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Abstract

Paradata refers here to data at unit level on an observed auxiliary variable, not usually of direct

scientific interest, which may be informative about the quality of the survey data for the unit. There

is increasing interest among survey researchers in how to use such data. Its use to reduce bias from

nonresponse has received more attention so far than its use to correct for measurement error. This

paper considers the latter with a focus on binary paradata indicating the presence of measurement

error. A motivating application concerns inference about a regression model, where earnings is

a covariate measured with error and whether a respondent refers to pay records is the paradata

variable. We specify a parametric model allowing for either normally or t-distributed measurement

errors and discuss the assumptions required to identify the regression coefficients. We propose two

estimation approaches which take account of complex survey designs: pseudo-maximum likelihood

estimation and parametric fractional imputation. These approaches are assessed in a simulation

study and are applied to a regression of a measure of deprivation given earnings and other covariates

using British Household Panel Survey data. It is found that the proposed approach to correcting

for measurement error reduces bias and improves on the precision of a simple approach based on

accurate observations. We outline briefly possible extensions to uses of this approach at earlier

stages in the survey process. Supplemental materials are available online.

Key words: Auxiliary survey information; Complex sampling; Fractional imputation; Pseudo

maximum likelihood.
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1. INTRODUCTION

Survey researchers have shown increasing interest in potential uses of paradata, taken here to refer

to variables recorded in a survey which are not of direct interest for analysis but may be informative

about data quality. Kreuter (2013, sec. 1.4) notes that there has been a particular focus on the use

of such information to reduce nonresponse bias, whereas questions about measurement error have

received rather less attention. In this paper we consider the latter and specifically the question

of how paradata might be used to correct regression analyses of survey data for bias induced by

measurement error.

Examples of paradata which may be related to measurement error include those obtained au-

tomatically from computerized survey systems, such as times to respond to questions (Olson and

Parkhurst 2013). Other examples are obtained from interviewer observations, such as whether an

interviewer feels that a respondent’s answers are accurate (Barrett et al. 2006) or whether the re-

spondent answered a question with an expression of uncertainty (Mathiowetz 1998). In each case,

the paradata variable is binary and might be interpreted as indicating the presence of measurement

error. Thus, if the paradata variable is denoted ai, it may take the value 1 if the observed value

u∗i of a variable of interest for unit i is accurate and 0 if inaccurate. Assuming that the accurate

observation is without measurement error, we write

u∗i =

 ui, ai = 1,

ui + τεi, ai = 0,
(1)

where ui is the true value of the variable of interest, τεi denotes measurement error for the inaccurate

measurement and it will be convenient to introduce the constant τ > 0 as a scale parameter.

Schouten and Calinescu (2013) discuss a related idea of a ’measurement profile’, which indicates

the existence of a specified form of survey measurement error.

One variable which is frequently collected in household surveys, is often included as a regressor

in regression analyses of survey data, but has long been known to be measured with error is earnings

(Rodgers et al. 1993; Moore et al. 2000). A natural binary paradata variable to use in a face-to-face

survey in this case is whether the interviewer observes the respondent referring to their pay records

when responding. There is reason to expect an accurate response if their records are referred to

but not otherwise. In this paper we shall consider an application with these choices of u∗i and ai.
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We consider a regression analysis where the outcome variable is a measure of hardship experienced

by the respondent. There is interest and possible welfare policy implications in whether different

kinds of people experience different levels of hardship for a given level of earnings or income and, in

particular, whether there is variation by age. Such questions can be addressed through regression

analysis and we shall consider an analysis, based upon that of Berthoud et al. (2009), using data

from the British Household Panel Survey to explore the impact of using such a paradata variable

to adjust the estimated regression coefficients.

The methodological objective of this paper is to consider how to analyse survey data when

observations on one of the variables of interest consist of pairs of values (u∗i , ai), where ai is a

binary paradata variable and the model in (1) holds. We also consider sensitivity analysis to

departures from model (1) where ai = 1 may not guarantee accurate measurement. We focus on

the case of regression analysis where ui is a covariate. Battistin et al. (2003) considered a similar

problem where a covariate is a measure of household consumption which is subject to recall error

and where paradata in the form of interview quality indicators, such as an interviewer’s assessment

of how well the respondent understood the questions, were available as predictors of the recall

error. They developed ways of identifying the model through the use of data from a second survey

and through other restrictions on the model. Our approach, restricted to binary paradata, builds

on the approach of Da Silva and Skinner (2014), who refer to the binary paradata variable as

an accuracy indicator. They developed a pseudo maximum likelihood approach to estimating the

finite population distribution function of ui, under some normality assumptions. This paper differs

in two main ways. Firstly, the target of inference is different. We consider here the problem of

fitting a linear regression model when ui is one of the covariates, for which it turns out that the

parameter identification issues are somewhat different. Both this problem and the one of estimating

a distribution function are, nevertheless, well-known cases where measurement error can lead to

estimation bias, even if εi has mean 0. The second main new feature of this paper is that we develop

a fractional imputation approach (Kim 2011), which may be applied to problems where the pseudo

maximum likelihood approach is not tractable, but the model is still expressed in a parametric

form. We seek to develop an approach which can accommodate complex sampling schemes and the

fractional imputation method is well-suited to this objective.
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There is a literature on the use of multiple imputation to correct for covariate measurement error

when data from a calibration study are available (Cole et al. 2006; He and Zaslavsky 2009; Guo et al.

2012). Blackwell et al. (2015) also discuss the use of multiple imputation for measurement error

and specifically allow for the presence of an observed binary variable ai governing the occurrence

of measurement error, as in (1), but they assume additional information about the measurement

error variance and do not allow for complex sampling.

The use of paradata for inference in measurement error models is analogous to the use of in-

strumental variable methods (Carroll et al. 2006, ch. 6) in the sense that both paradata and

instrumental variables are auxiliary variables. They are completely different, however, in that

instrumental variables are assumed to be independent of (or at least uncorrelated with)the mea-

surement error, whereas we are interested in paradata variables precisely because they are related

to measurement error.

Our setting is related to the literature on measurement error with unequal variances (e.g. Fuller

1987, sec. 3.1), since a key feature of our model is that error variances are either zero or non-zero,

according to the value of ai. However, that literature generally assumes that auxiliary information

is available about the unequal measurement error variances, whereas we only assume that ai is

observed.

We set out our framework and broad estimation approaches in Sections 2 and 3. The fractional

imputation approach is presented in Section 4, with variance estimation covered in Section 5. An

initial investigation of the proposed approaches is conducted by simulation in Section 6. The

application of the proposed approach to data from the British Household Panel Survey is given

in Section 7 with some concluding remarks in Section 8. Our approach makes strong parametric

modeling assumptions and we discuss the sensitivity of our methods to departures from these

assumptions both in the simulation in Section 6 and in the application in Section 7. The importance

of modeling assumptions has also been recognized in the literature on multiple imputation for

measurement error, where Guo et al. (2012) provide a sensitive analysis to evaluate robustness to

violation of a normality assumption and Blackwell et al. (2015) discuss how to incorporate different

assumptions about the measurement error.
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2. THE FRAMEWORK AND MODEL

We now set out the inferential framework and modelling assumptions. Consider a population of N

units, denoted by U = {1, ..., N}, from which a probability sample A of size n is selected and for

which a regression analysis is to be undertaken. Let yi denote the value of the dependent variable

and (x>1i, ui)
> the value of the vector of explanatory variables for unit i ∈ U . We suppose that the

vector x1i is observed without error for units in A, but that ui is measured with error by u∗i . To

permit a departure from model (1), we denote the observed binary accuracy indicator by a∗i and

treat the binary variable ai which does obey (1) as unobserved. We assume that ai = 0 if a∗i = 0

but that ai = 0 with probability p and ai = 1 with probability 1−p if a∗i = 1. When p = 0, we have

a∗i = ai and the observed accuracy indicator obeys (1). In general, we treat p as a specified known

value, possibly derived from some external source, which may be varied from 0 in a sensitivity

analysis, allowing for the possibility that a∗i = 1 does not guarantee accuracy. We suppose the

population values yi are generated independently by the standard linear regression model

yi = x>1iβx + uiβu + ei, (2)

where ei ∼ N(0, σ2) is independent of (x1i, ui). The objective is to make inference about β =

(β>x , βu) given the observed data, which we assume to be of the form {(yi,x>i , u∗i , a∗i ) : i ∈ A},

where xi = (x>1i,x
>
2i)
> and the vector x2i contains additional explanatory variables which may

affect ui, as will be discussed later.

