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Abstract 
Hedonic price indices are currently considered to be the state-of-the-art approach to 
computing constant-quality price indices. In particular, hedonic price indices based on 
imputed prices have become popular both among practitioners and researchers to analyze 
price changes at an aggregate level. Although widely employed, little research has been 
conducted to investigate their asymptotic properties and the influence of the econometric 
model on the parameters estimated by these price indices. The present paper therefore tries to 
fill the actual knowledge gap by analyzing the asymptotic properties of the most commonly 
used imputed hedonic price indices in the case of linear and linearizable models. 
The obtained results are used to gauge the impact of bias adjusted predictions on hedonic 
imputed indices in the case of log-linear hedonic functions with normal distributed errors. 
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1. Introduction

Price indices have become widespread in economic analyses to measure price changes

of goods on an aggregate level with respect to a base period. They are defined according

to standard formulae and do not involve any econometric model in their computation.

However, a major drawback related to classic price indices is their inadequacy to take

into account possible quality changes that may influence price changes at an aggregate

level. This drawback has prompted a great amount of research, leading Rosen (1974) to

define the economic framework necessary to the definition of the so-called hedonic price

indices.

In the last thirty years, three main approaches based on imputed prices have established

themselves as the most appropriate method for computing quality-adjusted hedonic price

indices: Single, double, and characteristic imputation. In contrast to their unadjusted

counterpart, hedonic indices do assume an underlying econometric model in their com-

putation, thus worsening the price index problem1, as illustrated by Hill and Melser

(2008). Since economic theory does not provide indications on the choice of the impu-

tation approach, researchers face the uncomfortable situation to choose among different

imputation methods, wondering how econometric models estimated at the micro level

affect affect the resulting price indices at the macro level.

A major domain of application of hedonic indices is represented by housing markets,

where sound indicators of the general price level are of primary importance. Mark and

Goldberg (1984) were among the first to compare hedonic imputed indices for housing

goods to other classic price indices. Meese and Wallace (1991) and Wallace (1996) com-

puted characteristic Fisher hedonic price indices based on non-parametric estimates of

the hedonic regression function. Wallace and Meese (1997) compared characteristic he-

donic indices with repeat-sales and hybrid-approaches. Kagie and Wezel (2007) used a

boosting algorithm to improve the prediction performance of decision tree based hedo-

nic models and computed single-imputed Fisher hedonic indices. Hill and Melser (2008)

investigated the price index problem for single-imputed, double imputed, and character-

istic hedonic price indices. von de Haan (2010) compared imputed Fisher and Törnquist

1The price index problem is defined as the non-equivalence of price index formulae: The computation

of different price indices leads, in general, to different results.
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hedonic indices to the time dummy method. Dorsey et al. (2010) used a double imputed

Laspeyres index to measure the boom-bust housing cycle in the Los Angeles and San

Diego metropolitan areas from 2000 to 2008. Diewert (2011) proposed, among other ap-

proaches, Laspeyres, Paashe, and Fisher imputed hedonic price indices to measure house

price inflation.

As the above literature shows, research has focused on defining, computing, and finally

comparing hedonic price indices. The computed hedonic indices aim to draw conclusions

on the evolution of the market prices. However, these conclusions are usually based on

informal considerations. In fact, hedonic price indices have been rarely employed as vari-

able of interest in macro econometric analyses. This is mainly motivated by two factors.

First, the unavailability of such indices: Often hedonic indices are computed by private

real estate agencies that either do not publish them, or do not divulge the employed

methodology. This situation, as suggested by the publication of the manuals Hill (2011),

Eurostat (2012), OECD and Eurostat (2013), is probably going to change in the near

future, since official statistic agencies are progressively adopting hedonic price indices.

The second, and more important, reason is represented by the lack of theory surrounding

these indices. Up to the present, hedonic indices have been used merely as descriptive

statistical measures, neglecting the economic parameter they are actually estimating and

the role played by the underlying econometric model.

The aim of the present paper is to fill the actual knowledge gap, by determining the

asymptotic properties of Laspeyres, Paasche, and Fisher price indices for the single im-

puted, double imputed, and characteristic imputation methods in the case of linear and

linearizable hedonic regression functions. This approach should provide a better under-

standing of the theoretical parameter a hedonic index estimates and the influence of the

underlying econometric model on this parameter. In particular, a simulation study is

performed to evaluate the impact of bias adjusted predictions on hedonic indices.

The present paper is structured as follows. Section 2 reviews the imputation approaches

for the Laspeyres, Paasche, and Fisher price indices. The convergence in probability

of hedonic price indices in the case of linear and linearizable hedonic functions is then

established in Section 3. A simulation study to illustrate the obtained results is then

performed in Section 4. Section 5 concludes the paper.
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2. Hedonic imputed price indices: A review

The three main imputation approaches adopted in the literature are considered in the

present paper to compute quality-adjusted price indices: Single, double, and characteris-

tics imputation methods. Hedonic price indices based on time dummy variables are not

analyzed in the present paper since they do not rely on traditional price index formulae.

Moreover, only the hedonic counterpart of the classical Laspeyres, Paasche, and Fisher

price indices are considered, although in section 3.3 we generalize the obtained results to

composite price indices relying on these hedonic indices. The adopted terminology and

the following definitions are based on Hill (2013).

Let Pt := (P t
1, ..., P

t
nt)
′ ∈ Rnt and Xt := (xt1, ...,x

t
nt)
′ ∈ Rnt×K denote a vector of inde-

pendent random prices and a matrix of random characteristics in period t, respectively.

The hedonic hypothesis states that in each time period the price of a good depends on

its characteristics:

P t
i = f t(xti) + εti = f t(xti1, ..., x

t
iK) + εti, i = 1, ..., nt, (2.1)

where xtij is the j-th characteristic of good i in period t, and the function f t describes

how the characteristics interact to build the price. The function f t is usually called

the hedonic regression function, or simply the hedonic function. We denote the hedonic

function estimated in period t by f̂ t . The set of the K observed characteristics is as-

sumed constant through time, i.e., no new characteristic affecting the price appears in

any time period t = 1, ..., T . The number of goods observed in period t is denoted by nt,

and it is assumed that nt ≥ K. The variable εti represents a stochastic error term with

E(εti) = 0 ∀i.

