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Abstract 
Air networks are normal examples of transportation systems among ubiquitous big data 
networks in the dynamic nature. This is particularly the case in developing countries with 
rapid airport network expansions. This paper explores the structure and evolution of the trunk 
airport network of China (ANC) in major years during 1980s-2000s. We generalise the 
complex network approach developed in existing studies and further test for statistical 
properties of weighted network characteristics by using pair-wise traffic flows. The 
spatiotemporal decomposition of network metric plots and the visualization maps leads to a 
rich harvest of stylized ANC structures: (i) national hub-and-spoke patterns surrounding 
mega-cities; (ii) regional broker patterns surrounding Kunming and Urumqi, and (iii) local 
heterogeneous disparity patterns in isolated geographical cities, such as Lhasa, Lijiang, 
Huangshan, etc. These findings have important implications towards understanding the geo-
political and economic forces at stake in shaping China's urban systems. 
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1 Introduction 

Air transportation systems are increasingly represented by complex topology 

networks as an analogy for studying their structures and geographical implications on 

urban and regional development (O’Kelly, 1998). The recent decades have seen the 

emergence of airport hubs such as the London Heathrow Airport in the UK, as 

principal means by which periphery regions are connected to the network for public 

transportation services. Hence, airport network expansion is often seen as a policy 

lever that can stimulate city connectivity, in the same way that highway and railway 

investments improved hub-and-spoke transport systems 1 . This is a particularly 

important question today in the context of China, given that China has become as the 

world’s second largest air transportation market country since 2000s (Civil Aviation 

Administration of China, 2006). There is considerable debate over the institutional 

and network characteristics of the evolution of airport systems in China since the late 

1980s (e.g., Zhang, 1998; Zhang and Chen, 2003; Wang and Jin, 2007; Zhang and 

Round, 2008; Shaw et al., 2009; Lei and O’Connell, 2011; Wang et al., 2011; Lin, 

2012). Evaluations of the evolution of airport networks face several empirical 

challenges, including accurately identifying spatiotemporal patterns of network 

structures, precisely measuring network dynamic features and studying potential 

1 These policies frequently combine transport network dynamics with economic objectives under the conventional 

wisdom that better accessibility promotes the growth of hub city and spreads of economic benefits to peripheral 

cities. In this context, many explanations of transport networks rely on the economic foundation of spillover effects 

that lead to theories of trade and market competition, productivity, and economic integration (Brueckner, 2003; 

Redding et al., 2011). In this paper however, we step back from theoretical concerns and focus on the stylized facts 

to be explained. 
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economic geography channels at work. 

This paper explores the evolution of China's intercity airport network expansions 

during 1980s-2000s, using location-based data sources and a weighted complex 

network approach that permit us to meet many of empirical challenges. The first data 

source is detailed Geographically Information System (GIS) maps we constructed of 

the precise locations of airports as they evolved over time. With maps of both existing 

airports and newly-built airports, we identify the evolution of airport network 

expansions in multiple ways, allowing us to provide more insights on seeing regional 

disparities through geo-tagged air traffic flow data. The second is the civil aviation big 

database, which includes airflight routes and location information between 

airport-pairs with regular flight timetables in the period 1980s-2000s—a period that 

China has experienced the most dramatic air transportation expansion. By 

constructing precisely pair-wise air traffic flow information and combining this 

information with GIS maps, we can use the complex network approach to measure 

topological characteristics of airport networks based on in each given year, in each 

airport and at different geographic scales.  

To conduct our analysis, we generalize the unweighted complex network 

approach developed in Dong et al (2009) and other recent studies (Wang et al., 2011 

and Wang et al., 2014). The fundamental value of the geo-computations in those 

papers is to compare the statistical distribution of unweighted network metrics. This 

provides a test for purely statistic-based interpretations about China's aviation 

networks at the national scale. In this paper, we develop this approach further to test 
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for the combination of unweighted and weighted complex network metrics of intercity 

airflight interactions at different geographical scales over time (see Section 2 for 

detailed comparisons). In addition to the importance of national hub-and-spoke 

patterns, we consider network disparity features and find strong evidence of abnormal 

regional community patterns around Kunming and Urumqi, and local heterogenous 

disparity patterns in isolated geographical cities, such as Lhasa, Lijiang, Huangshan, 

etc. This is also novel.  

The reminder of this paper is organized as follows: Section 2 reviews the existing 

literature that are relevant to our study. Section 3 describe the methodology 

framework, and Section 4 presents the data and study area. Section 5 presents the 

results. Section 6 discusses the implications of this study and potential channels at 

work. Section 7 concludes.  

2 Related work 

Most existing research on assessing the evolution of airport networks has focused 

on the US and European countries. Despite the central role of airport network 

topology models, these studies have mostly emphasized the network structure 

consequences of airline industry deregulations, the presence of low-cost carriers, 

liberalization and other policy reforms (Chou, 1993; Bowen, 2002; Dobruszkes, 2006; 

Goetz and Vowles, 2009; Ison et al., 2011). There have been fewer studies about the 

evolution and efficiency of airline systems in developing countries (Bowen and 

Leinbach, 1995; O’Connor, 1995; Bowen, 2000), largely due to a lack of systemic 
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geo-tagged data about air transportation infrastructure, a lack of clear understanding 

regarding airport and airline policy arrangements, and the difficulty of tracking 

airflight routes across cities. This section summarizes and highlights existing research 

that are relevant to our study.  