We suppose that the model governing the measurement error in ui is given by (1). We consider

two possible forms for the measurement error distribution. The probability density, g, of εi may be

either: (i) standard normal, where

g(εi | ui,xi, ai = 0) = φ(εi), (3)

and φ(·) denotes the density of the standard normal distribution or (ii) Student’s t with pre–specified

degrees of freedom ν, where

g(εi | ui,xi, ai = 0) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)(1 +
ε2i
ν

)− ν+1
2

. (4)

The first case represents a classical measurement error model. The latter case represents a mea-

surement error distribution which is more robust than the standard normal against possible outliers

in the data (Lange et al. 1989) and seems natural in applications such as ours.

7



We propose to base inference on a fully parametric model and now set out the features of this

model. Our underlying assumptions are that

• {(yi, u∗i , ui, ai, a∗i ,xi) : i = 1, ..., N} are independent random vectors;

• yi and u∗i are conditionally independent given ui, ai and xi, for all i ∈ U ;

• yi and ai are conditionally independent given ui and xi, for all i ∈ U ;

• (yi, u
∗
i , ui) and a∗i are conditionally independent given ai and xi, for all i ∈ U .

The first assumption represents a standard kind of superpopulation model used in the analysis of

complex survey data. The parameters of interest are defined through the marginal unit-level model.

Inference about these parameters under complex sampling, such as stratification and clustering, will

be handled through survey weighting and variance estimation methods rather than by elaborating

the model Skinner et al. (1989). The second assumption is the standard one of nondifferential

measurement error, where u∗i is a surrogate of ui (Carroll et al. 2006, sec. 2.5). The third assumption

is similar to the second in supposing that, not only is the measurement error nondifferential with

respect to yi given ui and xi, but this is also true of the accuracy indicator designed to be associated

with this measurement error. The fourth assumption enables sensitivity analysis for a simple

departure from (1).

Using the above assumptions, we express the basic model as

f(yi, u
∗
i , ui, ai | a∗i ,xi) = f(yi | ui,xi;γ)f(u∗i | ui, ai,xi; τ2)f(ui | ai,xi; δ)f(ai | a∗i ). (5)

The first three components of (5) are parameterised in terms of γ = (β>x , βu, σ
2)>, τ2 and δ =

(δ>u , δa, σ
2
u)>. The density f(yi | ui,xi;γ) represents the regression model of interest in (2). The

density f(u∗i | ui, ai,xi; τ2) refers to the measurement error model in (1). Our framework allows for

dependence of the distribution of measurement error on xi, but we shall not find this necessary in

our application and for simplicity do not include such dependence in the distributions in (3) and

(4). The density f(ui | ai,xi; δ) refers to the distribution of the true value of the variable measured

with error. The fourth component of (5) depends only on p, treated as specified in a sensitivity

analysis and not as an unknown parameter.

8



Turning to parameter identification, we note first that if p = 0 then the parameter vector γ

could be identified from the ai = 1 observations, but this is not the case for the parameters τ2

and δ. A basic problem in identifying these parameters from the joint distribution of (u∗i , ai) given

the xi (even if one could assume p = 0) is that differences in the observed distribution of u∗i

between cases with ai = 1 and cases with ai = 0 may arise either because of measurement error

in the latter cases or because ai is associated with ui even in the absence of measurement error.

Thus, further assumptions are required for identification. Da Silva and Skinner (2014) deal with

this problem by assuming that ai is conditionally independent of ui given xi, analogous to the

’missing at random’ assumption in missing data analysis, treating ai as analogous to the missing

data indicator (Little and Rubin 2002). See also Blackwell et al. (2015). In our application we

shall assume that E(εi | ai = 0,xi) ≡ 0 in (1) which implies that E(u∗i | ai,xi) = E(ui | ai,xi).

Hence, the assumption that ai is conditionally independent of ui given xi would be testable by

regressing u∗i on ai and xi and testing whether the coefficient of ai is zero if we could suppose that

p = 0. In our application we found some evidence that this coefficient is not zero across a number

of choices of xi and thus allow for a departure from the assumptions in Da Silva and Skinner (2014)

by supposing that the conditional distribution of ui given ai and xi follows a normal regression

model, that is

f(ui | ai,xi; δ) = σ−1u φ((ui − x>2iδu − aiδa)/σu). (6)

where δa may not be zero.

3. ESTIMATION

Let the parameter vector indexing the overall model described in the previous section be ψ =

(δ>,γ>, τ2). Suppose that a set of survey weights {wi : i ∈ A} is available which enables consistent

estimation of population totals. We consider estimating ψ via pseudo maximum likelihood (Binder

1983; Godambe and Thompson 1986), as discussed in Da Silva and Skinner (2014). The pseudo

maximum likelihood estimator (PML) ψ̂ of ψ is defined as the solution to the pseudo score equations

for the observed data {(u∗i , yi, a∗i ,xi) : i ∈ A}, given by

S̄obs(ψ) =
∑
i∈A

wiS̄obs,i(ψ) = 0, (7)
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where S̄obs,i(ψ) ≡ S̄obs(ψ | u∗i , yi, a∗i ,xi) = ∂ ln f(u∗i , yi | a∗i ,xi;ψ)/∂ψ is the score function of ψ

for the observed vector (u∗i , yi, a
∗
i ,xi). Under regularity conditions,

S̄obs,i(ψ) = E
[
Scom,i(ψ) | u∗i , yi, a∗i ,xi

]
, (8)

where

Scom,i(ψ) ≡ Scom(ψ | ui, ai, u∗i , yi, a∗i ,xi) =
∂

∂ψ
ln f(ui, ai, u

∗
i , yi | a∗i ,xi;ψ) (9)

is the score function of ψ for the complete vector of observations at the i–th unit, (ui, ai, yi, u
∗
i ,

a∗i , xi), and the expectation is taken with respect to the joint conditional distribution of ui and ai

given u∗i , yi, a
∗
i and xi.

Closed-form expressions for S̄obs(ψ) and details of how the pseudo maximum likelihood esti-

mator can be computed for the normal measurement error model (3) are set out in the online

supplementary materials (section 1). In order to interpret the resulting estimator of β, we note

first that the components of the pseudo score equations in (7) corresponding to β = (β>x , βu) are

given by

S̄βx(ψ) =
1

σ2

∑
i∈A

wi

{
yi − x>1iβx − βuzi,1(ψ)

}
x1i

S̄βu(ψ) =
1

σ2

∑
i∈A

wi

{
(yi − x>1iβx)zi,1(ψ)− βuzi,2(ψ)

}
,

where zi,1(ψ) ≡ E
[
ui | u∗i , yi, a∗i ,xi;ψ

]
and zi,2(ψ) ≡ E

[
u2i | u∗i , yi, a∗i ,xi;ψ

]
. It follows that we

may express the pseudo maximum likelihood estimator of β as

β̂(ψ̂) ≡

 β̂x(ψ̂)

β̂u(ψ̂)

 ≡

∑
i∈A

wi

 x1ix
>
1i x1izi,1(ψ̂)

zi,1(ψ̂)x>1i zi,2(ψ̂)



−1∑

i∈A
wi

 x1iyi

zi,1(ψ̂)yi

 . (10)

The conditional expectations zi,1 and zi,2 in this expression may be interpreted as analagous to those

arising from a mean score approach to the treatment of missing data, viewing the ui as missing in

our setting (Kim and Shao 2013). In other respects, this expression is familiar as a survey weighted

least squares estimator which is design-consistent for a corresponding finite population expression.