According to (2.1), even if we identify a class of good with an appropriate set of char-

acteristics, the price of the individual goods randomly varies. Therefore, assuming that

characteristics and/or error terms are continuously distributed ,the quantity of a good

purchased at a given price must be set equal to 1 in classic price index formulae. Let

L̂0,t, P̂0,t, and F̂0,t denote the estimated Laspeyres, Paasche, and Fisher price index. Let

us assume that the same set of n goods is observed in the base period 0 and the current

period t. Under mild conditions on price distributions in the two time periods, the weak

law of large numbers implies that

L̂0,t = P̂0,t = F̂0,t =

∑n
i=1 P

t
i (x

t
i)∑n

i=1 P
0
i (x0

i )

P−→ µP t

µP 0

as n −→ +∞,
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Laspeyres Paasche Fisher

Single imputed
∑n0
i=1 f̂

t(x0
i )∑n0

i=1 P
0
i

∑nt
i=1 P

t
i∑nt

i=1 f̂
0(xti)

√(∑n0
i=1 f̂

t(x0
i )∑n0

i=1 P
0
i

)( ∑nt
i=1 P

t
i∑nt

i=1 f̂
0(xti)

)
Double imputed

∑n0
i=1 f̂

t(x0
i )∑n0

i=1 f̂
0(x0

i )

∑nt
i=1 f̂

t(xti)∑nt
i=1 f̂

0(xti)

√(∑n0
i=1 f̂

t(x0
i )∑n0

i=1 f̂
0(x0

i )

)(∑nt
i=1 f̂

t(xti)∑nt
i=1 f̂

0(xti)

)
Characteristic f̂ t(x0)

f̂0(x0)

f̂ t(xt)

f̂0(xt)

√(
f̂ t(x0)

f̂0(x0)

)(
f̂ t(xt)

f̂0(xt)

)
Table 1: Hedonic price indices with linear or linearizable hedonic functions

where µP 0 and µP t denote the mean price in the base and current period, respectively. In

this case, classic Laspeyres, Paasche, and Fisher price indices thus converge toward the

same unknown parameter given by the ratio of the mean prices in the two time periods.

Although the same set of n goods has been observed in the two time periods, the estimated

price ratio may be influenced by temporal changes in the underlying characteristics.

Moreover, very often we don’t observe exactly the same n goods in two time periods.

This occurs, in particular, in the case of infrequently sold goods, e.g. houses, or goods

possessing a rapidly changing technology, e.g. mobile phones, PC, etc. In this case,

randomly sampling the same type of goods (e.g. single-family houses) in the two time

periods and computing the ratio of prices
∑nt

i=1 P
t
i (x

t
i)/
∑n0

i=1 P
0
i (x0

i ) leads to even greater

quality variations, since the characteristics’ distribution might have changed. To address

this problem, several imputation approaches have been proposed. They are reviewed in

the next section.

2.1. Imputation approaches in hedonic indices

Three main approaches have been proposed in the literature to cope with the quality

variation problem: Single, double, and characteristic imputation. The index formulae of

these approaches for the Laspeyres, Paasche, and Fisher indices are shown in Table 1 in

the case of prices imputed in the original scale.

Let ĤILsi0,t, ĤIP
si
0,t, and ĤIF si

0,t denote the estimators of the Laspeyres, Paasche, and

Fisher single imputed hedonic price indices, where 0 and t represent the base and current

time periods, respectively. The base period is chosen among the time periods t = 1, ..., T .

Single imputed hedonic price indices use the hedonic function to impute prices of each

good in base/current period according to the hedonic function estimated in the other

time period. Imputed prices in one period are then compared to observed prices in the
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other period.

In contrast to single imputed indices, double imputed hedonic price indices impute prices

for both time periods. Once the hedonic functions for the two periods have been es-

timated, the set of characteristics in one period is evaluated according to the hedonic

function estimated in the other period. By construction, this guarantees that the quality

of the goods does not change between periods, and so prices can be directly compared.

We denote the estimators of the Laspeyres, Paasche, and Fisher double imputed hedonic

price indices with ĤILdi0,t, ĤIP
di
0,t and ĤIF di

0,t, where 0 and t represent the base and

current time periods, respectively.

Instead of imputing prices for each good in a given period, characteristic hedonic price

indices compute a representative good for one time period, and then impute the price of

this characteristic good using the estimated hedonic functions in the two periods. The

characteristic good is thought to appropriately represent the quality of the set of goods

in one time period and is usually defined as being the mean vector of the characteristics.

Also, in this case, since only the characteristic good is considered, quality does not change

across periods, and prices are directly comparable. Let ĤILch0,t, ĤIP
ch
0,t, and ĤIF ch

0,t de-

note the estimators of the Laspeyres, Paasche, and Fisher characteristic hedonic price

indices. The representative good in one time period is defined as the mean vector of the

characteristics

xt := (xt1, ..., x
t
K) = (

1

nt

nt∑
i=1

xti1, ...,
1

nt

nt∑
i=1

xtiK).

3. Convergence in probability of imputed hedonic price indices

Although widely employed, the above defined indices have been used as empirical

quantities, without knowing the parameter they are estimating. In particular, their

asymptotic convergence has not been investigated, thus casting doubts on the use of

such indices in official statistic and in macroeconomic analysis. To derive such proper-

ties, the hedonic function f t considered in the hedonic hypothesis must be specified and

an estimation technique accordingly adopted. We consider two case of figure, linear and

linearizable hedonic functions.

In the rest of the paper we will refer to the usual hypothesis of the linear regression model.

These hypothesis include a linear functional form of the data generating process, exo-

geneity of the regressors, linear independence of the regressors, and homoskedasticity of
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the error term (See Greene (2011), page 92 for an explicit statement of these hypotheses).

3.1. Imputed hedonic indices with linear or linearizable hedonic functions

The following linear hedonic model

P t
i = f t(xti1, ..., x

t
iK) = xt′i β

t = βt0 + βt1x
t
i1 + ...+ βtKx

t
iK , i = 1, ..., nt (3.1)

is first assumed in each time period. Refer to Table 1 for the computation of imputed

hedonic indices according to this model. The following proposition identifies the theoretic

parameters toward which imputed hedonic price indices converge.

Theorem 3.1. Let (P t
i ,x

t
i), i = 1, ..., nt be a random sample of nt independent random

variables belonging to period t (t = 1, ..., T ). We assume that the characteristics’ vector

xti are i.i.d. with µxt = E(xt) < +∞ ∀t. If the usual hypotheses of the linear hedonic

model in (3.1) hold in each time period, then

i) ĤILsi0,t, ĤIL
di
0,t, and ĤILch0,t converge in probability toward

µ′
x0
βt

µ′
x0
β0 .

ii) ĤIP si
0,t, ĤIP

di
0,t, and ĤIP ch

0,t converge in probability toward
µ′

xt
βt

µ′
xt
β0 .

See the Appendix for a proof of the proposition. Since the three approaches are

equivalent under the linear hedonic function assumption, their respective sample price

indices converge toward the same parameter under very general assumptions. This is

particularly important: In the case of linear hedonic functions the hedonic imputation

approach does not worsen the price index problem. Moreover, a simple interpretation

of the population parameter estimated by Laspeyres and Paasche indices is possible: By

identifying the market quality with the mean vector of the populations’ characteristics,

price changes correspond to the re-pricing of the market quality in different time periods.