 Our work contributes to a substantial empirical literature that investigates 

various aspects of China’s airport development. Much of it is concerned with 

variations in China’s airport development policy reforms, an issue that is not directly 

related to our work. Typically, these studies review the market-oriented policy reform 

process of the China’s airline industry (Zhang, 1998; Zhang and Chen, 2003; Zhang 

and Round, 2008; Yang et al., 2008). More recent work has moved away from the 

macro-policy research towards an explicit comparison of market competition 

outcomes of state-owned airline companies versus privately-owned airline companies 

before and after the airline consolidation policy reform led by the Civil Aviation 

Administration of China (CAAC) in the early 2000s. It also shifted its focus away 

from hard-to-measure policy consolidation variables to the implications on 

contemporary airport network patterns (Shaw et al., 2009). The results vary across 

studies. Many studies succeed to find that the three-giant Chinese airline companies 

(AirChina, Eastern China Airline, Southern China Airline), created by state-led 

consolidation reforms, tend to use Beijing, Shanghai and Guangzhou as their distinct 

national hubs and small airport cities as periphery areas to balance airline market 

competition structures (Ma and Timberlake, 2008; Lei and O’Connell, 2011). These 

findings, however, could fail to fully capture the spatial characteristics of airport 
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networks. Indeed, it is very likely that airline market competition structures may not 

be overlapped with the precise spatial structure of airport networks for which 

outcomes of interest---such as topological characteristics of intercity flight 

linkages---can be measured.  

Our work is also related to a growing body of complex network literature dealing 

with the statistical, topological and geometric structures of transport systems, 

including the railways (Sen et al., 2003) and the airways (Bagler, 2008; Xu and 

Harriss, 2008). By showing that the worldwide airport network (WAN) has a 

scale-free property and small-world structure, Guimerà et al.(2005) provide the most 

convincing evidence about the hub-and-spoke airport network structure across the 

globe. The Airport Network of China (ANC), a network much smaller than the WAN, 

has recently been analyzed for its topology and traffic dynamics (Li and Cai, 2004; 

Zheng et al., 2009; Wang et al., 2011; Lin, 2012). Its topology was found to have 

small-world network features and a two-regime power-law degree distribution. These 

studies have almost exclusively examined the static state of a network in one year. In 

what are probably the most closely related papers to our own, Dong et al (2009) and 

Wang et al (2014) examines the dynamics of China’s airport network patterns over the 

past decades based on approximately 10-year time intervals. On the surface, our 

research design resembles the investigation in Dong et al (2009) and Wang et al 

(2014). We make a similar complex network mining approach, but note that more 

careful consideration reveals three important differences between our research and 

that in Dong et al (2009) and Wang et al (2014). First, it is certainly true that a longer 
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time span can offer more information about the evolution of airport network structure. 

As indicated by Wang et al (2014), ANC did not experience significant expansions 

during 1930 to 1980 due to the World War II and civil wars (1930-1949) and strict 

central-planned socialist economy system (1949-1980). In our study, instead, we 

restrict our focus on the evolution of ANC in the period 1980-2006---a period that 

China has experienced dramatic economic growth and significant changes in civil 

aviation policy reforms. Thus, our identification is even easier to defend in selecting 

appropriate years and reflect the heterogeneous effects of airport network expansions. 

Second, previous studies have often used basic network metrics such as degree, 

clustering coefficient, short path for assessing the unweighted topological network 

centrality evolution process of the ANC. In truth, an unweighted network is a special 

case of weighted networks when all edge weights are the same. The spatiotemporal 

distributions of our network metrics allow us to shed more lights on the geo-political 

implications of the evolution of China’s airport network patterns. This is novel. Third, 

previous studies are concerned with the global hub-and-spoke network centralization 

process at the national level, while we look at the distributions of hub-and-spoke 

network structure at different geographical scales--an important complementary 

inquiry.  

3 A complex network modeling framework 

A complex network modeling framework is coded in Matlab after a substantial 

modification and secondary programming based on Freeman (1979)’s seminal work. 
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The specific modeling framework setup is detailed below. 

3.1 Defining a connected network graph 

For any airport network, it comprises nodes (cities) and edges (airline routes) 

connecting them. Two nodes are defined to be neighbors if there is a link between 

them. In this paper, the ANC is abstracted as a connected network graph be G = {(V, E) 

| V is a set of nodes, E is a set of edges. E ⊆ V×V, an edge e = (i, j) connects two 

nodes i and j; i, j∈V, e∈E}. This setting is necessary for the calculation of network 

metrics such as degree, shortest path, diameter, clustering coefficient as detailed 

below.  

3.2 Basic network connectivity measures 

    The starting point for evaluating network connectivity is to introduce three basic 

and important network metrics: degree, shortest path, and diameter as below (Haggett 

and Chorley, 1969; Taaffe et al., 1996; Black, 2003):  

The degree of a node v in a network, represented as d(v), is the number of 

connections or edges the node shares with others (Barabasi and Albert, 1999). Let N(v) 

= {u | (v, u)∈E and v, u∈V}, which is a set of the neighbor nodes of v in the graph G. 

so d(v) is the size of set N(v).  

A path in a network is defined as a sequence of nodes (n1 , … , nk) such that from 

each of its nodes there is an edge to the successor node. The path length is the number 

of edges in its node sequence. A shortest path between two nodes, i and j, is a minimal 

length path between them. A shortest path between two nodes is referred to as a 
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geodesic. The distance between i and j, noted as d(i, j), is the length of its shortest 

path. The diameter of the network is the length of the longest shortest path that 

quantifies how far apart the farthest two nodes in the graph are.  

3.3 Clustering coefficient  

    Knowing basic network metrics are not enough for quantifying how the node and 

its neighbors are clustered to being a complete graph. Thus we calculate the network 

clustering coefficient. This index was first introduced by Watts and Strogatz (1998) to 

determine the network structure. 