The key assumptions required for consistency are that the expectation structure of the regression

model (1) holds and that the first and second moments of the assumed conditional distribution

f(ui | u∗i , yi, a∗i ,xi) are valid.
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Such analytic expressions do not appear to be tractable, however, for the Student’s t mea-

surement error model (4). In particular, no closed form expressions appear to be available for the

conditional expectations zi,1 and zi,2 under the Student’s t measurement error model. We thus turn

to fractional imputation to provide an approach which can be implemented for general parametric

models.

4. ESTIMATION USING FRACTIONAL IMPUTATION

In this section, we consider how the parametric fractional imputation (PFI) method of Kim (2011)

may be used to overcome the issues of intractability indicated in the previous section. The basic

pseudo maximum likelihood method still provides the basis of our approach but now the conditional

expectation in (8) is evaluated using imputed data for the unobserved values of ui and ai, rather than

analytically. The imputed data are generated from the conditional distribution of these unobserved

variables given the observed data. We show in the supplementary materials (section 1.2) that this

conditional distribution may be expressed as:

f(ui, ai | u∗i , yi, a∗i ,xi;ψ) =



f(ui | u∗i , yi, ai = 0,xi;ψ), ai = 0, a∗i = 0,

pi(ψ)f(ui | u∗i , yi, ai = 0,xi;ψ), ai = 0, a∗i = 1,

(1− pi(ψ))f(ui | u∗i , yi, ai = 1,xi;ψ), ai = 1, a∗i = 1,

0, otherwise,

(11)

where

f(ui | u∗i , yi, ai,xi;ψ) =


f(ui|xi;δ)f(yi|ui,xi;γ)g

(
(u∗i−ui)/τ

)
∫
f(ui|xi;δ)f(yi|ui,xi;γ)g

(
(u∗i−ui)/τ

)
dui
, ai = 0,

I(ui = u∗i ) ai = 1,

(12)

and

pi(ψ) ≡ Pr(ai = 0 | u∗i , yi, a∗i = 1,xi;ψ)

=
pf(u∗i , yi | ai = 0,xi;ψ)

pf(u∗i , yi | ai = 0,xi;ψ) + (1− p)f(u∗i , yi | ai = 1,xi;ψ)
. (13)

The PFI approach allows the approximation of expectations of quantities such as h(ui, ai) by

importance sampling using a weighted summation of the form

E[h(ui, ai) | u∗i , yi, a∗i ,xi;ψ] ≈
∑M

j=1w
∗
ijh(u

(j)
iI , a

(j)
iI )∑M

j=1w
∗
ij

,
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where h(u, a) is an arbitrary integrable function,

w∗ij =
f(u

(j)
iI , a

(j)
iI | u∗i , yi, a∗i ,xi;ψ)

q(u
(j)
iI , a

(j)
iI | u∗i , yi, a∗i ,xi; ψ̂)

,

and (u
(1)
iI , a

(1)
iI ), ..., (u

(M)
iI , a

(M)
iI ) are imputed data generated from a distribution q(ui, ai | u∗i , yi, a∗i ,xi; ψ̂)

having the same support as f(ui, ai | u∗i , yi, a∗i ,xi;ψ). We propose to take:

q(ui, ai | u∗i , yi, a∗i ,xi; ψ̂) ≡ q(ui, ai | u∗i , a∗i ,xi; δ̂) =


f(ui | ai = 0,xi; δ̂), ai = 0, a∗i = 0,

pf(ui | ai = 0,xi; δ̂), ai = 0, a∗i = 1,

(1− p)I(ui = u∗i ), ai = 1, a∗i = 1.

(14)

The PFI algorithm is defined iteratively, with ψ̂(t) = (δ̂
>
(t), γ̂

>
(t), τ̂

2
(t))
> denoting the estimate

of ψ = (δ>,γ>, τ2)> at the t–th iteration for t = 0, 1, . . ., where δ̂(t) = (δ̂
>
u,(t), δ̂a,(t), σ̂

2
u,(t))

> and

γ̂(t) = (β̂
>
x,(t), β̂u,(t), σ̂

2
(t))
> and the initial estimates for t = 0 are described later. The PFI algorithm

then consists of the following steps.

Step 1 (Imputation step): For each i ∈ A,

– set a
(j)
iI = 0 for all j = 1, ...,M , if a∗i = 0; take a

(j)
iI = I(bij ≤ 1− p) for all j = 1, ...,M ,

if a∗i = 1, where bi1, ..., biM ∼ i.i.d U(0, 1);

– for all j = 1, ...,M , generate u
(j)
iI

indep∼ f(ui | ai = 0,xi; δ̂(0)) if a
(j)
iI = 0, where δ̂(0) is a

preliminary estimate of the vector of parameters δ, and set u
(j)
iI = u∗i if a

(j)
iI = 1.

Step 2 (Weighting step): Compute

S̄
∗
(ψ | ψ̂(t)) =

∑
i∈A

wi

M∑
j=1

w∗ij,tScom(ψ | u(j)iI , a
(j)
iI , u

∗
i , yi, a

∗
i ,xi),

where Scom(ψ | ui, ai, u∗i , yi, a∗i ,xi) is given in (9) and

w∗ij,t =


f(yi|u

(j)
iI ,x1i;γ̂(t))g((u

∗
i−u

(j)
iI )/τ(t))f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(t))/f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(0))∑M

j=1 f(yi|u
(j)
iI ,x1i;γ̂(t))g((u

∗
i−u

(j)
iI )/τ(t))f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(t))/f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(0))

, a
(j)
iI = 0,

f(yi|u∗i ,x1i;γ̂(t))f(u
∗
i |a

(j)
iI =1,x2i;δ̂(t))∑M

j=1 f(yi|u∗i ,x1i;γ̂(t))f(u
∗
i |a

(j)
iI =1,x2i;δ̂(t))

, a
(j)
iI = 1.

Step 3 (Maximisation step): Update the current estimate of ψ̂ as

ψ̂(t+1) ←− solution to S̄∗(ψ | ψ̂(t)) = 0.
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The procedure continues by iterating Steps 2 and 3 until a specified convergence criterion for the

estimates is met. When this happens, w∗ij and ψ̂ are taken as the corresponding values of w∗ij,t and

ψ̂(t) obtained at the last iteration.

The components of the imputed pseudo score function S̄
∗
(ψ | ψ̂(t)) in Step 2 corresponding to

βx and βu are given by

S̄
∗
βx

(ψ) =
∑
i∈A

wi

M∑
j=1

w∗ij,t
x1i

σ2

{
(yi − x>1iβx − u

(j)
iI βu)(1− a(j)iI ) + (yi − x>1iβx − u∗iβu)a

(j)
iI a
∗
i

}
,

S̄∗βu(ψ) =
∑
i∈A

wi

M∑
j=1

w∗ij,t
1

σ2

{
(yi − x>1iβx − u

(j)
iI βu)u

(j)
iI (1− a(j)iI ) + (yi − x>1iβx − u∗iβu)u∗i a

(j)
iI a
∗
i

}
.

