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Abstract

A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn)
of n binary variables, that is, a mapping from {0, 1}n to R. For a pseudo-
Boolean function f(x) on {0, 1}n, we say that g(x, y) is a quadratization of
f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary bi-
nary variables y1, y2, . . . , ym such that f(x) = min{g(x, y) : y ∈ {0, 1}m} for
all x ∈ {0, 1}n. By means of quadratizations, minimization of f is reduced
to minimization (over its extended set of variables) of the quadratic function
g(x, y). This is of practical interest because minimization of quadratic func-
tions has been thoroughly studied for the last few decades, and much progress
has been made in solving such problems exactly or heuristically. A related
paper [1] initiated a systematic study of the minimum number of auxiliary
y-variables required in a quadratization of an arbitrary function f (a natural
question, since the complexity of minimizing the quadratic function g(x, y)
depends, among other factors, on the number of binary variables). In this pa-
per, we determine more precisely the number of auxiliary variables required
by quadratizations of symmetric pseudo-Boolean functions f(x), those func-
tions whose value depends only on the Hamming weight of the input x (the
number of variables equal to 1).
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1. Introduction

1.1. Quadratizations of pseudo-Boolean functions

A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn)
of n binary variables, that is, a mapping from {0, 1}n to R. It is well-known
that every pseudo-Boolean function can be uniquely represented as a multi-
linear polynomial in its variables. Nonlinear binary optimization problems,
or pseudo-Boolean optimization (PBO) problems, of the form

min
{
f(x) : x ∈ {0, 1}n

}
,

where f(x) is a pseudo-Boolean function, have attracted the attention of
numerous researchers, and they are notoriously difficult, as they naturally
encompass a broad variety of models such as maximum satisfiability, maxi-
mum cut, graph coloring, simple plant location, and so on. Many approaches
have been proposed for the solution of PBO problems; the reader may refer
to [3, 5, 17] for general overviews. In recent years, several authors have revis-
ited an approach initially proposed by Rosenberg [20]. This involves reducing
PBO to its quadratic case (QPBO) by relying on the following concept.

Definition 1.1. For a pseudo-Boolean function f(x) on {0, 1}n, we say that
g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending
on x and on m auxiliary binary variables y1, y2, . . . , ym, such that

f(x) = min
{
g(x, y) : y ∈ {0, 1}m

}
for all x ∈ {0, 1}n.

Clearly, if g(x, y) is a quadratization of f , then

min
{
f(x) : x ∈ {0, 1}n

}
= min

{
g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m

}
,

so that the minimization of f is reduced through this transformation to
the QPBO problem of minimizing g(x, y) (much like linearization techniques
reduce QPBO to a linear optimization problem in 0–1 variables; see [3, 5]).

We are also interested (see [1]) in special types of quadratizations, which
we call y-linear quadratizations, which contain no products of auxiliary vari-
ables. If g(x, y) is a y-linear quadratization, then g can be written as

g(x, y) = q(x) +
m∑
i=1

ai(x)yi,
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where q(x) is quadratic in x and each ai(x) is a linear function of x. When
minimizing g over y, each product ai(x)yi takes the value min{0, ai(x)}.

Rosenberg [20] has proved that every pseudo-Boolean function f(x) has a
quadratization, and that a quadratization can be efficiently computed from
the polynomial expression of f . This also easily follows from our observa-
tions in Section 1.2 that every monomial has a quadratization. (It is also the
case — see [1] — that any pseudo-Boolean function has a y-linear quadra-
tization.) Of course, quadratic PBO problems remain difficult in general,
but this special class of problems has been thoroughly studied for the last
few decades, and much progress has been made in solving large instances
of QPBO, either exactly or heuristically. Quadratization has emerged in re-
cent years as one of the most successful approaches to the solution of very
large-scale PBO problems arising in computer vision applications. (See, for
instance, Boykov, Veksler and Zabih [4], Kolmogorov and Rother [15], Kol-
mogorov and Zabik [16], Rother, Kolmogorov, Lempitsky and Szummer [22],
Kohli, Ladický and Torr [13], Kohli, Pawan Kumar and Torr [14], Boros
and Gruber [2], Fix, Gruber, Boros and Zabih [7], Freedman and Drineas [8],
Ishikawa [10, 11], Ramalingam, Russell, Ladický and Torr [19], Rother, Kohli,
Feng and Jia [21], Kappes et al. [12].)

In a related paper, the present authors [1] initiated a systematic study of
quadratizations of pseudo-Boolean functions. We investigated the minimum
number of auxiliary y-variables required in a quadratization. We showed, in
particular, that there are pseudo-Boolean functions of n variables for which
every quadratization must involve at least Ω(2n/2) auxiliary variables and,
conversely, that O(2n/2) auxiliary variables always suffice for every function.
Other authors have established more precise upper bounds for special sub-
classes of pseudo-Boolean functions: (n − 1) auxiliary variables for sym-
metric functions (Fix [6]),

⌊
n−1
2

⌋
auxiliary variables for positive monomials

(Ishikawa [11]), two auxiliary variables for certain types of submodular func-
tions (Kohli et al. [13], Ramalingam et al. [19]), etc. In this paper, our focus
is on symmetric pseudo-Boolean functions. We introduce this class in the
next section.

