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MULTIPLE CHANGE-POINT DETECTION

FOR NON-STATIONARY TIME SERIES

USING WILD BINARY SEGMENTATION

Karolos K. Korkas and Piotr Fryzlewicz

London School of Economics

Abstract: We propose a new technique for consistent estimation of the number
and locations of the change-points in the second-order structure of a time series.
The core of the segmentation procedure is the Wild Binary Segmentation method
(WBS), a technique which involves a certain randomised mechanism. The advan-
tage of WBS over the standard Binary Segmentation lies in its localisation feature,
thanks to which it works in cases where the spacings between change-points are
short. In addition, we do not restrict the total number of change-points a time
series can have. We also ameliorate the performance of our method by combining
the CUSUM statistics obtained at different scales of the wavelet periodogram, our
main change-point detection statistic, which allows a rigorous estimation of the
local autocovariance of a piecewise-stationary process. We provide a simulation
study to examine the performance of our method for different types of scenarios.
A proof of consistency is also provided. Our methodology is implemented in the R
package wbsts, available from CRAN.

Key words and phrases: Binary segmentation, change-points, locally stationary
wavelet processes, non-stationarity.

1. Introduction

The assumption of stationarity has been the dominant framework for the
analysis of many real data. However, in practice, time series entail changes
in their dependence structure and therefore modelling non-stationary processes
using stationary methods to capture their time-evolving dependence aspects will
most likely result in a crude approximation. As pointed out by Mercurio and
Spokoiny (2004) the risk of fitting a stationary model to non-stationary data can
be high in terms of prediction and forecasting. Many examples of non-stationary
data exist; for example, in biomedical signal processing of electroencephalograms
(EEG) see Ombao et al. (2001); in audio signal processing see Davies and Bland
(2010); in finance see Stărică and Granger (2005); in oceanography see Killick,
Eckley and Jonathan (2013). In this paper we deal with piecewise stationarity,
arguably the simplest type of deviation from stationarity. This implies a time-
varying process where its parameters evolve through time but remain constant
for a specific period of time.
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The problem of change-point estimation has attracted significant attention.

A branch of the literature deals with the estimation of a single change-point

(for a change in mean see e.g. Sen and Srivastava (1975); for time series see

Davis, Huangi and Yao (1995), Gombay (2008), Gombay and Serban (2009),

and references therein) while another extends it to multiple change-points with

many changing parameters such as Ombao et al. (2001) who divide a time series

into dyadic segments and choose the one with the minimum cost. The latter

branch can be further categorised. The multiple change-point estimation can

be formulated as minimising a multivariate cost function (or criterion). When

the number of change-points N is unknown then a penalty is typically added

e.g. the Schwarz criterion (see Yao (1988)). In addition, the user can adopt

certain cost functions to deal with the estimation of specific models: the least-

squares for change in the mean of a series (Yao and Au (1989) or Lavielle and

Moulines (2000)), the Minimum Description Length criterion (MDL) for non-

stationary time series (Davis, Lee and Rodriguez-Yam (2006)), the Gaussian log-

likelihood function for changes in the volatility (Lavielle and Teyssiere (2007))

or the covariance structure of a multivariate time series (Lavielle and Teyssiere

(2006)).

Several algorithms for minimising a cost function are based on dynamic pro-

gramming (Bellman and Dreyfus (1966) and Kay (1998)) and they are often used

in solving change-point problems, see e.g. Perron (2006) and references therein.

Auger and Lawrence (1989) propose the Segment Neighbourhood method with

complexity O(QT 2), where Q is the maximum number of change-points. An

alternative method is the exact method of Optimal Partitioning by Jackson et

al. (2005), but its complexity of O(T 2) still makes it suitable mostly for smaller

samples.

Change-point estimators that adopt a multivariate cost function often come

with a high computational cost. An attempt to reduce the computational bur-

den is found in Killick, Fearnhead and Eckley (2012) who extend the Optimal

Partitioning method of Jackson et al. (2005) (termed PELT) and show that the

computational cost is O(T ) when the number of change-points increases linearly

with T . Another attempt is found in Davis, Lee and Rodriguez-Yam (2006)

and Davis, Lee and Rodriguez-Yam (2008) who suggest a genetic algorithm to

detect change-points in a piecewise-constant AR model or non-linear processes,

respectively, where the MDL criterion is used.

The estimation of change-points can also be formulated as a problem of min-

imising a series of univariate cost functions, detecting a single change-point and

then progressively moving to identify more. The Binary Segmentation method

(BS) belongs to this category and uses a test statistic (such as the CUSUM)

to reject the null hypothesis of no change-point. The BS has been widely used
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and the main reasons are its low computational complexity and the fact that it

is conceptually easy to implement: after identifying a change-point the detec-

tion of further change-points continues to the left and to the right of the initial

change-point until no further changes are found.

The BS method has been adopted to solve different types of problems. Inclan

and Tiao (1994) detect breaks in the variance of a sequence of independent obser-

vations; Berkes, Gombay and Horváth (2009) use a weighted CUSUM to reveal

changes in the mean or the covariance structure of a linear process; Lee, Na and

Na (2003) apply the test in the residuals obtained from a least squares estimator;

and Kim, Cho and Lee (2000) and Lee and Park (2001) extend the Inclan and

Tiao (1994) method to a GARCH(1,1) model and linear processes, respectively.

A common factor of most of these methods is the estimation of the long-term

variance or autocovariance, a rather difficult task when the observations are de-

pendent. Cho and Fryzlewicz (2012) apply the binary segmentation method on

the wavelet periodograms to detect change-points in the second-order structure

of a non-stationary process. Using the wavelet periodogram, Killick, Eckley and

Jonathan (2013) propose a likelihood ratio test under the null and alternative

hypotheses. The authors apply the binary segmentation algorithm but assume

an upper bound for the number of change-points. Fryzlewicz and Subba Rao

(2014) adopt the binary segmentation search to test for multiple change-points

in a piecewise constant ARCH model. BS is also used for multivariate (possibly

high-dimensional) time series segmentation in Cho and Fryzlewicz (2015) and in

Schröder and Fryzlewicz (2013) in the context of trend detection for financial

time series.

In this paper we develop a detection method to estimate the number and

locations of change-points in the second-order structure of a piecewise stationary

time series model using the non-parametric Locally Stationary Wavelet (LSW)

process of Nason, Von Sachs and Kroisandt (2000). The LSW model provides a

complete description of the second-order structure of a stochastic process and,

hence, it permits a fast estimation of the local autocovariance through the evo-

lutionary wavelet spectrum. This choice, however, should not be seen as a re-

striction, potentially other models can form the basis for our algorithm.

In order to implement the change-point detection we adopt the Wild Binary

Segmentation (WBS) method, proposed in the signal+iid Gaussian noise set-

up by Fryzlewicz (2014), which attempts to overcome the limitations of the BS

method. Our motivation for doing so is the good practical performance of the

WBS method in this setting. Under specific models in which many change-points

are present the BS search may be inefficient in detecting them. This stems from

the fact that the BS starts its search assuming a single change-point. To correct

this limitation, Fryzlewicz (2014) proposes the WBS algorithm that involves a
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“certain random localisation mechanism”. His method can be summarised as

follows. At the beginning of the algorithm the CUSUM statistic is over M local

segments [s, e]. The starting s and ending e points are randomly drawn from

a uniform distribution U(0, T − 1) and the hope is that for a large enough M ,

at least some of the intervals drawn will only contain single change-points, and

therefore be particularly suitable for CUSUM-based detection. The location

where the largest maximum CUSUM over all intervals drawn is achieved serves

as the first change-point candidate. The method then proceeds similarly to BS:

if the obtained CUSUM statistic exceeds a threshold then it is deemed to be a

change-point and the same procedure continues to its left and right.

In order to adapt the WBS technique to our aim of detecting change-points

in the second-order structure of a time series, we first adapt WBS for use in the

multiplicative model setting, where the input sequence is a typically autocorre-

lated random scaled χ2
1-distributed sequence with a piecewise constant variance.

This is more challenging to achieve than in the standard BS setting (Cho and

Fryzlewicz (2012)) due to the fact that many of the intervals considered are

short, which typically causes spurious behaviour of the corresponding CUSUM

statistics. This phenomenon does not arise in the signal+iid Gaussian noise set-

ting (Fryzlewicz (2014)) and is entirely due to the distributional features of the

above multiplicative setting. This challenge requires a number of new solutions

that include introducing the smallest possible interval length, and limiting the

permitted “unbalancedness” of the CUSUM statistics, which is achieved without

a detrimental effect on their operability thanks to the suitably large number of

intervals of differing lengths considered at each stage by WBS.

Change-point detection for the second-order structure of a time series is

achieved by combining information from local wavelet periodograms (each of

which can be viewed as coming from the multiplicative model described above)

across the resolution scales at which they were computed. We introduce a new

way of combining this information across the scales, with the aim of further

improving the practical performance of the methodology.

We attempt here to convey a new modus operandi in time series analysis

whereby, in order to solve a specific problem, a large number of simple problems

are solved on sub-samples of the data of differing lengths, and then the results

combined to create an overall answer. Here, this is done via the WBS technique

with the aim of detecting change-points, but related techniques could be envis-

aged e.g. for trend and seasonality detection, stationarity testing, or forecasting.

We hope that our work stimulates further work in this direction.

The paper is structured as follows: In Section 2 we present and review the

WBS algorithm in the context of time series. The reasons for selecting the LSW

model as the core of our detection algorithm are given in Section 3. The main
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algorithm is presented in Section 4, along with its theoretical consistency in

estimating the number and locations of change-points. In addition, we conduct

a simulation study to examine the performance of the algorithm; the results are

given in Section 5. In Section 6 we apply our method to two data sets. Proofs

of our results are in Section 5 of the supplementary material. Our methodology

is implemented in the R package wbsts, available from CRAN.

2. The Wild Binary Segmentation Algorithm

The BS algorithm for a stochastic process was first introduced by Vostrikova

(1981) who showed its consistency for the number and locations of change-points

for a fixed N . A proof of its consistency is also given by Venkatraman (1992)

for the Gaussian function+noise model, though the rates for the locations of the

change-points are suboptimal. Improved rates of convergence of the locations of

the change-points for the BS method are given by Fryzlewicz (2014).