Because
∑M

j=1w
∗
ij,t{(1− a

(j)
iI ) + a

(j)
iI a
∗
i } = 1, setting these expressions equal to zero implies that∑

i∈A
wix1ix

>
1iβ̂x +

∑
i∈A

wix1iẑ
∗
i,1tβ̂u =

∑
i∈A

wix1iyi∑
i∈A

wiẑ
∗
i,1tx

>
1iβ̂x +

∑
i∈A

wiẑ
∗
i,2tβ̂u =

∑
i∈A

wiẑ
∗
i,1tyi,

where ẑ∗i,1 and ẑ∗i,2 are the values of ẑ∗i,1t ≡
∑M

j=1w
∗
ij,t{u

(j)
iI (1 − a

(j)
iI ) + u∗i a

(j)
iI a
∗
i } and ẑ∗i,2t ≡∑M

j=1w
∗
ij,t{u

(j)2
iI (1 − a

(j)
iI ) + u∗2i a

(j)
iI a
∗
i } at convergence. Thus, the PFI estimates of βx and βu

are equivalent to using (10) with the zi,`(ψ̂) terms replaced by ẑ∗i,`, ` = 1, 2. This is true regardless

of whether the measurement errors are normal or t3 because the equations to be solved are based

only on the score functions of the model for y given x, u. The measurement error model enters into

the estimation method only via the w∗ij,t.

Initial estimates ψ̂(0) = (δ̂
>
(0), γ̂

>
(0), τ̂

2
(0))
> for the PFI algorithm are obtained as follows: γ̂(0) =

(β̂
>
x,(0), β̂u,(0), σ̂

2
(0))
> is computed by fitting model (2) by (survey) weighted least squares with u∗

replacing u using just the a∗ = 1 cases, so that β̂
>
x,(0) and β̂u,(0) are the corresponding estimated

regression coefficients and

σ̂2(0) =

{∑
i∈A

wia
∗
i

}−1∑
i∈A

wia
∗
i (yi − x>1iβ̂x,(0) − u∗i β̂u,(0))2.

The sub–vector δ̂(0) = (δ̂
>
u,(0), δ̂a,(0), σ̂

2
u,(0))

> is obtained in two steps. First, model (6) is fitted by

weighted least squares using the a∗ = 0 cases and again replacing u by u∗, giving

δ̂
>
u,(0) =

{∑
i∈A

wi(1− a∗i )x2ix
>
2i

}−1∑
i∈A

wi(1− a∗i )x2iu
∗
i .
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Second, u∗ − x>2 δ̂u,(0) is regressed on 1 using the a∗ = 1 cases. The resulting estimates δ̂a,(0) and

σ̂2u,(0) are computed by

δ̂a,(0) = n̂−11

∑
i∈A

wia
∗
i (u
∗
i − x>2iδ̂u,(0)), σ̂2u,(0) = n̂−11

∑
i∈A

wia
∗
i (u
∗
i − x>2iδ̂u,(0) − δ̂a,(0))2, and

τ̂2(0) = n̂−10

∑
i∈A

wi(1− a∗i )(u∗i − x>2iδ̂u,(0))
2 − n̂−11

∑
i∈A

wia
∗
i (u
∗
i − x>2iδ̂u1,(0))

2,

where n̂0 =
∑

i∈Awi(1 − a∗i ), n̂1 =
∑

i∈Awia
∗
i and δ̂u1,(0) is the estimated vector of coefficients

in the regression with the a∗ = 1 cases. Further details are given in the supplementary materials

(section 2).

5. VARIANCE ESTIMATION

We now consider the estimation of the variance of the PML and PFI estimators of ψ. Two variance

estimation approaches that can be used are the linearization and replication methods. See, e.g.,

Wolter (2007) and Shao and Tu (1995). Both of these approaches can be formulated in terms of

the observed information matrix of ψ, namely

Īobs(ψ) =
∑
i∈A

wiĪobs,i(ψ) =
∑
i∈A

wi[I1i(ψ) + I2i(ψ)], (15)

where I1i(ψ) = −E[Ṡcom,i(ψ) | u∗i , yi, a∗i ,xi], I2i(ψ) = −E[(Scom,i(ψ)− S̄obs,i(ψ))⊗2 | u∗i , yi, a∗i ,xi]

Ṡcom,i(ψ) ≡ Ṡcom,i(ψ | ui, ai, u∗i , yi, a∗i ,xi) = ∂S>com,i(ψ)/∂ψ, S̄obs,i(ψ) and Scom,i(ψ) are defined

in (8) and (9) respectively, and B⊗2 = BB>. Decomposition (15) corresponds to the Louis (1982)

formula.

The linearization variance estimator of ψ̂PML can be computed, under simple random sampling,

by the inverse of the observed information matrix in (15) evaluated at ψ = ψ̂PML. Expressions

for this matrix are provided in Section 1.3 of the supplementary materials for the case of Gaussian

measurement errors. For complex designs with first and second–order inclusion probabilities πi and

πij , respectively, the variance estimator can be obtained by the sandwich formula

V̂
(
ψ̂
)

=
{
Īobs(ψ̂)

}−1
V̂ {S̄obs(ψ̂)}

{
Īobs(ψ̂)

}−1
, (16)

where ψ̂ = ψ̂PML and

V̂ {S̄obs(ψ̂)} =
∑
i∈A

∑
j∈A

(πij − πiπj)
πij

wiwjS̄obs,i(ψ̂)S̄
>
obs,j(ψ̂).

14



For PFI estimation, the linearization variance estimator can also be obtained from (16) by taking

ψ̂ = ψ̂PFI and replacing the matrices V̂ {S̄obs(ψ̂)} and Īobs(ψ̂) by their corresponding weighted–

imputed versions

V̂ ∗{S̄(ψ̂)} =
∑
i∈A

∑
k∈A

(πik − πiπk)
πik

wiwkS̄
∗
i (ψ̂)S̄

∗
k(ψ̂)

and

Ī∗obs(ψ̂) = −
∑
i∈A

wi

M∑
j=1

w∗ijṠ
∗
ij(ψ̂)−

∑
i∈A

wi

M∑
j=1

w∗ij

{
S∗ij(ψ̂)− S̄∗i (ψ̂)

}⊗2
, (17)

with S̄
∗
i (ψ̂) =

∑M
j=1w

∗
ijS
∗
ij(ψ̂) and S∗ij(ψ̂) = Scom(ψ̂ | u(j)iI , a

(j)
iI , u

∗
i , yi, a

∗
i ,xi) and Ṡ∗ij(ψ̂) =

Ṡcom,i(ψ̂ | u(j)iI , a
(j)
iI , u

∗
i , yi, a

∗
i ,xi). Section 2.2 of the supplementary materials details the com-

putation of the matrix Ī∗obs(ψ̂).

In the replication method, replication weights w
(k)
i are used in the estimation procedures. If

we are only interested in estimating the variance of ψ̂, then we can use ψ̂ to obtain the replicated

variance estimator given by

V̂ (ψ̂) =

L∑
k=1

ck

(
ψ̂

(k)
− ψ̂

)2
,

where ψ̂
(k)

is the estimate of ψ for the kth replicate which is obtained in the same as ψ̂ by replacing

w
(k)
i for the wi. For PFI estimation, the imputation step does not change. However, the weighting

step and maximization step use the replication weights and the replicated version of ψ̂. Because

the EM algorithm is used for each replication, the replication method can be computationally

unattractive in practice. To avoid this computation difficulty, one may devise a Newton–Raphson

method instead of the EM algorithm and then apply the replication method to the Newton–Raphson

method. The Newton–Raphson method can be implemented by

ψ̂(t+1) = ψ̂(t) +
{
Īobs(ψ̂(t))

}−1
S̄(ψ̂(t)).