    The clustering coefficient of node v, noted as Cv, measures the extent of the 

inter-connectivity between the neighbors of node v and is the ratio of the number of 

edges between the nodes in the direct neighborhood to the number of edges that could 

possibly exist among them, Cv can be defined as: 
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    where d(v) is the degree of node v and N(v) is the set of the neighbor nodes of v. 

Based on the clustering coefficient of a node, we can define the clustering coefficient 

of a network, which is the average of the clustering coefficients of all nodes in the 

graph: 
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3.4 Betweenness centrality  

    Centrality is a core concept for the analysis of social networks, and betweenness 

is one of the most prominent measures of centrality. It was introduced independently 

by Freeman (1979), and measures the degree to which a node is in the position of 

geographical centrality (brokerage) by summing up the fractions of shortest paths 

between other pairs of vertices that pass through it (Borgatti and Everett, 2006). We 

define the betweenness centrality in a network as follows: Let ( , )s ts as the number of 

shortest paths (sometimes referred as geodesics) from s to t and let ( , | )s t vs  be the 

number of shortest number from s to t passing through some vertex v other than s, t. If 

s = t, let ( , ) 1s ts = , and if { , }v s t∈ , let ( , | ) 0s t vs = . The betweenness ( )Bc v of a 

vertex v can be defined to be: 

                
,

( , | )( )
( , )B

s t V

s t vc v
s t

s
s∈

= ∑                 (3)  

This measure is interpreted as the extent to which a city has control over 

pair-wise connections between other cities. In the airport network analysis, a city with 

high betweenness means that it is on the position of geographical centrality 

(brokerage) between other pairs of city connections. Given massive new airport 

development in China, it is important to identify which cities are acting as geographic 

brokers in the ANC and their dynamics over time and space.  

In addition to betweenness centrality, are there any other centrality measures 

missing? Of course, yes. Alternative centrality measures such as closeness, 

straightness could also capture characteristics of transport networks (Ma and 
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Timberlake, 2008). In this study, we only consider the degree centrality and 

betweenness centrality for the following reasons. First, degree and betweenness are 

the most meaningful centrality metrics to quantify different dimensions of network 

connectivity by geographers. Second, in our results that are not reported due to space 

limits, we find that the ANC patterns are robust to the inclusion of alternative 

centrality measures such as the closeness index.  

3.5 Weight, intensity and disparity coefficient  

For transport networks, weighted quantities such as traffic flows and travel 

distance have recently been applied to investigate the heterogeneity in the intensity of 

connectivity patterns--measured by edge weights--between node pairs. In our study, 

we define the node intensity Si as follows:  

Sv= ∑
⊂ )(vNj

vjw    (4) 

where vs is the weighted degree of airport city v. vjw is the weight of edges based 

on the annual traffic flows between two airport cities, N(v) is a set of neighbor airport 

cities with respect to airport city v. In addition to the node intensity, we measure the 

disparity coefficient for each node:  

2

( )
( ) vj

j N v v

w
Y v

s∈

 
=  

 
∑               (5) 

where Y(v) is the disparity coefficient for airport city v. It reflects the degree of 

the heterogeneity with respect to the intensity of airport connections. 
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3.6 Distribution of network metrics 

Characterizing the distribution function of network metric correlations is crucial 

to reveal multiple structural dimensions of airport network features. This section 

introduces the node-degree distribution, degree-clustering coefficient distribution, and 

degree-betweenness distribution.  

The node-degree distribution p(k) of a network is defined to be the fraction of 

nodes in the network with degree k. Thus if there are n nodes in total in a network and 

nk of them have degree k, we have p(k) = nk/n. In essence, the node–degree 

distribution reflects a node’s network connectivity status. It can be measured by the 

correlation between the node degree and the average degree for all of its connected 

nodes: ∑
∈

=
)(

1
)(

iVj
j

i

i k
k

kK where ki is the degree of node i. V(i) includes all 

neighboring nodes of i.  

Considering the node-degree distribution patterns between cities (nodes) will 

allow us to assess if most nodes are not neighbors of one another and if most of them 

can be reached by a small number of edges in the network (Newman, 2003). 

Technically, we can break down the scenario into two sub-categories: a disassortative 

mixing scenario occurs if high-degree nodes tend to connect with low-degree nodes, 

whereas the assortative mixing scenario indicates that high-degree nodes tend to link 

with other high-degree nodes. 

The degree-clustering coefficient distribution reflects the hierarchical 

organization of complex networks (Rabasz and Barabasi, 2003). The 
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degree-clustering coefficient distribution p(C) of a network, is defined to be the 

fraction of nodes in the network with clustering coefficient C. Thus if there are n 

nodes in total in a network and nk of them have clustering coefficient C, we have p(C) 

= nk/n. The average clustering coefficient of degree k, noted as C(k), is defined as the 

average value of clustering coefficient of nodes with degree k. The larger the value of 

C is, the more likely nodes are to reach one another within a short distance (i.e., 

airline connections). Following the same principle, we can use ( )Bc k to represent the 

average value of betweenness of the vertices with the same degree k, and define the 

betweenness-degree distribution. 

4 Implementation 

In this section, we discuss the implementation of the complex network model 

introduced in the previous sections based on a public data stream of real-time flight 

timetables. Figure 1 shows the system architecture of flight frequency rates between 

airport pairs. The selection of airports (as shown in Figure 1) is mainly dictated by 

data availability. 

China is known in the post-cold war era for its rapid airport network expansions. 