Before considering segmentation in the model at (3.1) we first examine a

multiplicative model

Y 2
t,T = σ2

t,TZ
2
t,T , t = 0, . . . , T − 1, (2.1)

where σ2
t,T is a piecewise constant function and the series Zt,T are possibly auto-

correlated standard normal variables. This generic set-up is of interest because

the wavelet periodogram, used later in the segmentation of (3.1), follows (2.1),

up to a small amount of bias which we show can provably be neglected.

A potential change-point b0 on a segment [s, e] is given by

b0 = argmax
b

�����
Ỹ b
s,e

qs,e

����� ,

where Ỹ b
s,e is the CUSUM statistic

Ỹ b
s,e =

√
e− b

n(b− s+ 1)

b∑
t=s

Y 2
t −

√
b− s+ 1

n(e− b)

e∑
t=b+1

Y 2
t , (2.2)

qs,e =
∑e

t=s Y
2
t /n, and n = e− s+1. It can be shown that b0 is the least-squares

estimator of the change-point location in the case of [s, e] containing exactly one

change-point.

The value |Ỹ b0
s,e/qs,e| = maxb |Ỹ b

s,e/qs,e| is tested against a threshold ωT in

order to decide whether the null hypothesis of no change-point is rejected or

not. The BS proceeds by recursively applying the above CUSUM on [s, b0] and

[b0 + 1, e]. The algorithm stops in each current interval when no further change-

points are detected, the obtained CUSUM values fall below threshold ωT .
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Ỹ b
s,e

qs,e

����� ,

where Ỹ b
s,e is the CUSUM statistic
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The BS method has the disadvantage of possibly fitting the wrong model

when multiple change-points are present as it searches the whole series. The

application of the CUSUM statistic (2.2) can result in spurious change-point

detection when e.g. the true change-points occur close to each other. Especially,

the BS method can fail to detect a small change in the middle of a large segment

(Olshen et al. (2004)) which is illustrated in Fryzlewicz (2014).

Fryzlewicz (2014) proposes a randomised binary segmentation (termed Wild

Binary Segmentation – WBS) where the search for change-points proceeds by

calculating the CUSUM statistic in smaller segments whose length is random.

By doing so, the user is guaranteed, with probability tending to one with the

sample size, to draw favourable intervals containing at most a single change-

point, which means the CUSUM statistic is an appropriate one to use over those

intervals from the point of view of model choice. The maximum of the CUSUM

statistics in absolute value, taken over a large collection of random intervals (see

Figure 1 for an illustration), is considered to be the first change-point candidate,

and is tested for significance. The binary segmentation procedure is not altered,

after identifying a change-point the problem is divided into two sub-problems

where for each segment we again test for further change-points in the same way.

The computational complexity of the method can be reduced by noticing that

the randomly drawn intervals and their corresponding CUSUM statistics can be

calculated once at the start of the algorithm. Then, as the algorithm proceeds

at a generic segment [s, e], the obtained statistics can be reused making sure the

random starting and end points fall within [s, e].

The main steps of the WBS algorithm, modified for the model (2.1), are

outlined as follows.

• Calculate the CUSUM statistics over a collection of random intervals [sm, em].

The starting and ending points are sampled from a uniform distribution mak-

ing sure that

em ≥ sm +∆T , (2.3)

where ∆T > 0 is the minimum size of the interval drawn.

Ms,e is the set of indices m of all random intervals [sm, em], m = 1, . . . ,M ,

such that [sm, em] ⊆ [s, e]; then the likely location of a change-point is

(m0, b0) = argmax
(m∈Ms,e,b∈sm,...,em−1)

�����
Ỹ b
sm,em

qsm,em

����� (2.4)

such that

max

(
em0 − b0

em0 − sm0 + 1
,
b0 − sm0 + 1

em0 − sm0 + 1

)
≤ c⋆, (2.5)
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Figure 1. A simulated series (top-left) of an AR(1) model yt = ϕtyt−1 + εt
with ϕt = (0.5, 0.0) and change-points at {50, 100, . . . , 450}. The Wavelet
Periodogram at scale −1 (top-right). The CUSUM statistic of scale −1
(bottom-left) as in the BS method; the black horizontal line is threshold
C log(T ) where T is the sample size (selection of C is discussed in Section
4.4). The rescaled Yb

sm,em for m ∈ Ms,e and b ∈ sm, . . . , em − 1 (bottom-
right) as in the WBS method; the black horizontal line is the same threshold.

where c⋆ is a constant, c⋆ ∈ [2/3, 1). The conditions (2.3) and (2.5) do not

appear in Fryzlewicz (2014), but they necessary in the multiplicative model

(2.1).

• The obtained CUSUM values are rescaled and tested against a threshold ωT .

This ensures that with probability tending to one with the sample size, only

the significant change-points survive. The choice of the threshold ωT is dis-

cussed in Section 4. If the obtained CUSUM statistic is significant the search

is continued to the left and to the right of b0; otherwise the algorithm stops.

This step differs from the original WBS method of Fryzlewicz (2014) in that

the CUSUM statistics are rescaled using qsm,em so that ωT does not depend

on σ2
t,T .

Sampling distributions other than the uniform are possible and lead to prac-

tically the same theoretical results. The uniform distribution plays a special

role here as it provides a natural and fair subsampling of the set of all possible

sub-intervals of [s, e].

3. Locally Stationary Wavelets and the Multiplicative Model

In this section we consider the LSW modelling paradigm of Nason, Von Sachs

and Kroisandt (2000). The LSW process enables a time-scale decomposition of
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The BS method has the disadvantage of possibly fitting the wrong model
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By doing so, the user is guaranteed, with probability tending to one with the

sample size, to draw favourable intervals containing at most a single change-

point, which means the CUSUM statistic is an appropriate one to use over those
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�����
Ỹ b
sm,em

qsm,em

����� (2.4)

such that

max

(
em0 − b0

em0 − sm0 + 1
,
b0 − sm0 + 1

em0 − sm0 + 1

)
≤ c⋆, (2.5)
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Figure 1. A simulated series (top-left) of an AR(1) model yt = ϕtyt−1 + εt
with ϕt = (0.5, 0.0) and change-points at {50, 100, . . . , 450}. The Wavelet
Periodogram at scale −1 (top-right). The CUSUM statistic of scale −1
(bottom-left) as in the BS method; the black horizontal line is threshold
C log(T ) where T is the sample size (selection of C is discussed in Section
4.4). The rescaled Yb

sm,em for m ∈ Ms,e and b ∈ sm, . . . , em − 1 (bottom-
right) as in the WBS method; the black horizontal line is the same threshold.

where c⋆ is a constant, c⋆ ∈ [2/3, 1). The conditions (2.3) and (2.5) do not

appear in Fryzlewicz (2014), but they necessary in the multiplicative model

(2.1).

• The obtained CUSUM values are rescaled and tested against a threshold ωT .

This ensures that with probability tending to one with the sample size, only

the significant change-points survive. The choice of the threshold ωT is dis-

cussed in Section 4. If the obtained CUSUM statistic is significant the search

is continued to the left and to the right of b0; otherwise the algorithm stops.

This step differs from the original WBS method of Fryzlewicz (2014) in that

the CUSUM statistics are rescaled using qsm,em so that ωT does not depend

on σ2
t,T .

Sampling distributions other than the uniform are possible and lead to prac-

tically the same theoretical results. The uniform distribution plays a special

role here as it provides a natural and fair subsampling of the set of all possible

sub-intervals of [s, e].

3. Locally Stationary Wavelets and the Multiplicative Model

In this section we consider the LSW modelling paradigm of Nason, Von Sachs

and Kroisandt (2000). The LSW process enables a time-scale decomposition of
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a process and thus permits a rigorous estimation of the evolutionary wavelet

spectrum and the local autocovariance; it can be seen as an alternative to the

Fourier based approach for modelling time series.

Following Fryzlewicz and Nason (2006), a triangular stochastic array

{Xt,T }T−1
t=0 for T = 1, 2, . . . , is in a class of Locally Stationary Wavelet (LSW)

processes if there exists a mean-square representation

Xt,T =
−1∑

i=−∞

∞∑
k=−∞

Wi(
k

T
)ψi,t−kξi,k. (3.1)

Here i ∈ −1,−2, . . . and k ∈ Z are, respectively, scale and location parameters,

(ψi,0, . . . , ψi,L−1) are discrete, real-valued, compactly supported, non-decimated

wavelet vectors with support length L = O(2−i), and the ξi,k are zero-mean,

orthonormal, identically distributed random variables. In this set-up we replace

the Lipschitz-continuity constraint on Wi(z) by piecewise constant constraint

that allows us to model a process whose second-order structure evolves in a

piecewise constant manner over time with a finite but unknown number of change-

points. Let Li be the total magnitude of change-points in W 2
i (z), then the

functions Wi(z) satisfy

−1∑
i=−∞

W 2
i < ∞ uniformly in z,

−1∑
i=−I

2−iLi = O(log T ) where I = log2 T.

The simplest type of a wavelet system that can be used in (3.1) is that of

the Haar wavelets. Specifically,

ψi,k = 2i/2I0,...,2−j−1−1(k)− 2i/2I2−j−1,...,2−i−1(k)

for i = −1,−2, . . . , k k ∈ Z where IA(k) is 1 if k ∈ A and 0 otherwise. Small

absolute values of the scale parameter i denote “fine” scales, while large ones

denote “coarser” scales. In fine scales the wavelet vectors are most oscillatory

and localised, in coarser scales one has longer, less oscillatory wavelet vectors.

Throughout, we only use Haar wavelets, using any other compactly supported

wavelets would be less straightforward due to the unavailability of a closed for-

mula for their coefficient values.

We take that the ξi,k are distributed as N(0, 1) even though extensions to

other cases are possible but would entail consideration of quadratic forms of

correlated non-Gaussian variables.
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Of main interest in the LSW set-up is the Evolutionary Wavelet Spectrum

(EWS) Si(z) = W 2
i (z), i = −1,−2, . . . , defined on the rescaled-time interval

z ∈ [0, 1]. The estimation of the EWS is done through the wavelet periodogram

(Nason, Von Sachs and Kroisandt (2000)).

Definition. Let Xt,T be an LSW process constructed using the wavelet system

ψ. The triangular stochastic array

I
(i)
t,T =

���
∑
s

Xs,Tψi,s−t

���
2

(3.2)

is called the wavelet periodogram of Xt,T at scale i.