1.2. Symmetric functions

A symmetric pseudo-Boolean function is one in which the value of the
function depends only on the weight of the input. More precisely, a pseudo-
Boolean function f : {0, 1}n → R is symmetric if there is a discrete function
k : {0, 1, . . . , n} → R such that f(x) = k(l) where l = |x| =

∑n
j=1 xj is the
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Hamming weight (number of ones) of x. In another way, f is symmetric if
it is invariant under any permutation of the coordinates {1, 2, . . . , n} of its
variables. Here, we investigate the number of auxiliary variables required in
quadratizations of symmetric functions.

Example 1.2. Consider the negative monomial

−
n∏
i=1

xi = −x1x2 · · ·xn.

This elementary symmetric pseudo-Boolean function has the following stan-
dard quadratization which requires only one auxiliary variable (Freedman and
Drineas [8]):

sn(x1, x2, . . . , xn, y) = y

(
n− 1−

n∑
i=1

xi

)
.

The reason is as follows: unless all the xi are 1, then the quantity in paren-
theses in the expression for sn is non-negative and the minimum value of sn
is therefore 0, obtained when y = 0; and, if all xi are 1, the expression equals
−y, minimized when y = 1, giving value −1. In both cases, the minimum
value of sn is the same as the value of the negative monomial.

Example 1.3. The positive monomial is the symmetric function

n∏
i=1

xi = x1x2 · · · xn.

Ishikawa [11] showed that it can be quadratized using
⌊
n−1
2

⌋
auxiliary vari-

ables. This is currently the best available bound for positive monomials; see
also [7].

Of course, contrary to the general case of PBO, minimizing a symmetric
pseudo-Boolean function is a trivial task since the function takes at most
n+ 1 distinct values. Our motivation for analyzing ‘best possible’ quadrati-
zations of such functions, therefore, is to be found elsewhere. For one thing,
many quadratization procedures proceed by independently quadratizing every
monomial of the multilinear expression of f (as explained in the examples
above), and by adding the resulting quadratic expressions. Then, the num-
ber of auxiliary variables appearing in the final quadratization is the sum of
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the number of auxiliary variables required for the monomials. Therefore, it
is of interest to understand the ‘best possible’ quadratizations of monomials.

Other symmetric functions similarly arise as ‘building blocks’ in the def-
inition of more complex objective functions considered, e.g., in computer
vision models based on so-called ‘clique potentials’; see Kohli et al. [13, 14].
Here again, the objective function can be quadratized by independently han-
dling its symmetric constituents.

The analysis presented in Sections 2-4 applies to arbitrary symmetric
functions, and it provides a unifying framework for the derivation of a se-
ries of previously scattered results, including the best-known upper bound
for positive monomials and a slightly improved upper bound for arbitrary
symmetric functions.

In a broader setting, and beyond the potential algorithmic implications
of our results, we are mostly interested in the theoretical question of under-
standing the mathematical properties, and in particular the size of quadra-
tizations of pseudo-Boolean functions. The bounds established in [1] are
asymptotically tight for generic functions. However, it is probably quite hard
to get sharp bounds for specific functions or classes of functions. Symmetric
functions are a natural class of ‘elementary’ functions, much studied in other
contexts (in particular, in Boolean circuit and neural network theory; see,
e.g., [9, 18, 23, 25]), whose analysis remains very challenging, but for which
we can hope to obtain more precise bounds. Section 4 and Section 5 contain
results in this direction.

1.3. Outline

In Section 2, we prove a representation theorem for discrete functions
and several corollaries which provide useful tools for expressing symmetric
pseudo-Boolean functions. In Section 3 we explain how we can use such rep-
resentations to construct quadratizations, and we present the implications
for upper bounds on the number of auxiliary variables required for several
classes of symmetric functions in Section 4. Section 5 presents two types
of lower bounds on the number of auxiliary variables for quadratizations of
symmetric functions: an existence result, establishing that there are sym-
metric functions needing a rather large number of auxiliary variables; and
a concrete lower bound on the number of auxiliary variables in any y-linear
quadratization of the parity function.
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2. A representation theorem

In this section, we present a result that will be key in our approach to ob-
taining quadratizations of symmetric pseudo-Boolean functions. The result
is a ‘representation theorem’ that expresses an arbitrary discrete function
defined on the non-negative integers N = {0, 1, . . .} as a linear combination
of terms of the form [i− εi − l]−, for arbitrary parameters εi ∈ (0, 1] (for any
real number a, [a]− denotes min(a, 0)). In Section 3, we will apply the repre-
sentation theorem to the discrete function k(l) associated with a symmetric
pseudo-Boolean function, for suitable choices of the parameters εi.