In each replicate k, we can use one-step approximation

ψ̂
(k)

= ψ̂ +
{
Īobs(ψ̂)

}−1
S̄

(k)
(ψ̂),

where S̄
(k)

(ψ) =
∑

i∈Aw
(k)
i S̄

∗
i (ψ).
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If, on the other hand, the interest is on estimating the variance of other parameters, such as η

obtained by solving the imputed estimating equation

∑
i∈A

wi

M∑
j=1

w∗ijU(η | u(j)iI , a
(j)
iI , u

∗
i , yi, a

∗
i ,xi) = 0,

then the replication method can be applied by considering as the k-th replicate of η̂ the solution to

∑
i∈A

w
(k)
i

M∑
j=1

w
∗(k)
ij U(η | u(j)iI , a

(j)
iI , u

∗
i , yi, a

∗
i ,xi) = 0,

where

w
∗(k)
ij =


f(yi|u

(j)
iI ,x1i;γ̂

(k))g((u∗i−u
(j)
iI )/τ̂ (k))f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂

(k)
)/f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(0))∑M

j=1 f(yi|u
(j)
iI ,x1i;γ̂

(k))g((u∗i−u
(j)
iI )/τ̂ (k))f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂

(k)
)/f(u

(j)
iI |a

(j)
iI =0,x2i;δ̂(0))

, a
(j)
iI = 0,

f(yi|u∗i ,x1i;γ̂
(k))f(u∗i |a

(j)
iI =1,x2i;δ̂

(k)
)∑M

j=1 f(yi|u∗i ,x1i;γ̂
(k))f(u∗i |a

(j)
iI =1,x2i;δ̂

(k)
)
, a

(j)
iI = 1.

and δ̂
(k)

, γ̂(k) and τ̂ (k) give the corresponding estimates of δ, γ and τ2 for the kth replicate.

6. SIMULATION EXPERIMENT

We now conduct a small simulation study to compare the properties of alternative methods for

point estimation of β, when the models considered earlier hold and where the measurement error

follows either a normal or t3 distribution. We also compare the properties of the linearized variance

estimator of Section 5 for the proposed methods.

We created a finite population of N = 20,000 units with values of the variables generated

as follows: x1i = x2i = (x1i1, x1i2)
>, where x1i1 ∼ Poisson(µ = 3), and x1i2 ∼ 1 + B(1, 0.6);

a∗i ∼ B(1, pi), where pi = 1/[1 + exp{−(0.3 + 0.4x1i1 − 1.3x1i2)}]; The resulting frequencies of

a∗i = 0 and a∗i = 1 cases were 12,412 and 7,588, respectively. One set of a values was generated

from the a∗ according to the extended measurement error model with true value of p equal to zero.

Based on these set, we generated ui = δ0 + δ1x1i1 + δ2x1i2 + δaai + σuεiu, εiu
indep∼ N(0, 1) and

yi ∼ β0 + β1x1i1 + β2x1i2 + βuui + ei, ei
indep∼ N(0, σ2) for i = 1, 2, ..., N . Finally, the following

two sets of u∗ values was generated according to the Normal and t3 measurement error models:

u∗i1 = (ui + τεi1)(1− ai) + uiai, where εi1
indep∼ N(0, 1), and u∗i2 = (ui + τεi2)(1− ai) + uiai, where

εi2
indep∼ t3. The parameter values used to generated the values of these variables were δ0 = 300,

δ1 = 1, δ2 = −2, δa = 2, σu = 3, β0 = 50, β1 = 2, β2 = 3, βu = 0.5, σ = 2 and τ = 2. We
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selected 2, 000 independent simple random samples (without replacement) of sizes n = 500 from

the population and computed various estimators from the data for each sample under both the

normal and t3 measurement error model cases. The PML and PFI methods were applied with

p = 0.0 and p = 0.2. The PFI algorithm was implemented with M = 200 imputations at Step 1.

Table 1 presents the simulation mean, relative bias, standard deviation and square root of the

mean square error of the unadjusted, PML and PFI (specified both with p = 0.0) estimators of the

elements of the vector β for the normal measurement error case. The results of the PML and PFI

estimators for mispecifying p by the value 0.2 are given in the supplementary materials (section

3). The unadjusted estimator displays non-negligible bias for each element of β, as expected, and

this bias is severe for βu. The PML and PFI estimators are effective in correcting for this bias,

with their simulation RMSEs being dominated by their simulation standard deviations for each

parameter. Little difference is observed between the three adjusted estimators, other than very

slight gains for the two methods based on the correct normality assumption versus the method

based on the incorrect t3 assumption. The table also contains results of an unadjusted analysis

applied just to the accurate cases with a∗i = 1. This approach also removes the bias but has

variances substantially larger than the PML and PFI approaches. The corresponding results for

the case where the measurements errors have a t3 distribution are given in Table 2. Again, the

unadjusted estimator shows serious bias. The PFI estimators are effective in correcting for this

bias and generally perform similarly. There is little evidence of gain from the method based on the

correct t3 assumption.

The misspecification of p as 0.2 when it is actually 0 has little effect on the estimation of the

main parameters of interest, β1, β2 and βu, although it does lead to non-negligible bias in the

estimation of β0. Similarly, the misspecification of p as 0 when it is 0.2 has little effect on the

estimation of β1, β2 and βu, but does lead to non-negligible bias in the estimation of β0.
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Table 1: Monte Carlo properties of alternative estimators of the parameters

of interest under normal measurement errors and p = 0.0

Method Parameter True Mean RB SD RMSE

All cases β0 50.00 79.46 58.9 7.89 30.50

β1 2.00 2.12 6.0 0.06 0.14

β2 3.00 2.76 -8.0 0.20 0.31

βu 0.50 0.40 -19.6 0.03 0.10

a∗=1 cases β0 50.00 49.05 -1.9 14.07 14.10

β1 2.00 1.99 -0.3 0.10 0.10

β2 3.00 3.00 0.0 0.32 0.32

βu 0.50 0.50 0.6 0.05 0.05

PML Normal (p = 0.0) β0 50.00 49.93 -0.1 10.62 10.62

β1 2.00 2.00 0.2 0.07 0.07

β2 3.00 3.01 0.2 0.21 0.21

βu 0.50 0.50 0.0 0.04 0.04

PFI Normal (p = 0.0) β0 50.00 47.44 -5.1 10.46 10.77

β1 2.00 1.99 -0.3 0.07 0.07

β2 3.00 3.03 0.9 0.21 0.21

βu 0.50 0.51 1.7 0.03 0.04

PFI t3 (p = 0.0) β0 50.00 51.42 2.8 10.37 10.47

β1 2.00 2.01 0.5 0.07 0.07

β2 3.00 3.00 -0.1 0.21 0.21

βu 0.50 0.50 -1.0 0.03 0.03
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Table 2: Monte Carlo properties of alternative estimators of the parameters

of interest under t3 measurement errors and p = 0.0

Method Parameter True Mean RB SD RMSE

All cases β0 50.00 112.28 124.6 10.49 63.15

β1 2.00 2.24 12.0 0.07 0.25

β2 3.00 2.48 -17.2 0.22 0.56

βu 0.50 0.29 -41.4 0.03 0.21

a∗=1 cases β0 50.00 49.05 -1.9 14.07 14.10

β1 2.00 1.99 -0.3 0.10 0.10

β2 3.00 3.00 0.0 0.32 0.32

βu 0.50 0.50 0.6 0.05 0.05

PML Normal (p = 0.0) β0 50.00 49.90 -0.2 10.77 10.77

β1 2.00 2.00 -0.2 0.07 0.07

β2 3.00 3.01 0.2 0.22 0.22

βu 0.50 0.50 0.1 0.04 0.04

PFI Normal (p = 0.0) β0 50.00 47.99 -4.0 10.60 10.79

β1 2.00 1.99 -0.6 0.07 0.07

β2 3.00 3.02 0.7 0.22 0.22

βu 0.50 0.51 1.3 0.04 0.04

PFI t3 (p = 0.0) β0 50.00 48.89 -2.2 10.49 10.55

β1 2.00 1.99 -0.3 0.07 0.07

β2 3.00 3.02 0.5 0.21 0.22

βu 0.50 0.50 0.7 0.03 0.03

19



Table 3 displays the properties of the linearized variance estimator for the PML and PFI esti-

mators for the Normal and t3 measurement error cases with true value of p taken equal to zero.

