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Abstract  
The idea that local social capital yields economic benefits is fundamental to theories of 
agglomeration, and central to claims about the virtues of cities. However, this claim has not 
been evaluated using methods that permit more confident statements about causality. This 
paper examines what happens to firms that become affiliated with a highly-connected local 
individual or “dealmaker.” We adopt a quasi-experimental approach, combining difference-
in-differences and propensity score matching to address selection and identification 
challenges. The results indicate that firms who link to highly-connected local dealmakers are 
rewarded with substantial gains in employment and sales when compared to a control group. 
 
 
 
 
 
Keywords: Cities, economic development, social networks, social capital 
JEL Classifications:  R11; O12; O18; L14 



1 

I. Introduction 

Since Alfred Marshall’s (1890) observations about the circulation and 

propagation of ideas in English industrial districts, economists have been motivated to 

understand if local social networks augment economic performance (Glaeser et al., 

1992; Jaffe et al., 1993; Powell et al., 1996; Saxenian, 1996; Feldman and Audretsch 

1996a; Casper, 2007; Breschi and Lissoni, 2009). This inquiry intersects with an 

interest throughout the social sciences in what is known as social capital, a concept 

that suggests that a higher degree of network centrality increases pecuniary value 

(Coleman, 1988; Putnam, 1995).  While social networks certainly reach beyond 

individual geographic agglomerations (Kenney and Patton, 2005), the myriad virtues 

of proximity suggest that cities are the relevant spatial unit for considering how 

interactions within social networks affect economic outcomes (Feldman and 

Audretsch, 1996ab; Storper and Venables, 2004; Duranton and Puga, 2004; Rosenthal 

and Strange, 2004; Ellison et al, 2010). The literature suggests that economic actors 

earn higher returns in cities with better social capital as defined by more dense social 

networks, by fostering trust and information sharing, and by lowering transaction 

costs.  

Still the precise mechanisms by which local social capital augments economic 

performance remain mysterious (Jones 2006; Malecki, 2012).  Existing econometric 

studies represent regional networks in aggregate, with social capital typically captured 

by measuring the overall size or density of a particular agglomeration’s network (e.g. 

Lobo and Strumsky, 2008). This practice contrasts with the demonstrated relevance of 

the behavior of individual actors (Hargadon and Sutton, 1997; Burt, 1995, 2004; Stam, 

2010). Individuals who bridge distinct strands of a network facilitate connections 

between firms, and enable the dissemination of new and economically valuable ideas.  

Moreover, social capital is often embodied in individuals with high human capital 

(Bourdieu, 1986). These micro-dynamics are lost when networks are considered as 

aggregate entities. Perhaps most importantly, we have little evidence that links either 

aggregate or micro-social dynamics to improved economic outcomes in a framework 

that can generate more confident statements about causality. This is a considerable 

issue. Practically, we have little clarity on whether the famously dense networks 
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linking Silicon Valley information technology actors have a causal impact on the 

superior performance of firms in that region, or if instead the networks are an 

outcome of the region’s culture, dynamism, or some other factor? 

This paper seeks to address these gaps. Rather than defining local social 

capital in aggregate, we focus on a particular set of highly connected agents within 

regional networks, which we define as dealmakers. The term dealmaker is colloquial 

in entrepreneurship practice, and describes an accomplished actor, who is deeply 

enmeshed in local social networks, and who leverages these networks to make things 

happen (Senor and Singer, 2009); in short, these are network brokers with an 

observably local orientation, living and investing in a place. Feldman and Zoller 

(2012) identify dealmakers as high connected individuals in terms of their fiduciary 

roles as founders, executives and board members, and demonstrate that their presence 

– not the aggregate size or density of social capital networks – is strongly positively

correlated with new firm births. This relationship could mean a few different things. 

One interpretation is that the presence of dealmakers spurs entrepreneurship. Another 

possibility is that this correlation reflects the reverse causal sequence: vibrant urban 

economies simply produce more dealmakers, without the latter having a strong 

independent effect. A third scenario is that some as-yet unmeasured force determines 

both regional economic dynamism and the existence of dealmakers. 

This paper shifts focus to firms within local networks. The primary hypothesis 

is that, by lowering the costs of making connections and sharing ideas, highly 

connected individuals augment the economic performance of the firms to which they 

become connected. We use the term dealmakers to refer to individuals who are highly 

connected to the network of entrepreneurial firms in a city.  Thus, we measure the 

interlock between local firms with which dealmakers are affiliated. We explore 

whether dealmakers leverage regional connections to influence firm performance, 

measured in terms of sales, employment and sales per worker. We also consider 

whether dealmakers’ nodal positions in regional social networks could affect the 

trajectory of a firm by stimulating a liquidity event, thereby providing original 

entrepreneurs and investors with a means of converting their ownership equity into 

cash. 

The primary obstacle to identification is that dealmaker links to firms are 
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endogenous. Simply, dealmakers are likely to be drawn to firms that promise success. 

To address this challenge, this study adopts a quasi-experimental research design. 

Propensity score matching is used to model the selection process of dealmakers to 

firms, with propensity scores used to build a counterfactual group of firms that do not 

link to dealmakers (the control group), but who otherwise resemble those that do (the 

treatment group). This information is used in a difference-in-differences model that 

accounts for differences in the evolution of the two groups before and after treatment. 