In its most general form, our representation result is as follows.

Theorem 2.1. Let 0 < εi ≤ 1, for i ∈ N. Then every discrete function
k : N→ R can be represented uniquely in the form

k(l) =
∞∑
i=0

αi [i− εi − l]− for all l ∈ N. (1)

Proof. In order to find a sequence of real coefficients α0, α1, . . . which estab-
lish the required representation, we need to solve the infinite system of linear
equations (1). Note that the term [i− εi − l]− vanishes when i ≥ l + 1, so
that the right-hand side of (1) boils down to a finite sum and the system
reads:

k(l) =
l∑

i=0

αi [i− εi − l]− =
l∑

i=0

αi (i− εi − l) for all l ∈ N. (2)

This system is lower-triangular with nonzero diagonal entries−εi (i = 0, . . . , l).
So, it does indeed have a unique solution and therefore the representation
exists and is unique.

In order to obtain an explicit expression of the coefficients αi, we can
proceed by induction on l. When l = 0, the first equation in (2) imme-
diately yields α0 = − 1

ε0
k(0). Assume now that we have found values of

α0, α1, . . . , αj−1 such that (2) is satisfied for l = 0, 1, . . . , j − 1. Then, from
the equation (2) written for l = j, we deduce that αj must satisfy

−εjαj = k(j) +

j−1∑
i=0

αi (εi + j − i) (3)

and the value of αj is uniquely determined from this equation.
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When all the εi are equal, we can obtain a closed-form expression of the
coefficients in the representation (1).

Theorem 2.2. Let 0 < ε ≤ 1. Then every discrete function k : N → R can
be represented uniquely in the form

k(l) =
∞∑
i=0

αi [i− ε− l]− for all l ∈ N

where, for all i ∈ N, the value of αi is

αi = −
i−2∑
j=0

(ε− 1)i−j−2

εi−j+1
k(j) +

(
1

ε
+

1

ε2

)
k(i− 1)− 1

ε
k(i) (4)

and k(−1) = 0 by convention.

(The first sum in (4) is, by usual convention, taken to be 0 if i < 2.)

Proof. We check that a solution (and hence the solution) of the system (2)
with εi = ε for all i ∈ N, is given by (4).

We proceed by induction on i. The case i = 0 is easily verified. Assume
now that (4) is satisfied by the values of αi up to i = j − 1. Then, from (3)
and from the induction hypothesis,

−εαj = k(j) +

j−1∑
i=0

αi (ε+ j − i)

= k(j) +

j−1∑
i=0

αi (ε+ j − 1− i) +

j−1∑
i=0

αi

= k(j)− k(j − 1) +

j−1∑
i=0

αi. (5)
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Substituting (4) in the last term of (5) yields

j−1∑
i=0

αi =

j−1∑
i=0

[
−

i−2∑
r=0

(ε− 1)i−r−2

εi−r+1
k(r) +

(
1

ε
+

1

ε2

)
k(i− 1)− 1

ε
k(i)

]

= −
j−3∑
r=0

k(r)

j−1∑
i=r+2

(ε− 1)i−r−2

εi−r+1
+

(
1

ε
+

1

ε2

) j−1∑
i=0

k(i− 1)− 1

ε

j−1∑
i=0

k(i)

= −
j−3∑
r=0

k(r)

j−r−3∑
t=0

(ε− 1)t

εt+3
− 1

ε
k(j − 1) +

1

ε2

j−1∑
i=0

k(i− 1) (6)

=

j−3∑
r=0

(ε− 1)j−r−2

εj−r
k(r)− 1

ε
k(j − 1) +

1

ε2
k(j − 2) (7)

where the last equality is obtained by summing the geometric series which
appears in the first sum of equation (6).

Combining (5) and (7), we find

αj = −
j−3∑
r=0

(ε− 1)j−r−2

εj−r+1
k(r)− 1

ε3
k(j − 2) +

(
1

ε
+

1

ε2

)
k(j − 1)− 1

ε
k(j),

which is equivalent to (4) when i = j.

There are two special cases of Theorem 2.2 that we will use in particular.
When ε = 1/2, Theorem 2.2 yields:

Corollary 2.3. Every discrete function k : N → R can be represented
uniquely in the form

k(l) =
∞∑
i=0

αi

[
i− 1

2
− l
]−

for all l ∈ N

where

αi = −8
i∑

j=0

(−1)i−jk(j)− 2k(i− 1) + 6k(i)

for i ∈ N, and k(−1) = 0.

Taking ε = 1 in Theorem 2.2, we obtain the following corollary.
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Corollary 2.4. Every discrete function k : N→ R can be represented in the
form

k(l) = k(0) +
(
k(1)− k(0)

)
l +

∞∑
i=1

(
−k(i− 1) + 2k(i)− k(i+ 1)

)
[i− l]−

for all l ∈ N.

