-shift (𝜆) c  0.059 (0.031) 0.053 0.086 

M2. Decomposition d      

   Between-nurse (𝜆𝐵)  0.090 (0.052) 0.084 0.119 
   Within-nurse between-shift (𝜆𝑊) -0.043 (0.091) 0.635 -0.026 

Log(no. errors in post-shift task) b     

M1. Overall between-shift (𝜆)  0.044 (0.050) 0.376 0.064 
M2. Decomposition      
   Between-nurse (𝜆𝐵)  0.011 (0.061) 0.857 0.015 
   Within-nurse between-shift (𝜆𝑊)  0.190 (0.168) 0.259 0.117 

Log(self-reported no. failures during shift) a     

M1. Overall between-shift (𝜆)  0.251 (0.051) <0.001 0.367 
M2. Decomposition      
   Between-nurse (𝜆𝐵)  0.252 (0.061) <0.001 0.334 
   Within-nurse between-shift (𝜆𝑊)  0.251 (0.155) 0.106 0.154 

 

Separate models were estimated for each cognitive outcome. a Reaction time and log(self-

reported no. failures) were standardised and treated as continuous responses; b Number of 

errors in post-shift task was treated as a count variable and analysed using Poisson regression. c 

In model M1, given by equations (5) and (6), 𝜆 is the coefficient of the sum of between-nurse 

stress and within-nurse between-shift stress 𝑣𝑘 + 𝑢𝑗𝑘; d  In model M2, given by equations (5) 

and (7),  𝜆𝐵 is the coefficient of 𝑣𝑘 and 𝜆𝑊 is the coefficient of 𝑢𝑗𝑘; e Standardised coefficients 

representing the effect of a 1 standard deviation change in the associated stress random effect, 

calculated using estimates of the random effect standard deviations from the measurement 

model.  For example, a standardised estimate of 𝜆 is �̂�∗ = √�̂�𝑢
2 + �̂�𝑣

2 �̂� . 
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Table 4 Estimates from multilevel ordered logit model of call stress, the latent growth model with 

random slope for call number of equation (8a)   

Parameter Estimate (SE) 
Thresholds   
  𝜏1   0.581 (0.133) 
  𝜏2  2.685 (0.142) 
  𝜏3  5.003 (0.181) 
  𝜏4  7.032 (0.307) 
Linear effect of call number (𝛾) -0.027 (0.007) 
   
Random effect standard deviations   
Between-nurse (𝜎𝑣)  1.356 (0.091) 
Within-nurse between-shift    
  Intercept, call 1 (𝜎𝑢0)  0.573 (0.124) 
Between shift    
  Slope of call number (𝜎�̃�1)  0.064 (0.008) 
  Intercept-slope correlation (𝜌�̃�01) -0.324 (0.160) 
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Table 5 Effects of stress at start of shift and change in stress during shift on selected measures 

of cognitive function from multilevel random slope structural equation models 

Parameter Estimate (SE) p-value Stan. est.d 

Reaction time in post-shift task a     

M3. Overall between-shift effects b     

  Initial (call 1) stress (𝜆0)  0.061 (0.034) 0.074 0.090 
  Change in stress (𝜆1) 0.032 (0.814) 0.968 -0.002 

M4. Decomposition c      

   Between-nurse initial (𝜆𝐵0)  0.079 (0.042) 0.062 0.107 
   Within-nurse between-shift initial (𝜆𝑊0) -0.050 (0.123) 0.683 -0.029 
   Change in stress (𝜆1) -0.117 (0.795) 0.882 -0.007 

Log(self-reported no. failures during shift) a     

M3. Overall between-shift effects  b     

  Initial (call 1) stress (𝜆0) 0.179 (0.054) 0.001 0.264 
  Change in stress (𝜆1) 4.581 (1.471) 0.002 0.293 

M4. Decomposition c     

   Between-nurse initial (𝜆𝐵0) 0.182 (0.062) 0.003 0.247 
   Within-nurse between-shift initial (𝜆𝑊0) 0.125 (0.187) 0.504 0.072 
   Change in stress (𝜆1) 4.383 (1.514) 0.004 0.281 