The wavelet periodogram is a convenient statistic: wavelet periodograms are

fast to compute; for Gaussian processes Xt, they arise as χ2
1-type sequences that

are easier to segment than, for example, empirical autocovariance sequences of the

type {XtXt+τ}t; wavelets “decorrelate” a wide range of time series dependence

structures; and the expectations of wavelet periodograms encode, in a one-to-one

way, the entire autocovariance structure of a time series, so it suffices to estimate

change-points in those expectations to obtain segmentation of the autocovariance

structure of Xt, our ultimate goal.

We recall two definitions from Nason, Von Sachs and Kroisandt (2000): the

autocorrelation wavelets Ψi(τ) =
∑

k ψi,kψi,k−τ and the autocorrelation wavelet

inner product matrix Ai,k =
∑

τ Ψi(τ)Ψk(τ). Fryzlewicz and Nason (2006) show

that EI(i)t,T is “close” (in the sense that the integrated squared bias converges

to zero) to the function βi(z) =
∑−1

j=−∞ Sj(z)Ai,j , a piecewise constant function

with at most N change-points, whose set is denoted by N . Every change-point in

the autocovariance structure of the time series results in a change-point in at least

one of the βi(z); therefore, detecting a change-point in the wavelet periodogram

implies a change-point in the autocovariance structure of the process.

In addition, each wavelet periodogram ordinate is a squared wavelet coeffi-

cient of a standard Gaussian time series, and satisfies

I
(i)
t,T = EI(i)t,TZ

2
t,T , (3.3)

where {Zt,T }T−1
t=0 are autocorrelated standard normal variables (equivalently, the

distribution of the squared wavelet coefficient I
(i)
t,T is that of a scaled χ2

1 variable).

Then, the quantities I
(i)
t,T and EI(i)t,T can be seen as special cases of Y 2

t,T and σ2
t,T ,

respectively, of the multiplicative model (2.1). To enable the application of the

model (3.3) in this context, we need a condition.

(A0): σ2
t,T is deterministic and “close” to a piecewise constant function σ2(t/T )

(apart from intervals around the discontinuities in σ2(t/T ) which have length at
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a process and thus permits a rigorous estimation of the evolutionary wavelet

spectrum and the local autocovariance; it can be seen as an alternative to the

Fourier based approach for modelling time series.

Following Fryzlewicz and Nason (2006), a triangular stochastic array

{Xt,T }T−1
t=0 for T = 1, 2, . . . , is in a class of Locally Stationary Wavelet (LSW)

processes if there exists a mean-square representation

Xt,T =
−1∑

i=−∞

∞∑
k=−∞

Wi(
k

T
)ψi,t−kξi,k. (3.1)

Here i ∈ −1,−2, . . . and k ∈ Z are, respectively, scale and location parameters,

(ψi,0, . . . , ψi,L−1) are discrete, real-valued, compactly supported, non-decimated

wavelet vectors with support length L = O(2−i), and the ξi,k are zero-mean,

orthonormal, identically distributed random variables. In this set-up we replace

the Lipschitz-continuity constraint on Wi(z) by piecewise constant constraint

that allows us to model a process whose second-order structure evolves in a

piecewise constant manner over time with a finite but unknown number of change-

points. Let Li be the total magnitude of change-points in W 2
i (z), then the

functions Wi(z) satisfy

−1∑
i=−∞

W 2
i < ∞ uniformly in z,

−1∑
i=−I

2−iLi = O(log T ) where I = log2 T.

The simplest type of a wavelet system that can be used in (3.1) is that of

the Haar wavelets. Specifically,

ψi,k = 2i/2I0,...,2−j−1−1(k)− 2i/2I2−j−1,...,2−i−1(k)

for i = −1,−2, . . . , k k ∈ Z where IA(k) is 1 if k ∈ A and 0 otherwise. Small

absolute values of the scale parameter i denote “fine” scales, while large ones

denote “coarser” scales. In fine scales the wavelet vectors are most oscillatory

and localised, in coarser scales one has longer, less oscillatory wavelet vectors.

Throughout, we only use Haar wavelets, using any other compactly supported

wavelets would be less straightforward due to the unavailability of a closed for-

mula for their coefficient values.

We take that the ξi,k are distributed as N(0, 1) even though extensions to

other cases are possible but would entail consideration of quadratic forms of

correlated non-Gaussian variables.
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Of main interest in the LSW set-up is the Evolutionary Wavelet Spectrum

(EWS) Si(z) = W 2
i (z), i = −1,−2, . . . , defined on the rescaled-time interval

z ∈ [0, 1]. The estimation of the EWS is done through the wavelet periodogram

(Nason, Von Sachs and Kroisandt (2000)).

Definition. Let Xt,T be an LSW process constructed using the wavelet system

ψ. The triangular stochastic array

I
(i)
t,T =

���
∑
s

Xs,Tψi,s−t

���
2

(3.2)

is called the wavelet periodogram of Xt,T at scale i.

The wavelet periodogram is a convenient statistic: wavelet periodograms are

fast to compute; for Gaussian processes Xt, they arise as χ2
1-type sequences that

are easier to segment than, for example, empirical autocovariance sequences of the

type {XtXt+τ}t; wavelets “decorrelate” a wide range of time series dependence

structures; and the expectations of wavelet periodograms encode, in a one-to-one

way, the entire autocovariance structure of a time series, so it suffices to estimate

change-points in those expectations to obtain segmentation of the autocovariance

structure of Xt, our ultimate goal.

We recall two definitions from Nason, Von Sachs and Kroisandt (2000): the

autocorrelation wavelets Ψi(τ) =
∑

k ψi,kψi,k−τ and the autocorrelation wavelet

inner product matrix Ai,k =
∑

τ Ψi(τ)Ψk(τ). Fryzlewicz and Nason (2006) show

that EI(i)t,T is “close” (in the sense that the integrated squared bias converges

to zero) to the function βi(z) =
∑−1

j=−∞ Sj(z)Ai,j , a piecewise constant function

with at most N change-points, whose set is denoted by N . Every change-point in

the autocovariance structure of the time series results in a change-point in at least

one of the βi(z); therefore, detecting a change-point in the wavelet periodogram

implies a change-point in the autocovariance structure of the process.

In addition, each wavelet periodogram ordinate is a squared wavelet coeffi-

cient of a standard Gaussian time series, and satisfies

I
(i)
t,T = EI(i)t,TZ

2
t,T , (3.3)

where {Zt,T }T−1
t=0 are autocorrelated standard normal variables (equivalently, the

distribution of the squared wavelet coefficient I
(i)
t,T is that of a scaled χ2

1 variable).

Then, the quantities I
(i)
t,T and EI(i)t,T can be seen as special cases of Y 2

t,T and σ2
t,T ,

respectively, of the multiplicative model (2.1). To enable the application of the

model (3.3) in this context, we need a condition.

(A0): σ2
t,T is deterministic and “close” to a piecewise constant function σ2(t/T )

(apart from intervals around the discontinuities in σ2(t/T ) which have length at
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most K2−i) in the sense that T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 = o(log−1 T ), where

the rate of convergence comes from the integrated squared bias between βi(t/T )

and EI(i)t,T (see Fryzlewicz and Nason (2006)).

4. The Algorithm

In this section we present the WBS algorithm within the framework of the

LSW model. Consider the CUSUM-type statistic

Yb(i)
sm,em =

√
em − b

n(b− sm + 1)

b∑
t=sm

I
(i)
t,T −

√
b− sm + 1

n(em − b)

em∑
t=b+1

I
(i)
t,T , (4.1)

where the subscript (.)m denotes an element chosen randomly from the set

{0, . . . , T − 1} as in (2.3), n = em − sm + 1, and I
(i)
t,T are the wavelet peri-

odogram ordinates at scale i that form the multiplicative model I
(i)
t,T = EI(i)t,TZ

2
t,T

discussed in Section 3. The likely location of a change-point b0 is then given by

(2.4).

The following stages summarise the recursive procedure.

Stage I: Start with s = 1 and e = T .

Stage II: Examine whether hm0 = |Yb0
sm0 ,em0

|/qsm0 ,em0
> ωT = C log(T ), where

qsm0 ,em0
=

∑em0
t=sm0

I
(i)
t,T /nm0 , nm0 = em0 − sm0 + 1, and m0, b0 is as in (2.4);

C is a parameter that remains constant and only varies between scales. Define

h′m0
= hm0I(hm0 > ωT ) where I(.) is 1 if the inequality is satisfied and 0 otherwise.

Stage III: If h′m0
> 0, then add b0 to the set of estimated change-points; other-

wise if h′m0
= 0, stop the algorithm.

Stage IV: Repeat stages II-III to each of the two segments (s, e) = (1, b0) and

(s, e) = (b0 + 1, T ) if their length is more than ∆T .

The choice of parameters C and ∆T is described in Section 4.4. In addition

to the random intervals [sm, em] we also include into Ms,e the index (labelled 0)

corresponding to the interval [s, e]. This does not mean that the WBS procedure

“includes” the classical BS, as at the first stage the WBS and BS are not guaran-

teed to locate the same change-point (even if WBS also examines the full interval

[s, e]), so the two procedures can “go their separate ways” after examining the

first full interval. The reason for manually including the full interval [s, e] is that

if there is at most one change-point in [s, e], considering the entire interval [s, e]

is an optimal thing to do.

We expect that finer scales will be more useful in detecting the number

and locations of the change-points in EI(i)t,T , for as we move to coarser scales the
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autocorrelation within I
(i)
t,T becomes stronger and the intervals on which a wavelet

periodogram sequence is not piecewise constant become longer. Hence, we select

the scale i < −I⋆, where I⋆ = ⌊α log log T ⌋ and α ∈ (0, 3λ] for λ > 0, such that

the consistency of our method is retained.

In stage II, we rescale the statistic hm0 before we test it against the threshold.

