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REGULAR SLICES FOR HYPERGRAPHS

PETER ALLEN, JULIA BÖTTCHER, OLIVER COOLEY, AND RICHARD MYCROFT

Abstract. We present a ‘Regular Slice Lemma’ which, given a k-graph G, returns a
regular (k− 1)-complex J with respect to which G has useful regularity properties. We
believe that many arguments in extremal hypergraph theory are made considerably sim-
pler by using this lemma rather than existing forms of the Strong Hypergraph Regularity
Lemma, and advocate its use for this reason.

1. Introduction

The Szemerédi Regularity Lemma [9] is a powerful tool in extremal graph theory; a
great number of advances of recent decades in this area either rely on, or at least were
inspired by, the Regularity Lemma. Finding the right extension of this result for uniform
hypergraphs turned out to be a challenging endeavour, which culminated in the proof
of the Strong Hypergraph Regularity Lemma together with a corresponding Counting
Lemma (see [3, 5, 6, 7, 8]), which provide an analogous machinery for extremal problems
in hypergraphs. The difficulty with these tools is their technical intricacy, which leads
to significant additional complexity in applications of the regularity method in extremal
hypergraph theory.

We argue that in many cases much of this complexity can be avoided by using a
structure which we call a regular slice instead of the more complicated structure returned
by the Strong Hypergraph Regularity Lemma. Our main result is a Regular Slice Lemma,
derived from the Strong Hypergraph Regularity Lemma, which asserts the existence of
regular slices which inherit enough structure from the original hypergraph to be useful
for embedding problems.

2. Regular Complexes

In this section we give key definitions, including the notion of a regular k-complex (this
idea plays a key role in describing regularity for hypergraphs). For a more expository
introduction to regular k-complexes we recommend [3].

A hypergraph H = (V,E) consists of a vertex set V and an edge set E, where each
edge e ∈ E is a subset of V . We often identify a hypergraph with its edge set, writing
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e ∈ H to mean e ∈ E and writing |H| for the number of edges of H. Similarly, given two
hypergraphs G and H with vertex set V , we write G ∪ H for the hypergraph on V with
edge set E(G) ∪ E(H).

We say that a hypergraph H is k-uniform if every edge has size k, and abbreviate
‘k-uniform hypergraph’ to k-graph. Also, we say that H is a k-complex if every edge of
H has size at most k, and moreover for any e ∈ H and e′ ⊆ e we have e′ ∈ H. We
informally think of a k-complex H as having ‘layers’, where ‘layer’ i is the i-graph formed
by edges of H of size i. Given a (k− 1)-complex H with vertex set V , we say that a k-set
S ⊆ V is supported on H if S ′ ∈ H for any S ′ ( S, and similarly that a k-graph G on V
is supported on H if every edge of G is supported on H. So, informally, in a k-complex H
the ith layer is supported on the (i− 1)-complex formed by the edges of all lower layers.

For the rest of this section we fix a vertex set V and a partition P of V into parts
V1, . . . , Vt, which we call clusters. Let H be a k-complex on V . For any ` ≥ 2 and any
A ∈

(
[t]
`

)
, we define VA :=

⋃
i∈A Vi, and write PA for the partition of VA inherited from P

(so PA has |A| = ` parts). Similarly, we write HA for the PA-partite `-graph with vertex
set VA and whose edges are precisely the edges of H which have ` vertices, one in each
part of PA. We also denote by H∗A the PA-partite `-graph with vertex set VA whose edges

are precisely those PA-partite sets S ∈
(
[t]
`

)
such that every proper subset S ′ ( S is an

edge of H. We then define the relative density of H at A to be

dA(H) :=
|HA ∩H∗A|
|H∗A|

if |H∗A| > 0, so dA(H) is the proportion of `-sets S of vertices of H which could possibly be
edges of H (in the sense that S is supported on the ‘lower levels’ of H) which are in fact
edges of H. If instead |H∗A| = 0 then for convenience we define dA(H) := 0. In the same
way, if Q := (J1,J2, . . . ,Jr) is a collection of r not-necessarily-disjoint subcomplexes
of H, we define

dA(H|Q) :=
|HA ∩

⋃
i∈[r](Ji)∗A|

|
⋃
i∈[r](Ji)∗A|

if |
⋃
i∈[r](Ji)∗A| > 0, and take dA(H|Q) := 0 otherwise. We say that H is (di, ε, r)-

regular at A if we have dA(H|Q) = di ± ε for every r-set Q of subgraphs of G such
that |