 

Separate models were estimated for each cognitive outcome. a Reaction time and log(self-

reported no. failures) were standardised and treated as continuous responses; b In model M3, 

𝜆0 is the coefficient of the sum of between-nurse stress and within-nurse between-shift stress 

intercept effects and 𝜆1 is the coefficient of the sum of the corresponding slope effects; c  In 

model M4,  𝜆𝐵0 is the coefficient of 𝑣0𝑘 and 𝜆𝑊0 is the coefficient of 𝑢0𝑗𝑘; d Standardised 

coefficients representing the effect of a 1 standard deviation change in the associated stress 

random effect, calculated using estimates of the random effect standard deviations from the 

measurement model.   
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Figure 1 Illustration of a three-level measurement model for latent continuous stress 

𝑠𝑖𝑗𝑘
∗∗  underlying the observed ordinal stress measure 𝑠𝑖𝑗𝑘 with random slopes at the shift and 

nurse level for call number 𝑐𝑖𝑗𝑘 .  This is the latent response formulation of the proportional odds 

model of equation (8).  The thick solid line denotes the population-averaged relationship between 

stress and call number for the first 3 calls in a shift; the thick long-dashed line denotes the 

relationship for nurse 𝑘; and the thick short-dashed line denotes the relationship for nurse 𝑘 on 

shift 𝑗 
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Figure 2 Predicted stress trajectories from the random slopes model of equation (8a).  The plot 

shows the log-odds that stress 𝑠𝑖𝑗𝑘 > 1 (above “not at all”) by call number.  The long-dashed lines 

are trajectories for shifts with the largest and smallest estimates for the intercept (𝑢0𝑗𝑘 + 𝑣0𝑘) 

and slope (�̃�1𝑗𝑘).  The short-dashed line corresponds to a shift and nurse at the mean of the 

random effect distributions. The other lines are the trajectories for a randomly selected shift for 

a random sample of 25 nurses. 
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Supplementary Materials for “Multilevel structural equation models for longitudinal data where 

predictors are measured more frequently than outcomes: An application to the effects of stress on the 

cognitive function of nurses” 

F. Steele, P. Clarke, G. Leckie, J. Allan and D. Johnston 

 

Examples of multilevel SEMs for effect of call-level stress on shift-level cognitive outcomes and their 

estimation in the aML software 

 

1. Introduction 

In this appendix we describe how the multilevel simultaneous equations models (SEM) presented in the paper can be 

fitted using the aML software.  We give a brief explanation of the structure of the input file and provide aML syntax, 

but readers are referred to the aML manual for further details.  The software and documentation can be downloaded 

free from www.applied-ml.com. 

aML references 

Lillard, L. A., & Panis, C. W. A. (1998-2003). aML User's Guide and Reference Manual, Version 2. Los Angeles: 

EconWare. Download from www.applied-ml.com 

Steele, F. (2004). A review of aML (Release 2.0): Centre for Multilevel Modelling, University of Bristol. Download 

from http://www.bris.ac.uk/cmm/learning/mmsoftware/aml.html  

 

2. Structure of input data file 

The input data file has 1 record per call, with the values of shift-level variables replicated across calls from the same 

shift.  aML requires variables to be grouped according to the level at which they are defined, starting with those at the 

highest level in the hierarchy (nurse in our case).  The first variable in the data file must be a numeric identifier for the 

highest-level units (nurse).  There are additional requirements for the format required by aML for more complex 

structures – see the aML manual for further details. 

The aML program raw2aml converts an ascii text file into an aML data file (call_based.dat), which is the input 

for the estimation program aml. 

The following variables are referred to in the aML syntax given below.   