Our first step is to retrieve data from the Timetable of Air Carriers in China (1983, 

1993, 2006), obtained from the Civil Aviation Administration of China (CAAC). We 

select these approximately 10-year intervals in order to meet with national 

development plans, and milestone events occurred in China’s civil aviation 

development policy reforms (Zhang, 1998; Zhang and Yuen, 2008; Zhang and Round, 
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2009). For example, 1983 was the year that Boeing 747 and 737 aircrafts were first 

operated in China, indicating the opening of China’s airport markets to Western 

aircraft companies. 1993 was the year that the CAAC was re-structured as a direct 

government organization under the State Council, and published the market-oriented 

airline management policy reform2. 2006, was the year when China has become as the 

second largest airport market in the world and launched a series of new air 

transportation policy reforms. We did not select the air traffic information after 2006 

because that the post-2006 high-speed rail development may have market 

competitions with airflights and influence the evolution of transport networks (Yang 

and Zhang, 2012). Provided by the CAAC, our data set is an extremely rich database 

which contained details information about trunk airports with regular airline routes in 

the mainland China (excluding Hong Kong, Macao and Taiwan). Because our 

database do not have a comprehensive source for civil-military mixed-use airport 

information, we exclude cities whose airports information are missing.  

In the second step, we use the GIS techniques to match the precise locations of 

airports with flight route information between airport pairs, and use the annual flight 

frequency3 as the edge weight to construct the weighted complex network graph. For 

a more rigorous assessment, direct and transfer-over airline routes are considered and 

combined in the data set. The transfer-over airline routes are divided into two parts: 

from the departure city to the transfer-over city, and then from the transfer-over city to 

2 See original government policy details in http://www.caac.gov.cn/b1/B6/200612/P020061219658214793463.pdf  
3 It is certainly the case that international airflight information would offer more complete characteristics of airport 
networks. However, collection of international airflight flow data with precise origin-destination location 
information would be very costly due to the lack of stable and systemic timetables for different airline companies. 
Following the convention, this study focuses on the domestic airport network throughout the analysis. 
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the final destination city. Duplicated airline routes are displayed as one route but are 

weighted by annual air flight frequency. 

Figure 1 maps the location information of airport network nodes and edges. Each 

dot represents a city node, and each line represents the airline connections between 

cities, weighted by the annual air flight frequency. As can be seen from the maps, 

China's domestic airport network is characterized by regional inequality but move 

towards a more balanced spatial pattern. In 1983, almost all airport city connections 

occurred in the east side of the famous ‘‘Aihui-Tengchong Line”, a hypothesized 

‘‘geographic-demographic disparity line” in China (Hu, 1935). Based on the 1980 

population census, 93.5% of Chinese residents lived in the east side of this line, 

however, this figure fall to 90.8% in the recent 2000 census. When we turn to looking 

at airport network expansions from 1983 to 2006, dynamic roles of cities are more 

difficult to discern from a purely visual inspection of the data. Thus, we use the 

complex network mining approach to make more precise diagnostics about the 

dynamics of the network structure and inter-city airport connection trends. We let the 

Airport Network of China (ANC) comprise domestic airports of China and airlines 

connecting them. Let an undirected binary graph be G = {(V, E) | V is a set of nodes, E 

is a set of edges. E ⊆ V×V, an edge e = (i, j) connects two nodes i and j and i, j∈V, e∈

E}. In the ANC, the nodes of the network represent the airports and the edges between 

the pairs of nodes represent the airlines between the cities. Figure 2 uses the visual 

mining methods (Batagelj and Mavar, 1998) to show the evolution of ANC structure 

in major years during 1980s-2000s, respectively.  
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5 Results 

5.1 Statistical properties of the global network structure 

We begin the network analysis by looking at statistical properties of the global 

network structure and how it evolves over the past twenty years. Performing this 

analysis requires a clear interpretation of network metrics, such as degree, average 

path length/diameter and the clustering coefficient. Table 1 compares the basic 

network metrics of the ANC to other countries as reported in the existing literature. 

We find that the average degree, clustering coefficient and path length indicators of 

the ANC are similar to those of airport networks in India and Italy, though much 

smaller than those of the US. This is not a surprising finding because the US airport 

network is much larger than the ANC, with about more than two times the number of 

airports and more than six times the number of edges. In addition, airport networks in 

developed countries like US, Italy are very stable and remain as maturity markets (Xu 

and Harriss, 2008). 

As a second step towards understanding the ANC structure and evolution, we 

need to know the tendency between the number of airport cities and the number of 

airline routes over time and the tendency of diameter change. The conventional 

wisdom of these two questions is that: 1) constant average degree, i.e., the number of 

airline routes grows linearly with the number of airport cities; 2) slowly growing 

diameter, i.e., as the network grows, distances between cities grow. Perhaps 

surprisingly, ANC does not follow these two presumptions. As shown by the degree 

16 
 



distribution plotted in Figure 3(a), we find that the ANC's node-degree distribution fits 

the heavy-tail distribution law (Clauset et al, 2009) but not follow the power-law 

distribution law. This suggests that the ANC is a small-world network but not a typical 

scale-free network like other airport networks (Guimera et al, 2005). A credible 

explanation is that a few large Chinese cities (i.e. Beijing, Shanghai and Guangzhou) 

connect with almost all other airport nodes in the entire network.  

To go more in depth, we find that a densification trend of inter-city airport 

connections in China. For example, the average network degree has increased by 

123.5% from 1983 to 2006 and the average network clustering coefficient has 

increased by 42.6%, from 0.38 in 1983 to 0.54 in 2006. This is consistent with the 

decreasing trend of the ANC diameter and the highly-skewed clustering coefficient 

distribution relative to city node distribution (Figure 3b). These results suggest that 

inter-city airport connections in China are very dense and people can arrive at their 

flight destinations with fewer flight connections.  