This division plays the role of stabilising the variance, which is exact in the mul-

tiplicative model in which the observations are independent, over intervals where

the variance is constant. In all other cases, the variance stabilisation cannot be

guaranteed to be exact, but in the case where the process under consideration is

stationary over the given interval, the cancellation of the variance parameter still

takes place and therefore the distribution of the rescaled CUSUM is a function

of the autocorrelation of the process, rather than its entire autocovariance. This

reduces the difficulty in choosing the threshold parameter ωT and one can still

hope to obtain “universal” thresholds that work well over a wide range of depen-

dence structures. Exact variance stabilisation in the non-independent case would

require estimating what is referred to as the “long-run variance” parameter, the

variance of the sample mean of a time series, which is a difficult problem in time

series analysis. If we were to pursue it, the estimation error would likely not

make it worthwhile - we choose this rescaling method as a compromise between

doing nothing and having to estimate the long-run variance. In Section 4 of the

supplementary material, we illustrate the essence of this issue, and provide a sim-

ple but informative example showing that the variance stabilisation, performed

as described above, is desirable, despite this “non-exactness” problem.

Horváth, Horváth and Hušková (2008) propose a similar type of CUSUM

statistic that does not require an estimate of the variance of a stochastic process

by using the ratio of the maximum of two local means. The authors apply the

method to detect a single change-point in the mean of a stochastic process under

independent, correlated, or heteroscedastic error settings.

4.1. Technical assumptions and consistency

In this section we present the consistency theorem for the WBS algorithm for

the total number N and locations of the change-points 0 < η1 < · · · < ηN < T−1

with η0 = 0 and ηN+1 = T . We need some assumptions.

(A1): 0 < σ2(t/T ) < σ⋆ < ∞ where σ⋆ ≤ maxt,T σ2(t/T ). The number of

change-points N in (2.1) is unknown and allowed to increase with T , only the

minimum distance between the change-points can restrict the maximum number

of N .

(A2): {Zt,T }T−1
t=0 is a sequence of standard Gaussian variables and the autocor-

relation function ρ(τ) = supt,T |cor(Zt,T , Zt+τ,T )| is absolutely summable.
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most K2−i) in the sense that T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 = o(log−1 T ), where

the rate of convergence comes from the integrated squared bias between βi(t/T )

and EI(i)t,T (see Fryzlewicz and Nason (2006)).

4. The Algorithm

In this section we present the WBS algorithm within the framework of the

LSW model. Consider the CUSUM-type statistic

Yb(i)
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√
em − b

n(b− sm + 1)
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t=sm

I
(i)
t,T −

√
b− sm + 1

n(em − b)

em∑
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I
(i)
t,T , (4.1)

where the subscript (.)m denotes an element chosen randomly from the set

{0, . . . , T − 1} as in (2.3), n = em − sm + 1, and I
(i)
t,T are the wavelet peri-

odogram ordinates at scale i that form the multiplicative model I
(i)
t,T = EI(i)t,TZ

2
t,T

discussed in Section 3. The likely location of a change-point b0 is then given by

(2.4).

The following stages summarise the recursive procedure.

Stage I: Start with s = 1 and e = T .
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> ωT = C log(T ), where
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=
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t,T /nm0 , nm0 = em0 − sm0 + 1, and m0, b0 is as in (2.4);

C is a parameter that remains constant and only varies between scales. Define

h′m0
= hm0I(hm0 > ωT ) where I(.) is 1 if the inequality is satisfied and 0 otherwise.

Stage III: If h′m0
> 0, then add b0 to the set of estimated change-points; other-

wise if h′m0
= 0, stop the algorithm.

Stage IV: Repeat stages II-III to each of the two segments (s, e) = (1, b0) and

(s, e) = (b0 + 1, T ) if their length is more than ∆T .

The choice of parameters C and ∆T is described in Section 4.4. In addition

to the random intervals [sm, em] we also include into Ms,e the index (labelled 0)

corresponding to the interval [s, e]. This does not mean that the WBS procedure

“includes” the classical BS, as at the first stage the WBS and BS are not guaran-

teed to locate the same change-point (even if WBS also examines the full interval

[s, e]), so the two procedures can “go their separate ways” after examining the

first full interval. The reason for manually including the full interval [s, e] is that

if there is at most one change-point in [s, e], considering the entire interval [s, e]

is an optimal thing to do.

We expect that finer scales will be more useful in detecting the number

and locations of the change-points in EI(i)t,T , for as we move to coarser scales the
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autocorrelation within I
(i)
t,T becomes stronger and the intervals on which a wavelet

periodogram sequence is not piecewise constant become longer. Hence, we select

the scale i < −I⋆, where I⋆ = ⌊α log log T ⌋ and α ∈ (0, 3λ] for λ > 0, such that

the consistency of our method is retained.

In stage II, we rescale the statistic hm0 before we test it against the threshold.

This division plays the role of stabilising the variance, which is exact in the mul-

tiplicative model in which the observations are independent, over intervals where

the variance is constant. In all other cases, the variance stabilisation cannot be

guaranteed to be exact, but in the case where the process under consideration is

stationary over the given interval, the cancellation of the variance parameter still

takes place and therefore the distribution of the rescaled CUSUM is a function

of the autocorrelation of the process, rather than its entire autocovariance. This

reduces the difficulty in choosing the threshold parameter ωT and one can still

hope to obtain “universal” thresholds that work well over a wide range of depen-

dence structures. Exact variance stabilisation in the non-independent case would

require estimating what is referred to as the “long-run variance” parameter, the

variance of the sample mean of a time series, which is a difficult problem in time

series analysis. If we were to pursue it, the estimation error would likely not

make it worthwhile - we choose this rescaling method as a compromise between

doing nothing and having to estimate the long-run variance. In Section 4 of the

supplementary material, we illustrate the essence of this issue, and provide a sim-

ple but informative example showing that the variance stabilisation, performed

as described above, is desirable, despite this “non-exactness” problem.

Horváth, Horváth and Hušková (2008) propose a similar type of CUSUM

statistic that does not require an estimate of the variance of a stochastic process

by using the ratio of the maximum of two local means. The authors apply the

method to detect a single change-point in the mean of a stochastic process under

independent, correlated, or heteroscedastic error settings.

4.1. Technical assumptions and consistency

In this section we present the consistency theorem for the WBS algorithm for

the total number N and locations of the change-points 0 < η1 < · · · < ηN < T−1

with η0 = 0 and ηN+1 = T . We need some assumptions.

(A1): 0 < σ2(t/T ) < σ⋆ < ∞ where σ⋆ ≤ maxt,T σ2(t/T ). The number of

change-points N in (2.1) is unknown and allowed to increase with T , only the

minimum distance between the change-points can restrict the maximum number

of N .

(A2): {Zt,T }T−1
t=0 is a sequence of standard Gaussian variables and the autocor-

relation function ρ(τ) = supt,T |cor(Zt,T , Zt+τ,T )| is absolutely summable.
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(A3): The distance between any two adjacent change-points satisfies minr=1,...,N+1

|ηr − ηr−1| ≥ δT , where δT ≥ C log2 T for a large enough C.

(A4): The magnitudes of the change-points satisfy inf1≤r≤N |σ((ηr + 1)/T ) −
σ(ηr/T )| ≥ σ⋆ where σ⋆ > 0.

(A5): ∆T ≍ δT where ∆T as defined in (2.3).

Theorem 1. Let Y 2
t,T follow model (2.1), and suppose that Assumptions (A0)−

(A5) hold. With the number of change-points in σ2(t/T ) as N and the locations
of those change-points as η1, . . . , ηN , let N̂ and η̂1, . . . , η̂N be the number and
locations of the change-points (in ascending order) estimated by the Wild Binary
Segmentation algorithm. There exist constants C1 and C2 such that if C1 log T ≤
ωT ≤ C2

√
δT , then P (ZT ) → 1, where

ZT = {N̂ = N ; max
r=1,...,N

|η̂r − ηr| ≤ C log2 T}

for a certain C > 0. The guaranteed speed of convergence of P (ZT ) to 1 is no
faster than Tδ−1

T (1−δ2T (1− c̄)2T−2/9)M where M is the number of random draws
and c̄ = 3− 2/c⋆.

The rate of convergence for the estimated change-points obtained for the
BS method by Cho and Fryzlewicz (2015) is O(

√
T log(2+ϑ) T ) and O(log(2+ϑ) T )

for ϑ > 0 when δT is T 3/4 and T , respectively. In the WBS setting, the rate is
square logarithmic when δT is of order log2 T , which represents an improvement.
In addition, the lower threshold is always of order log T regardless of the minimum
space between the change-points.

We now discuss the issue of the minimum numberM of random draws needed
to ensure that the bound on the speed of convergence of P (ZT ) to 1 in Theorem
1 is suitably small. Suppose that we wish to ensure that

Tδ−1
T

(
1− δ2T (1− c̄)2

T−2

9

)M
≤ T−1.

As log(1− y) ≈ −y around y = 0, this is (practically) equivalent to

M ≥ 9T 2

δ2T (1− c̄)2
log(T 2δ−1

T ).

In the “easiest” case, δT ∼ T , this results in a logarithmic number of draws,
which leads to particularly low computational complexity. The required M pro-
gressively increases as δT decreases; our recommendations for the choice of M
are discussed in Section 4.4.

4.2. Simultaneous across-scale post-processing

Theorem 1 covers the multiplicative model (2.1). We now consider change-
point detection in the full model (3.1). To accomplish this we propose two meth-
ods.
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Method 1: The search for further change-points in each interval (sm, em) pro-

ceeds to the next scale i−1 only if no change-points are detected at scale i on that

interval. This ensures that the finest scales are preferred (since change-points de-

tected at the finest scales are likely to be more accurate) and one only moves to

coarser if necessary. Cho and Fryzlewicz (2012) use a similar technique to com-

bine across scales change-points, but involving an extra parameter. Their method

will be used as a benchmark for our first type of across-scale post-processing.

Method 2: The method simultaneously joins the estimated change-points across

all the scales such that all the information from every scale is combined. Mo-

tivated by Cho and Fryzlewicz (2015), who propose an alternative aggregation

method to these of Groen, Kapetanios and Price (2013) in order to detect change-

points in the second order structure of a high-dimensional time series, we take

Ythr
t =

−1∑
i=−I⋆

Y(i)
t I(Y(i)

t > ω
(i)
T ) for i = −1, . . . ,−I⋆, (4.2)

where Y(i)
t = |Yb(i)

sm,em |/q
(i)
sm,em |. This statistic differs from that of Cho and Fry-

zlewicz (2015) in that it applies across the scales i = −1,−2, . . . ,−I⋆ of a uni-

variate time series.