⋃
i∈[r](Ji)∗A| > ε|H∗A|. We refer to (di, ε, 1)-regularity simply as (di, ε)-regularity.

Moreover, for constants d2, . . . , dk we say that H is (dk, . . . , d2, εk, ε, r)-regular if

(a ) H is (di, ε)-regular at A for any 2 ≤ i ≤ k − 1 and any A ∈
(
[s]
i

)
, and

(b ) H is (dk, εk, r)-regular at A for any A ∈
(
[s]
k

)
.

For a (k−1)-tuple d = (dk, . . . , d2) we write (d, εk, ε, r)-regular to mean (dk, . . . , d2, εk, ε, r)-
regular.

This definition of a regular k-complex provides the best generalisation of the notion of
regularity in graphs to the hypergraph setting. Indeed, for regular k-complexes we have
a Counting Lemma (see [3, 5, 6, 7, 8]), which gives the approximate number of copies of
any small fixed k-complex within a regular k-complex, as well an Extension Lemma [2],
an Embedding Lemma [2] and (under some additional conditions) a Blow-up Lemma [4],
each of which functions similarly as in the graph case.

3. Regular Slices for Hypergraphs

To make use of the definitions of the previous section in solving embedding problems
in k-graphs, we need a form of ‘hypergraph regularity lemma’. Informally this should,
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given a graph G, return one or more (k−1)-complexes J on V (G) such that adding edges
of G as the ‘kth layer’ of J results in a regular k-complex.

To formalise this idea, we make the following further definitions (maintaining the no-
tation of the previous section). Suppose that J is a P-partite (k − 1)-complex on V ,
and that G is a k-graph on V . Then the restriction of G to J , denoted G[J ], is the
subgraph of G consisting of all edges of G which are supported on J . It follows that
J ∪ G[J ] is a k-complex on V . Moreover, for any k-set X of clusters of P , we say that
G is (εk, r)-regular with respect to X if the restriction of J ∪ G[J ] to the clusters of X
forms a (d, dk−1, . . . , d2, εk, ε, r)-regular k-complex for some d; we refer to this value of d
as the relative density of G with respect to X, denoted by d∗(X), if G and J are clear
from the context.

Ideally, a ideal hypergraph regularity lemma would, given a k-graph G, return a (k−1)-
complex J on V (G) such that G is supported on J and G ∪ J is a regular k-complex;
sadly, this is not possible. Instead, existing forms of the hypergraph regularity lemma
say that (very roughly speaking) given a k-graph G with vertex set V , we can find the
following. First, a partition P of V into a bounded number of parts of equal size, called
clusters. Second, for each 2 ≤ ` ≤ (k−1) a partition of the P-partite `-sets of vertices into
a bounded number of parts, called cells, with the property that for any P-partite k-set
S of vertices of V , the hypergraph J whose edge set is the union of all cells containing
subsets of S is a regular (k − 1)-complex. Moreover, for almost all choices of S, the
k-complex J ∪G[J ] should be regular (so in particular, all but a few edges of G lie in the
‘kth layer’ of a regular k-complex whose ‘lower layers’ are unions of cells. The partitions
into cells are often collectively referred to as a partition k-complex ; much of the technical
complexity involved in applications of the Strong Hypergraph Regularity Lemma arises
when working with this structure.