When plotting, in Figure 4(a), the degree-clustering coefficient distribution, we 

find that airport cities with higher degree centrality values tend to have lower 

clustering coefficients. A typical example is Beijing, which connects almost all other 

cities in the network, and therefore, Beijing’s degree centrality is very high and its 

clustering coefficient is very low. This diversified degree-clustering coefficient 

distribution pattern is not the entire story. To illustrate the variations in individual 

airport city centrality outcomes, we use ( )Bc k to represent the average betweenness 

value of airport cities with the same degree k and plot the distribution in Figure 4 (b). 
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As is immediately clear, degree-betweenness distributions of ANC after scaling 

follow the exponential distributions and the plotted curves can be fitted by using the 

exponential function as below: 0
0

R xy y Ae= + . This exponential distribution of 

degree-betweenness correlation function suggests that cities with high degree levels 

tend to be cities have high betweenness levels. In light of this tradeoff, our results 

suggest that the most connected cities are the most central cities in China. This is 

different from the existing findings in developed countries, where the most connected 

cities may not necessarily be the most central cities. The underlying reason for this 

unique pattern is that the worldwide airport network has multi-community structure 

while the ANC is very dense and does not have obvious community structure. The 

airport cities connecting different communities should have higher betweeness. 

However, all airport cities in China are connected closely and circled around a few 

hubs, e.g. Beijing, Shanghai and Guangzhou. This provides supportive evidence to the 

abnormal left-skewed distribution of clustering coefficient given above. In addition, 

we find that there is an obvious outlier airport city (marked by a blue circling buffer) 

in the degree-betweenness distribution in 2006, which represents a very unique 

abnormal pattern in the ANC and we will discuss it in detail in the following sections.  

5.2 Spatiotemporal decomposition of regional heterogeneity patterns  

    In this section, we turn to the examination of differences in the evolution of 

network patterns at the regional scale. Proceeding as before, we use the degree 

centrality index to symbolize the connectivity level for each node because it measures 
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the number of airline routes that a city connects with others. We also construct a 

betweenness centrality to measure the extent to which cities have control over 

pair-wise connections between other cities in the network.  

We begin by assessing the dynamics of airport network patterns across China's 

three regions (Western region, Central region, and Eastern region)4 in major years 

during 1980s-2000s. For each region, we computed the standardized change ratio of 

its average clustering coefficient, betweenness centrality, and degree centrality 

relative to the national average level (Figure 5). We find high values of clustering 

coefficients across regions, suggesting that Chinese regions have experienced a 

similar densification networking trend over the past twenty years. In terms of degree 

variations, we find that the flight connectivity of the Western region has a much faster 

growth rate than that of Central and Eastern regions. When looking at the 

betweenness centrality, we find that the Western region has experienced the strongest 

improvement and the Eastern region remains at a high and stable level, however, the 

Central region has experienced the significant decreasing trend. This heterogeneous 

pattern may partly reflect the correlations with uneven population and economy 

distributions in China, where western and central regions are less developed than the 

eastern region.  

4 Following the convention, researchers and policymakers used to divide mainland China into three regions. 
Western China include 12 provinces: Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shanxi, Gansu, Qinghai, 
Ningxia, Xinjiang, Guangxi, Inner Mongoli. Central China include 7 provinces: Shanxi, Anhui, Jiangxi, Henan, 
Hebei, Hunan, Hubei. Eastern China include 12 provinces: Beijing, Tianjin, Shanghai, Heilongjiang, Jilin, 
Liaoning, Shandong, Jiangsu, Zhejiang, Fujian, Guangdong and Hainan.  
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5.3 Spatiotemporal decomposition of network dynamics of airport cities 

Further evidence on the evolution of China's airport network patterns can be 

shown from Figures 2(a-c). The red nodes represent the provincial capital cities and 

the blue nodes represent the non-capital cities. The size of the node is weighted by 

using its traffic flows, which is scaled by the maximum value of each year so that the 

patterns are comparable across figures. It is apparent that ANC is globally connected 

as a hub-and-spoke circling pattern, and there is no obvious community structure in 

the ANC. The centers of the circle are hub cities, for example, Beijing, Shanghai, 

Guangzhou (the largest three mega cities in China). These hub airport cities dominate 

the global network and the majority of nodes connect with hubs across space. We also 

find that airports in the provincial capital cities are closing to the center of the circling 

pattern center, with denser connection routes than periphery airport cities.  

To reflect geographical implications underlying the above figures, Table 2 lists 

the 35 most dynamic airport cities in terms of changes in degree connectivity and 

betweenness centrality relative to national average levels. Four categories are emerged 

in the matrix table: The first category includes airport cities that have experienced 

better degree connectivity and betweenness centrality relative to national average 

levels. A potential interpretation for this category is that these airport cities that have 

connected with a large and increasing number of other cities, and have rising 

centrality roles to play in linking other city-pair connections. When looking at specific 

airport cities that underlie the first category, we find that a spatially heterogeneous 

group of cities for which their network connectivity and centrality roles are strong: 
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Beijing, Shanghai, Guangzhou, Shenzhen, Xi'an and Chengdu. This is arguably the 

first-tier city group in China’s urban system that involves either similar demographic 

characteristics (e.g., population size, employment size, fractions of education 

attainment levels) or similar productivity levels in terms of GDP, tax revenue and 

foreign direct investment scale.     

The second category includes airport cities that have experienced lower 

improvements in both of degree connectivity and betweenness centrality relative to 

the overall network, such as Hefei, Tianjin, Zhengzhou, Guiyang. It is likely that these 

airport cities have been dispersed their network centrality roles when new airport 

entrants have been added into the network system over time. We replicated the 

exercise, this time for airport cities that have experienced higher improvements in 

degree connectivity but lower improvements in betweenness centrality relative to 

national average levels. We find that the most dynamic airport cities in this category 

are: Shenyang, Nanjing, Chongqing, Changsha, Wuhan, Xiamen, Qingdao, and 

Hangzhou. Airport cities in this category may well be connected with many other 

cities, however, their centrality roles have been decreasing with the increasing number 

of new airports and airline routes in China.  