These tables give for each adjusted estimator its corresponding Monte Carlo variance, the mean

and relative bias of the variance estimators, the z statistics for the test that the variance estimator

is unbiased, the coverage of 95% confidence interval and the average width of these intervals. The

results regarding the remaining model parameters are given in Section 3.1 of the supplementary

materials. The z statistics were computed by a formula given in Kim (2004). Linearization vari-

ance estimation of the PML-N estimator of the parameters in the main regression yields negligible

relatives biases and coverages near the 95% nominal levels under both Normal and t3 measure-

ments when p is correctly specified at the value 0. For the the case where the PML–N method is

implemented with the value p = 0.2, the relative biases of the linearization variance estimator are

still negligible, but the resulting confidence intervals show undercoverage (86–93%), possibly as a

result of the bias of the point estimator due the misspecification of p. Results for the case when

the true model generating the data has t3 measurement errors are very similar to those in Table

3 although the degree of undercoverage of the confidence intervals was worse (75–91%) when p is

misspecified as 0.2.
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Table 3: Monte Carlo properties of the linearization variance estimator for the estimation

of the main regression coefficients by the Normal pseudo maximum likelihood estimator

and the Normal and t3 parametric fractional imputation estimators (with M = 200),

all evaluated with p = 0.0 and p = 0.2. True model generating the data has Normal

measurement errors with p = 0

Estimation Method θ V ar(θ̂) E[V̂ (θ̂)] RB z Coverage Width

PML Normal (p = 0.0) β0 112.71 117.02 3.8 1.20 94.8 42.3

β1 0.01 0.01 -0.5 -0.14 95.0 0.3

β2 0.04 0.04 -0.0 0.01 94.8 0.8

βu 0.00 0.00 3.7 1.17 94.9 0.1

PML Normal (p = 0.2) β0 160.12 155.99 -2.6 -0.76 85.7 48.6

β1 0.01 0.01 -3.2 -0.98 91.8 0.3

β2 0.05 0.05 -1.2 -0.34 93.4 0.9

βu 0.00 0.00 -2.7 -0.80 85.8 0.2

PFI Normal (p = 0.0) β0 109.38 112.52 2.9 0.89 94.2 41.4

β1 0.01 0.01 -1.2 -0.36 94.7 0.3

β2 0.04 0.04 -1.2 -0.35 94.9 0.8

βu 0.00 0.00 2.8 0.87 94.2 0.1

PFI Normal (p = 0.2) β0 115.34 121.96 5.7 1.77 93.6 43.1

β1 0.01 0.01 0.5 0.19 94.8 0.3

β2 0.04 0.05 0.7 0.24 94.7 0.8

βu 0.00 0.00 5.6 1.74 93.7 0.1

PFI t3 (p = 0.0) β0 107.56 107.73 0.2 0.06 93.8 40.5

β1 0.01 0.01 -1.7 -0.54 94.5 0.3

β2 0.04 0.04 -1.3 -0.39 94.8 0.8

βu 0.00 0.00 0.1 0.04 93.8 0.1

PFI t3 (p = 0.2) β0 108.97 111.82 2.6 0.82 94.8 41.3

β1 0.01 0.01 -1.3 -0.40 94.8 0.3

β2 0.04 0.04 0.6 0.20 94.8 0.8

βu 0.00 0.00 2.4 0.77 94.9 0.1
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7. APPLICATION

In this section, we illustrate the performance of the proposed methods in a regression analysis

motivated by a study described by Berthoud et al. (2009), using data from the British Household

Panel Survey (BHPS), a stratified clustered sample of the UK resident population (Taylor 2006).

The study is concerned with how a given level of income may lead to different standards of living

according to personal circumstances. For example, it may be expected that people living together

will be able to live more efficiently from their joint income than if they live separately. Less obvious

is the effect of age which is the focus of the study. There is evidence in some settings that older

people may experience less hardship than might be expected given their income (Berthoud et al.

2009). This may be studied by fitting a regression model with a measure of living standards as the

dependent variable and with a measure of income, age and other variables as covariates.

Our analysis is at the individual level, taking earnings as a proxy for income and restricting

attention to employed survey respondents aged 30-65 years old. We base the dependent variable y

on the overall deprivation index considered by Berthoud et al. (2009). Their index, denoted DI, was

obtained by computing an average of four sub–indexes, two representing daily living deprivation,

one reflecting lack of possession of consumer durables and the last one measuring deprivation due

to financial strain. The index DI was standardized to have mean zero and variance one with higher

values indicating more deprivation. To improve normality of the overall deprivation index, we apply

the transformation −(DI+5)−1.75 and y is taken as this transformed variable standardized to have

mean zero and variance one.

The covariate u∗ measured with error is the natural logarithm of the gross pay (in pounds)

reported at last payment. The accuracy variable a is taken as the indicator that the respondent’s

last payslip was seen by the interviewer. The existence of measurement error in pay has already

been referred to in the Introduction. Evidence that measurement error in the logarithm of pay can

be non-normal has been given by (Rodgers et al. 1993) and they suggest that ’the departure from

normality may be a reflection primarily of a small number of outliers’ (pp. 1215–6). We propose

to employ our t3 model for the measurement error as well as the normal model in order to allow

for the possible effect of such outliers, in line with the discussion in (Lange et al. 1989).

The first additional covariate in the vector x1 in model (2) is age at the date of interview (years),
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rescaled by the transformation (age - 30)/10. There is slight evidence of nonlinear dependence on

age in this model but we choose to specify the dependence on age here as linear to simplify the

interpretation. Further covariates, reflecting living arrangements are added as controls for studying

the joint effect of age and earnings on y. These further covariates consist of number of children

in household, whether living with a spouse, household size, whether ’head of household’, whether

owning or renting accommodation. The vector x2 in model (6) is taken to include x1 as well as

the following potential predictors of earnings: a quadratic term in age, indicators of occupation

(professional, managerial & technical, skilled, unskilled & armed forces), an indicator of academic

qualifications, indicators of size of workplace (< 25, 25–99, 100–499, 500+, don’t know).

For simplicity, we undertake a cross-sectional analysis of a single wave of BHPS data (Wave

6) collected between 1996 and 1997. We consider respondents who are employed, aged 30-65 and

without missing values on the variables considered, giving a dataset of 2,262 observations, of which

946 are from individuals who had consulted their latest payslip and the remaining 1,316 cases

were from those who had not. We approximate the BHPS sampling design by a stratified design

with independent sampling of the primary sampling units (PSUs) within each stratum, taken to

be region, defining H = 11 strata. The weight variable w is the BHPS cross–sectional respondent

weight.

We estimate the parameters in the regression model (2) using five different approaches. Firstly,

as a reference for comparison, we obtain least squares estimates, weighted by the w, both using

all 2,262 cases and using just the 946 “accurate” (a∗ = 1) cases. Secondly, we apply the proposed

pseudo–maximum likelihood estimation approach assuming Normal measurement errors (PML-N)

and the parametric fractional imputation method with Normal (PFI-N) and t3 errors (PFI–t3).