Although theoretically appealing, the asymptotic results demonstrated in Theorem

3.1 rest on the linearity of the hedonic function. In practice, however, linear hedonic

functions are restricted to specific cases where an economic model implies the use of such

functions. In most cases, the distribution of the error term in the regression model (2.1) is

asymmetric and suffers of heteroskedasticity. To address these problems, a transformation

of the dependent variable is usually performed, and a linear hedonic model assumed. In

particular, the log-linear regression model represents the most used hedonic function in

the literature, since it usually leads to normally distributed error terms. Therefore, we
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Laspeyres Paasche Fisher

Single
∑n0
i=1 h(f̂

t(x0
i ))∑n0

i=1 P
0
i

∑nt
i=1 P

t
i∑nt

i=1 h(f̂
0(xti))

√(∑n0
i=1 h(f̂

t(x0
i ))∑n0

i=1 P
0
i

)( ∑nt
i=1 P

t
i∑nt

i=1 h(f̂
0(xti))

)
Double

∑n0
i=1 h(f̂

t(x0
i ))∑n0

i=1 h(f̂
0(x0

i ))

∑nt
i=1 h(f̂

t(xti))∑nt
i=1 h(f̂

0(xti))

√(∑n0
i=1 h(f̂

t(x0
i ))∑n0

i=1 h(f̂
0(x0

i ))

)(∑nt
i=1 h(f̂

t(xti))∑nt
i=1 h(f̂

0(xti))

)
Char h(f̂ t(x0))

h(f̂0(x0))

h(f̂ t(xt))

h(f̂0(xt))

√(
h(f̂ t(x0))

h(f̂0(x0))

)(
h(f̂ t(xt))

h(f̂0(xt))

)
Table 2: Hedonic price indices with linearizable hedonic functions

further investigate the asymptotic convergence of imputed hedonic price indices in the

case of linearizable hedonic functions. We consider the following hedonic model in each

time period t:

g(P t
i ) = f t(xsi ) + εti = xt′i β

t + εti, i = 1, ..., nt, (3.2)

where g is a transformation of the dependent variable that is a priori known. For sake of

simplicity we assume the same transformation g in all time periods. We assume that the

transformed model satisfies the usual assumptions of the linear regression model. The

error terms εti, in particular, are assumed to be homoskedastic.

Let h = g−1 denote the inverse transformation. Table 2 shows Laspeyres, Paasche,

and Fisher imputed hedonic indices in the case of linearizable hedonic functions. The

formulas contained in Table 2 use biased predictions in the original scale. As we will

see in Subsection 3.2, obtaining asymptotic results for the formulas of Table 2 when

making unbiased predictions is straightforward in the standard case of log-linear models

with normally distributed errors. However, without distributional assumptions on the

error terms computations are considerably more complicate and are beyond the aim of

the present paper. Moreover, many of the hedonic price indices published by statistics

agencies use naive (i.e. biased) predictions when computing hedonic price indices in the

original scale. The results of the present section may thus be useful to interpret hedonic

price indices actually employed by statistics agencies and as a starting point for the

asymptotic analysis with unbiased predictions.

Theorem 3.2. Let (P t
i ,x

t
i), i = 1, ..., nt be a random sample of nt independent random

variables belonging to period t (t = 1, ..., T ). We assume that the characteristics’ vector

xti are i.i.d. with µxt = E(xt) < +∞ ∀t. If the usual hypotheses of the linear hedonic

model (3.2) hold in each time period and h ∈ C∞, then
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i) If the l-th central moments µlx0′β0+ε0 and µlx0′βt exist ∀l, then

plim
n0,nt→+∞

ĤILsi0,t =

∑∞
l=0

h(l)(µ′
x0

βt)

l!
µl
x0′βt∑∞

l=0

h(l)(µ′
x0

β0)

l!
µl
x0′β0+ε0

ii) plim
n0,nt→+∞

ĤILch0,t =
h(µ′

x0
βt)

h(µ′
x0
β0)

.

iii) If the l-th central moments µlxt′βt+εt and µlxt′β0 exist ∀l, then

plim
n0,nt→+∞

ĤIP si
0,t =

∑∞
l=0

h(l)(µ′
xt

βt)

l!
µl
xt′βt+εt∑∞

l=0

h(l)(µ′
xt

β0)

l!
µl
xt′β0

iv) plim
n0,nt→+∞

ĤIP ch
0,t =

h(µ′
xt
βt)

h(µ′
xt
β0)

,

where h(l) denotes the l-th derivative of h.

See the Appendix for a proof of the theorem for Laspeyres indices. The proof for

Paashe indices is similar.

Theorems 3.2 is a generalization of theorem 3.1: When the identity transformation

g(x) = x if performed, we obtain the same population index formulas as in the linear

case. When the transformation is different from the identity, however, the linearization

of the hedonic model comes at a price: In contrast to the results obtained for linear

hedonic functions, the different imputation approaches are neither equals nor asymp-

totically equivalents. Moreover, additional assumptions on the central moments of the

transformed variable are needed to guarantee the convergence in probability of single

imputed indices. Interestingly, characteristic hedonic price indices don’t need additional

hypothesis to converge in probability under model (3.2).

In the case of characteristic imputation, the quality is still identified with the mean vector

of the characteristic in a given time period, and indices estimates the ratio of the repricing

(in the original scale) of such a vector in another time period. On the other hand, single

imputed hedonic indices also take into account higher moments to define the quality.

Attentive readers might have noted that Theorem 3.2 does not state any result concerning

double imputed hedonic price indices. In fact, asymptotic convergence of double imputed

indices could not have been established in the case of linearizable hedonic functions due

to the predictions’ dependence. Let us consider Laspeyres indices. Following an approach

similar to the proof of Theorem 3.2, we have

plim
n0,nt→+∞

ĤILdi0,t =
plimn0→+∞

1
n0

∑n0

i=1 h(x0′
i β

t)

plimn0→+∞
1
n0

∑n0

i=1 h(x0′
i β̂

0)
.
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Unfortunately, whereas the convergence of the numerator can easily be assessed using the

weak law of large numbers, the denominator’s convergence is more difficult to determine.

This is primarily due to the stochastic dependence of the x0′
i β̂

0. Therefore, usual weak

laws of large numbers cannot be used. Moreover, as demonstrated in Property 3 in the

Appendix, the sufficient conditions for convergence in probability implied by Chebychev’s

inequality are not satisfied: The variance of the denominator will in general not tend to

zero (results obtained in Proposition 3 thus show that even a second order approximation

similar to the one performed in the proof of Theorem 3.2 is not possible). This seems

to be of primary importance if double imputed hedonic indices are used as indicators of

the general price level in econometric analyses of the market: Using a random variable

that might not estimate a theoretic price change for a fixed quality may lead to erroneous

conclusions.