Combining these approaches yields benefits: we control for both observable firm 

characteristics that ought to influence the likelihood of getting a dealmaker, as well as 

stationary but unobserved properties of those firms. Economists have used one of 

these approaches to answer a wide variety of questions (see for instance, Ashenfelter, 

1978; Card, 1994; Heckman et al, 1997; Grogger and Willis, 2000; Groen and 

Povlika; 2008), sometimes using them in combination (Arnold and Javorcik, 2009; 

Görg, and Strobl, 2007); together or separately, they have not yet been used to 

estimate the effects of urban interpersonal networks on firm performance. 

To carry out this research design, a set of 325 firms in life sciences and 

information technology sectors, located in 12 U.S. high- technology regions, are 

observed in two time periods: December 2009 and December 2012. Each of these 325 

firms added exactly one new individual to their board or management team: 80 firms 

added an individual who was a regional dealmaker (the treatment group) while 265 

firms added an individual without connections to the network of firms. Capital IQ, 

one of the more comprehensive data sources on entrepreneurial firms available in the 

United States, provides the sampling frame of firms and dealmakers. We link these 

data to Dun & Bradstreet (D&B), which provides a wealth of establishment-specific 

characteristics, such as international trade activities; creditworthiness; ownership 

structure; as well as employment and sales. 

We find ex post that firms that get dealmakers have considerably higher 

growth in sales and employee compared with similar firms that do not get dealmakers. 

We uncover no significant relationship in our analysis between dealmaker affiliations 

and acquisitions or sales per employee. In light of the motivating theory, our results 

suggest that dealmakers’ attempts to leverage local social networks actually enhance 

the performances of firms to which they are connected. 
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The remainder of the paper is organized as follows. Section II lays out our 

conceptual framework. Section III describes the empirical approach taken, and 

Section IV describes our data. Section V presents diagnostics of the analytical 

procedure. Section VI presents results. Section VI concludes. 

II. Conceptual Framework

Consider a universe of firms in a location, where each firm’s performance is a 

function of the quality of its workers, firm-specific attributes such as capital, as well 

as some industry- and region-specific factors. Among the salient drivers of worker 

quality is the ability to leverage interpersonal connections, or social capital, for the 

potential gain of the organization (Giuri and Mariani, 2013). Through connections to 

the regional social network, workers can gain new ideas and human capital that might 

raise productivity, open new markets, help develop new products, or stimulate 

mergers, acquisitions or other types of liquidity events. Through these channels, the 

social network can affect firm performance.  By extension, regional economic 

outcomes will be a function of the performance of individual firms (Saxenian, 1993; 

Jaffe et al, 1993; Uzzi, 1995). 

Workers vary in terms of their position in local social networks. For simplicity, 

we assume there are two kinds of workers: those that have standard access to the 

network, and those with a greater quality of social capital, occupying privileged 

network positions. For simplicity, we call the more highly connected workers 

dealmakers, while we call workers with average social capital non-dealmakers.  There 

is a need to consider effects arising not just from dealmakers but also from association 

with non-dealmakers. Concretely, the combined network connections of non-

dealmakers could equal or exceed the reach of a typical dealmaker. Given this 

potential confounding issue, we must account for the social capital of both kinds of 

network actors. 

Given this framework, we describe firm performance as follows: 

! !! = !!", !!"#,!!, !,! (1) 
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where y measures firm performance of firm p in region r; ldm measures the number of 

dealmakers affiliated with the firm, while lndm captures the presence of non-

dealmakers; K captures firm-specific characteristics; and I and R describe industry- 

and region-specific factors. Our aim in this paper is estimate the independent causal 

effects of ldm on y, holding constant other drivers of performance. A description of our 

empirical approach follows. 

III. Empirical Approach

We expect that dealmakers will elicit positive changes in the performance of 

firms with which they become affiliated. There are at least three empirical approaches 

to assess the potential effect of associating a dealmaker to a firm. First, the 

performance of firms after they get a dealmaker could be compared to their pre-

dealmaker performance. But, irrespective of any causal dealmaker effects, with this 

approach any results could reflect unobserved time trends in the performance outcome 

or some economy-wide shock. Second, the performance of firms that receive the 

treatment of working with a dealmaker may be compared to a control group of similar 

firms that lack an affiliated dealmaker. This method, however, risks assigning 

explanatory value to dealmakers that reflects pre-existing inter-group differences. 

This poses a particular problem for the proposed research, because there is good 

reason to believe that: (a) firms that become linked to dealmakers differ from those 

that do not, and (b) these differences bear upon their performance. Put simply, there 

could be a selection effect as dealmakers ought to be drawn to firms that have 

demonstrated success, or show great promise to succeed (Jaffe 2002). This selection 

process between dealmakers and firms would bias conventional regression approaches 

and overestimate the impact of adding a dealmaker.  

To address these issues, this study adopts a third approach that combines 

beneficial aspects of the previous two. Specifically, this study considers firm 

performance before and after adding an executive or board member, while also 

comparing firms that become affiliated with a dealmaker (the treatment group) to 

others that receive a non-dealmaker (the control group). For precision, the sample of 

firms is initially limited to those that have zero dealmakers in the pre-treatment period. 
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The treatment group is treated by the addition of exactly one dealmaker, with zero 

non-dealmakers added. The control group does not add a dealmaker, but adds one 

non-dealmaker. The analysis combines the difference-in-differences (DD) estimator 

with propensity score matching (PSM) techniques. As a first step, the Epanechnikov 

kernel-based PSM procedure estimates the likelihood of each firm linking to a 

dealmaker, conditional upon a vector of observed firm characteristics. The resulting 

probabilities are then used to match treatment and control firms such that, for a 

limited subset of cases, systematic differences across the groups can be eliminated 

(Dehejia and Wahba, 2002). From these probabilities, weights are generated that 

indicate the relevance of each control firm to each treatment firm. These weights are 

then applied to a regression-based difference-in-differences model. This estimator 

compares changes in firm performance between pre-and post-treatment periods across 

the treatment and control groups, as follows: 

!! = !!!! − !!!! − !!!! − !!!! (2) 

where ! measures the average effect of the treatment on the treated, T; Y represents 

the outcome of interest; C indicates the control group; and t0 and t1 represents the pre- 

and post-treatment periods, respectively.  