The algorithm is identical to the algorithm in Section 4 except for replacing

(4.1) with (4.2). In addition, if the obtained Ythr
t > 0 there is no need to test

further for the significance of b0.

Theorem 2. Let Xt follow model (3.1), and suppose that Assumptions (A0)−(A5)

for σ2(t/T ) hold for each βi(z). With the number of change-points in βi(z) as N

and the locations of those change-points as θ1, . . . , θN , let N̂ and θ̂1, . . . , θ̂N be

the number and locations of the change-points (in ascending order) estimated by

the across-scale post-processing Method 1 or 2. There exist constants C3 and C4

such that if C3 log T ≤ ωT ≤ C4δT , then P (UT ) → 1, where

UT =
{
N̂ = N ; max

r=1,...,N
|θ̂r − θr| ≤ C ′ log2 T

}

for a certain C ′ > 0, where the guaranteed speed of convergence is the same as

that in Theorem 1.

Methods 1 and 2 achieve the same rate of convergence for the estimated

change-points; their relative performance is empirically examined in Section 5.

4.3. Post-processing

In order to control the number of change-points estimated from the WBS

algorithm, and to reduce the risk of over-segmentation, we propose a post-

processing method similar to Cho and Fryzlewicz (2012) and Inclan and Tiao

298



12 KAROLOS K. KORKAS AND PIOTR FRYZLEWICZ
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δT , then P (ZT ) → 1, where

ZT = {N̂ = N ; max
r=1,...,N

|η̂r − ηr| ≤ C log2 T}

for a certain C > 0. The guaranteed speed of convergence of P (ZT ) to 1 is no
faster than Tδ−1

T (1−δ2T (1− c̄)2T−2/9)M where M is the number of random draws
and c̄ = 3− 2/c⋆.

The rate of convergence for the estimated change-points obtained for the
BS method by Cho and Fryzlewicz (2015) is O(

√
T log(2+ϑ) T ) and O(log(2+ϑ) T )

for ϑ > 0 when δT is T 3/4 and T , respectively. In the WBS setting, the rate is
square logarithmic when δT is of order log2 T , which represents an improvement.
In addition, the lower threshold is always of order log T regardless of the minimum
space between the change-points.

We now discuss the issue of the minimum numberM of random draws needed
to ensure that the bound on the speed of convergence of P (ZT ) to 1 in Theorem
1 is suitably small. Suppose that we wish to ensure that
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T

(
1− δ2T (1− c̄)2

T−2

9
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≤ T−1.

As log(1− y) ≈ −y around y = 0, this is (practically) equivalent to

M ≥ 9T 2

δ2T (1− c̄)2
log(T 2δ−1

T ).

In the “easiest” case, δT ∼ T , this results in a logarithmic number of draws,
which leads to particularly low computational complexity. The required M pro-
gressively increases as δT decreases; our recommendations for the choice of M
are discussed in Section 4.4.

4.2. Simultaneous across-scale post-processing

Theorem 1 covers the multiplicative model (2.1). We now consider change-
point detection in the full model (3.1). To accomplish this we propose two meth-
ods.
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ceeds to the next scale i−1 only if no change-points are detected at scale i on that

interval. This ensures that the finest scales are preferred (since change-points de-

tected at the finest scales are likely to be more accurate) and one only moves to

coarser if necessary. Cho and Fryzlewicz (2012) use a similar technique to com-

bine across scales change-points, but involving an extra parameter. Their method

will be used as a benchmark for our first type of across-scale post-processing.

Method 2: The method simultaneously joins the estimated change-points across

all the scales such that all the information from every scale is combined. Mo-

tivated by Cho and Fryzlewicz (2015), who propose an alternative aggregation

method to these of Groen, Kapetanios and Price (2013) in order to detect change-

points in the second order structure of a high-dimensional time series, we take

Ythr
t =

−1∑
i=−I⋆

Y(i)
t I(Y(i)

t > ω
(i)
T ) for i = −1, . . . ,−I⋆, (4.2)

where Y(i)
t = |Yb(i)

sm,em |/q
(i)
sm,em |. This statistic differs from that of Cho and Fry-

zlewicz (2015) in that it applies across the scales i = −1,−2, . . . ,−I⋆ of a uni-

variate time series.

The algorithm is identical to the algorithm in Section 4 except for replacing

(4.1) with (4.2). In addition, if the obtained Ythr
t > 0 there is no need to test

further for the significance of b0.

Theorem 2. Let Xt follow model (3.1), and suppose that Assumptions (A0)−(A5)

for σ2(t/T ) hold for each βi(z). With the number of change-points in βi(z) as N

and the locations of those change-points as θ1, . . . , θN , let N̂ and θ̂1, . . . , θ̂N be

the number and locations of the change-points (in ascending order) estimated by

the across-scale post-processing Method 1 or 2. There exist constants C3 and C4

such that if C3 log T ≤ ωT ≤ C4δT , then P (UT ) → 1, where

UT =
{
N̂ = N ; max

r=1,...,N
|θ̂r − θr| ≤ C ′ log2 T

}

for a certain C ′ > 0, where the guaranteed speed of convergence is the same as

that in Theorem 1.

Methods 1 and 2 achieve the same rate of convergence for the estimated

change-points; their relative performance is empirically examined in Section 5.

4.3. Post-processing

In order to control the number of change-points estimated from the WBS

algorithm, and to reduce the risk of over-segmentation, we propose a post-

processing method similar to Cho and Fryzlewicz (2012) and Inclan and Tiao
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(1994). More specifically, we compare every change-point against the adjacent

ones using the CUSUM statistic, making sure that (2.5) is satisfied. Thus, for a

set N̂ = {θ̂0, . . . , θ̂N+1} where θ̂0 = 0 and θ̂N+1 = T , we test whether θ̂r satisfies

Ythr
t =

−1∑
i=−I⋆

Y(i)
t I(Y(i)

t > ω
(i)
T ) > 0 for i = −1, . . . ,−I⋆,

where Y(i)
t = |Yθ̂r(i)

θ̂r−1,θ̂r+1
|/q(i)

θ̂r−1,θ̂r+1
| and

max
( θ̂r+1 − θ̂r

θ̂r+1 − θ̂r−1 + 1
,

θ̂r − θ̂r−1 + 1

θ̂r+1 − θ̂r−1 + 1

)
≤ c⋆. (4.3)

If Ythr
t = 0 then change-point θ̂r is temporarily eliminated from set N̂ . In

the next run, when considering change-point θ̂r+1, the adjacent change-points

are θ̂r−1 and θ̂r+2. When the post-processing finishes its cycle all temporarily

eliminated change-points are reconsidered using as adjacent change-points those

that have survived the first cycle. It is necessary for θ̂r to satisfy (4.3) with its

adjacent estimated change-points θ̂r−1 and θ̂r+1, otherwise it is never eliminated.

The algorithm is terminated when the set of change-points does not change.

4.4. Choice of threshold and parameters

In this section we present choices of the parameters involved in the algo-

rithms. From Theorems 1 and 2 we have that the threshold ωT includes the

constant C(i) that varies between the scales. The values of C(i) are the same for

all the methods presented, either BS/WBS or the Methods 1 and 2 in Section

4.2. Therefore, we can use the thresholds by Cho and Fryzlewicz (2012) who

conduct experiments to establish the value of the threshold parameter under the

null hypothesis of no change-points such that when the obtained statistic exceeds

the threshold the null hypothesis is rejected. However, we go to the experiments

described below.

We generate a vector X ∼ N(0,Σ) where the covariance matrix Σ =

(σκ,κ′)Tκ,κ′=1 and σκ,κ′ = ρ|κ−κ′|. Then we find v that maximises (4.1). The ratio

C
(i)
T = Y(i)

v (log T )−1
( T∑

t=1

I
(i)
t,T

)−1
T

gives us an insight into the magnitude of parameter C(i). We repeated this exper-

iment for different values of ρ and, for every scale i, we selected C(i) as the 95%

quantile. The same values were used for the post-processing method explained

in Section 4.3. Our results indicated that C(i) tends to increase as we move
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to coarser scales due to the increasing dependence in the wavelet periodogram

sequences. Since our method applies to non-dyadic structures it is reasonable

to propose a general rule that will apply in most cases. To accomplish this we

repeated the simulation study above for T = 50, 100, . . ., 6,000. Then, for each

scale i we fitted the regression

C(i) = c
(i)
0 + c

(i)
1 T + c

(i)
2

1

T
+ c

(i)
3 T 2 + ε.

The adjusted R2 was above 90% for all the scales. Having estimated the values

for ĉ
(i)
0 , ĉ

(i)
1 , ĉ

(i)
2 , ĉ

(i)
3 we were able to use fitted values for any sample size T . For

samples larger than T =6,000, we used the same C(i) values as for T =6,000.

Based on empirical evidence (see the supplementary material) we selected

the scale I⋆ by setting λ = 0.7. In stage III of the algorithm, the procedure was

terminated when either the CUSUM statistic did not exceed a certain threshold

or the length of the respective segment was ∆T . This also defined the minimum

length of a favourable draw from (2.3). We chose ∆T to be of the same order

as δT since this is the lowest permissible order of magnitude according to (A5).

Practically, we found that the choice ∆T = ⌊log2 T/3⌋ worked well. In addition,

a simulation study found in the supplementary material provides empirical argu-

ments for the choice c⋆ = 0.75. The main idea of this parameter is to ensure that

long enough stretches of data are included in the computation of our CUSUM

statistics, else the computed CUSUM statistics will be too variable to be reliable.

This is particularly important in the autocorrelated multiplicative setting where

there tends to be a large amount of noise, so the use of such a parameter is needed

to suppress the variance of the CUSUM statistics. Finally, our recommendation

for the parameter M is 3,500 when T does not exceed 10,000. These values are

used in the remainder of the paper.

5. Simulation Study

We present a set of simulation studies to assess the performance of our meth-

ods. In all the simulations we took sample size to be 1,024 over 100 iterations. In

the supplementary material smaller and larger sample sizes are also considered.

For comparison we also report the performance of the method of Cho and Fry-

zlewicz (2012) – henceforth CF – using the default values specified in their paper.