Turning to the last category, we focus on airport cities that have experienced 

better centrality but lower connectivity relative to national average levels. Surprisingly, 

Kunming and Urumqi are the only two cities that meet this criteria in our sample. 

These two cities are relatively less centralized but have strong tendencies to act as 

important brokers for airports within their provinces. This result is consistent with the 
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anomalous outlier airport city (Kunming) found in Figure 4b. In 2006, the degree of 

Kunming in 2006 is 33, which is not very high compared to the maximum value of 54 

of Beijing. However, Kunming’s betweenness value is very high in 2006, and has 

experienced rapid growth rate relative to the national average level during 

1980s-2000s. This is also consistent with the visualized evidence as shown by Figure 

2, where Kunming connected many nodes with just one degree, such as Zhaotong, 

Lincang, Simao, Baoshan and etc. These one-degree nodes connect to other nodes in 

the ANC through Kunming, leading to its high betweeness centrality value. We call 

this pattern as the ‘Broker’ pattern. Urumqi (the capital city of the Xinjiang province) 

is another typical example for illustrating the ‘Broker’ pattern, where airport cities in 

the province of Xinjiang can only be transferred through the Urumqi airport if they 

want to connect to other places in China. One credible interpretation is due to the 

sparsely populated, isolated location, and complex landscape constraints in Xinjiang 

and Yunnan provinces. This picture is in line with the US evidence about the role of 

Anchorage to play as the most central city in Alaska whereas it is not the hub if one 

considers all US cities (Guimera et al, 2005). In truth, the geography characteristics of 

cities like Anchorage, Kunming and Urumqi and the spatial scale at which this broker 

pattern takes place are certainly supportive of this interpretation.  

5.4 Abnormal disparity patterns in a weighted network 

In this section, we use the weighted disparity coefficient to measure the spatial 

disparity patterns of inter-city airport connections---an issue that has not been 
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received considerable attention in China. We ask if air flight destinations for a given 

city are heavily pronounced for one particular city than evenly distributed among 

others.  

To perform our analysis, we retained the airport cities with at least 2 degree 

connections in the network, and used the disparity coefficient to measure whether 

more than 50% of a given airport city's flights are connected with one particular 

destination city. Panel A of Table 3 shows that only five airport cities in 1983 exhibit 

strong disparity over space: Dalian (88.4% flights from Dalian are connected with 

Beijing), Qingdao (72.4% flights from Qingdao are connected with Beijing), Nanning 

(61.5% flights from Nanning are connected with Guangzhou), Lanzhou (52.1% flights 

from Lanzhou are connected with Beijing), Xiamen (51.7% flights from Xiamen are 

connected with Shanghai). Panel B of Table 3 suggests that there is no clear disparity 

evidence in 1993 aside from a mild disparity for air flights from Huangshan and 

Hohhot to be mainly connected with Beijing. In Panel C of Table 3, we find that four 

airport cities in 2006 have experienced significant disparity connections: Jiuzhaigou 

(75.3% flights from Jiuzhaigou are connected with Chengdu), Jinghong(72.3% flights 

from Jinghong are connected with Kunming), Lhasa (61.5% flights from Lhasa are 

connected with Chengdu), and Lijiang (53.9% flights from Lijiang are connected with 

Kunming). 

    The headline finding from here is that most airport city flights appear to have a 

balanced connectivity pattern. In a small proportion of cases, airport cities tend to be 

heavily connected with hub cities (e.g. Beijing, Shanghai and Guangzhou). These 

23 
 



facts make sense geographically. It is also noteworthy that airport cities with high 

disparity coefficient values in 1983 and 1993 are not on the high-disparity-coefficient 

airport city list in 2006. This implies that airport cities with high disparity coefficients 

before have rebalanced their airflight connection linkages over time. These results 

may also suggest that the tendency for China airport cities to have unbalanced 

flight-destination priorities (or not) is unaffected by the evolution of the global 

network structure in relation to existing hub cities that have flight connections with 

them. Further support is given by the insignificant Spearman-rank correlation across 

airport cities of top-quartile disparity coefficients versus airport cities of 

bottom-quartile disparity coefficients. Although more work is certainly needed, this 

finding is suggestive that spatial disparities of airport connections may act as a force 

to shaping urban systems in China for decades to come. 

6 Implications of this study 

The air traffic flow data provide large amounts of network metric information of 

significant value for studying transport systems. Nowadays, human geography and 

regional sciences benefit considerably from time-stamped and location-based traffic 

flow data at different geographical scales. The emerging big data harvested from 

traffic flows and from data-intensive GIS computing (Hey et al., 2009) are 

transforming ways for doing fieldwork-based human geographical analysis into 

computational-based virtual modeling approaches (Lazer et al., 2009). In this section, 

we discuss profound implications of this study for human geography and regional 
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sciences in general. 

At least since Johann Georg Kohl's (1842) seminal work related to transportation 

and urban geographic theory, the importance of transport networks for shaping 

economic geography has fascinated geographers and urban researchers alike. The 

notion of airport cities implies a sort of bottom-up thinking in terms of urban systems 

and geographical data units. Conventional geographic data collected and maintained 

from the top down by authorities are usually sampled and aggregated by 

administrative boundaries. New geographic data harvested from timetables of air 

carriers are massive and dynamic, so they are loosely called ‘big data.’ Pair-wise air 

traffic flow data, supported by complex network technologies and data mining 

methods, constitute a potentially useful data source for geographic research (Sui and 

Goodchild, 2011). Conventional core-periphery urban systems are often imposed from 

the top down by governments, while hub-and-spoke airport cities are defined and 

delineated objectively from the natural air traffic manner, based on the head/tail 

network metrics distribution rule. This natural manner guarantees that we can see a 

visualized picture of airport systems and dynamics (e.g. Figure 2). This picture is 

fractal but may partly reflect the generalization of the Zipf’s law (Zipf, 1949) about 

city-size rank distribution as documented in the existing literature: On the one hand, 

there are far more small edged airports than large ones, and on the other hand, each 

airport has an irregular connectivity pattern.   