Both PSM and DD come with identifying assumptions. For propensity score 

matching to be effective, the treatment and control group must be balanced, post-

matching (Rosenbaum and Rubin, 1983). Balance, or conditional independence, is 

achieved when there are no significant differences in pre-treatment covariates across 

the matched treatment and control group, except for the treatment itself. In this 

manner, propensity score matching mimics random assignment (Pearl, 2000).  

The primary limiting assumption of the DD approach is that the performance 

trajectory of the control group ought to reflect what would happen to the treatment 

group in the absence of the treatment. This ‘parallel trend assumption’ cannot be 

directly tested, since one cannot observe the evolution of the treatment group absent 

the treatment; firms are either treated, or they are not. Nonetheless, some confidence 

regarding parallel trends can be generated by estimating a placebo test, in which, for 

the same treatment and control groups, PSM and DD results are generated for an 
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earlier time period during which the ‘treated’ group does not actually receive the 

treatment. In other words, this approach tests whether there are significant differences 

in the evolution of a given performance criterion over a prior period in which no 

actual treatments are assigned. While this does not eliminate the possibility that firms’ 

trajectories shift after this earlier wave, parallel paths in the past provide the best 

available gauge of the similarity of subsequent pathways across the group of firms 

that receive dealmakers and its counterfactual. 
These represent strong assumptions, but, if satisfied, PSM and DD are 

strongly complementary. Specifically, with PSM alone, one must assume that 

observable firm features sufficiently capture the important differences driving 

selection. And yet, although we know they matter, entrepreneurial characteristics like 

brand, talent, and hustle are nearly impossible to systematically observe. Fortunately, 

DD eliminates bias from time-invariant unobserved firm heterogeneity, as well as 

from broad economic shocks (Blundell and Costa Dias, 2000). This means that, even 

if we cannot capture the full range of hard-to-measure differences that distinguish 

more- and less- promising entrepreneurial firms, as long as they are rooted in 

enduring firm characteristics, we can account for them econometrically. Arguably, 

many, though not all, important firm characteristics will be relatively stationary. This 

still leaves potential for confounding on the basis of dynamic unobservable variables. 

For instance, two firms that have followed parallel trajectories, and that are endowed 

with identical human, physical and financial assets might still diverge as one makes a 

sudden and major breakthrough that both shifts their performance path and also draws 

the attention of a dealmaker. This caveat noted, as compared with prior work, the 

econometrics used here represent a considerably stronger basis upon which to 

consider causal effects of social networks. 

For each outcome of interest, the basic sequence to be followed is: (1) 

estimate propensity scores; (2) evaluate matching quality with respect to balance on 

observables and the degree to which parallel trend assumption is likely to be upheld; 

(3) to produce difference-in-differences estimates on firms that fall within the 

common support area. If the assumptions described above can be satisfied, the results 

ought to efficiently estimate the average treatment effects of those firms that become 

linked to dealmakers. 
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IV. Data

Capital IQ, a private database maintained by Standard & Poor’s, provides the 

sampling frame of firms and individual actors. Capital IQ is one of the more 

comprehensive data sources on private firms available in the United States, capturing 

those that have received bank, private-equity or venture capital financing. Crucially, 

these data provide extensive biographical information about firms’ management and 

board members. For simplicity, we will refer to these individuals collectively as ‘top 

teams.’ We focus on distinguishing dealmakers and non-dealmakers and constructing 

regional social networks on the basis of the links between these individuals.  

Networks are constructed using top team members associated with firms in 

two broad industry categories: life sciences and information technology.1 These are 

sectors in which local inter-firm interactions, spinoffs and networks are legendarily 

important (Saxenian, 199; Audretsch and Feldman, 1996a; Feldman, 2000; Owen-

Smith and Powell, 2004, Casper, 2007), making them apt sites at which to look for the 

economic effects of place-based social networks. We build such networks for 12 U.S. 

regional economies: Austin, Boston, Denver, Minneapolis, Orange County, Phoenix, 

Portland, Raleigh-Durham, San Diego, San Francisco, Salt Lake City, and Seattle.2 

These regional economies represent the largest spatial concentrations of employment 

in these activities in the U.S. With these constraints, Capital IQ permits consideration 

of networks among approximately 85,000 individuals and 22,000 firms. Some degree 

of completeness is important to the examination at hand; our snapshot of networks 

should correspond reasonably closely to actual regional networks. One potential 

problem arising from incompleteness is that certain individuals who we define as 

being only moderately connected to the network would actually emerge as dealmakers 

if we captured more of the underlying network. This might blur the lines between our 

1 Capital IQ defines industries using the Global Industry Classification Standard, which is a set of 
codes engineered by Standard & Poor’s and MSCI to facilitate effective international standardization 
of industry codes for the purpose of investment research and analysis. We used aggregate industry 
codes 35 ‘Health Care’ and 45 ‘Information Technology’. The former includes detailed biotechnology 
industries, pharmaceuticals, and other related activities. The latter includes software, internet, IT 
consulting and other subsectors. Detailed listings are available at: 
http://www.msci.com/products/indexes/sector/gics/  
2 Austin, Portland, San Diego, and Phoenix are defined according for Office of Management and 
Budget (OMB) Metropolitan Area boundaries; for Orange Country, CA, only the single county is used; 
the remainder are defined according to Consolidated Statistical Area boundaries. 