BS1 and BS2 refer to Method 1 and Method 2 of aggregation (as described in

Section 4.2) using the BS technique. WBS1 and WBS2 refer to the Method 1 and

Method 2 of aggregation (as in Section 4.2) using the Wild Binary Segmenta-

tion technique. To briefly illustrate computation times, our code, executed on a

standard PC, runs in approximately 25 seconds for a time series of length 10,000

with 10 change-points.
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(1994). More specifically, we compare every change-point against the adjacent

ones using the CUSUM statistic, making sure that (2.5) is satisfied. Thus, for a

set N̂ = {θ̂0, . . . , θ̂N+1} where θ̂0 = 0 and θ̂N+1 = T , we test whether θ̂r satisfies

Ythr
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t I(Y(i)

t > ω
(i)
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| and

max
( θ̂r+1 − θ̂r
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θ̂r − θ̂r−1 + 1

θ̂r+1 − θ̂r−1 + 1

)
≤ c⋆. (4.3)

If Ythr
t = 0 then change-point θ̂r is temporarily eliminated from set N̂ . In

the next run, when considering change-point θ̂r+1, the adjacent change-points

are θ̂r−1 and θ̂r+2. When the post-processing finishes its cycle all temporarily

eliminated change-points are reconsidered using as adjacent change-points those

that have survived the first cycle. It is necessary for θ̂r to satisfy (4.3) with its

adjacent estimated change-points θ̂r−1 and θ̂r+1, otherwise it is never eliminated.

The algorithm is terminated when the set of change-points does not change.

4.4. Choice of threshold and parameters

In this section we present choices of the parameters involved in the algo-

rithms. From Theorems 1 and 2 we have that the threshold ωT includes the

constant C(i) that varies between the scales. The values of C(i) are the same for

all the methods presented, either BS/WBS or the Methods 1 and 2 in Section

4.2. Therefore, we can use the thresholds by Cho and Fryzlewicz (2012) who

conduct experiments to establish the value of the threshold parameter under the

null hypothesis of no change-points such that when the obtained statistic exceeds

the threshold the null hypothesis is rejected. However, we go to the experiments

described below.

We generate a vector X ∼ N(0,Σ) where the covariance matrix Σ =

(σκ,κ′)Tκ,κ′=1 and σκ,κ′ = ρ|κ−κ′|. Then we find v that maximises (4.1). The ratio

C
(i)
T = Y(i)

v (log T )−1
( T∑

t=1

I
(i)
t,T

)−1
T

gives us an insight into the magnitude of parameter C(i). We repeated this exper-

iment for different values of ρ and, for every scale i, we selected C(i) as the 95%

quantile. The same values were used for the post-processing method explained

in Section 4.3. Our results indicated that C(i) tends to increase as we move
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to coarser scales due to the increasing dependence in the wavelet periodogram

sequences. Since our method applies to non-dyadic structures it is reasonable

to propose a general rule that will apply in most cases. To accomplish this we

repeated the simulation study above for T = 50, 100, . . ., 6,000. Then, for each

scale i we fitted the regression

C(i) = c
(i)
0 + c

(i)
1 T + c

(i)
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1

T
+ c

(i)
3 T 2 + ε.

The adjusted R2 was above 90% for all the scales. Having estimated the values

for ĉ
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0 , ĉ
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1 , ĉ

(i)
2 , ĉ

(i)
3 we were able to use fitted values for any sample size T . For

samples larger than T =6,000, we used the same C(i) values as for T =6,000.

Based on empirical evidence (see the supplementary material) we selected

the scale I⋆ by setting λ = 0.7. In stage III of the algorithm, the procedure was

terminated when either the CUSUM statistic did not exceed a certain threshold

or the length of the respective segment was ∆T . This also defined the minimum

length of a favourable draw from (2.3). We chose ∆T to be of the same order

as δT since this is the lowest permissible order of magnitude according to (A5).

Practically, we found that the choice ∆T = ⌊log2 T/3⌋ worked well. In addition,

a simulation study found in the supplementary material provides empirical argu-

ments for the choice c⋆ = 0.75. The main idea of this parameter is to ensure that

long enough stretches of data are included in the computation of our CUSUM

statistics, else the computed CUSUM statistics will be too variable to be reliable.

This is particularly important in the autocorrelated multiplicative setting where

there tends to be a large amount of noise, so the use of such a parameter is needed

to suppress the variance of the CUSUM statistics. Finally, our recommendation

for the parameter M is 3,500 when T does not exceed 10,000. These values are

used in the remainder of the paper.

5. Simulation Study

We present a set of simulation studies to assess the performance of our meth-

ods. In all the simulations we took sample size to be 1,024 over 100 iterations. In

the supplementary material smaller and larger sample sizes are also considered.

For comparison we also report the performance of the method of Cho and Fry-

zlewicz (2012) – henceforth CF – using the default values specified in their paper.

BS1 and BS2 refer to Method 1 and Method 2 of aggregation (as described in

Section 4.2) using the BS technique. WBS1 and WBS2 refer to the Method 1 and

Method 2 of aggregation (as in Section 4.2) using the Wild Binary Segmenta-
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standard PC, runs in approximately 25 seconds for a time series of length 10,000
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Table 1. Stationary processes results. For all the models the sample size
was 1,024 and there were no change-points. Figures show the number of
occasions the methods detected change-points with the universal thresholds
C(i) obtained as described in Section 4.4. Figures in brackets are the number
of occasions the methods detected change-points with the thresholds C(i)

obtained as described in Section 5.1.

Model BS1 WBS1 BS2 WBS2 CF

S1: iid standard normal 1 [0] 3 [2] 0 [0] 1 [0] 4

S2: AR(1) with parameter 0.9 3 [1] 5 [1] 1 [1] 5 [1] 9

S3: AR(1) with parameter −0.9 58 [0] 93 [0] 46 [0] 48 [5] 79

S4: MA(1) with parameter 0.8 2 [3] 7 [4] 3 [3] 1 [0] 7

S5: MA(1) with parameter −0.8 2 [0] 4 [2] 4 [0] 0 [0] 7

S6: ARMA(1,0,2) with AR= {−0.4} and
MA= {−0.8, 0.4}

8 [0] 27 [0] 8 [0] 8 [0] 25

S7: AR(2) with parameters 1.39 and
−0.96

88 [3] 99 [4] 88 [3] 88 [5] 96

5.1. Models with no change-points

We simulated stationary time series with innovations εt ∼ N(0, 1) and we

report the number of occasions (out of 100) the methods incorrectly rejected the

null hypothesis of no change-points. The models S1-S7 (Table 1) are taken from

Nason (2013).

The results of Table 1 indicate our methods’ better performance than that

of Cho and Fryzlewicz (2012), apart from models S3 and S7 where all methods

incorrectly reject the null hypothesis on many occasions. A visual inspection

of an AR(1) process with ϕ = −0.9 would confirm that this type of process

exhibits a “clustering behaviour” which mimics changing variance. Hence, the

process is interpreted as non-stationary by the wavelet periodogram resulting

in erroneous outcomes. A similar argument is valid for S7 model. To correct

for that limitation, C(i) should be chosen with care. Higher values ensure that

the null hypothesis is not rejected frequently. This is achieved by not using

universal thresholds (as shown in Section 4.4) but calculating them for every

instance. Specifically, given a time series yt we fit an AR(p) model. Then we

generated 100 instances of the same length and with the same AR(p) coefficients.

Similarly with Section 4.4 we selected C(i) as the 95% quantile. This procedure

was more computationally intensive but improved the method significantly; see

the figures in brackets (Table 1). An alternative approach in obtaining thresholds,

by taking time-averages of spectrum values for each i = −1,−2, . . . ,−I⋆ and then

simulating stationary models, described in the supplementary material, does well

but not as well as our suggestion above.

ON CHANGE-POINT DETECTION FOR NON-STATIONARY TIME SERIES 17

5.2. Non-stationary models

We now examine the performance of our method for a set of non-stationary

models by using and extending the examples from Cho and Fryzlewicz (2012).

Since the WBS method has improved rates of convergence new simulation results

are presented that assess how close the change-points are to their estimates.

For this reason we report the total number of change-points identified within

⌊5% · T ⌋ from the real ones. Results for ⌊2.5% · T ⌋ distances are reported in the

supplementary material.

The accuracy of a method should be also judged in parallel with the total

number of change-points identified. We propose a test that tries to accomplish

this. Assuming that we define the maximum distance from a real change-point

η as dmax, an estimated change-point η̂ is correctly identified if |η − η̂| ≤ dmax

(here within 5% of the sample size). If two (or more) estimated change-points are

within this distance then only one change-point, the closest to the real change-

point, is classified as correct. The rest are deemed to be false, except if any of

these are close to another change-point. An estimator performs well when the

hit ratio

HR =
#correct change-points identified

max(N, N̂)

is close to 1. By using the term max(N, N̂) we aim to penalise cases where,

for example, the estimator correctly identifies a certain number of change-points

all within the distance dmax, but N̂ < N . It also penalises the estimator when

N̂ > N and all N̂ estimated change-points are within distance dmax of the true

ones.

Tables 2 and 3 summarising the results, and histograms of the estimated

change-point locations for every model, can be found in the supplementary ma-

terial.

Model A: A non-stationary process that includes one AR(1) and two AR(2)

processes with two clearly observable change-points

yt =




0.9yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 512,

1.68yt−1 − 0.81yt−2 + εt, εt ∼ N(0, 1) for 513 ≤ t ≤ 768,

1.32yt−1 − 0.81yt−2 + εt, εt ∼ N(0, 1) for 769 ≤ t ≤ 1, 024.

BS2 was the best option, marginally ahead of WBS1 and WBS2. The fact

that BS performed well here was not surprising given the fact that the change-

points are far apart and prominent. However, it is reassuring to see the WBS

methods also performed well.

Model B: A non-stationary process with two less clearly observable change-

points
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Table 1. Stationary processes results. For all the models the sample size
was 1,024 and there were no change-points. Figures show the number of
occasions the methods detected change-points with the universal thresholds
C(i) obtained as described in Section 4.4. Figures in brackets are the number
of occasions the methods detected change-points with the thresholds C(i)

obtained as described in Section 5.1.