Our Regular Slice Lemma is quite different. Indeed, given a k-graph G it returns a
single (k − 1)-complex J for which J ∪ G[J ] has desirable regularity properties, as in
the following definition.

Definition 1. Given ε, εk > 0, r, t0, t1 ∈ N and a k-graph G with vertex set V , a
(t0, t1, ε, εk, r)-regular slice for G is a (k − 1)-complex J on V such that

(a ) J is P-partite for some partition P of V into t parts of equal size, where t0 ≤ t ≤ t1.
We refer to P as the ground partition of J , and to the parts of P as the clusters
of J .

(b ) There exists a density vector d = (dk−1, . . . , d2) such that for each 2 ≤ i ≤ k− 1 we
have di ≥ 1/t1 and 1/di ∈ N, and the (k − 1)-complex J is (d, ε, ε, 1)-regular.

(c ) G is (εk, r)-regular with respect to all but at most εk
(
t
k

)
of the k-sets of clusters of

J , where t is the number of clusters of J .

Having obtained a regular slice J for a k-graph G, we define a weighted reduced k-graph
according to the relative densities d∗(X) for k-sets X of clusters of J .

Definition 2 (Weighted reduced k-graph). Given a k-graph G and a (t0, t1, ε, εk, r)-
regular slice J for G, the reduced k-graph RJ (G) of G and J is the complete weighted
k-graph whose vertices are the clusters of J , and where each edge X is given weight d∗(X)
(in particular, the weight is in [0, 1]). When J is clear from the context we simply write
R(G) instead of RJ (G).

In general, it is not very helpful to know that J is a regular slice for a k-graph G.
Indeed, G[J ] will usually contain only a tiny fraction of the edges of G, which need not
be representative, so the reduced k-graph of G with respect to J does not necessarily
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resemble G in the way that the reduced 2-graph of a 2-graphH with respect to a Szemerédi
partition resembles H. However, our Regular Slice Lemma states that there exists a
regular slice J for which R(G) does resemble G, in the sense that densities of small
subgraphs (part (a ) of the Regular Slice Lemma) and degree conditions (part (b )) are
preserved. In order to make this precise, we make the following further definitions.

Fix a weighted k-graph G, whose weight function we denote by d∗. Given a set S ⊆
V (G) of size j for some 1 ≤ j ≤ k − 1, the relative degree deg(S;G) of S is defined to be

deg(S;G) :=

∑
e∈G:S⊆e d

∗(e)(|V (G)\S|
k−j

) .

So if every edge of G has weight one, then deg(S;G) is simply the proportion of k-sets of
vertices of G containing S which are in fact edges of G. Likewise, for any k-graph H, we
define the H-density of G as

dH(G) :=

∑
φ:V (H)→V (G)

∏
e∈E(H) d

∗(φ(e)
)(

v(G)
v(H)

)
· v(H)!

,

where φ ranges over all injective maps and d∗ is the weight function on E(G). So if every
edge of G has weight one, then the numerator is simply the number of labelled copies of
H in G, justifying the use of the term H-density.

Lemma 3 (Regular Slice Lemma). Let k ≥ 3 be a fixed integer. For any t0 ∈ N and
εk > 0 and any functions r : N→ N and ε : N→ (0, 1], there are integers t1 and n0 such
that the following holds for all n ≥ n0 which are divisible by t1!. Let G be a k-graph on n
vertices; then there exists a (k− 1)-complex J on V (G) which is a (t0, t1, ε(t1), εk, r(t1))-
regular slice for G with the following additional properties.

(a ) For any k-graph H with v(H) ≤ 1/εk we have

|dH (R(G))− dH (G)| < εk .

(b ) For any 1 ≤ j ≤ k − 1 and any set Y of j clusters of J we have∣∣deg(Y ;R(G))− deg(JY ;G)
∣∣ < εk .