9 

treatment group and our control group, resulting in greater odds of a false negative. 

To more confidently describe our networks as complete, the firm list generated by 

Capital IQ was compared against data from Thomson Financials Venture Xpert, a 

series that captures firms with similar success at securing financing.   

Interlocks among top team members and their firms in these data are used to 

evaluate the degree to which agents are connected to multiple local firms and 

therefore involved in the social milieu of a local economy. Our primary definition of a 

dealmaker follows that of Feldman and Zoller (2012), in which dealmakers have at 

least three concurrent ties as executives or board members in other firms in the region. 

As Table 1 makes clear, these multiple roles and interconnections indicate an unusual 

degree of imbrication in regional networks; using data for 2009, while 90 percent of 

identified actors are connected to one firm in their location, just over one percent 

would be classified as a dealmaker. There is some variation from city to city; notably, 

the San Francisco Bay Area and Boston host a proportionately larger numbers of 

dealmakers within their absolutely larger regional networks. However, the table 

shows that broad patterns in the distribution of dealmakers are quite consistent across 

cities. 

Substantively, top team members are expected to play particularly important 

roles in determining firm performance, and especially in terms of harnessing local 

social capital. Top management is tasked with the development of the organization, 

while boards of directors are intended to act independently to advise the executive on 

strategic direction (Larcker and Tayan, 2011). In the United States, public companies 

are legally obligated to have a board of directors. Service on boards of directors on 

public companies is highly regulated; and as a consequence of the Sarbanes-Oxley 

Act of 2002, members of the board and officers are legally liable for the direction of 

the firm, as a result of their substantial fiduciary obligation and connection to the firm. 

Privately-held organizations may also have boards, and these are especially common 

in biotechnology and other high technology sectors (Lerner, 1995). Board members 

on private firms have the opportunity to play a larger role in the direction and 
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development of the organization. Board member are typically paid a salary, though 

commonly one that complements other paid work. Our focus on top team members 

means that we ignore possible benefits that could arise from changes in firms’ 

workforces outside these upper echelons. We adopt this restriction for practical as 

well as substantive reasons. Practically, while interlocks across executives and board 

members represent well-mined and effective input into network-building, there exists 

no comparable data source available to capture inter-firm interactions among non-

elites. 

To evaluate outcomes, two waves of Capital IQ data are examined: a pre-

treatment wave, collected in December 2009, and a post-treatment wave from 

December 2012. The criteria for inclusion in the primary analytical sample are that 

(1) firms have zero attached dealmakers in 2009; (2) that they continue to exist in 

2012; (3) that treated firms add exactly one dealmaker and zero non-dealmakers 

between December 2009 and December 2012; and (4) that control firms add exactly 

zero dealmakers and one non-dealmaker between 2009 and 2012. Overall, due to 

attrition arising from the matching process across different datasets, this results in an 

analytical sample of 540 firms, including 80 firms that become affiliated with a 

dealmaker over the study period. 

Outcomes and Matching Parameters 

Outcomes are drawn from Dun & Bradstreet (D&B)’s DUNS Marketing 

Information database. The 2012 D&B snapshot is drawn directly from D&B. The 

2009 snapshot is part of a longitudinal series from 1990 to 2011, sourced from the 

National Establishment Time Series (NETS), which compiles repeated cross-sections 

of the underlying D&B employment, sales and other data into a longitudinal series. 

D&B tracks establishments, not firms, hence identified non-headquarters 

establishments are dropped from the sample. D&B establishment records are linked to 

Capital IQ firms through DUNS identification numbers assigned using a proprietary 

matching and disambiguation algorithm by D&B. 

In the analysis below, we consider that dealmakers might influence 

performance outcomes. Of particular interest are sales and employment. Growth in 

sales and employment could reflect the influence of dealmakers on the incorporation 
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of new ideas in product or marketing; they could also indicate actual deals made with 

other firms. Especially in information technology, profit measures are a more 

imperfect performance indicator, since many firms do not make a profit for a 

considerable period of time. We also consider sales per employee, as an indicator of 

changes in productivity owing to process innovations. The rationale behind this is that 

dealmaker effects might be focused on extracting more value out of limited resources, 

which might be especially apposite given that the study period coincides with the 

Great Recession. Dealmaker affiliations could also stimulate liquidity events. These 

come in three main forms. A firm’s immediate corporate parent can change, reflecting 

an acquisition. It can also merge with another pre-existing firm, or it may shift from 

privately-held to publicly-listed, with an initial public offering (IPO) of stock.  Each 

of these represent an exit strategy for the entrepreneurial firm, enabling owners and 

initial investors to yield a financial return in exchange for surrendering or diluting 

their ownership stake in the company. Finally, we are interested in observing whether 

there is a relationship between dealmakers and new (and pending) rounds of 

investment. Unfortunately, we found that only a small number of firms experienced 

liquidity events or new investments over the study period, and after matching, none of 

these firms was deemed sufficiently comparable across the treatment and control 

groups. Hence, in the results below we focus on the association between dealmakers 

and sales, employment, sales per employee, and acquisitions. 

Parameters used to match treatment and control firms should have some 

predictive power for both selection into the treatment and the outcome of interest. 