The coefficients in the infinite sum that appears in (2.4) are the second-
order discrete derivatives of the function k. Corollary 2.4 can also be found
in Fix [6], where it is proved directly by observing that

k(l) =
∞∑
i=0

k(i)δi(l),

where δi(l) = 1 if i = l and δi(l) = 0 otherwise, and that

δi(l) = − [i− 1− l]− + 2 [i− l]− − [i+ 1− l]− .

In a related, but different setting, Ishikawa [10] establishes a decomposition
of (convex) discrete functions into sums of simpler components, where the
weights of the components coincide with the second-order discrete derivatives
of k, as in Corollary 2.4 (see also Schlesinger and Flach [24]). Ishikawa’s ap-
proach focuses on transforming optimization problems for functions of non-
binary variables into quadratic pseudo-Boolean ones, and it relies on graph
constructions, so that establishing a formal link with our representation the-
orems is not straightforward.

In contrast, Theorems 2.1-2.2 and their Corollaries 2.3-2.4 are directly
stated and proved as functional identities, and they appear to be more general
than the results by Fix [6] or by Ishikawa [10] since they are valid for general
values of εi. We believe that these results may be of independent interest.

3. From representations to quadratizations

In this section we explain how a representation of the type presented in
the previous section can be used to construct quadratizations of symmetric
pseudo-Boolean functions. First, as mentioned earlier, all results in Section 2
can easily be turned into representation theorems for a symmetric pseudo-
Boolean function f : indeed, if k : {0, 1, . . . , n} → R is such that f(x) = k(l),
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where l =
∑n

j=1 xj, then Equation (2) in Theorem 2.1 implies for instance
that f can be written as

f(x) =
n∑
i=0

αi

[
i− εi −

n∑
j=1

xj

]−
for all x ∈ {0, 1}n. (8)

Theorem 2.2 and Corollaries 2.3-2.4 can be applied to f in a similar way.
Anther useful observation is that when a coefficient αi is non-negative,

the corresponding term αi

[
i− εi −

∑n
j=1 xj

]−
in the representation (8) of f

can be quadratized as minyi αiyi(i− εi −
∑n

j=1 xj). But this transformation
simply does not work if αi is negative. The strategy described in this section
is to take an expression as given by (8) (or one of its special cases) and add a
quantity that is identically-0 and which will result in a final expression that
has no terms with negative coefficients. (A similar strategy was introduced
by Fix [6].) The following lemma describes three possible such quantities.
The first is going to be useful when working with representations of the form
given in Corollary 2.4, and the second and third will be useful when working
with the representations derived from Corollary 2.3.

Lemma 3.1. Let

E(l) = l(l − 1) + 2
n−1∑
i=1

[i− l]− ,

E ′(l) =
l(l − 1)

2
+ 2

n∑
i=2:
i even

[
i− 1

2
− l
]−

,

and

E ′′(l) =
l(l + 1)

2
+ 2

n∑
i=1:
i odd

[
i− 1

2
− l
]−

.

Then, E(l) = E ′(l) = E ′′(l) = 0 for all l = 0, 1, . . . , n.
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Proof. First we show that E(l) is identically-0. We have

E(l) = l(l − 1) + 2
n−1∑
i=1

[i− l]−

= l(l − 1) + 2
l−1∑
i=1

(i− l)

= l(l − 1)− 2
l−1∑
j=1

j

= l(l − 1)− l(l − 1) = 0.

We next show that E ′(l) = 0 for all values of l. Fix l and note that i− 1
2
−l ≤ 0

if and only if i ≤ l. Hence,

n∑
i=2:
i even

[
i− 1

2
− l
]−

=
l∑

i=2:
i even

(
i− 1

2
− l
)

=
l∑

i=2:
i even

i−
(

1

2
+ l

)⌊
l

2

⌋
. (9)

By considering separately the cases where l is respectively even or odd, one
can conclude that E ′(l) = 0 for all l = 0, . . . , n. For, if l = 2r, then the
expression on the right in equation (9) is r/2 − r2 = −l(l − 1)/4 and, if
l = 2r + 1, it is −r/2 − r2 = −l(l − 1)/4. The identity E ′′(l) = 0 (for
all l) can be proved similarly, or can be deduced from the previous one by
observing that, for all l = 0, 1, . . . , n,

n∑
i=1

[
i− 1

2
− l
]−

=
l∑

i=1

(
i− 1

2
− l
)

= −1

2
l2.

We then can note that

E ′(l) + E ′′(l) = l2 + 2
n∑
i=1

[
i− 1

2
− l
]−

= l2 − l2 = 0,

so that E ′′ = −E ′ = 0.

We gave a direct, self-contained, proof of Lemma 3.1, but in fact these
three identities also follow from Corollary 2.3 and Corollary 2.4. For, if we
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apply Corollary 2.4 to the function f(x) = (
∑n

r=1 xr) (
∑n

r=1 xr − 1), we see
that

f(x) = −2
n−1∑
i=1

[
i−

n∑
r=1

xi

]−
,

which implies the first identity of Lemma 3.1. Applying Corollary 2.3 to f(x)
shows (after some calculation) that

f(x) = −4
n∑

i=2:
i even

[
i− 1

2
− l
]−

,

giving the second identity (that E ′ is identically-0). Applying Corollary 2.3
to the function g(x) = (

∑n
r=1 xr) (

∑n
r=1 xr + 1) yields the third identity.