3.2. Imputed hedonic indices and log-linear hedonic models

In the hedonic literature, the log-linear model has established itself as the reference

model. We thus consider the regression model

ln(P t
i ) = xt′i β

t + εti, i = 1, ..., nt. (3.3)

Since prices are usually skewed to the right, a log transformation usually leads to sym-

metrically distributed prices. The following Corollary shows the relation between single

imputed and characteristic price indices when log-linear hedonic function are assumed:

Corollary 3.1. Let (P t
i ,x

t
i), i = 1, ..., nt be a random sample of nt independent random

variables belonging to period t (t = 1, ..., T ).We assume that the characteristics’ vector xti

are i.i.d. with µxt = E(xt) < +∞ ∀t. If the usual hypotheses of the linear hedonic model

(3.3) hold in each time period, then

i) HILsi0,t = LR0,tHIL
ch
0,t with LR0,t =

∑∞
l=0

µl
x0′βt
l!∑∞

l=0

µl
x0′β0+ε0

l!

.

ii) HIP si
0,t = PR0,tHIP

ch
0,t with PR0,t =

∑∞
l=0

µl
xt′βt+εt

l!∑∞
l=0

µl
xt′β0

l!

,

where LR0,t and PR0,t are defined as the Laspeyres and Paashe ratio, respectively.

Single imputed Laspeyres and Paasche hedonic indices thus converge toward a char-

acteristic hedonic index of the same type times a factor under model (3.3). This factor
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may be interpreted as price variation measured by single imputed indices net of the price

variation accounted by characteristic indices. To better understand its role, formulas

of Corollary 3.1 with second order terms only (see Property 2 in the Appendix for the

computation of the second central moment):

LR0,t ≈
2 + βt′Σx0βt

2 + β0′Σx0β0 + σ2
ε0

and PR0,t ≈
2 + βt′Σxtβt + σ2

εt

2 + β0′Σxtβ0 .

The matrices Σx0 and Σxt are positive-semidefinite, and the variances σ2
ε0 and σ2

εt are

positive. Let us consider a simple case of figure in which only physical characteristic

of the goods have been considered. In this case, characteristics’ shadow prices β0 and

βt are expected to be positive in all time periods. Moreover, due both to production

constraints and consumer preferences, we usually observe strongly positively correlated

physical characteristics, such that the off-diagonal elements of the matrices Σx0 and Σxt

are all greater than zero. Therefore, factors LR0,t and PR0,t are expected to be positive

in all time periods.

If shadow prices of one of more characteristics decrease βt = β0+c with c = (c1, ..., cK), cj ≤

0, j = 1, ..., K, the multiplying factor for Laspeyres indices will be smaller than 1. In this

case of figure, Laspeyres single imputed indices amplify the price drop as measured by

Laspeyres characteristic indices (LR0,t < 1). On the other hand, if shadow prices tend to

be higher in the period under review βt = β0+c with c = (c1, ..., cK), cj ≥ 0, j = 1, ..., K,

the Paashe factor amplifies the price increase as measured by Paashe characteristic indices

(PR0,t > 1). In general, if shadow prices βt, t = 1, ..., T are approximatively constant

through time, we expect to have LR0,t < 1 and PR0,t > 1 in every time period.

This systematic relationship is particularly relevant when cross-country comparisons of

the general price level are effectuated using different quality-adjusted price indices (for

example, Laspeyres single imputed and characteristic). For example, a country whose

prices are measured with a single imputed approach might display a greater volatility

with respect to the country whose price are measured with the characteristic approach

(for example, see the difference already present in the same market for Laspeyres and

Paashe single imputed and characteristic indices in the left side of Figure 2). This greater

volatility, however, is only due to a different parameter being estimated, and not to any

structural difference between the two markets.

The following Lemmas show that single imputed indices are finite when transformed

prices and shadow prices follow a normal distribution.
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Lemma 3.1. Let us consider a log-linear hedonic function with inverse transformation

h(x) = ex. If both the transformed prices x0′
i β

t + ε0i and the shadow prices x0′
i β

t (resp.

xt′i β
t + εti and xt′i β

0) are normally distributed, then Laspeyres (resp. Paashe) single im-

puted hedonic price index are finite.

See the Appendix for a proof of the lemma in the case of Laspeyres indices. We

now turn to the convergence of imputed price indices when unbiased prediction in the

original scale are performed. Since the hedonic model is log-linear and we assume normal

distributed errors, we simply add the usual bias correction term 1
2
(σ̂t)2 to the predictions

of the formulas contained in Table 2 (see Hill (2013)) before retransforming in the original

scale. It is worth noting that to the author’s knowledge no study has been conducted to

evaluate the magnitude of this bias correction on imputed hedonic price indices.

Lemma 3.2. Let (P t
i ,x

t
i), i = 1, ..., nt be a random sample of nt independent random

variables belonging to period t (t = 1, ..., T ). We assume that the characteristics’ vector

xti are i.i.d. with µxt = E(xt) < +∞ ∀t. If the usual hypotheses of the linear hedonic

model (3.3) hold in each time period and εt ∼ N(0, (σt)2) ∀t, then

i) If the l-th central moments µlx0′β0+ε0 and µlx0′βt exist ∀l, then

plim
n0,nt→+∞

ĤIL∗si0,t =
e
µ′
x0

βt+1
2 (σt)2 ∑∞

l=0

µl
x0′βt
l!

e
µ′
x0

β0 ∑∞
l=0

µl
x0′β0+ε0

l!

.

ii) plim
n0,nt→+∞

ĤIL∗ch0,t = e
µ′
x0

βt+1
2 (σt)2

e
µ′
x0

β0+1
2 (σ0)2

,

iii) If the l-th central moments µlx0′β0+ε0 and µlx0′βt exist ∀l, then

plim
n0,nt→+∞

ĤIP ∗si0,t =
e
µ′
xt

βt ∑∞
l=0

µl
xt′βt+εt

l!

e
µ′
xt

β0+1
2 (σ0)2 ∑∞

l=0

µl
xt′β0

l!

.

iv) plim
n0,nt→+∞

ĤIP ∗ch0,t = e
µ′
xt

βt+1
2 (σt)2

e
µ′
xt

β0+1
2 (σ0)2

,

where ĤIL∗si0,t , ĤIL
∗ch
0,t , ĤIP

∗si
0,t and ĤIP ∗ch0,t denote the sample imputed hedonic indices

based on unbiased prediction in the original scale.

See the Appendix for a proof of the lemma in the case of Laspeyres indices.

As shown in the above formula, we expect a much larger impact of bias correction on

single imputed indices than on characteristic indices. In fact, if the volatility σt remains

constant through time, bias correction does not affect population characteristic indices.