Moreover, they ought to be unaffected by the treatment. To address the former 

concern, a wide variety of firm characteristics ought to factor into dealmaker 

affiliation decisions, and these are similarly likely to be related to sales, employment 

and the other outcomes of interest. On the latter point, the data for matching comes 

from 2009 and earlier – before the treatment occurs. These data come from D&B, 

which captures a wide variety of establishment characteristics.3 Across various 

outcomes we select a broadly similar group of covariates, including: lagged levels of 

sales and employment; the quartile of the firm’s last three years of sales growth 

3 Unless otherwise specified, data for 2009 is used. 
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relative to 3-digit SIC peers; detailed industry; metropolitan region; founding year; 

Paydex and D&B credit scores; legal status; gender of the Chief Executive Officer; 

ethnic minority ownership; ownership by women; whether the firm has moved more 

than once between 1990 and 2009; whether the organization engages in government 

contracting; and importing and exporting activity. 

Table 2 presents descriptive statistics for the treatment, as well as for primary 

outcomes and key matching parameters. Of the analytical sample of 325 firms, just 

under five percent of firms add one dealmaker over the three-year study period. The 

average firm in the sample has 72 workers, and has sales of $13 million. The average 

firm in the sample was started in 1993, thus reflecting not early stage startups but 

more established going concerns. Most of the firms are incorporated, and just over 

half engage in some form of international trade. A typical firm in the sample has 

almost 9 non-dealmaker top team members, including board of directors, and on 

average these individuals have a total of 9 local affiliations.4 

V. Results 

Table 3 presents difference-in-difference estimates comparing propensity-

score-weighted treatment and control groups. Given satisfaction of the identifying 

assumptions, which we explore in depth below, the result is the average treatment 

effect on the treated (ATT). In this inquiry this represents estimates of the causal 

effects of dealmakers on firm sales, employment, sales per employee, and the 

likelihood of acquisition. Results are estimated only on the common support region, 

that is, firms in both groups that are deemed sufficiently comparable in terms of pre-

treatment covariates (Heckman et al, 1998). Following the ‘maxima and minima’ 

4 The analytical sample resembles the overall sample drawn from Capital IQ and D&B. In two-sample 
t-tests across these two samples, there were significant differences in terms of employment and some 
measures of credit. Sales and pending investments were not dissimilar across the two samples. In most 
cases, even significant differences were small in absolute terms. 
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approach (Caliendo and Kopeinig, 2008), a treatment firm is dropped from the 

common support region and the regression when its estimated propensity score is 

higher than the maximum or less than the minimum propensity score of the controls. 

Though, in the current context, this represents a considerable trimming of the 

analytical sample, there can be no estimation of the treatment effect without it, 

especially when matching is performed via kernel, as against nearest-neighbor or 

other methods (ibid). Nonetheless, this raises is the issue of generalizability, to which 

we return in the conclusion. 

The top left panel of Table 3 presents estimates for dealmaker effects on firm 

sales. In 2009, both treatment and control groups have very similar levels of sales; yet 

post-treatment, they have evolved quite differently. While sales levels grow for both 

groups, firms that become affiliated with a dealmaker experience considerably more 

sales growth as compared to those firms that add one non-dealmaker. The effect, as 

measured by the ATT, is statistically significant at a 5% level and strikingly large: an 

increment of just over $13 million in sales. The common support region is relatively 

narrow, as 9 treatment firms are compared to 22 firms in the control group, signifying 

that a good number of the overall sample of 80 treatment firms have no analogue in 

the control group.  

The top right panel of Table 3 reports results for the employment outcome. 

Here, treatment and control groups in the common support region are fairly different 

in size at the outset, with firms who later become affiliated with a dealmaker being 

somewhat larger in the pre-treatment period than those that do not. Again, the ATT 

reveals large, positive and statistically significant dealmaker effects. Employment in 

firms that receive a dealmaker over the study period grows relatively more. In fact, 

while control firms add just a handful of workers over the three-year period, the 

dealmakers stimulate roughly a doubling of the workforces of treated firms.  

The bottom left panel of Table 3 reports estimates of the average treatment 

effect of dealmakers on sales per employee. The rationale for this outcome was that 
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dealmakers could stimulate efficiencies, perhaps leveraged through opportunities to 

outsource aspects of production previously performed within the boundaries of the 

firm. Results indicate that firms that get a dealmakers and those that do not share 

closely comparable levels of sales per employee, in both the pre- and post-treatment 

period. There is no detectable relationship between becoming affiliated with a 

dealmaker and changes in sales per employee.  

The bottom right panel of Table 3 presents estimates of the causal influence of 

dealmakers on the likelihood of acquisition. No firms are acquired in 2009, hence 

values during the pre-treatment period are uniformly zero. By December 2012, 20 

percent of treatment firms change their immediate corporate parent, as against only 4 

percent of control firms. And although the coefficient on the ATT is large and 

positive, it has a standard error that is nearly as large; there are no statistically 

significant effects of dealmakers on this kind of liquidity event. 

Overall, these results suggest that dealmakers exert an independent causal 

effect on the sales and employment of firms with which they become affiliated. Firms 

that add one dealmaker and zero non-dealmakers outperform closely comparable 

firms that add one non-dealmaker and zero dealmakers. To the extent that these 

dealmakers generate such effects through their marshaling of local social networks 

and social capital, this signals that such local networks do indeed have economic 

value. The fact that we find no significant results for acquisitions and sales per 

employee suggest that dealmakers do not chiefly wield influence by generating 

efficiency gains, nor by catalyzing formal deals in which entrepreneurial firms are 

acquired. 