With the advancement of big data and GIS technologies, there is a growing 

literature that applies fractal geometry, chaos theories, and complexity into the 
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geographical analysis (Batty and Longley, 1994; Chen, 2009). The complex network 

approach adopted in this study, such as long-tail distribution, densification 

mathematical rule, and power-law-based statistics, can provide new insights into the 

evolution of airport cities in a large developing country context. To better predict the 

dynamics of transport systems and human geography processes, future works are 

needed through simulations rather than simple visualization and correlation analysis.  

The complex network data mining approach is intellectually promising because it 

offers a powerful way for geographical data explorations. The mysterious aspect of 

the complex network data mining pattern is whether it is an effective way to derive a 

more complete understanding of urban systems over time. This open question is 

beyond the scope of this paper. However, quantitative geographers tend to believe that 

the diverse and heterogeneous patterns as shown by computers are likely to be 

important complementary evidence for helping economic experts, policymakers and 

planners to understand how cities connect and evolve. The massive amount of 

network edges from airport location points constructed the ‘vertex’, and collectively 

shaped the connectivity patterns of airport networks. Every single edge and node had 

‘its role to play’ in the whole network evolution process. From the effectively derived 

intercity airport network patterns, we can see a brilliant future of complex network 

data applications. 

It is important to note that the hub-and-spoke patterns of airport networks are 

biased by not just geopolitical considerations, but also driven by disparities in 

economic growth. Shenzhen is a good example to illustrate this point. Geographically 
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speaking, Shenzhen is just 200 kilometers away from Guangzhou (one of the largest 

three mega-cities in China) in terms of physical distance. In 1983 Shenzhen was a 

small village even without access to highways and railways. However, after the 

Political Leader Xiaoping Deng’s famous southern tour visit in 1992, Shenzhen has 

been transformed as the Special Economic Zone in China (see Wang, 2013 for 

institutional details), and has experienced dramatic economic growth over the past 

twenty years. Nowadays, Shenzhen is known as one of four first-tier cities in China, 

and its airport that has played dominate connectivity and centrality roles in the entire 

national airport network. Spearman-rank correlation between Shenzhen's GDP growth 

and air traffic flow growth is very high and significant. This meets with potential 

economic geography channels at work. The first underlying channel derives from the 

neoclassical economic theory about increasing returns to scale (Krugman, 1980). 

Transportation infrastructure investments, like U.S. President Dwight D. 

Eisenhower’s push to pass the U.S. Federal Highway Act of 1956, which established 

the interstate highway system that significantly improved ground transportation 

reliability and service, has been a boon for local and regional development. Similarly, 

intense airport interactions may increase the productivity of cities, whereas sparse air 

traffic flows could reflect frictions in the reallocation of production factors such as 

labor and capital resources within the core-peripheral urban systems. The second 

underlying channel is related to the Chinese urban transformation trends as found in 

the economic literature (Baum Snow et al., 2013). A key discovery from this literature 

is that access to transport infrastructure can have significant impacts in shaping the 
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decentralization process of urbanization and industrialization. These findings are 

relevant in the interpretation of our presented mapping evidence about the 

densification law as reflected from the evolution of airport networks in China. It is 

very likely that changes in airport accessibility could be related to a localized 

economic development process as reflected from the improved network centrality 

status. Are there any other socioeconomic factors that can affect a city’s airport 

network roles? Of course yes. Test these mechanisms can provide more profound 

implications about interactions of airports and local economic outcomes. Future works 

are encouraged to consolidate the economic and geography implications of our study 

when better data information are available.  

We face an unprecedented golden era for geography and regional sciences in 

general, with the development of big data applications. In this study, we documented 

the evolution of China’s airport network at fine spatial and temporal scales. But one 

concern for our snap-shots analysis is that it could not reflect subtle changes that take 

place when each new airport is created in a particular place. To mitigate this source of 

bias, we checked our results against data from five-year intervals and found no 

significant differences. We could, in principle, have sliced the air traffic flows 

monthly, weekly, and even daily, and the observed nonlinearity would be even more 

striking over time. In fact, physicists and computer science researchers have already 

been working on exploring the rapidly changing network data information 

(Brockmann et al., 2006; Zheng and Zhou, 2011). We geographers, increasingly, 

should do our best efforts in this line of research. 
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7 Conclusion 

This paper examines the evolution of China's airport network in major years 

during 1980s-2000s. Our novelty lies here is in the application of weighted complex 

network metrics to quantify the characteristics of airport connection patterns at 

different geographical scales.  

We contribute to the existing literature in three-folds: First, it adds to the work on 

the big data application of the weighted complex network approach by using flight 

flows between airport pairs. We find that ANC is a typical small world network with 

high clustering coefficient and small diameter, however, ANC does not follow the 

power-law degree distribution like the US and other developed countries. The 

underlying mechanism could be attributed to the unique geo-political constraints in 

China. National airport hubs, such as Beijing, Shanghai and Guangzhou, have played 

the central roles in the network evolution process, whereas the connectivity and 

centrality of most provincial airport hubs still need to be strengthened. Second, our 

network metrics correlation analysis shows that the evolution of ANC meets the 

densification law and shrinking diameter law, though such laws are highly skewed 

across time and space. This provides supportive evidence about the disassortative 

mixing and the hierarchical organization of China’s airport network structure over 

time (Lin, 2012). There is, however, a strong evidence of two abnormal community 

patterns around Kunming and Urumqi that can be interpreted by their sparse 

land-based transport systems and physical landscape constraints. Third, we use the 

visual data mining methods to find the existence and emergence of various spatial 
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structures within the ANC, such as national hub pattern, province capital pattern 

(Kunming and Urumqi) and disparity pattern (Lijiang, Huangshan, Lhasa etc). 