These three methods are applied to produce estimates of all parameters in the vector ψ. The PFI

estimators are implemented with M = 100 imputations in Step 1 of the algorithm. Initial estimates

for the model parameters are computed using the svyglm() function of the Survey package in R

(R Core Team 2015). The estimated regression coefficients correspond to the those presented

in Section 4. However, the estimated variances σ̂2u,(0), σ̂
2
(0) and τ̂2(0) obtained from the package,

namely 0.9945, 0.8118 and 0.6188 respectively, are slightly different from the ones computed by the

expressions given in Section 4 0.9935, 0.8109 and 0.6186. Since the difference seems quite small,
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the PFI algorithm is for simplicity started with the former set.

The standard errors of the PML and PFI estimates are obtained from the estimated variance-

covariance matrix for ψ̂ of each method. These matrices are computed following the sandwich

formula theory described in Section 5. Because of the ultimate cluster approximations for the

BHPS sample design, we use in the PML case

V̂ {S̄obs(ψ̂)} =

H∑
h=1

nh
nh − 1

{
nh∑
k=1

(zhk − z̄h)(zhk − z̄h)>

}
,

where nh is the number of PSUs in the h–th stratum, Ahk is the index set of individuals in the k–th

PSU of the h–th stratum, zhk =
∑

i∈Ahk wiS̄obs,i(ψ̂) and z̄h = n−1h
∑nh

k=1 zhk. The corresponding

variance for the PFI method is estimated similarly using zhk =
∑

i∈Ahk wiS̄
∗
i (ψ̂). The variances

for the ’All cases’ and ’a∗ = 1 cases’ estimates follow also sandwich–based formulae and these are

computed directly using the svyglm() function in the R Survey package.

Table 4 presents the estimated coefficients of age and ln(gross pay) in the regression model

(2) of interest, together with their corresponding standard errors for the five estimation methods.

Estimates of the remaining coefficients in βx are given in the supplementary materials (Section 4).

We observe negative coefficients of pay (with high levels of statistical significance) in Table 4, as

expected, i.e. deprivation decreases on average as pay increases. The size of the point estimate of

the coefficient is smaller for the first method, which ignores measurement error, than for all the

other methods which seek to control for measurement error, in line with what might be expected

from attenuation bias (Carroll et al. 2006, chap. 3).

The point estimates of the coefficient of age are also negative suggesting that older respondents

report on average less deprivation than younger respondents for given levels of earnings and the

other control variables. A conventional interpretation of the ’t value’ 0.083/0.031 = 2.7 of age for the

first approach, which ignores measurement error, would be that this coefficient differs significantly

from zero. However, the second approach using just the a∗ = 1 cases to control for measurement

error leads to a t-value of 0.072/0.046 = 1.6, which would conventionally be interpreted as age

no longer having a significant effect. This appears, however, to be primarily the effect of the loss

of efficiency of this point estimate, arising from the reduction in the number of observations from

2,262 to 946. The estimated coefficients from the three proposed methods all have t-values similar
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to that for the ’all cases’ approach, illustrating how the proposed methods may make efficient use

of all the observations, while controlling for measurement error. We obtain similar findings on

repeating the analysis with different choices of variables in the vector x1.

Table 4: Point estimates with standard errors (in parentheses) for the coef-

ficients of age and pay in the regression model of interest

Coefficient All cases a = 1 cases PML-N PFI-N PFI-t3

Age -0.083 -0.072 -0.088 -0.088 -0.089

(0.031) (0.046) (0.031) (0.031) (0.031)

Pay (logged) -0.109 -0.150 -0.142 -0.143 -0.142

(0.017) (0.034) (0.024) (0.023) (0.023)

We next consider the sensitivity of these results to alternative departures from assumptions.

We propose two approaches to assessing such sensitivity. First, our model enables us to assess the

possibility that the observation a∗i = 1 does not guarantee accuracy by specifying values of p greater

than 0. For our application, there is evidence in the validation study referred to in Da Silva and

Skinner (2014) that this may be the case, although it suggests that it is implausible that p exceeds

0.2. Table 5 presents comparable results for values of p of 0.1 and 0.2 as well as 0. The principal

conclusion from Table 4 that the coefficient of age differs significantly from zero remains unaffected

by the variation in p. The estimated coefficients using PFI are less sensitive to variation in p than

the PML estimates and the estimated coefficients of age less sensitive than those for pay.

Our second proposed approach to assessing the sensitivity of estimates to departures from

assumptions is to simulate K repeated sets of observations (yi, u
∗
i ) from our fitted model with a

given value of p with the (a∗i ,xi) fixed at their observed values. This exercise is then repeated

with various modifications to the model. The PML and PFI estimates are obtained for each set

of observations and the difference in the estimates assessed. Unless they are modified, the random

terms in the model (ei, ui, εi) are kept the same to improve the efficiency of comparison between

the estimates. As in the case of Table 5 across different values of p, we have found the sensitivity

of the standard errors of less concern than the possibility of biased estimation of coefficients arising

from the departure from assumptions. As evidence of such possible bias we have found it sufficient
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Table 5: Point estimates with standard errors (in parentheses) for the coefficients of age

and pay in the regression model of interest by alternative estimation methods for various

values of p

Adjusted p

Coefficient estimator 0.00 0.10 0.20

Age PML-N -0.088 -0.094 -0.097

(0.031) (0.031) (0.031)

PFI–N -0.088 -0.088 -0.090

(0.031) (0.031) (0.032)

PFI–t3 -0.089 -0.090 -0.090

(0.031) (0.031) (0.032)

Pay (logged) PML-N -0.142 -0.172 -0.185

(0.023) (0.028) (0.028)

PFI–N -0.145 -0.145 -0.154

(0.023) (0.024) (0.027)

PFI–t3 -0.145 -0.147 -0.150

(0.023) (0.023) (0.025)

to take K = 100 and to compute the mean value of the estimators for the data simulated from the

assumed and modified models.

We apply this approach first to assessing sensitivity to distributional assumptions. We fixed

p = 0 and simulated sets of observations from the fitted model with ei ∼ N(0, σ̂2) in (2) and then,

as a modified model, with ei generated as σ̂ times a t3 random variable truncated to the interval

(−10, 10) and standardised to have variance 1 (detailed further in the supplementary materials,

Section 5.2). The average values of the estimated coefficients of age and pay were found to differ

little between the normal and the t3 simulated values. For example, the average PML estimated

coefficients of (age, pay) were (−0.086,−0.143) for normal and (−0.091,−0.145) for t3. The true

values were (−0.088,−0.142). We noted after expression (10) how the PML estimation approach

is primarily based upon first and second moment assumptions and so this lack of sensitivity might
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have been anticipated. The findings for the PFI methods were similar.

As a further departure from distributional assumptions, we consider the effect of replacing

ui in the data generation process by u1.1i (supplementary materials, Section 5.3). This implies a

departure from the symmetric normal distributional assumption in model (6). Moreover, it also

introduces a dependence in the conditional variance of ui given (ai,xi) on ai. We simulated 100

sets of observations as in the previous sensitivity analysis. We found there was little impact of

this change on the estimated coefficient of age, with the average PML estimate of this coefficient

remaining at −0.086 (to this number of decimal places). There was an effect on the estimated

coefficient of pay, however, with the average PML estimate of this coefficient changing from −0.143

to −0.190. Results for the PFI estimates were similar. We consider the likely source of effect

on the pay coefficient to be the dependence of the conditional variance of ui given (ai,xi) on ai

in the auxiliary model (6). The distributional assumption seems a less likely source given our

moment-based approach.