Robustness & Sensitivity 

To have some confidence in interpreting these results as indicating that dealmakers 

cause beneficial changes in firm performance, we need to demonstrate the satisfaction 

of the conditional independence and parallel trend assumptions.  Conditional 

independence is satisfied if, for observed pre-treatment covariates x, the conditional 

distribution of x is the same for both the treatment group and the control group 

(Rosenbaum and Rubin, 1983). Table 4 reports t-test comparisons on the raw 
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(unmatched) and post-propensity-score-matched samples, for each of the four 

outcomes of interest. To the extent that we observe insignificant p-values on this test 

for the matched sample, we can conclude that balance has been achieved, affirming 

the validity of the use of the control group as a counterfactual for the treated. 

The evidence presented in Table 4 suggests that the matching procedure 

achieves balance for each of the outcomes of interest. Mean values of these variables 

do not vary across the matched sample in a statistically significant manner, despite, at 

times, highly significant differences observed in the unmatched sample. This means 

that there are important, pre-existing differences between those firms that become 

affiliated to dealmakers and those that do not, but, using the covariates listed in Table 

4 and their related propensity scores, it is possible to construct a counterfactual in 

which these differences are no longer significant. The balance reported in Table 4 

should raise confidence that the main effects reported in Table 3 are derived from an 

appropriate comparison between firms whose primary difference is their ‘assignment’ 

to treatment. 

The second major assumption to be satisfied is the parallel trend condition, 

requiring that treatment firms would be progressing along a comparable trajectory to 

control firms in the absence of treatment. This is a strong assumption, and it is never 

possible to be entirely certain of its satisfaction. However, data from the past can help 

detect, if not definitively test for a parallel trend.  

In Table 5, we report the results of a placebo test, in which, for sales and 

employment outcomes, the entire sequence of analysis is reproduced for a prior period, 

2006 to 2009. Over this period, in actuality, no firms in either the treatment group or 

the control group receive the treatment.5 Put another way, we compare whether firms 

that receive the treatment between 2009 and 2012 have evolved differently from the 

control group over the previous three years. If treatment and control firms are 

following a parallel path, we should expect no significant effects of placebo 

dealmakers on firm performance. If treatment firms are on their own distinct trajectory, 

the placebo association with a dealmaker will appear to significantly influence the 

outcome of interest. Table 5 shows that average placebo treatment effects are 

statistically insignificant, suggesting that, in this earlier period, the sales and 

employment pathways of the placebo-treatment group and the control group run in 

parallel. 

5 Owing to lack of available data on acquisitions from this earlier period, it is not possible to conduct 
the placebo test for this outcome. 
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Given the narrow common support region, we consider some additional ways 

to explore the sensitivity of the main results to changes in the treatment and sample. 

Specifically, we first relax the strictness of the treatment, dropping consideration of 

changes in non-dealmakers, as well as the number of dealmakers added, such that the 

treatment becomes going from zero to at least one dealmaker, while control firms 

simply have zero dealmakers throughout the study period. This results in a sample of 

394 treatment firms and 4,082 control firms. Despite the virtues of this larger size, 

however, the loss in the precision of the comparison results in insignificant findings 

for all four outcomes of interest.  The same holds true when the treatment is further 

relaxed to include firms that receive at least one dealmaker, regardless of how many 

dealmakers affiliations are held in 2009.  

One possible qualification of the main results is the possibility that dealmakers 

perform systematically different functions in firms of different ages. Firms in the 

startup phase might need dealmakers to plug them into the network of talent and ideas, 

whereas more experienced firms might link with dealmakers with other needs. Much 

of the literature emphasizes entrepreneurial firms, which can be interpreted as 

including only those that are in earlier phases of their development. And yet, as the 

mean values for ’first year of operation’ (FIRSTYR) presented in Table 2 indicate, the 

average treatment and control firm included in the primary analytical sample are more 
than 15 years old at the start of the study period. 

Acknowledging the already small common support region, an additional 

challenge in exploring this idea is the availability of data about younger firms. Data 

sources like D&B and Capital IQ tend to privilege older firms, simply because 

younger firms typically leave much less of a paper trail. Hence while we would like to 

produce estimates like those in Table 4 for only young firms, we cannot do so. The 

closest we can come is to use the ‘relaxed’ treatment described in the previous 

paragraph, and limit analysis to firms born after a particular cutoff. Even so, the 

number of relevant observations is small. Two thresholds are explored: a start year of 

2005 and later; and more generously, 2002 or later. In the former case, firms are a 

maximum of 4 years old when the study period begins, in the latter case, seven years. 

With the 2005 threshold, the result is an analytical sample of 1,596 firms, out of 

which 476 become affiliated with a dealmaker. Again however, it appears that the 

imprecision of the comparison yields insignificant results: getting at least one 

dealmaker over the study period is not significantly associated with changes in sales, 

employment, sales per worker or acquisition in these younger samples. 
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VI. Conclusion

Accounts of thriving urban economies, both popular and scholarly, stress the 

importance of social capital and social networks, yet this idea has defined rigorous 

quantitative analysis. Academic research has mostly used aggregate data that mask 

the mechanisms by which social networks may influence the individual companies 

that make up a local economy. Moreover, most empirical studies have not been 

designed to account for endogeneity bias, which precludes confident statements about 

the causal effects of social networks on performance. From both scientific and public 

policy perspectives, this is inadequate. 

We have begun to address these concerns in this paper. We provide a measure 

of local social capital that links social networks to the top management of firms. 

Specifically, the analysis has identified highly connected individuals who bridge 

disparate parts of local social networks through their multiple locally-oriented roles. 

This paper has then applied a quasi-experimental approach in order to examine what, 

if anything, happens to firms when dealmakers join the firm as executives and 

directors. The strength of the empirical test rests on the combination of propensity 

score matching and difference-in-differences, together yielding an improved 

counterfactual to account for selection on dynamic observables as well as stationary 

unobservables.  