However, expansions of air flight routes and the competition from land-based 

transport systems may influence the persistence of a clear law for such disparity 

patterns. 

These results have direct and important practical implications. Abnormally high 

improvements for a given airport city's network metrics like degree and betweenness 

centrality can be interpreted as the rising role of that airport city in the whole air 

transportation system. One thing to note is that, a city's airport network status is likely 

to be associated with its local economic performance and government endowments, 

for example, a cluster of new airline routes and new airports might be more likely to 

build in some places than others. Our analysis does not directly deal with this, since as 

a first step we want to be able to make statements about dynamics of airport networks 

and not about the underlying driving economic forces. However, the evolution of 

airport network is compatible with any explanation that relies on some form of causal 

effect but also with any explanation based on government endowments. Like Ellison 

and Glaeser (1997) and Duranton and Overman (2008), we think that it is helpful to 

be able to explore the dynamics of cities' airport network roles without knowing the 

right mix of causality and government endowments that led to this pattern. But the 

fact that airport networks seem to be formed by socioeconomic forces points to a 

natural question of how local economic performance interacts with airport network 

expansions. To go further on these conjectures, descriptive evidence might no longer 
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be sufficient. Instead, theoretical models and ‘casual-sense’ estimation strategy will 

need to be articulated. This, of course, warrants further studies. 
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Table list 

Table 1. Basic network characteristics of airport networks in China and other countries and worldwide 

Author  Country Year Degree 
((k)) 

Path length 
(L) 

Clustering coefficient 
(C) 

Network  
topology 

This paper China 1983 4.47 2.5 0.382 Small world 
This paper China 1993 9.95 2.22 0.485 Small world 
This paper China 2006 10.11 2.15 0.543 Small world 
Bagler(2008) India 2004 11.52 2.26 0.66 Small world 
Guida and Maria(2007) Italy 1991 12.40 1.98-2.14 0.07-0.1 Small world 
Xu and Harriss(2008) US 2005 48.28* 1.84-1.93 0.73-0.78 Small world 
Guimera et al(2005) World 2001 13.93 4.4 0.62 Small world 

Note.---This table shows the average values of degree, shortest path length, and clustering coefficient of domestic airport networks of 

China and other countries as documented in the recent literature. Estimates of China' domestic airport networks 1983, 1993, 2006 are 

calculated in this paper. * denotes that this is calculated by the authors based on results shown in Xu and Harriss (2008). With respect to 

these basic network measures, one common network scenario emerged for airport networks: a small-world network, which is a network 

that has a small average path length, a high clustering coefficient, and a heavy tail degree distribution such as power-law or 

exponential-law.  
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Table 2. The 35 most dynamic airport cities 

                       Centrality  

  Better than the average Lower than the average 

Connectivity 

Better than 
the average 

Beijing; Shanghai; Guangzhou; Chengdu; 

Xi'an; Shenzhen 

Shenyang; Chongqing; Changsha; 

Wuhan; Xiamen; Qingdao; Hangzhou; Nanjing 

Lower than 
the average 

Kunming; Urumqi Hefei;Hohhot;Wuxi;Sanya;Tainjin;Guiyang;Fuzhou;Harbin;Guilin;Z

hengzhou;Dalian;Ningbo;Haikou;Jinan;Taiyuan;Changchun;Nanch

ang;Lanzhou;Wenzhou 
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Table 3. Airport cities with significant disparity coefficients 
Panel A: 1983 (Year) Panel B: 1993 (Year) Panel C: 2006 (Year) 

Cities Disparity 

coefficient 

Target 

destination 

Cities Disparity 

coefficient 

Target 

destination 

Cities Disparity 

coefficient 

Target 

destination 

Dalian 0.884 Beijing Hohhot 0.539 Beijing Jiuzhaigou 0.753 Chengdu 

Qingdao 0.724 Beijing Huang mountain 0.503 Beijing Jinghong 0.723 Kunming 

Nanning 0.615 Guangzhou    Lhasa 0.614 Chengdu 

Lanzhou 0.521 Beijing    Lijiang 0.539 Kunming 

Xiamen 0.517 Shanghai       

Note.---This table reports the disparity coefficients for cities if more than 50% of a given city's flights are connected with one particular targeted 

destination city in the network.
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a.1983 

b.1993 
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Figure 1. Airline frequency flows between airport pairs in China 

 
 
  

c.2006 
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Figure 2. The topology structure of China’s airport network 
Note: The red points represent the provincial cities or capital cities in China, and the blue points in represent local 

cities. The size of the points has a proportional relationship to their traffic flows. The network was visualized by 

Pajek software. 

c.2006 
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(a) The distribution of number of nodes and degree centrality 

 

(b) The distribution of number of nodes and clustering coefficient 

Figure 3. The distribution of number of nodes, degree and clustering coefficient 
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(a) Distribution of the degree and clustering coefficients 

 
(b) Distribution of degree and betweenness centrality 

Figure 4. The distribution of degree, clustering coefficient and betweenness 
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Figure 5. Regional airport network characteristics of China 
Note. For each region, we computed the standardized change ratio of its average clustering coefficient, 

betweenness centrality, and degree y relative to the national average levels. 
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