We also have the counterpart of Corollary 3.1:

12



Lemma 3.3. Let (P t
i ,x

t
i), i = 1, ..., nt be a random sample of nt independent random

variables belonging to period t (t = 1, ..., T ).We assume that the characteristics’ vector xti

are i.i.d. with µxt = E(xt) < +∞ ∀t. If the usual hypotheses of the linear hedonic model

in (3.3) hold in each time period of the linear hedonic model in (3.3), then

i) HIL∗si0,t = LR∗0,tHIL
∗ch
0,t with LR∗0,t = e

1
2
(σ0)2

∑∞
l=0

µl
(x0)′βt
l!∑∞

l=0

µl
(x0)′β0+ε0

l!

.

ii) HIP ∗si0,t = PR∗0,tHIP
∗ch
0,t with PR∗0,t = e−

1
2
(σt)2

∑∞
l=0

µl
(xt)′βt+εt

l!∑∞
l=0

µl
(xt)′β0

l!

.

We close this section with two remarks. First, as sample indices’ formulas Table 1 and

2 illustrate, there is not only a strong non-linearity in the sample indices used to estimate

population indices, but also an apparent stochastic dependence between the numerator

and the denominator in their formulas. For these reasons, it seems unrealistic to derive

the asymptotic distribution of such indices with standard approaches even in the case

of simple linear hedonic functions, therefore suggesting the use of resampling methods

to determine their distribution. See Brachinger et al. (2012) for the construction of

confidence intervals of elementary hedonic price indices.

Second, the convergence results obtained throughout this and the previous sections rely on

the usual hypothesis of the linear regression model. However, as long as the estimation

technique implies a convergence of the shadow prices β̂t0, ..., β̂
t
K toward the βt0, ..., β

t
K

defining the theoretical linear data generating process, the convergence results remain

valid. This is particularly importance, since it allows the use of other regression models/

regression techniques than the usual one. Ridge regression, for example, could be used

to estimate penalized shadow prices in each time period, and subsequently compute

sample hedonic indices that converge according to the formulae established in the previous

sections.

3.3. Convergence in probability of composite indices

The convergence in probability of the Laspeyres and Paasche hedonic price indices

can then be used to establish the convergence in probability of the Fisher indices.

Corollary 1. The Fisher hedonic price indices ĤIF si
0,t, ĤIF

di
0,t, and ĤIF ch

0,t converge

in probability toward the geometric average of population Laspeyres and Paashe hedonic

price indices.

13



Based on the Fisher formulae contained in Table 1 and 2, the proof trivially follows

from the continuous mapping theorem. Importantly, Corollary 1 can easily be generalized

to show that convergence results of elementary (i.e. unweighted) price indices can easily

be exploited to derive asymptotic results of composite ones. As long as the composite

price index formula satisfies the smoothness condition, the continuous mapping theorem

allows us to use the results obtained for elementary price indices to derive those of the

composite ones.

An interesting case is represented by composite market indices that are given as a linear

combination of elementary sub-indices. Let us consider, for example, a composite hedonic

index HC0,t aiming to describe price changes of a market possessing S distinct segments.

The usual approach is to compute the sample ĤC0,t as a convex combination of segment

(elementary) price indices ĤI0,t:

ĤC0,t = c1ĤI0,t
1 + ...+ cSĤI0,t

S,
S∑
i=1

ci = 1, ci ≥ 0 ∀i,

where ĤI0,t denote either hedonic Laspeyres, Paashe, or Fisher price indices computed

using a certain imputation method. Since we have demonstrated the convergence in

probability of these indices, we can use the convergence preservation to obtain

plim
n0,nt→+∞

ĤC0,t = c1HI0,t
1 + ...+ cSHI0,t

S.

This results remains valid even if instead of predetermined weights cj, j = 1, ..., S we

consider estimated relative expenditure weight ĉj =
∑ns

i=1 P
j
i /
∑n

i=1 Pi, where P s
i denotes

prices observed in segment j. In this case, we simply have to consider the convergence in

probability of weights in the computations.

4. Simulation study

In this section we perform a simulation study to further investigate the convergence

properties established in Section 3. The simulated data will serve two purposes. The first

purpose is the computation of Laspeyres, Paashe, and Fisher population hedonic indices

for single imputed and characteristic approaches. The second purpose is to investigate the

empirical convergence in probability of sample indices toward the population index they

estimate. In particular, we analyse the impact of bias corrected predictions on indices

ratios.

14



The simulated data are based on the hedonic housing data of the city of Ames (Iowa)

presented by De Cock (2011), which are freely available on the data archives of the Journal

of Statistics Education.

As explained in the data description file, the data set includes information from the Ames

Assessor’s Office used in computing assessed values for individual residential properties

sold in Ames from 2006 to 2010 (monthly). For sake of simplicity, only 5 out of the 80

variables contained in the data set have been considered in the present simulation: Sale

price (P , in USD), lot area (Lot, in square feet), total basement surface (Bas, in square

feet), above ground living area (Liv, in square feet), size of garage (Gar, in square feet).

Moreover, to base our simulation on more realistic estimates, the data has been grouped

in 18 quarters, from the first quarter 2006 to the second quarter 2010.

4.1. Simulated data

In this section we describe the procedure employed to simulate the log-linear regression

model presented in (3.3). The main objective is to simulate house prices and character-

istics that are realistic according to the observed housing data of the city of Ames. The

following procedure has thus been adopted in each quarter t = 1, ..., 18:

1. Estimation of the log-linear hedonic model using the observed data contained in

the Ames data set:

log(P t
i ) = γt0 + γt1Lotti + γt2Basti + γt3Livti + γt4Garti + εti, i = 1, ..., nt.

In particular, we estimate the variance σ2
εt of the error term.

2. Simulation of 3000 vectors of characteristic xt∗ using a truncated multivariate nor-

mal distribution: xt∗ ∼ N(µxt∗ ,Σxt∗ | [xt∗min,xt∗max]), where µxt∗ and Σxt∗ have been

set equal to robust estimates of the characteristics’ empirical mean and covariance

matrix, respectively. The lower and upper bounds xt∗min and xt∗max of the density

have been chosen equal to the minimum and maximum values observed in each time

period.

3. Simulation of log-prices log(pt)∗ are obtained by predicting the values of the sim-

ulated characteristics according to the hedonic models estimated at point 1 and

adding a simulated random error:

log(P t
i )
∗ = γ̂t0 + γ̂t1x

t∗
i1 + γ̂t2x

t∗
i2 + γ̂t3x

t∗
i3 + γ̂t4x

t∗
i4 + εt∗i , i = 1, ..., 3000,
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Figure 1: Convergence in probability of imputed indices

where εt∗i follows a normal distribution with mean equal to zero and variance

σ2
εt∗=σ̂

2
εt .

The use of a truncated normal distribution based on robust estimates of the mean vector

and covariance matrix, avoids to create vectors with implausible characteristic values

and/or characteristic combinations. Importantly, the estimates σ̂2
ε1 , ..., σ̂

2
ε18 allow us to

simulate error terms that take into account volatility changes over time. Therefore,

although simulated, the above procedure provides plausible data on which apply the

results of the theoretical section.