Based on this approach, we find that dealmakers in the 12 U.S. study regions 

exert an independent and large causal influence on employment and sales, but have no 

effect on sales per worker or the likelihood of getting acquired. We interpret this 

result to mean that dealmakers have an organizing effect on local social capital, 

yielding specific kinds of benefits for the firms to which they become affiliated. 

Dealmakers are one way that firms can become better connected in a regional 

economy, permitting better leverage of regional social capital that promotes firm 

growth.   
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This study represents quasi-experimental evidence on the impact of local 

social capital on regional economies.  We hope that further work will extend this 

approach and explore the many unanswered remaining questions. These include 

deeper exploration of the relationships between dealmakers and firm age; the potential 

importance of not just local but also nonlocal links; potential dealmaker effects on 

other outcomes, including various liquidity events, as well as firm survival; and 

longer timeframes to explore long-run dealmaker impacts. Given the longstanding 

interest in the economic value of local social networks, and theoretical and anecdotal 

focus on highly connected individuals performing brokerage functions, these issues 

merit further exploration. 
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Tables 

Table 1. Distribution of Local Affiliations Among Agents, December 2009 
Number of Local Affiliations (%) 

Region Number of 
Agents 

One Two Three Four 
(Dealmaker) 

Austin 3,122 93.0 5.8 0.7 0.5 
Boston 15,897 89.4 7.7 1.7 1.2 
Denver 4,405 94.8 4.3 05 0.4 
Minneapolis 3,656 93.1 5.6 1.0 0.7 
Orange County 5,500 95.9 3.8 0.3 0.0 
Phoenix 2,583 95.9 3.4 0.5 0.2 
Portland 2,025 95.6 3.8 0.4 0.3 
Raleigh/Durham 2,520 93.9 5.3 0.6 0.3 
Salt Lake City 2,243 93.9 5.1 0.6 0.3 
San Francisco 31,221 86.1 9.4 2.5 2.0 
San Diego 6,922 91.4 6.6 1.4 0.6 
Seattle 5,485 92.2 6.1 1.0 0.7 
Mean 7,132 90.1 7.2 1.6 1.1 

Note: Actors are identified through positions as executives or members of boards of directors in life 
sciences and information technology firms, as defined by Capital IQ. 
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Table 2. Summary Statistics: Analytical Sample in 2009 (N=325) 
Variable Mean Standard Deviation 
Receives treatment 2009-2012 0.046 0.210 
Employment 72.31 113.43 
Sales ($ millions) 13.76 29.50 
Sales ($mil) per Employee 0.172 0.267 
Change in corporate parent 2009-2012 0.106 0.309 
Number of pending/current investments 2.71 3.15 
Three-year sales growth peer (Quartiles 1-4) 2.29 1.34 
First year of operation 1993.1 10.67 
Number of affiliated non-dealmakers  7.52 5.24 
Total non-dealmaker local links 8.56 6.45 
DNB rating 2.74 0.674 
PayDex maximum  76.52 5.45 
PayDex minimum 70.69 9.08 
Male CEO (1=male) 0.763 0.43 
Government Contracts (1=yes) 0.323 0.47 
Minority Owned (1=yes) 0.105 0.31 
Women-owned (1=yes) 0.117 0.32 
Foreign-owned (1=yes) 0.077 0.27 
Moved location more than once (1=yes) 0.268 0.44 
International trade (0=none) 0.583 1.09 
Legal Status (3=Corporation) 2.912 0.318 
Note: Data come from D&B and Capital IQ. All data measured in 2009 unless otherwise specified. 



Table 3. Main Estimates of the Effects of Dealmakers on Firm Performance, 2009-2012 
Sales ($ millions) Employment 

Control 
(2) 

Treatment 
(1) 

Difference 
(1-2) 

Control 
(2) 

Treatment 
(1) 

Difference 
(1-2) 

Before 5.461 
(2.602) 

5.810 
(1.743) 

0.349 
(3.132) 

63.193 
(18.025) 

108.00 
(59.742) 

44.807 
(62.402) 

After 8.207 
(4.445) 

22.384 
(7.344) 

14.177 
(8.584) 

69.748 
(21.628) 

230.545 
(109.407) 

160.797 
(111.254) 

ATT 13.828** 
(6.645) 

115.990** 
(53.945) 

R2 0.184 0.084 
Common Support 22 9 18 11 

Sales/Employee Acquisitions 
Control 

(2) 
Treatment 

(1) 
Difference 

(1-2) 
Control 

(2) 
Treatment 

(1) 
Difference 

(1-2) 
Before 0.105 

(0.007) 
0.117 

(0.028) 
0.012 

(0.029) 
0 0 0 

After 0.129 
(0.015) 

0.142 
(0.026) 

0.013 
(0.030) 

0.039 
(0.043) 

0.200 
(0.132) 

0.161 
(0.139) 

ATT 0.001 
(0.025) 

0.161 
(0.139) 

R2 0.046 0.122 
Common Support 16 9 18 10 
Note: ATT stands for average treatment effect on the treated. Inference: *** p<0.01; ** p<0.05; * p<0.1; 
all estimates produced with standard errors clustered at the firm. Coefficients estimated only for firms in 
the common support region. 