Model BS1 WBS1 BS2 WBS2 CF

S1: iid standard normal 1 [0] 3 [2] 0 [0] 1 [0] 4

S2: AR(1) with parameter 0.9 3 [1] 5 [1] 1 [1] 5 [1] 9

S3: AR(1) with parameter −0.9 58 [0] 93 [0] 46 [0] 48 [5] 79

S4: MA(1) with parameter 0.8 2 [3] 7 [4] 3 [3] 1 [0] 7

S5: MA(1) with parameter −0.8 2 [0] 4 [2] 4 [0] 0 [0] 7

S6: ARMA(1,0,2) with AR= {−0.4} and
MA= {−0.8, 0.4}

8 [0] 27 [0] 8 [0] 8 [0] 25

S7: AR(2) with parameters 1.39 and
−0.96

88 [3] 99 [4] 88 [3] 88 [5] 96

5.1. Models with no change-points

We simulated stationary time series with innovations εt ∼ N(0, 1) and we

report the number of occasions (out of 100) the methods incorrectly rejected the

null hypothesis of no change-points. The models S1-S7 (Table 1) are taken from

Nason (2013).

The results of Table 1 indicate our methods’ better performance than that

of Cho and Fryzlewicz (2012), apart from models S3 and S7 where all methods

incorrectly reject the null hypothesis on many occasions. A visual inspection

of an AR(1) process with ϕ = −0.9 would confirm that this type of process

exhibits a “clustering behaviour” which mimics changing variance. Hence, the

process is interpreted as non-stationary by the wavelet periodogram resulting

in erroneous outcomes. A similar argument is valid for S7 model. To correct

for that limitation, C(i) should be chosen with care. Higher values ensure that

the null hypothesis is not rejected frequently. This is achieved by not using

universal thresholds (as shown in Section 4.4) but calculating them for every

instance. Specifically, given a time series yt we fit an AR(p) model. Then we

generated 100 instances of the same length and with the same AR(p) coefficients.

Similarly with Section 4.4 we selected C(i) as the 95% quantile. This procedure

was more computationally intensive but improved the method significantly; see

the figures in brackets (Table 1). An alternative approach in obtaining thresholds,

by taking time-averages of spectrum values for each i = −1,−2, . . . ,−I⋆ and then

simulating stationary models, described in the supplementary material, does well

but not as well as our suggestion above.
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5.2. Non-stationary models

We now examine the performance of our method for a set of non-stationary

models by using and extending the examples from Cho and Fryzlewicz (2012).

Since the WBS method has improved rates of convergence new simulation results

are presented that assess how close the change-points are to their estimates.

For this reason we report the total number of change-points identified within

⌊5% · T ⌋ from the real ones. Results for ⌊2.5% · T ⌋ distances are reported in the

supplementary material.

The accuracy of a method should be also judged in parallel with the total

number of change-points identified. We propose a test that tries to accomplish

this. Assuming that we define the maximum distance from a real change-point

η as dmax, an estimated change-point η̂ is correctly identified if |η − η̂| ≤ dmax

(here within 5% of the sample size). If two (or more) estimated change-points are

within this distance then only one change-point, the closest to the real change-

point, is classified as correct. The rest are deemed to be false, except if any of

these are close to another change-point. An estimator performs well when the

hit ratio

HR =
#correct change-points identified

max(N, N̂)

is close to 1. By using the term max(N, N̂) we aim to penalise cases where,

for example, the estimator correctly identifies a certain number of change-points

all within the distance dmax, but N̂ < N . It also penalises the estimator when

N̂ > N and all N̂ estimated change-points are within distance dmax of the true

ones.

Tables 2 and 3 summarising the results, and histograms of the estimated

change-point locations for every model, can be found in the supplementary ma-

terial.

Model A: A non-stationary process that includes one AR(1) and two AR(2)

processes with two clearly observable change-points

yt =




0.9yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 512,

1.68yt−1 − 0.81yt−2 + εt, εt ∼ N(0, 1) for 513 ≤ t ≤ 768,

1.32yt−1 − 0.81yt−2 + εt, εt ∼ N(0, 1) for 769 ≤ t ≤ 1, 024.

BS2 was the best option, marginally ahead of WBS1 and WBS2. The fact

that BS performed well here was not surprising given the fact that the change-

points are far apart and prominent. However, it is reassuring to see the WBS

methods also performed well.

Model B: A non-stationary process with two less clearly observable change-

points
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yt =





0.4yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 400,

−0.6yt−1 + εt, εt ∼ N(0, 1) for 401 ≤ t ≤ 612,

0.5yt−1 + εt, εt ∼ N(0, 1) for 613 ≤ t ≤ 1, 024.

The WBS methods did better, marginally ahead of the BS methods. This
is again not unexpected given the fact that the change-points are less prominent
than in Model A.

Model C: A non-stationary process with a short segment at the start

yt =

{
0.75yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 50,

−0.5yt−1 + εt, εt ∼ N(0, 1) for 51 ≤ t ≤ 1, 024.

Here BS2 and CF perform well compared to the BS1, WBS1, and WBS2
methods. It was expected that binary segmentation methods would perform
better due to the fact that they start their search assuming a single change-
point.

Model D: A non-stationary process similar to model B, but with the two change-
points at a short distance from each other. In this model, the two change-points
occur are close to each other, (400, 470) instead of (400, 612). The CF method,
BS1, and BS2 did not perform well, as the two change-points were detected in
less than half of the cases. By contrast, the WBS1 and WBS2 methods achieved
high hit ratios (almost double that of the BS methods).

Model E: A highly persistent non-stationary process with time-varying variance

yt =




1.399yt−1 − 0.4yt−2 + εt, εt ∼ N(0, 0.8) for 1 ≤ t ≤ 400,

0.999yt−1 + ϵt, εt ∼ N(0, 1.22) for 401 ≤ t ≤ 750,

0.699yt−1 + 0.3yt−1 + εt, εt ∼ N(0, 1) for 751 ≤ t ≤ 1, 024.

The CF and BS1 methods performed well as they detected most of the
change-points within 5% distance from the real ones. From our simulations we
noticed that in most cases the two change-points were found in the finest scale
(i = −1). The aggregation Method 2 did not improve the estimation since its
purpose is to simultaneously combine the information from different scales. On
the other hand, the CF method and Method 1 favoured change-points detected
in the finest scales leading to good performance.

Model F: A piecewise constant ARMA(1,1) process

yt =




0.7yt−1 + ϵt + 0.6εt−1, for 1 ≤ t ≤ 125,

0.3yt−1 + ϵt + 0.3εt−1, for 126 ≤ t ≤ 532,

0.9yt−1 + ϵt, for 533 ≤ t ≤ 704,

0.1yt−1 + ϵt − 0.5εt−1, for 704 ≤ t ≤ 1, 024.
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The first change-point was the least apparent and was left undetected in most

cases when applying the CF method. Our methods were capable of capturing

this point more frequently, and within 5% from its real position.

Model G: A near-unit-root non-stationary process with time-varying variance

yt =





0.999yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 200, 401 ≤ t ≤ 600,

and 801 ≤ t ≤ 1, 024,

0.999yt−1 + εt, εt ∼ N(0, 1.52) for 201 ≤ t ≤ 400 and 601 ≤ t ≤ 800.

In this near-unit-root process there are four change-points in its variance.

The binary segmentation methods did not perform well as they often missed

the middle change-points. Both WBS1 and WBS2 managed to detect most of

the change-points achieving a hit ratio almost three times higher than BS2. In

almost 70% of the occasions WBS2 detected at least four change-points.

Model H: A non-stationary process similar to model F but with the three

change-points at a short distance from each other. In this model the three change-

points occur close to each other, N = (125, 325, 550). The first two failed to be

detected by the CF in many instances. By contrast, BS1 and BS2 did well while

WBS1 and WBS2 performed slightly better in this case by identifying them more

often. This results in a higher hit ratio.

Model I:A non-stationary AR process with many changes within close distances.

We simulated instances with five change-points occurring at uniformly distributed

positions. We allowed the distances to be as small as 30 and not larger than 100.

In this scenario, CF correctly identified more than four change-points in 15%

of the instances, while BS1 and BS2 did in 24% and 23%, respectively. Again,

the WBS methods did well in revealing the majority of the change-points and in

many cases close to the real ones.

In summary, the WBS methods offer a reliable default choice. In terms of

the hit ratio, they performed the best or nearly the best in 7 of the 9 models

studied, and did not perform particularly poorly in the other models, especially

if the total number of detected change-points is taken into account. BS1, BS2

and CF performed poorly in at least three of the models. In terms of the hit

ratio, both BS methods were best or close to it only in two models. Overall, the

WBS methods seemed the clear winners here. Our recommendation to the user

is to try the WBS2 method first, since overall it appears to be the most reliable

one.
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0.5yt−1 + εt, εt ∼ N(0, 1) for 613 ≤ t ≤ 1, 024.

The WBS methods did better, marginally ahead of the BS methods. This
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Here BS2 and CF perform well compared to the BS1, WBS1, and WBS2
methods. It was expected that binary segmentation methods would perform
better due to the fact that they start their search assuming a single change-
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The CF and BS1 methods performed well as they detected most of the
change-points within 5% distance from the real ones. From our simulations we
noticed that in most cases the two change-points were found in the finest scale
(i = −1). The aggregation Method 2 did not improve the estimation since its
purpose is to simultaneously combine the information from different scales. On
the other hand, the CF method and Method 1 favoured change-points detected
in the finest scales leading to good performance.

Model F: A piecewise constant ARMA(1,1) process
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0.7yt−1 + ϵt + 0.6εt−1, for 1 ≤ t ≤ 125,

0.3yt−1 + ϵt + 0.3εt−1, for 126 ≤ t ≤ 532,

0.9yt−1 + ϵt, for 533 ≤ t ≤ 704,

0.1yt−1 + ϵt − 0.5εt−1, for 704 ≤ t ≤ 1, 024.
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The first change-point was the least apparent and was left undetected in most

cases when applying the CF method. Our methods were capable of capturing

this point more frequently, and within 5% from its real position.

Model G: A near-unit-root non-stationary process with time-varying variance

yt =





0.999yt−1 + εt, εt ∼ N(0, 1) for 1 ≤ t ≤ 200, 401 ≤ t ≤ 600,

and 801 ≤ t ≤ 1, 024,

0.999yt−1 + εt, εt ∼ N(0, 1.52) for 201 ≤ t ≤ 400 and 601 ≤ t ≤ 800.

In this near-unit-root process there are four change-points in its variance.