Given this potential importance of the auxiliary model (6) to the estimates, we now explore

it further. We note first that estimates of the coefficients δu of the covariate vector x2 in this

model correspond to what we may expect in a model predicting earnings and they appear in Table

7 in the supplementary materials. Estimates of the parameter δa are presented in Table 6. This

reflects the dependence of the conditional expectation of ui given (ai,xi) on ai in the model. We

see here evidence of a departure from the assumption in Da Silva and Skinner (2014) that ui and

ai are conditionally independent given xi (taken to be x2i here). The positive estimated value of

δa in Table 6 suggests that respondents referring to their payslips have higher levels of earnings on

average, even controlling for x2i. It is possible that the paradata variable ai is acting as a proxy

for some unobserved factors which are influencing the earnings variable ui. Alternatively, it is even

possible that the positive estimated value of δa is arising from a direct dependence of ai on ui, in

the sense that whether an individual chooses to refer to their payslip to confirm their earnings may

depend on the nature of the earnings. If we allow p to increase from 0 to 0.2, we obtain similar

findings for the PFI-N and PFI-t3 methods, but, curiously, the estimate of δa is attenuated and falls

below two standard errors for p ≥ 0.5 for the PML-N method (supplementary materials, section 4).

Features of the measurement error process and the parameter δa can be observed graphically by
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Table 6: Estimates of δa with standard errors (in parentheses)

All cases PML-N PFI-N PFI-t3

0.127 0.133 0.131 0.194

(0.055) (0.054) (0.055) (0.054)

considering the relation between the residuals u∗i −x>2iδ̂u versus ai. Box plots of these residuals for

a∗i = 0 and a∗i = 1, where δu is estimated by PML, are presented in Figure 1. Under our assumption

of zero-mean measurement error, the difference in means between the two box plots (a∗i = 1 versus

a∗i = 0) represents an estimate of the parameter δa. The approximately symmetric distributions

in Figure 1 are consistent with our assumption of symmetric measurement error distributions and

normal error in model (6). The difference in variances of the boxplot for a∗i = 0 to the one for

a∗i = 1 represents an estimate of the parameter τ2 times the variance of the measurement error

term. Estimates of the variances σ2u and τ2 (and also of σ2) are presented in Table 7. If we

allow p to increase from 0 to 0.2, we obtain similar findings for σ2u for the PML and PFI methods

(supplementary materials, section 4). The estimates of τ2 and σ2 show some sensitivity to the

choice of p with the estimate of τ2 tending to increase and the estimate of σ2 tending to decrease

as p increases, for each of the PML-N, PFI-N methods.

Table 7: Estimates of model variances with standard errors (in parentheses)

parameter PML-N PFI-N PFI-t3

σ2 0.888 0.887 0.887

(0.033) (0.032) (0.033)

σ2u 0.872 0.850 0.828

(0.179) (0.054) (0.055)

τ2 0.640 0.700 0.320

(0.197) (0.096) (0.045)

We next consider departures from the assumption that yi and ai are conditionally independent

given (ui,xi), which might arise if each are dependent upon the same unobserved variable. To

modify the model (2) used to generate yi, we include an additional term aiβa, with βa chosen so
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Figure 1: Boxplots of the residuals u∗i − x>2iδ̂u for both accuracy groups. The estimated regression

coefficient δ̂u used was taken from PML estimates of δ = (δ>u , δa, σ
2
u)> given in the supplementary

materials.

that the partial correlation between yi and ai conditional on (ui,xi) is 0.1 and where the methods

and models used for estimation remained the same (supplementary materials, section 5.1). We

simulated 100 sets of observations as in the previous sensitivity analysis. We found there was

little impact of this change on the estimated coefficient of age, with the average PML estimate of

this coefficient changing from −0.086 to −0.084. There was a little attenuation of the estimated

coefficient of pay, with the average PML estimate of this coefficient changing from −0.136 to −0.123.

The results for the PFI estimates were very similar.

In summary, the results of our sensitivity analyses suggest some robustness in the estimation of
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the coefficient of age and in main conclusions drawn from Table 5. We noticed some sensitivity in

assumptions to the estimation of the coefficient of pay, the variable with measurement error, with

possibly the most important assumption relating to our assumed constant conditional variance of

ui given (ai,xi) in model (6).

In Tables 4 and 6 we found no strong differences between the estimates obtained from the three

methods PML-N, PFI-N and PFI-t3. We did, however, observe a somewhat larger estimated value

of δa in Table 6 for PFI-t3 relative to the PML-N and PFI-N methods. It is possible in this case,

that the PFI-t3 method protects better against measurement error outliers in the distribution of

u∗i given ui when estimating δa, supporting the value of having the PFI-t3 method to provide an

alternative robust estimation approach. We did find some cases when the PFI-t3 estimate performed

better than the other approaches, in terms of the estimate of βu being closer to the a∗ = 1 cases

estimate than the PML-N and PFI-N methods but this effect was not consistent across a range

of models with different choices of x1. It is not easy in plots of residuals, such as that for cases

with a∗i = 0 in Figure 1 which represents a convolution of distributions, to detect whether there

are more measurement error outliers than expected under normality. It is possible in our case that

the similarity of findings for PML-N, PFI-N and PFI-t3 may be a reflection of the absence of such

outliers.

8. DISCUSSION

In this paper we have considered the classical problem of correcting for measurement error in one of

the covariates of a regression model. We have shown how binary paradata, indicating the presence

of the measurement error, can be used to correct for bias. In this final section, we comment on the

potential broader uses of our approach.

First, the approach needs extending to richer paradata variables than the binary case discussed

in detail here, including ordinal, continuous and multivariate cases. This raises questions about

how to extend models (1) and (6). Extension to multivariate measurement error is needed also.

The extension of univariate imputation for measurement error to the multivariate case has already

been considered in the multiple imputation literature (He and Zaslavsky 2009), but the extension

of models in (1) and (6) to represent the relationship between multivariate measurement error and
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paradata (possibly also multivariate) needs further research.

We have assumed so far, at least implicitly, that the measurement error correction takes place

after the survey has been completed. In fact, much of the interest in paradata among survey

researchers relates to stages of the survey process prior to this point.

Much of the use of paradata on measurement error so far has been to assist the improvement of

the survey measurement process, such as computer-assisted interviewing systems, with the general

objective of reducing measurement error. Yan and Olson (2013) review a series of studies of this

kind. They note that, although paradata may be used as an indicator of measurement error,

it often requires auxiliary variables to be interpreted suitably. For example, the time taken to

respond to a question may reflect measurement error, but it may be desirable to take account of

the length of the question if this variable is to provide a useful indicator of measurement error.

Our approach might be seen as an extension of such an attempt to control for auxiliary variables.

Paradata is essentially observational and so selection effects will invariably be an issue. Attempts

to design measuring instruments so that the paradata ostensibly suggest less measurement error

may be misleading in the presence of the kinds of selection considered in this paper. The kinds of

adjustment method we have considered may then be useful.

Another main area of use of paradata in surveys is in adaptive design during data collection. As

discussed by Schouten and Calinescu (2013), the aim may be to define a measure of survey quality,

embracing both nonresponse and measurement error, and to identify ways of maximising quality

under budget constraints at stages during the data collection process, making use of paradata

collected up to these stages. Again, selection effects could lead to misleading estimates of the

contribution of measurement error to the quality measure and adjustment methods of the kind

considered in this paper might lead to a more appropriate measure of quality.

SUPPLEMENTARY MATERIALS

The supplementary materials provide further information for the pseudo–maximum likelihood esti-

mator, expressions for pseudo–score functions used by the parametric fractional imputed estimator,

variance estimation and additional tables for the application.
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