4. Upper bounds on number of auxiliary variables

4.1. Any symmetric function

We first have the following very general result, which provides an explicit
construction of a quadratization of any symmetric pseudo-Boolean function,
using no more than n− 2 auxiliary variables.

Theorem 4.1. Every symmetric function of n variables can be quadratized
using n− 2 auxiliary variables.

Proof. Using Corollary 2.3, we can write any symmetric function f as

f(x) = −α0

(
1

2
+

n∑
j=1

xj

)
+

n∑
i=1

αi

[
i− 1

2
−

n∑
j=1

xj

]−
.

Let αr = min{αi : i even, i ≥ 2} and αs = min{αi : i odd}. Now add to f
the expression

−αr
2
E ′

(
n∑
j=1

xj

)
− αs

2
E ′′

(
n∑
j=1

xj

)
,

which is identically-0. This results in an expression for f of the form

f(x) = a0 + a1

n∑
j=1

xj + a2
∑

1≤i<j≤n

xixj +
n∑
i=1

βi

[
i− 1

2
−

n∑
j=1

xj

]−
,
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where, for each i, if i is even, βi = αi−αr ≥ 0, and if i is odd, βi = αi−αs ≥ 0.
So all the coefficients βi are non-negative. Furthermore, βr = βs = 0, so we
have an expression for f involving no more than n−2 positive coefficients βi.
Then,

g(x, y) = a0 + a1

n∑
j=1

xj + a2
∑

1≤i<j≤n

xixj +
n∑

i=1:
i 6=r,s

βiyi

(
i− 1

2
−

n∑
j=1

xj

)

is a quadratization of f involving at most n− 2 auxiliary variables.

(A construction in [6] shows an upper bound of n − 1. This is obtained
by adding a multiple of E(

∑n
r=1 xr) to each term in the expression from

Corollary 2.4, rather than to the expression as a whole, resulting in more
complex quadratizations.)

Notice that the quadratization in the proof of Theorem 4.1 is y-linear, so
we have in fact shown:

Theorem 4.2. Every symmetric function of n variables has a y-linear quadra-
tization involving at most n− 2 auxiliary variables.

Furthermore, these quadratizations are also symmetric in the x-variables.
Not every quadratization of a symmetric function must itself be symmetric
in the original variables. For example, consider the negative monomial

−
n∏
i=1

xi = −x1x2 · · ·xn.

As we have seen, this has the quadratization y
(
n− 1−

∑n
j=1 xj

)
, which is

symmetric. However, it also has the quadratization

(n− 2)xny −
n−1∑
i=1

xi(y − xn),

where xn = 1− xn, which is not symmetric in the x-variables.
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4.2. Monomials

The quadratization of monomials (positive and negative) has been fairly
well-studied. The standard quadratization of the negative monomial

f(x) = −
n∏
i=1

xi = −x1x2 · · ·xn,

is

sn(x1, x2, . . . , xn, y) = y

(
n− 1−

n∑
j=1

xj

)
.

(A related paper by the present authors [1] gives a complete characterization
of all the quadratizations of negative monomials involving one auxiliary vari-
able and this is, in a sense, one of the simplest.) If we apply Corollary 2.3
to the negative monomial, noting that k(i) = 0 for i < n and k(n) = −1, we
obtain the representation

f(x) = 2

[
n− 1

2
−

n∑
r=1

xr

]−
,

which immediately leads to the quadratization

h = 2y

(
n− 1

2
−

n∑
r=1

xr

)
,

only slightly different from the standard one. We could, instead, apply Corol-
lary 2.4, which would show that f(x) = [n− 1−

∑n
r=1 xr]

−
, from which we

obtain the standard quadratization.
As we noted earlier, the best known result (smallest number of auxil-

iary variables) for positive monomials is that they can be quadratized using⌊
n−1
2

⌋
auxiliary variables. This was shown by Ishikawa [11]. We can see that

this many auxiliary variables suffice by using our representation theorem,
Corollary 2.3, together with the argument given in the proof of Theorem 4.1.

Theorem 4.3. The positive monomial P =
∏n

i=1 xi can be quadratized using⌊
n−1
2

⌋
auxiliary variables.
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Proof. Consider first the case where n is even. By Corollary 2.3, noting
that k(i) = 0 for i < n and k(n) = 1, we have P = −2

[
n− 1

2
− l
]−

where
l =

∑n
r=1 xr. By Lemma 3.1,

P = −2

[
n− 1

2
− l
]−

+ E ′(l)

=
l(l − 1)

2
+

n−2∑
i=2:
i even

2

[
i− 1

2
− l
]−

=
∑

1≤i<j≤n

xixj + min
y

n−2∑
i=2:
i even

2yi

(
i− 1

2
− l
)
.