Variable name Description 

_id Nurse identifier.  This is the first variable in the aML data file which aML 
will recognise as the identifier for the highest level in the hierarchy (and is 
always referred to as _id).  

shift Shift ID, coded 1 and 2 within nurses 

shift2 Dummy variable for the 2nd shift (coded 1 for shift=2, and 0 for shift=1) 

callc1 Call number (coded 0, 1, 2 …) 

stress Ordinal stress measure (coded 1 to 5) 

zpostrt Post-shift reaction time (standardised) 

zprert Pre-shift reaction time (standardised) 

  

http://www.applied-ml.com/
http://www.applied-ml.com/
http://www.bris.ac.uk/cmm/learning/mmsoftware/aml.html
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3. Random intercept model with overall between-shift effect of stress and continuous cognitive 

outcome (Structural model is M1 in Table 1) 

We begin with a joint model for stress and reaction time.  The measurement model for stress is a 3-level random 

intercept ordered logit model, as in equation (5) of the paper.  The structural model for reaction time is a 2-level model 

including as predictors the stress and shift level random effects from the stress model. In this first model, we estimate 

the effect of overall shift-level stress on reaction time, as in equation (6).  

The syntax can be broken down as follows: 

 The maximum number of iterations is set to 200 and robust standard errors are requested. 

 Data set name (dsn) is call_based.dat 

 Define threshold parameters for the ordinal model of stress (𝜏𝑘) 

 Define coefficient of stress random effect (𝜆) in model for reaction time 

 Specify explanatory variables for the stress and reaction time equations (called ‘regressor sets’ in aML) and name 

them BetaX and AlphaX.  BetaX for stress includes only a constant; its coefficient is later constrained to zero for 

identification as the inclusion of 𝜏𝑘 makes an overall intercept redundant.  AlphaX for post-shift reaction time 

includes a constant, pre-shift reaction time, a dummy for shift 2, and their interaction.  

 Specify four independent normally distributed random effects for stress (named vs and us) and reaction time (vc 

and uc). The level at which each random effect varies, and the response to which each is attached, is specified in 

the later model statements.  

 Specify an ordered logit model for stress with explanatory variables in BetaX and random effects at the nurse and 

shift level. intres specifies a residual (which must be integrated out for a generalised linear model). Specifying 

draw=_id defines vs as a nurse-level residual because aML recognises _id as the first variable in the dataset which 

is the identifier for the highest level units.  Similarly draw=shift defines us as a shift-level residual. 

 Specify a linear regression model for reaction time (zpostrt) with explanatory variables in AlphaX and random 

effects at the nurse and shift level.  This model is fitted only to the first call for each shift because zpostrt is defined 

at the shift level.  As for the stress model, we have a residual at the nurse level (vc).  A residual at the shift level 

(uc) is specified using draw=_iid; these are the usual level 1 residuals in a linear regression which are assumed 

to be independent and identically distributed. 

 Provide starting values for each parameter in the order in which they have been specified: thresholds for the ordinal 

model for stress (Tau), coefficients of latent variables (lambda), coefficients of variables in the regressor set BetaX, 

coefficients of variables in the regressor set AlphaX, and finally the residual (random effect) standard deviations 

and correlations.  For random effect parameters, starting values must be listed in the same order as in the define 

normal distribution statements. 

 

You can name the parameters whatever you like.  The ‘T’ next to each parameter tells aML that you wish it to be 

estimated.  Parameters can be constrained at a particular value using ‘F’ instead of ‘T’.  Here, for example, the 

intercept in the stress model (cons_st) is fixed at zero.  

 

Starting values will usually come from fitting preliminary, simpler models.  In general it is advisable to start with 

simple models, building up to the full model gradually.  It is also possible to estimate a model in stages using the 

aML update program so that estimates from one model are used as starting values for another.  
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See the aML User Guide for a full description of all aML commands with plenty of examples and guidance on starting 

values. 

 

Syntax 
 

/* Joint model for stress and post-shift reaction time */ 

/* Stress: 3-level model with nurse, shift and call residuals */ 

/* Cognitive RT: 1-level model with nurse residual */ 

/* No covariates in stress model, pre-shift RT and interaction with shift in model for post-

shift RT*/ 

 

/* Include sum of nurse stress and shift stress (within nurse) residuals as predictor of 

reaction time */ 

 

option numerical standard errors; 

option iterations=200; 

 

dsn='call_based.dat'; 

 

define vector Taus; dim=4; 

 

define parameter lambda; 

 

define regset BetaX; 

  var = 1; 