4.2. Convergence in probability and population indices

Throughout this section, the base period has been set equal to the first quarter t = 1.

To empirically analyse the convergence in probability of imputed hedonic indices, 300

samples have been drawn for a given sample size. The sample size n has then been

progressively increased from 500 to 3000 observations by steps of 500 units. Using the

same approach illustrated by Lafaye de Micheaux and Liquet (2009), we estimate the

probabilities Pbn = P (‖ ĤIn −HI ‖> c), c > 0, where ĤIn = (ĤI1n, ..., ĤI
T
n ) and

HI = (HI1, ..., HIT ) denote the vectors of sample and population hedonic indices for

the T = 18 quarters, respectively.

Figure 1 shows estimated probabilities Pbn (n = 500k, k = 1, ..., 6) of Laspeyres, Paashe,

and Fisher hedonic price indices for c = 5%. The chosen threshold is extremely low, since

on average a sample price index must not be distant more than 0.05/18 = 0.28% in a given

quarter. For each index, single imputed and characteristic approaches are considered. All
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Quarter LR1,t LR∗1,t PR1,t PR∗1,t FR1,t FR∗1,t

1 0.97 1.00 1.03 1.01 1.00 1.00

2 0.96 0.99 1.01 0.99 0.99 0.99

3 0.96 0.99 1.01 0.99 0.99 0.99

4 0.96 0.99 1.01 0.98 0.99 0.98

5 0.96 0.99 1.00 0.98 0.98 0.99

6 0.95 0.98 1.00 0.99 0.98 0.98

7 0.96 0.99 1.02 0.99 0.99 0.99

8 0.96 0.98 1.02 0.99 0.99 0.99

9 0.99 1.01 1.05 1.01 1.02 1.01

10 0.96 0.98 1.01 0.99 0.98 0.99

11 0.97 0.99 1.01 1.00 0.99 1.00

12 0.96 0.98 1.01 0.99 0.98 0.99

13 0.98 1.01 1.02 1.01 1.00 1.01

14 0.96 0.99 1.01 0.98 0.98 0.99

15 0.96 0.98 1.01 0.99 0.99 0.99

16 0.97 1.00 1.02 0.99 1.00 1.00

17 0.96 0.99 1.01 0.99 0.99 0.99

18 0.97 1.00 1.03 1.00 1.00 1.00

Table 3: Hedonic imputed indices ratios

the indices display roughly similar convergence rates toward their population parameter,

although Laspeyres indices seem to perform slightly worse than Paashe indices. Interest-

ingly, Laspeyres indices showed a much slower convergence rate with respect to Paashe

indices for some simulated data sets. This is probably due to a higher sensitivity of

Laspeyres indices to extreme values. This issue, however, is not treated in the present

paper.

Population indices of Laspeyres, Paashe, and Fisher hedonic price indices are shown

in Figure 2. The left and right side of the Figure contain graphics of population indices

resulting from biased and unbiased predicted prices in the original scale, respectively.

Each graphic illustrates a specific population index for single imputation and character-

istic approaches. Let us consider population indices based on biased predictions first.
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Figure 2: Population indices
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As expected, Laspeyres ratios are all smaller than 1, whereas Paashe ratios are always

greater than 1 (see Table 3). Fisher indices show approximatively the same value for both

the single imputed and the characteristic approach. Nevertheless, characteristic indices

are in general smoother than their single imputed counterpart, making the identification

of potential cycles/trends difficult. This potential drawback, however, seems not to be

present when unbiased predictions in the original scale are performed. In fact, in this

case the bias adjustment lowers the distance between single imputed and characteristic

indices, making the Laspeyres and Paashe ratios almost equal to 1 (see Table 3). Interest-

ingly, the bias adjustment seems not to impact Fisher price indices, which posses ratios

almost equal to 1 even before the bias adjustment. We thus reach the following important

conclusion. Bias adjustment is of utmost important not only from a micro-econometric

point of view, but also from a macro-econometric perspective: The price index problem

caused by different imputation approaches seem to vanish when unbiased predicted prices

are used.

5. Conclusions

Several important theoretical results have been obtained in the present paper. First,

the asymptotic convergence of single imputed, double imputed, and characteristics he-

donic price indices has been established in the case of goods possessing a linear hedonic

function. In this case the price index problem is not worsened by imputation methods,

alleviating an uncomfortable situation price statisticians have to face. Convergence re-

sults hold under mild assumptions, mainly dictated by the econometric models used to

estimate the hedonic functions in different time periods.

Second, the asymptotic convergence of hedonic indices with linearizable hedonic functions

has been established. The parameters estimated by single-imputed and characteristic he-

donic price indices have been identified, and the double-imputed hedonic approach was

found inappropriate to measure constant-quality price changes due to its possible lack

of convergence in probability. The obtained results show how, in general, the functional

form of the econometric model used to estimate the hedonic functions affects the param-

eter estimated by hedonic price indices. Depending on the hedonic approach, adopting

a non-linear functional form modifies the type of quality adjustment: Single imputed

hedonic indices also take the covariance structure of the regressors into account, whereas
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characteristic hedonic indices mainly identify the quality of the characteristic with their

mean vector.

Third, under the assumption of log-linear hedonic functions, we established the analytical

relationship between single-imputed and characteristic hedonic indices, highlighting the

potential pitfalls this relationship might cause in econometric analyses. Finally, explicit

formulas taking into account bias adjustment of predicted prices for single and character-

istic imputed indices were given in the case of log-linear hedonic functions with normal

distributed errors.

These theoretical findings are complemented with a simulation study. In particular, the

convergence in probability of hedonic indices in the case of a log-linear hedonic model

with normal distributed errors has been empirically analysed. Two main results are ob-

tained with our simulation study. First, the convergence speed has been found similar

for all the indices, although Laspeyres indices seem to be more affected by extreme val-

ues than Paashe indices. Second, adopting a bias correction for predicted prices reduces

the distance between population indices estimated by single imputed and characteristic

hedonic indices, virtually eliminating the price index problem.
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Appendix A. Asymptotic properties of hedonic models

The following properties hold under the classical linear model hypothesis and the

hypothesis assumed in Proposition 3.1 and 3.2. The employed terminology is borrowed

from DasGupta (2011).

Proof of Theorem 3.1. We start by demonstrating that the three approaches are identical

when linear hedonic functions are considered, i.e. ĤILsi0,t = ĤILdi0,t = ĤILch0,t, and

ĤIP si
0,t = ĤIP di

0,t = ĤIP ch
0,t. This follows trivially from the fact that the average vector

of characteristics always belong to the regression line:

ĤILsi0,t =

∑n0

i=1 x
0′
i β̂

t∑n0

i=1 P
0
i

=
1
n0

∑n0

i=1 x
0′
i β̂

t

1
n0

∑n0

i=1 P
0
i

=
x0′β̂t

x0′β̂0
= ĤILch0,t =

∑n0

i=1 x
0′
i β̂

t∑n0

i=1 x
0′
i β̂

0
= ĤILdi0,t.

and

ĤIP si
0,t =

∑nt
i=1 P

t
i∑nt

i=1 x
t′
i β̂

0
=

1
nt

∑nt
i=1 P

t
i

1
nt

∑n0

i=1 x
t′
i β̂

0
=

xt′β̂t

xt′β̂0
= ĤIP ch

0,t =

∑nt
i=1 x

t′
i β̂

t∑nt
i=1 x

t′
i β̂

0
= ĤIP di

0,t.