The binary segmentation methods did not perform well as they often missed

the middle change-points. Both WBS1 and WBS2 managed to detect most of

the change-points achieving a hit ratio almost three times higher than BS2. In

almost 70% of the occasions WBS2 detected at least four change-points.

Model H: A non-stationary process similar to model F but with the three

change-points at a short distance from each other. In this model the three change-

points occur close to each other, N = (125, 325, 550). The first two failed to be

detected by the CF in many instances. By contrast, BS1 and BS2 did well while

WBS1 and WBS2 performed slightly better in this case by identifying them more

often. This results in a higher hit ratio.

Model I:A non-stationary AR process with many changes within close distances.

We simulated instances with five change-points occurring at uniformly distributed

positions. We allowed the distances to be as small as 30 and not larger than 100.

In this scenario, CF correctly identified more than four change-points in 15%

of the instances, while BS1 and BS2 did in 24% and 23%, respectively. Again,

the WBS methods did well in revealing the majority of the change-points and in

many cases close to the real ones.

In summary, the WBS methods offer a reliable default choice. In terms of

the hit ratio, they performed the best or nearly the best in 7 of the 9 models

studied, and did not perform particularly poorly in the other models, especially

if the total number of detected change-points is taken into account. BS1, BS2

and CF performed poorly in at least three of the models. In terms of the hit

ratio, both BS methods were best or close to it only in two models. Overall, the

WBS methods seemed the clear winners here. Our recommendation to the user

is to try the WBS2 method first, since overall it appears to be the most reliable

one.
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Table 2. Non-stationary processes results for T =1,024 (Models A - I).
Table shows the number of occasions a method detected the given number
of change-points within a distance of 5% from the real ones. Bold: the
method with the highest hit ratio or within 10% from the highest.

Number of Change-points
Model A B C

BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 2 0 1 0 3 0 0 0 0 0 39 12 35 21 6
1 29 15 16 21 29 11 8 4 9 7 61 88 65 79 94
2 69 85 83 79 68 89 92 96 91 93 - - - - -

Hit ratio 0.768 0.850 0.817 0.808 0.712 0.928 0.921 0.966 0.928 0.865 0.580 0.860 0.600 0.746 0.853

Model D E F
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 36 52 12 11 48 6 12 8 11 1 2 0 0 0 1
1 58 14 9 11 12 40 42 59 53 40 18 6 5 3 7
2 6 34 79 78 40 54 46 33 36 59 32 32 22 24 45
3 - - - - - - - - - - 48 62 73 73 47

Hit ratio 0.428 0.403 0.835 0.835 0.436 0.712 0.649 0.610 0.611 0.743 0.744 0.847 0.890 0.894 0.765

Model G H I
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 58 60 9 11 39 0 0 2 2 0 0 2 1 0 0
1 11 11 13 6 20 40 33 23 16 29 39 33 8 8 39
2 20 21 20 20 30 38 37 38 40 57 16 15 8 7 27
3 6 5 15 22 5 22 30 37 42 14 23 27 20 18 25
4 5 3 43 41 6 - - - - - 14 11 22 18 3
5 - - - - - - - - - - 8 12 41 49 6

Hit ratio 0.222 0.200 0.671 0.686 0.297 0.605 0.654 0.693 0.732 0.603 0.472 0.496 0.745 0.779 0.419

Table 3. Non-stationary processes results for T =1,024 (Models A - I). Table
shows the percentage of occasions a method detected the given number of
change-points. True number of change-points is in bold.

Number of Change-points
Model A B C

BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 0 0 0 0 0 0 0 0 0 0 34 9 6 4 2
1 5 0 0 1 0 0 0 0 0 1 59 86 78 84 81
2 59 77 65 70 65 78 81 79 80 70 7 5 11 8 16

≥ 3 36 23 35 30 35 22 19 21 20 29 0 0 5 4 1
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model D E F
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 49 42 8 3 38 0 0 1 1 0 0 0 0 0 0
1 5 9 0 1 17 22 21 22 24 19 14 0 0 0 1
2 45 45 87 88 38 63 65 65 61 65 13 9 12 8 19
3 1 4 5 8 7 14 11 10 12 15 63 82 78 81 65

≥ 4 0 0 0 0 0 1 3 2 2 1 10 9 10 11 15
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model G H I
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 59 59 7 4 38 0 0 0 0 0 0 0 0 0 0
1 7 8 3 2 16 24 20 13 16 12 33 30 8 1 22
2 23 21 17 22 32 32 24 30 22 51 9 6 2 2 28
3 1 2 4 2 3 41 50 48 55 30 22 23 10 11 24
4 9 10 62 66 11 3 6 7 6 7 12 18 14 13 11

≥ 5 1 0 7 4 0 0 0 2 1 0 24 23 66 73 15
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Figure 2. Natural logarithm of the GNP series (left) and its first difference
(right). The top, middle and bottom vertical lines are the change-points as
estimated by CF, WBS2 and BS2 respectively.

6. Applications

6.1. US Gross National Product series (GNP)

We obtained the GNP time series from the Federal Reserve Bank of St.

Louis web page (http://research.stlouisfed.org/fred2/series/GNP). The

seasonally adjusted and quarterly data is expressed in billions of dollars and spans

from 1947:1 until 2013:1 but we only used the last 256 observations. In the left

panel of Figure 2 one can see the logarithm of the GNP series. As in Shumway

and Stoffer (2011), we only examine the first difference of the logarithm of the

GNP (also called the growth rate) since there is an obvious linear trend. In the

right panel of the same figure, which illustrates the growth rate, it is visually clear

that the series exhibits less variability in its latter portion. We were interested

in finding whether our method is capable of spotting this change and/or possibly

others.

Applying BS2 and WBS2 (BS1 and WBS1 produced identical results) we

found that BS2 detected two change-points η̂ = {133, 222}, while the WBS2

detected three at positions {18, 131, 230}. For comparison, CF detected two

possible change-points η̂ = {134, 234}. The acf graphs (not shown here) confirm

that there may be changes in the autocovariance structure occurring at all of

these estimated change-points.

Change-point 18 1953(3), almost exactly coincides with a peak of the GNP

growth as decided by the Business Cycle Dating Committee of the National

Bureau of Economic Research; their official date is July 1953 (note that cycles do

not necessarily overlap with the quarterly publications of the GNP). In addition,

change-points 131, 133 and 134 lie within a cycle that peaks in January 1981 and

has a trough in November 1982. This cycle corresponds to the start of the Great
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Table 2. Non-stationary processes results for T =1,024 (Models A - I).
Table shows the number of occasions a method detected the given number
of change-points within a distance of 5% from the real ones. Bold: the
method with the highest hit ratio or within 10% from the highest.
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Figure 2. Natural logarithm of the GNP series (left) and its first difference
(right). The top, middle and bottom vertical lines are the change-points as
estimated by CF, WBS2 and BS2 respectively.

6. Applications

6.1. US Gross National Product series (GNP)

We obtained the GNP time series from the Federal Reserve Bank of St.

Louis web page (http://research.stlouisfed.org/fred2/series/GNP). The

seasonally adjusted and quarterly data is expressed in billions of dollars and spans

from 1947:1 until 2013:1 but we only used the last 256 observations. In the left

panel of Figure 2 one can see the logarithm of the GNP series. As in Shumway

and Stoffer (2011), we only examine the first difference of the logarithm of the

GNP (also called the growth rate) since there is an obvious linear trend. In the

right panel of the same figure, which illustrates the growth rate, it is visually clear

that the series exhibits less variability in its latter portion. We were interested

in finding whether our method is capable of spotting this change and/or possibly

others.

Applying BS2 and WBS2 (BS1 and WBS1 produced identical results) we

found that BS2 detected two change-points η̂ = {133, 222}, while the WBS2

detected three at positions {18, 131, 230}. For comparison, CF detected two

possible change-points η̂ = {134, 234}. The acf graphs (not shown here) confirm

that there may be changes in the autocovariance structure occurring at all of

these estimated change-points.

Change-point 18 1953(3), almost exactly coincides with a peak of the GNP

growth as decided by the Business Cycle Dating Committee of the National

Bureau of Economic Research; their official date is July 1953 (note that cycles do

not necessarily overlap with the quarterly publications of the GNP). In addition,

change-points 131, 133 and 134 lie within a cycle that peaks in January 1981 and

has a trough in November 1982. This cycle corresponds to the start of the Great
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Figure 3. Plot of BabyECG data. The top, middle and bottom vertical lines
are the change-points as estimated by CF, WBS2, and BS2, respectively.
The horizontal dotted line represents the sleep states: 1 = quiet sleep, 2 =
quiet-to-active sleep, 3 = active sleep, 4 =awake.

Moderation (around 1980s), a period that experienced more efficient monetary
policy and shocks of small magnitude, see and references therein. Finally, we
note that all three methods detected a change-point toward the end of the series
- 222, 230, 234 (2004(3), 2006(3) and 2007(3)), respectively. According to e.g.,
Clark (2009) the Great Moderation had reversed and the decline was offset by
negative growth rates due to the recent economic recession.

6.2. Infant Electrocardiogram Data (ECG)

We applied CF, BS2, and WBS2 to the ECG data of an infant, found at
the R package wavethresh. This is a popular example of a non-stationary time
series and it has been analysed in e.g. Nason, Von Sachs and Kroisandt (2000).
The local segments of possible stationarity indicate the sleep state of the infant,
classified on a scale from 1 to 4, see the caption of Figure 3. The same figure
plots the time series with the respective estimated change-points (the methods
were applied on the first difference so that its mean is approximately zero). All
methods identify most of the sleep states and, notably, WBS2 detects an abrupt
change of short duration (quiet sleep-awake-quiet sleep) toward the end of the
series.

7. Conclusion

The paper has addressed the problem of detecting the change-points in the
autocovariance structure of a univariate time series. There are many types of
non-stationary time series that require segmentation methods. Using the WBS
framework we are able to detect multiple change-points that are small in mag-
nitude and/or close to each other. The simulation study in Section 5 indicates
that the WBS mechanism performs well at this task.
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The online supplementary material contains additional simulation studies

supporting the choice of the default parameters of our procedure, empirical per-

formance evaluation for small and large samples and using other error measures,

additional material on the variance stabilization, as well as proofs of our theo-

retical results.
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