This provides the required quadratization using n
2
−1 =

⌊
n−1
2

⌋
new variables.

When n is odd, one similarly derives the following from Lemma 3.1:

P = −2

[
n− 1

2
− l
]−

+ E ′′(l)

=
n∑
i=1

xi +
∑

1≤i<j≤n

xixj + min
y

n−2∑
i=1:
i odd

2yi

(
i− 1

2
− l
)
.

This quadratization of P requires the same number of auxiliary variables
as Ishikawa’s construction. Both quadratizations are, in fact, identical when
n is even, but appear to be different when n is odd.

Note that an alternative approach to the case of odd n would be as follows.
Write

P =
n−1∏
i=1

xi −
n−1∏
i=1

xixn,

where xn = 1−xn. The first term can now be quadratized using n−1
2
−1 new

variables (since it contains an even number of variables), and the second term,
viewed as a negative monomial in x1, . . . , xn−1, xn, has a standard quadrati-
zation requiring one further auxiliary variable. Thus, this leads again to a
quadratization of P with n−1

2
=
⌊
n−1
2

⌋
new variables. This quadratization is

also different from Ishikawa’s.
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4.3. t-out-of-n and exact-t functions

Consider now the t-out-of-n function defined by:

ft,n(x) = 1 if and only if
n∑
i=1

xi ≥ t.

The basic Boolean functions Andn(x) :=
∏n

i=1 xi (a positive monomial)
and Orn(x) := 1 −

∏n
i=1(1 − xi) are examples of t-out-of-n functions with

t = n and t = 1, respectively. Another well-known example is the majority
function given by:

Majn(x) :=

{
1 if

∑n
i=1 xi ≥ dn/2e ,

0 otherwise,

which breaks ties in favor of ones when n is even. In this case, t = dn/2e.

Corollary 4.4. The t-out-of-n function ft,n can be quadratized using dn/2e
auxiliary variables.

Proof. From Corollary 2.3, ft,n can be represented in the form

ft,n(x) =
n∑
i=0

αi

[
i− 1

2
−

n∑
j=1

xj

]−
(10)

where αi = 0 when i < t, αt = −2, and αi = 4(−1)i−t−1 when i > t.
Since the terms of ft,n alternate in sign when i ≥ t, we can again use

Lemma 3.1 to make all coefficients non-negative by adding either 2E ′(l) or
2E ′′(l) to (10), depending on the parity of t. The resulting expression has
dn/2e positive coefficients, and its remaining coefficients are zero. Thus, it
can be quadratized with dn/2e auxiliary variables.

A related function is the exact-t (out of n) function, defined as f=
t,n(x) = 1

if and only if the Hamming weight of x equals t. Using Corollary 2.3 again,
we have that f=

t,n can be represented in the form given in (10) with αi = 0
when i < t, αt = −2, αt+1 = 6, and αi = 0 when i > t + 1. Depending
on the parity of t, we add E ′(l) or E ′′(l) to (10) to obtain an expression
with bn/2c positive coefficients, which can then be quadratized with bn/2c
auxiliary variables. We have just proved the following.
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Corollary 4.5. The exact-t function f=
t,n can be quadratized using bn/2c

auxiliary variables.

The positive monomial and the Andn Boolean function are also special
cases of exact-t functions, both with t = n. It is apparent from the argument
leading to Corollary 4.5 that the reason the positive monomial (and hence,
the Andn function) requires

⌊
n−1
2

⌋
auxiliary variables instead of bn/2c is

precisely because t = n.

4.4. Parity and its complement

The parity function is the (pseudo-)Boolean function Π(x) such that
Π(x) = 1 if the Hamming weight of x is odd, and Π(x) = 0 otherwise.
To derive a quadratization of this function, we will use Corollary 2.4 rather
than Corollary 2.3, and will make use of a variant of the argument given to
establish Theorem 4.1. By Corollary 2.4, we can see that Π has the repre-
sentation

Π(x) =
n∑
j=1

xj + 2
n−1∑
i=1

(−1)i−1

[
i−

n∑
j=1

xj

]−
. (11)

Let E(l) be as in Lemma 3.1. By adding E(
∑n

j=1 xj) to this repre-
sentation of Π, we obtain a representation with non-negative coefficients,
which leads to a quadratization with m = bn/2c auxiliary variables: Π(x) =
miny∈{0,1}m g(x, y) where

g(x, y) = 2
∑
i<j

xixj +
n∑
j=1

xj + 4
n−1∑
i=1:
i odd

yi

(
i−

n∑
j=1

xj

)
.

(The terms with coefficient −2 in the expansion (11) disappear on the addi-
tion of E.)