Therefore, we demonstrate the convergence in probability for only one type of imputation

method. Due to its simplicity, we restrict ourself to the characteristic approach. For

Laspeyres indices we simply have

plim
n0,nt→+∞

ĤILch0,t =
(plimn0→+∞ x0)′(plimnt→+∞ β̂

t)

(plimn0→+∞ x0)′(plimn0→+∞ β̂
0)

=
µ′x0β

t

µ′x0β
0 .

For Paasche indices we have:

plim
n0,nt→+∞

ĤIP ch
0,t =

(plimnt→+∞ xt)′(plimnt→+∞ β̂
t)

(plimnt→+∞ xt)′(plimn0→+∞ β̂
0)

=
µ′xtβ

t

µ′xtβ
0 .
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Property 1. Let h denote a smooth function. In any time period t and base period 0,

we have

plim
nt→+∞

∑n0

i=1 h(x0′
i β̂

t)∑n0

i=1 P
0
i

=

∑n0

i=1 h(x0′
i β

t)∑n0

i=1 P
0
i

.

Proof. We first demonstrate that

plim
nt→+∞

∑n0

i=1 x
0′
i β̂

t∑n0

i=1 P
0
i

=

∑n0

i=1 x
0′
i β

t∑n0

i=1 P
0
i

.

We consider first the convergence in probability of a single term x0′
i β̂

t as nt → +∞. The

probability distribution of the K-dimensional random variable (x0
i ) does not depend on

nt. It can therefore be considered as converging in probability toward itself as nt → +∞:

plimnt→+∞ x0
i = x0

i . Under the classical hypothesis of the linear regression model esti-

mated in period t, we have that plimnt→+∞ β̂
t = βt. The multi-dimensional convergence

preservation implies that plimnt→+∞ x0′
i β̂

t = x0′
i β

t. Using again the convergence preser-

vation, we obtain (since the sum does not depend on nt)

plimnt→+∞

n0∑
i=1

x0′
i β̂

t =

n0∑
i=1

plimnt→+∞

(
x0′
i β̂

t
)

=

n0∑
i=1

x0′
i β

t.

Since the denominator
∑n0

i=1 P
0
i does not depend on nt, we also have that plimnt→+∞

∑n0

i=1 P
0
i =∑n0

i=1 P
0
i . Thus implying

plim
nt→+∞

∑n0

i=1 x
0′
i β̂

t∑n0

i=1 P
0
i

=
plimnt→+∞

∑n0

i=1 x
0′
i β̂

t

plimnt→+∞
∑n0

i=1 P
0
i

=

∑n0

i=1 x
0′
i β

t∑n0

i=1 P
0
i

.

The continuous mapping theorem allow us to obtain the wanted result. Note: The propo-

sition remains valid if the denominator is replaced with
∑n0

i=1 x
0′
i β̂

0, since it represents a

random variable not depending on nt.

Proof of Theorem 3.2. The convergence in probability of ĤILsi0,t is first established. Us-

ing Property 1 we have

plim
n0,nt→+∞

ĤILsi0,t = plim
n0,nt→+∞

∑n0

i=1 h(x0′
i β̂

t)∑n0

i=1 P
0
i

= plim
n0→+∞

1
n0

∑n0

i=1 h(x0′
i β

t)
1
n0

∑n0

i=1 P
0
i

=

=
plimn0→+∞

1
n0

∑n0

i=1 h(x0′
i β

t)

plimn0→+∞
1
n0

∑n0

i=1 P
0
i

.

Let us first consider the convergence of the numerator. We perform a Taylor series

expansion in µ′x0β
t:

1

n0

n0∑
i=1

h(x0′
i β

t) =
1

n0

n0∑
i=1

∞∑
l=0

h(l)(µ′x0β
t)

l!
(x0′

i β
t − µ′x0βt)l
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Since the x0′
i β

t−µ′x0β
t are independent and identically distributed random variables and

we assumed that their central moments of order l existed ∀l, we have that (Khinchine’s

weak law of large numbers)

plim
n0→+∞

1

n0

n0∑
i=1

h(x0′
i β

t) =
∞∑
l=0

h(l)(µ′x0β
t)

l!
plim
n0→+∞

1

n0

n0∑
i=1

(x0′
i β

t − µ′x0βt)l =

=
∞∑
l=0

h(l)(µ′x0β
t)

l!
µlx0′βt .

For the denominator we perform a Taylor series expansion in µ′xtβ
t:

1

n0

n0∑
i=1

P 0
i =

1

n0

n0∑
i=1

h(xt′i β
t + εti) =

1

n0

n0∑
i=1

∞∑
l=0

h(l)(µ′xtβ
t)

l!
(xt′i β

t + εti − µ′xtβt)l

Since the xt′i β
t + εti − µ′xtβ

t are independent and identically distributed random vari-

ables and we assumed that their central moments of order l existed ∀l, we have that

(Khinchine’s weak law of large numbers)

plim
n0→+∞

1

n0

n0∑
i=1

P 0
i =

∞∑
l=0

h(l)(µ′xtβ
t)

l!
plim
nt→+∞

1

nt

nt∑
i=1

((xti)
′βt + εti − µ′xtβt)l =

=
∞∑
l=0

h(l)(µ′xtβ
t)

l!
µlxt′βt+εt .

Therefore,

plim
n0,nt→+∞

ĤILsi0,t =

∑∞
l=0

h(l)(µ′
x0
βt)

l!
µlx0′βt∑∞

l=0

h(l)(µ′
x0
β0)

l!
µlx0′β0+ε0

.

Note: Although the above Taylor series expansion are not strictly necessary to establish

a convergence result, they are useful to investigate the the relationship between single

imputed and characteristic population indices.

For ĤILch0,t, we simply have

plim
n0,nt→+∞

ĤILch0,t =
h
(

(plimn0→+∞ x0)′(plimnt→+∞ β̂
t)
)

h
(

(plimn0→+∞ x0)′(plimn0→+∞ β̂
0)
) =

h(µ′x0β
t)

h(µ′x0β
0)
.