 

define regset AlphaX; 

  var = 1 zprert shift2 zprert*shift2; 

 

define normal distribution; dim=1; number of integration points=16; name=vs; 

define normal distribution; dim=1; number of integration points=16; name=us; 

 

define normal distribution; dim=1; number of integration points=16; name=vc; 

define normal distribution; dim=1; number of integration points=16; name=uc; 

 

ordered logit model; 

  outcomes=stress-1 stress; 

  thresholds=Taus; 

  model = regset BetaX + intres(draw=_id, ref=vs) + intres(draw=shift, ref=us); 

 

continuous model; 

  keep if callno==1; 

  outcome=zpostrt; 

  model = regset AlphaX  

 + par lambda*res(draw=_id, ref=vs)  

 + par lambda*res(draw=shift, ref=us)  

 + res(draw=_id, ref=vc) + res(draw=_iid, ref=uc); 

 

 

starting values; 

tau1        T    0.8 

tau2        T    2.9 

tau3        T    5.1 

tau4        T    7.1 

lambda      T    0 

cons_st     F    0 

cons_rt     T    0 

prert       T    0.6 

shift2      T    0.1 

preXsh2     T    0 

sigvs       T    1.3 

sigus       T    0.6 

sigvc       T    0.5 

siguc       T    0.5 

; 
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Output 
 
====================================================================== 

 

Log Likelihood:  -4116.6183 

                                          Based on numerical Hessian 

  Parameter    Free?     Estimate         Std Err        T-statistic 

 

  1  Tau1        T     .81032266729     .12255484467        6.6119 

  2  Tau2        T     2.8630882888     0.1318548489       21.7139 

  3  Tau3        T     5.1130796553     .17079461211       29.9370 

  4  Tau4        T     7.1079491765     .29968680188       23.7179 

  5  lambda      T     .05902263579     .03052190768        1.9338 

  6  cons_st     F              0.0 

  7  cons_rt     T    -.06012307481     .05918458097       -1.0159 

  8  prert       T     .62596420898     .05177194954       12.0908 

  9  shift2      T     .11458476254     .06363620249        1.8006 

 10  preXsh2     T     .01489769146     .06199692706        0.2403 

 11  sigvs       T     1.3324098359     .09649164755       13.8086 

 12  sigus       T     .59385556635     .07480836861        7.9384 

 13  sigvc       T     .49038995865     .04471271306       10.9676 

 14  siguc       T     .44450711406     .02869942354       15.4884 

 

---------------------------------------------------------------------- 

 
 

4. Random intercept model with between-within decomposition of effect of stress and continuous 

cognitive outcome (Structural model is M2 in Table 3) 

In the next model, the structural model for reaction time again includes random effects from the stress model as 
predictors, but we now estimate different effects at the nurse and shift levels.  In other words, we decompose the 
effect of stress into a between-nurse component and within-nurse between-shift component, as in equation (7). The 
measurement model for stress is a 3-level random intercepts ordered logit model as before. 
 
Changes to the aML syntax are indicated in red.  We now: 
 

 Define coefficients for the nurse-level (𝜆𝐵, lambdav) and shift-level (𝜆𝑊, lambdau) random effects for stress in the 

model for reaction time. 

 Specify lambdav as the coefficient of random effect vs and lambdau as the coefficient of random effect us in the 

model for reaction time. 

 Specify starting values for lambdav and lambdau. 

 
Syntax 
 

/* Joint model for stress and post-shift reaction time */ 

/* Stress: 3-level model with nurse, shift and call residuals */ 

/* Cognitive RT: 1-level model with nurse residual */ 

/* No covariates in stress model, pre-shift RT and interaction with shift in model for post-

shift RT*/ 

 

/* Include nurse stress residual as predictor of reaction time */ 

/* Include shift stress (within nurse) residual as predictor of reaction time */ 

 

 

option numerical standard errors; 

option iterations=100; 

 

dsn='call_based.dat'; 

 

define vector Taus; dim=4; 

 

define parameter lambdav; 



5 
 

define parameter lambdau; 

 

define regset BetaX; 

  var = 1; 