The complement, Π of Π can be represented as

Π(x) = 1−
n∑
j=1

xj + 2
n−1∑
i=1

(−1)i

[
i−

n∑
j=1

xj

]−
,

so, by adding E(
∑n

j=1 xj), to eliminate negative coefficients, we arrive at the

following quadratization involving m =
⌊
n−1
2

⌋
auxiliary variables:

g′(x, y) = 1 + 2
∑
i<j

xixj −
n∑
j=1

xj + 4
n−1∑
i=2:
i even

yi

(
i−

n∑
j=1

xj

)
.
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So we conclude the following:

Theorem 4.6. The parity function of n variables has a y-linear quadrati-
zation involving

⌊
n
2

⌋
auxiliary variables, and its complement has a y-linear

quadratization involving
⌊
n−1
2

⌋
auxiliary variables.

5. Lower bounds on the number of auxiliary variables

5.1. Generic lower bounds

The following result is inspired by (but is different and does not follow
from) a transformation given in Siu, Roychowdhury and Kailath [25], in the
framework of the representation of Boolean functions by threshold circuits.
This result relates quadratizations of arbitrary (possibly non-symmetric)
pseudo-Boolean functions to the quadratization of symmetric functions on
a larger number of variables. We will then use a lower bound result from [1]
in order to obtain a lower bound result for symmetric functions.

Lemma 5.1. Suppose that n,m are positive integers and suppose that every
symmetric pseudo-Boolean function F (z) of N = 2n − 1 variables (that is,
every symmetric function F : {0, 1}2n−1 → R) has an m-quadratization.
Then every (arbitrary) pseudo-Boolean function f(x) on {0, 1}n also has an
m-quadratization.

Proof. Let f(x) be an arbitrary pseudo-Boolean function of n variables. We
are going to construct a sequence of four functions k, F , G, g, such that g is
a quadratization of f . For this purpose, let N = 2n − 1.

1. Let k : {0, 1, . . . , N} → R be defined as follows: k(w) := f(x) where x
is the binary representation of w, that is, w =

∑n
i=1 2i−1xi.

2. Let F be the symmetric pseudo-Boolean function of N variables defined
by: for all z ∈ {0, 1}N , F (z) := k(|z|), where |z| is the Hamming weight
of z. (This defines F completely, given that it is symmetric.)

3. Let G(z, y) be an arbitrary quadratization of F (z) using m auxiliary
variables. (The hypothesis of the theorem is that such quadratizations
exist.)

4. Finally, let g(x, y) be the pseudo-Boolean function on {0, 1}n+m that
is obtained by identifying each of the variables z2j−1 , z2j−1+1, . . . , z2j−1
with xj in G(z, y), for j = 1, 2, . . . , n; that is,

g(x1, x2, x3, . . . , xn, y) := G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, . . . , xn, y).
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We claim that g(x, y) is a quadratization of f . Indeed, g is clearly quadratic,
because G is. Moreover, for every point x ∈ {0, 1}n,

min
{
g(x, y) : y ∈ {0, 1}m

}
= min

{
G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, y) : y ∈ {0, 1}m

}
(12)

= F (x1, x2, x2, x3, x3, x3, x3, . . . , xn) (13)

= k

(
n∑
i=1

2i−1xi

)
(14)

= f(x) (15)

(where equality (12) is by definition of g, (13) is by definition of G, (14) is
by definition of F , and (15) is by definition of k).

We will now make use of the following result from [1].

Theorem 5.2. There are pseudo-Boolean functions of n variables for which
any quadratization must involve at least Ω(2n/2) auxiliary variables.

To be more concrete, the analysis in [1] implies that for any n ≥ 8, there
is a pseudo-Boolean function on n variables for which any quadratization will
require at least 2n/2/8 auxiliary variables.

This leads to the following lower bound result for symmetric functions.

Theorem 5.3. There exist symmetric functions of n variables for which any
quadratization must involve at least Ω(

√
n) auxiliary variables.

Proof. Lemma 5.1 shows that, if every symmetric function F (z) on {0, 1}N ,
with N = 2n − 1, has an m-quadratization, then every (arbitrary) function
f(x) on {0, 1}n also has an m-quadratization. From Theorem 5.2, it follows
that some symmetric functions on N variables must need Ω(

√
N) auxiliary

variables in every quadratization.

We also have a similar lower bound result for y-linear quadratizations. It
rests on the following result from [1]:

Theorem 5.4. There are pseudo-Boolean functions of n variables for which
any y-linear quadratization must involve at least Ω(2n/n) auxiliary variables.

We then have the following.
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Theorem 5.5. There exist symmetric functions of n variables for which any
y-linear quadratization must involve at least Ω(n/ log n) auxiliary variables.

Proof. The proof is similar to the previous one: it suffices to observe that
when G(z, y) is y-linear, then so is g(x, y), and to rely on the generic lower
bound Ω(2n/n) of Theorem 5.4 for the number of auxiliary variables required
in every y-linear quadratization of certain pseudo-Boolean functions.

Note that the lower bound in Theorem 5.5 for the number of auxiliary
variables in y-linear quadratizations comes within a factor O(log n) of the
upper bound of n− 2 from Theorem 4.2.