In fact, the version of the Regular Slice Lemma stated in [1] is stronger in several
useful ways. First, given several k-graphs G1, . . . ,Gs on the same vertex set, it allows us
to find a single J which is simultaneously a regular slice for each Gi. Second, given an
initial partition Q of V (G) into parts of equal size, it allows us to insist that the ground
partition P of J is a refinement of Q. Third, we may insist that the reduced graph
inherits degrees and H-densities within linear-size subsets of V (G), rather than simply
within all of V (G). Finally, we can also insist that for any S ⊆ V (G) of size at most k−1,
the neighbourhood of S in G[J ] is an accurate representation of the neighbourhood of S
in G (this final point is particularly useful for embedding spanning subgraphs). However,
the form stated above is sufficient for the principal application given in [1], namely to
prove a hypergraph analogue of the Erdős-Gallai theorem.

4. Advantages of the Regular Slice Lemma

We believe that many applications of hypergraph regularity can be simplified consid-
erably by using the Regular Slice Lemma, for a number of reasons. Firstly, use of the
Regular Slice Lemma avoids the need to introduce and work with the notion of a ‘parti-
tion complex’ or related structure; this in itself yields significant reductions in length and
notational complexity. Furthermore, the reduced k-graph as defined in Definition 2 is the

4



correct indexing structure for a regular slice, and this fact allows arguments which are
much closer in style to arguments using regularity in graphs. By contrast, Keevash [4] ob-
served that the correct indexing structure for a partition complex arising from the Strong
Hypergraph Regularity Lemma is a so-called ‘multicomplex’, a more technical structure
which is less straightforward to handle.

Due to this, various attempts have been made to define and work with a reduced k-
graph following an application of the Strong Hypergraph Regularity Lemma; typically
these have a vertex corresponding to each cluster, with k clusters forming an edge if
G is both regular and dense with respect to some (k − 1)-complex formed by cells on
these clusters. The drawback of this approach is that edges may intersect in the reduced
k-graph without any corresponding intersection in the corresponding complexes. That
is, taking k = 3 for simplicity, even if both V1V2V3 and V2V3V4 are edges of the reduced
3-graph, there need be no pair {v2, v3} with v2 ∈ V2 and v3 ∈ V3 which is an edge of both
the 2-complexes indicated by this fact.

By contrast, if G is a k-graph, and J is a regular slice for G, then subcomplexes of
J corresponding to intersecting edges of the reduced k-graph R(G) do necessarily share
edges in the common clusters. More specifically, again taking k = 3, let V1, V2, V3 and V4
be clusters of J for which V1V2V3 and V2V3V4 are both edges of the reduced 3-graph R(G)
which correspond to regular complexes of high density. Then most edges {v2, v3} ∈ J
with v2 ∈ V2 and v3 ∈ V3 are contained in many edges of G[V1, V2, V3] and also in many
edges of G[V2, V3, V4]. Using this fact we can, for example, easily embed a long tight
path in G including vertices from both V1 and V4 (where a tight path is a sequence of
distinct vertices so that any three consecutive vertices form an edge of G). Indeed, we
embed a tight path in G[V1, V2, V3] using the fact that G is regular with respect to these
clusters, ending at some pair {v2, v3} ∈ J with v2 in V2 and v3 ∈ V3, following which
we similarly embed a tight path in G[V2, V3, V4] beginning with the same pair {v2, v3};
these two paths therefore form a single tight path as required. Proceeding in this manner
across linearly many edges of R(G) is the essence of the proof of the Cycle Embedding
Lemma proved in [1], a key ingredient in the hypergraph analogue of the ErdHös-Gallai
theorem proved there; as described above, it is much less straightforward to proceed in
this manner following an application of the Strong Hypergraph Regularity Lemma.
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[6] V. Rödl and M. Schacht, Regular partitions of hypergraphs: counting lemmas, Combin. Probab.

Comput. 16 (2007), no. 6, 887–901.
[7] , Regular partitions of hypergraphs: regularity lemmas, Combin. Probab. Comput. 16 (2007),

no. 6, 833–885.
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