 

define regset AlphaX; 

  var = 1 zprert shift2 zprert*shift2; 

 

define normal distribution; dim=1; number of integration points=16; name=vs; 

define normal distribution; dim=1; number of integration points=16; name=us; 

 

define normal distribution; dim=1; number of integration points=16; name=vc; 

define normal distribution; dim=1; number of integration points=16; name=uc; 

 

ordered logit model; 

  outcomes=stress-1 stress; 

  thresholds=Taus; 

  model = regset BetaX + intres(draw=_id, ref=vs) + intres(draw=shift, ref=us); 

 

continuous model; 

  keep if callno==1; 

  outcome=zpostrt; 

  model = regset AlphaX  

 + par lambdav*res(draw=_id, ref=vs) 

 + par lambdau*res(draw=shift, ref=us) 

 + res(draw=_id, ref=vc) + res(draw=_iid, ref=uc); 

 

starting values; 

tau1        T    .81 

tau2        T    2.86 

tau3        T    5.11 

tau4        T    7.11 

lambdav     T    0 

lambdau     T    0 

cons_st     F    0 

cons_rt     T   -0.06 

prert       T    0.63 

shift2      T    0.12 

preXsh2     T    0.01 

sigvs       T    1.33 

sigus       T    0.59 

sigvc       T    0.49 

siguc       T    0.44 

; 

 

 

Output 
 

====================================================================== 

 

Log Likelihood:  -4115.8689 

                                          Based on numerical Hessian 

  Parameter    Free?     Estimate         Std Err        T-statistic 

 

  1  Tau1        T     .80163860034     .12524739186        6.4004 

  2  Tau2        T     2.8550246957     .13432119021       21.2552 

  3  Tau3        T     5.1058537495     .17281571467       29.5451 

  4  Tau4        T     7.0981232759     .30054948085       23.6172 

  5  lambdav     T     .09036978568     .05214263841        1.7331 

  6  lambdau     T    -.04309918718     .09098450126       -0.4737 

  7  cons_st     F              0.0 

  8  cons_rt     T    -.06179075119     .05892744471       -1.0486 

  9  prert       T     .62586633647     .05140101551       12.1761 

 10  shift2      T     .11805643452     .06335650292        1.8634 

 11  preXsh2     T     .01897278826     .06180491085        0.3070 

 12  sigvs       T     1.3373997678     .10395574162       12.8651 

 13  sigus       T     .60262581173     .07398374418        8.1454 

 14  sigvc       T     .47946296956     .04613538454       10.3925 

 15  siguc       T     .44321121721     .02872071177       15.4318 

 

---------------------------------------------------------------------- 
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5. Random slope model with between-within decomposition of effect of stress and continuous 

cognitive outcome (Structural model is M4 in Table 5) 

In the final model, the measurement model is generalised to a 3-level growth model where call stress is a linear 
function of call number, as in equation (8a).  A random slope is fitted at the shift level; at the nurse level there is only 
a random intercept.  The structural model includes the three random effects from the stress model as predictors, with 
separate coefficients estimated for each. 
 
As before, changes to the aML syntax compared to the previous model are indicated in red.  We now: 
 

 Define coefficients for each of the random effects for stress in the model for reaction time: random intercepts at 

the nurse-level (𝜆𝐵0, lambdav) and shift-level (𝜆𝑊0, lambdau0) and for the random slope at the shift level (𝜆1, 

lambdau1).   

 Add call number (callc1) to the regressor set BetaX for the stress model. 

 Define intercept and slope random effects at the shift level (u0s and u1s) and specify their distribution as bivariate 

normal. 

 Include a shift-level random intercept (u0s) and random slope (u1s) in the model for stress.  The random slope 

effect is multiplied by callc1. 

 Specify lambdav, lambdau0 and lambdau1 as the coefficients of random effects vs, u0s and u1s respectively in the 

model for reaction time. 

 Specify starting values for lambdav, lambdau0 and lambdau1, the standard deviations of random effects u0s and 

u1s, and their correlation. 