5.2. A lower bound for the parity function

The results just obtained prove the existence of symmetric pseudo-Boolean
functions which require a significant number of auxiliary variables to quadra-
tize. Specifically, there exist functions needing Ω(

√
n) auxiliary variables in

any quadratization, and functions needing Ω(n/ log n) auxiliary variables in
any y-linear quadratization. Those results do not, however, explicitly ex-
hibit particular such functions. We next give a concrete example of a func-
tion which needs a significant number of auxiliary variables in any y-linear
quadratization.

Theorem 5.6. Every y-linear quadratization of the parity function on n
variables must involve at least Ω(

√
n) auxiliary variables.

Proof. Let g(x, y) be an arbitrary y-linear quadratization of the parity func-
tion. Then it can be written as

g(x, y) = q(x) +
m∑
i=1

yi(`i(x)− bi) (16)

where q(x) is quadratic, and `1(x), . . . , `m(x) are linear functions of x only.
For each i ∈ [m] = {1, 2, . . . ,m}, consider the regions

R+
i = {x ∈ Rn : `i(x) ≥ bi}, R−i = {x ∈ Rn : `i(x) ≤ bi},

which are closed half-spaces defined by the linear functions `i. For each
S ⊆ [m], let RS denote the region RS =

(⋂
i∈S R

−
i

)
∩
(⋂

i 6∈S R
+
i

)
. This is one

of the ‘cells’ into which the m hyperplanes defining the linear functions `i
partition Rn.
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On every cell RS, the function f(x) = min{g(x, y) : y ∈ {0, 1}m} is
quadratic. Indeed, for x ∈ RS, we have

min
{
g(x, y) : y ∈ {0, 1}m

}
= q(x) +

∑
i∈S

(`i(x)− bi).

We now use a result from Saks [23] and Impagliazzo, Paturi and Saks [9]
(which was used to obtain lower bounds on the size of threshold circuits rep-
resenting the parity function). Let us say that a set of hyperplanes slices
all r-dimensional subcubes of the Boolean hypercube {0, 1}n if for each sub-
cube (or face) of {0, 1}n of dimension r, there are two vertices of the sub-
cube that lie on opposite sides of one of these hyperplanes. Then (Propo-
sition 3.82 of [23]), if a set of m hyperplanes slices all r-dimensional sub-
cubes, we have m >

√
n/(r + 1)− 1. In particular, therefore, any set of

hyperplanes that slices every 3-dimensional subcube of {0, 1}n must contain
more than

√
n/4− 1 planes. Suppose the hyperplanes defined by the lin-

ear functions `i do not slice all 3-dimensional subcubes. Then there would
be some cell RS containing a subcube of dimension 3. The parity func-
tion restricted to that subcube would then be equal to the quadratic ex-
pression q(x) +

∑
i∈S(`i(x) − bi). However, it is well-known (see, for in-

stance [23, 18, 26]) that the parity function on a subcube of dimension r
cannot be represented as a pseudo-Boolean function of degree less than r
(and it cannot even be represented as the sign of a pseudo-Boolean function
of degree less than r). So, we would then have a quadratic, degree-2, repre-
sentation of parity on a cube of dimension 3, which is not possible. It follows,
therefore, that the set of hyperplanes in question must slice all 3-dimensional
subcubes and therefore has size m >

√
n/4− 1.

6. Conclusions

In this paper, we have studied the number of auxiliary variables required
in quadratizations (and y-linear quadratizations) of symmetric pseudo-Boolean
function. We have presented explicit general constructions of quadratiza-
tions, via special types of representations of the functions. This shows that
every such function can be quadratized (with a y-linear quadratization, sym-
metric in the original variables) using at most n− 2 auxiliary variables. We
investigated in more detail the quadratizations of special functions (monomi-
als, t-out-of-n, exact-t, and parity functions), where it was possible to obtain
quadratizations using significantly fewer than n − 2 auxiliary variables. By
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drawing on a general result from our related paper [1] and establishing a
connection between quadratizations of general functions and of symmetric
functions on a related number of variables, we showed that there exist sym-
metric functions requiring Ω(

√
n) auxiliary variables in any quadratization,

and that y-linear quadratization can require Ω(n/ log n) variables. It would
clearly be of interest to close the gaps between these lower bounds and the lin-
ear upper bound. We established, further, that any y-linear representation of
the parity function needs Ω(

√
n) auxiliary variables. An open question is to

determine whether a similar (or better) lower bound can be obtained for any
(not necessarily y-linear) quadratization of this, or another specific, symmet-
ric function. For instance, any example of a symmetric function where a non
y-linear quadratization needs fewer variables than the y-linear ones would
be of interest, as would be any non constant lower bound on the number of
auxiliary variables for positive monomials. Furthermore, the number of pos-
itive quadratic terms in any known quadratization of the positive monomial
is at least n− 1, but no lower bound on such quantity has been found so far.
Settling this question is also of great interest, as it is related to the quality
of relaxations based on quadratizations for PBO problems.
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