Table 4. Tests of Conditional Independence for Sales, Employment, Sales/Employment and Acquisition Outcomes 
Unmatched Sales Employment Sales/Employee Acquisition 

Variable Matched t p>t t p>t t p>t t p>t 
Employment 2008 U -0.64 0.524 -0.64 0.524 -0.64 0.524 -0.64 0.524 

 
M 1.16 0.255 0.45 0.656 0.23 0.823 0.99 0.326 

Employment U -0.58 0.562 -0.58 0.562 

 
M 1.86 0.072 1.66 0.105 

Sales 2008 U     -0.72 0.474 
M     -0.02 0.986 

Sales ($mil) U 
  

-0.74 0.459   -0.74 0.459 

 
M 

  
0.85 0.399 1.49 0.146 

Sales Growth Peer U -2.07 0.039 -2.07 0.039 -2.07 0.039 -2.07 0.039 

 
M -1.53 0.136 -1.25 0.22 0.52 0.604 -1.37 0.179 

Firm start year U 2.8 0.005 2.8 0.005 2.8 0.005 2.8 0.005 

 
M -1.57 0.127 0.46 0.646 0.21 0.837 -1.48 0.148 

Male CEO U -2.58 0.01 -2.58 0.01 -2.58 0.01 -2.58 0.01 

 
M -2.11 0.042 -0.73 0.474 -0.76 0.453 -1.4 0.17 

Gov’t Contracts U -2.4 0.017 -2.4 0.017 -2.4 0.017 -2.4 0.017 

 
M 1.8 0.081 -0.24 0.812 0.71 0.483 1.36 0.183 

Minority owned U -1.69 0.091 -1.69 0.091 -1.69 0.091 -1.69 0.091 

 
M -1.2 0.237 1.06 0.296 -0.43 0.674 -0.16 0.874 

Moved location U -0.77 0.441 -0.77 0.441 -0.77 0.441 -0.77 0.441 

 
M 0.26 0.793 -1.03 0.31 0.02 0.981 0.23 0.819 

DNB Rating U 2.15 0.032 2.15 0.032 2.15 0.032 2.15 0.032 

 
M 0.76 0.455 -0.15 0.878 0.62 0.543 -0.06 0.956 

PayDex Max U -1.95 0.052 -1.95 0.052 -1.95 0.052 -1.95 0.052 

 
M -2.02 0.051 -0.4 0.692 -1.19 0.245 -1.7 0.097 

PayDex Min U -2.28 0.023 -2.28 0.023 -2.28 0.023 -2.28 0.023 
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M 0.48 0.634 -0.4 0.695 -0.86 0.396 0.41 0.682 

Foreign-owned U -1.69 0.091 -1.69 0.091 -1.69 0.091 -1.69 0.091 

 
M 1.05 0.302 0.56 0.581 -0.8 0.429 0.81 0.426 

Women-owned U -2.1 0.036 -2.1 0.036 -2.1 0.036 -2.1 0.036 

 
M 0.41 0.684 -0.74 0.464 -0.2 0.843 0.23 0.82 

Non-DM U 2.13 0.033 2.13 0.033 2.13 0.033 2.13 0.033 

 
M -0.84 0.406 -0.18 0.856 0.64 0.527 -0.85 0.4 

Non-DM Links U 4.56 0.000 4.56 0.000 4.56 0.000 4.56 0.000 

 
M -0.98 0.336 -0.44 0.662 0.27 0.786 -1.01 0.319 

No trade U 2.66 0.008 2.66 0.008 2.66 0.008 2.66 0.008 

 
M -1.1 0.281 -0.46 0.648 0.19 0.854 -0.88 0.383 

Imports & Exports U -1.59 0.112 -1.59 0.112 -1.59 0.112 -1.59 0.112 

 
M . . . . . . . . 

Exports only U -2.14 0.033 -2.14 0.033 -2.14 0.033 -2.14 0.033 

 
M 0.85 0.402 -0.22 0.83 0.35 0.73 0.81 0.422 

Imports Only U -0.8 0.421 -0.8 0.421 -0.8 0.421 -0.8 0.421 

 
M 0.63 0.535 0.75 0.46 -0.53 0.603 0.4 0.691 

Proprietorship U 2.06 0.04 2.06 0.04 2.06 0.04 2.06 0.04 

 
M . . . . . . . . 

Partnership U -1.41 0.16 -1.41 0.16 -1.41 0.16 -1.41 0.16 

 
M . . . . . . . . 

Corporation U 0.72 0.472 0.72 0.472 0.72 0.472 0.72 0.472 

 
M . . . . . . . . 

Non-profit U -0.38 0.703 -0.38 0.703 -0.38 0.703 -0.38 0.703 

 
M . . . . . . . . 

Note: Unless otherwise specified, all measures are for values of variables measured at 2009. Each matching procedure also included dummy variables for each of 
the 12 regional economies and 25 industry classes. 



Table 5. Placebo Test Estimates of the Effects of Dealmakers on Firm Sales and 
Employment, 2006-2009 

Sales ($ millions) Employment 
Control 

(2) 
Treatment 

(1) 
Difference 

(1-2) 
Control 

(2) 
Treatment 

(1) 
Difference 

(1-2) 
Before 6.474 

(1.163) 
10.638 
(5.885) 

4.164 
(5.998) 

56.42 
(10.753) 

53.58 
(14.253) 

-2.837 
(17.854) 

After 7.522 
(1.256) 

15.234 
(10.395) 

7.712 
(10.471) 

61.705 
(11.386) 

99.33 
(55.92) 

37.628 
(55.109) 

ATT 3.548 
 (4.650) 

40.466 
(42.537) 

R2 0.024 0.032 
Common Support 68 11 62 12 
Note: ATT stands for average treatment effect on the treated. Inference: *** p<0.01; ** p<0.05; * p<0.1; 
all estimates produced with standard errors clustered at the firm. Coefficients estimated only for firms in 
the common support region. 
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