 
Syntax 
 
/* Joint model for stress and post-shift reaction time */ 

/* Stress: 3-level model with nurse, shift and call residuals */ 

/* Cognitive RT: 2-level model with nurse and shift residuals */ 

/* No covariates in stress model, pre-shift RT and interaction with shift in model for post-

shift RT*/ 

 

/* Linear call effect in stress model */ 

/* Call number centred at 1st call (callno=1) */ 

/* Random coefficient on call number at shift level (but not nurse level) in stress model */ 

 

 

/* Include nurse stress residual as predictor of RT */ 

/* Include shift stress (within nurse) intercept and slope residuals as predictor of RT */ 

 

option numerical standard errors; 

option iterations=200; 

 

dsn='call_based.dat'; 

 

define vector Taus; dim=4; 

 

define parameter lambdav; 

define parameter lambdau0; 

define parameter lambdau1; 

 

define regset BetaX; 

  var = 1 callc1; 

 

define regset AlphaX; 

  var = 1 zprert shift2 zprert*shift2; 

 

define normal distribution; dim=1; number of integration points=16; name=vs; 

define normal distribution; dim=2; number of integration points=16;  

  name=u0s; name=u1s; 
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define normal distribution; dim=1; number of integration points=16; name=vc; 

define normal distribution; dim=1; number of integration points=16; name=uc; 

 

ordered logit model; 

  outcomes=stress-1 stress; 

  thresholds=Taus; 

  model = regset BetaX + intres(draw=_id, ref=vs)  

 + intres(draw=shift, ref=u0s) 

 + callc1*intres(draw=shift, ref=u1s); 

 

continuous model; 

  keep if callno==1; 

  outcome=zpostrt; 

  model = regset AlphaX  

 + par lambdav*res(draw=_id, ref=vs)  

 + par lambdau0*res(draw=shift, ref=u0s)  

 + par lambdau1*res(draw=shift, ref=u1s)  

 + res(draw=_id, ref=vc) + res(draw=_iid, ref=uc); 

 

starting values; 

tau1        T    0.80 

tau2        T    2.86 

tau3        T    5.11 

tau4        T    7.10 

lambdav     T    0 

lambdau0    T    0 

lambdau1    T    0 

cons_st     F    0 

callc1      T    0 

cons_rt     T   -0.06 

prert       T    0.63 

shift2      T    0.12 

preXsh2     T    0.02 

sigvs       T    1.34 

sigu0s      T    0.60 

sigu1s      T    0.01 

rhou01s     T    0 

sigvc       T    0.48 

siguc       T    0.44 

; 

 
Output 
 
====================================================================== 

 

Log Likelihood:  -4088.1014 

                                          Based on numerical Hessian 

  Parameter    Free?     Estimate         Std Err        T-statistic 

 

  1  Tau1        T     .57794557036     .13451690898        4.2965 

  2  Tau2        T     2.6865437681     .14277114574       18.8171 

  3  Tau3        T     5.0147367893     .18300067136       27.4028 

  4  Tau4        T     7.0531798831     .31064010909       22.7053 

  5  lambdav     T     .07857194664     .04204537424        1.8687 

  6  lambdau0    T    -.05019279237     .12285385712       -0.4086 

  7  lambdau1    T    -.11737679459     .79486016269       -0.1477 

  8  cons_st     F              0.0 

  9  callc1      T    -.02549762177     .00730854125       -3.4887 

 10  cons_rt     T    -.06292847806     .05930572001       -1.0611 

 11  prert       T     .62557099119     .05206572827       12.0150 

 12  shift2      T     .11899326309     .06366256456        1.8691 

 13  preXsh2     T     .01774720603     .06202201183        0.2861 

 14  sigvs       T     1.3660422903     .10091316953       13.5368 

 15  sigu0s      T      0.573226996     .12487436705        4.5904 

 16  sigu1s      T     .06102864752     .00819908411        7.4433 

 17  rhou01s     T    -.32865469601     0.1891743091       -1.7373 

 18  sigvc       T     .48748931172     .04516558179       10.7934 

 19  siguc       T     .44326463758     .02876747528       15.4085 

---------------------------------------------------------------------- 
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