Proof of Corollary 3.1. We demonstrate point i). The proof of point ii) is similar. Using

the fact that h(l)(x) = ex ∀l, we simply have

HILsi0,t =

∑∞
l=0

h(l)(µ′
x0
βt)

l!
µl
x0′
i β

t∑∞
l=0

h(l)(µ′
x0
β0)

l!
µl
x0′
i β

0+ε0i

eµ
′
x0
βt

eµ
′
x0
β0

∑∞
l=0

µl
x0′
i

βt

l!∑∞
l=0

µl
x0′
i

β0+ε0
i

l!

=

∑∞
l=0

µl
x0′βt

l!∑∞
l=0

µl
x0′β0+ε0

l!

HILch0,t.
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Proof of Lemma 3.1. As demonstrated in Theorem 3.2, we have that

plim
n0,nt→+∞

ĤILsi0,t =

∑∞
l=0

h(l)(µ′
x0
βt)

l!
µlx0′βt∑∞

l=0

h(l)(µ′
x0
β0)

l!
µlx0′β0+ε0

=
eµ
′
x0
βt∑∞

l=0

µl
x0′βt

l!

eµ
′
x0
β0∑∞

l=0

µl
x0′β0+ε0

l!

.

We demonstrate the convergence of the series in the denominator and numerator. Let

σxt′βt+εt denote the standard deviation of the transformed prices. Since µl(xt′βt+εt cor-

responds to the l-th central moment of a normally distributed variable, we have that

µlxt′βt+εt = (l− 1)!!σlxt′βt+εt if l is even and 0 otherwise, where (l− 1)!! denotes the double

factorial of l − 1. We thus have

∞∑
l=0

µlx0′β0+ε0

l!
=

∞∑
l even

(l − 1)!!σlx0′β0+ε0

l!
=
∞∑
k=1

(2k − 1)!!σ2k
x0′β0+ε0

(2k)!
=

=
∞∑
k=1

(2k)!σ2k
x0′β0+ε0

2kk!

(2k)!
=
∞∑
k=1

σ2k
x0′β0+ε0

k!2k
=

=
∞∑
k=1

(σ2
x0′β0+ε0)

k

k!

1

2k
<
∞∑
k=1

(σ2
x0′β0+ε0)

k

k!
= e

σ2
x0′β0+ε0 .

Since the series is monotonic and bounded, it is convergent.

For the series in the numerator we similarly have

∞∑
l=0

µlx0′βt

l!
=

∞∑
l even

(l − 1)!!σlx0′βt

l!
=
∞∑
k=1

(2k − 1)!!σ2k
x0′βt

(2k)!
=

=
∞∑
k=1

(2k)!σ2k
x0′βt

2kk!

(2k)!
=
∞∑
k=1

σ2k
x0′βt

k!2k
=
∞∑
k=1

(σ2
x0′βt)

k

k!

1

2k
<

<

∞∑
k=1

(σ2
x0′βt)

k

k!
= e

σ2
x0′βt .

Since the series is monotonic and bounded, it is convergent. The ratio of two convergent

series is convergent.

Proof of Lemma 3.2. The proof is similar to the proof of theorem 3.2. The convergence

in probability of ĤILsi0,t is first established:

plim
n0,nt→+∞

ĤIL∗si0,t = plim
n0,nt→+∞

∑n0

i=1 e
x0′
i β̂

t+ 1
2
(σ̂t)2∑n0

i=1 P
0
i

=

= plim
n0→+∞

∑n0

i=1 e
x0′
i plimnt→+∞ β̂

t+ 1
2
plimnt→+∞(σ̂t)2∑n0

i=1 P
0
i

=

= plim
n0→+∞

1
n0

∑n0

i=1 e
x0′
i β

t+ 1
2
(σt)2

1
n0

∑n0

i=1 P
0
i

=
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= e
1
2
(σt)2

plimn0→+∞
1
n0

∑n0

i=1 e
x0′
i β

t

plimn0→+∞
1
n0

∑n0

i=1 P
0
i

=

= e
1
2
(σt)2 eµ

′
x0
βt∑∞

l=0

µl
x0′βt

l!

eµ
′
x0
β0∑∞

l=0

µl
x0′β0+ε0

l!

.

For ĤIL∗ch0,t , we have

plim
n0,nt→+∞

ĤIL∗ch0,t = plim
n0,nt→+∞

ex
0′β̂t+ 1

2
(σ̂t)2

ex
0′β̂0+ 1

2
(σ̂0)2

=

= plim
nt→+∞

eplimn0→+∞ x0′β̂t+ 1
2
(σ̂t)2

eplimn0→+∞ x0′β̂0+ 1
2
plimn0→+∞(σ̂0)2

=

= plim
nt→+∞

eµ
′
x0
β̂t+ 1

2
(σ̂t)2

eµ
′
x0
β0+ 1

2
(σ0)2

=
eµ
′
x0
βt+ 1

2
(σt)2

eµ
′
x0
β0+ 1

2
(σ0)2

.

Proof of Lemma 3.3. We only demonstrate point i). The proof of point ii) is similar.

Using the fact that h(l)(x) = ex ∀l, we simply have

HILsi0,t = e
1
2
(σt)2 eµ

′
x0
βt∑∞

l=0

µl
x0′βt

l!

eµ
′
x0
β0∑∞

l=0

µl
x0′β0+ε0

l!

= e
1
2
(σ0)2

∑∞
l=0

µl
(x0)′βt

l!∑∞
l=0

µl
x0′β0+ε0

l!

HIL∗ch0,t .

Property 2. If in time period t a linear hedonic function is assumed, then

i) plim
nt→+∞

1
nt

∑nt
i=1 P

t
i = µ′xtβ

t

ii) plim
nt→+∞

1
nt

∑nt
i=1 x

t′
i β̂

t = µ′xtβ
t.

Proof.

i) Due to the linear model hypotheses, we have that E(εti|xti) = 0. A stronger form

of exogeneity is not necessary, since the characteristics vectors xti, i = 1, ..., nt

are assumed to be independent in a given time period. Using the law of iterated

expectations, we have

E(P t
i ) = Ext(E(P t

i |xti)) = Ext(x
t′
i β

t) = µ′xtβ
t < +∞ ∀i.

According to Khinchine’s weak law of large numbers, the proof is complete.
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ii) Due to the fact that the estimated prices P̂ t
i = xt′i β̂

t are not independent, we

use the Chebyshev’s inequality to demonstrate the convergence in probability. Let

εt := (εt1, ..., ε
t
nt)
′ denote the vector of the random errors. We start by computing

the mean of the considered random variable. Using the exogeneity hypothesis, we

have E(εt|Xt) = 0. We condition on the whole characteristics matrix Xt and use

the law of iterated expectations.

E(xt′i β̂
t) = EXt(E((xti)

′β̂t)|Xt) =

= EXt

(
E
(
(xti)

′(βt + ((Xt)′(Xt))−1(Xt)′εt)|Xt
))

=

= EXt

(
E
(
(xti)

′βt + (xti)
′((Xt)′(Xt))−1(Xt)′εt|Xt

))
=

= Exti
((xti)

′βt) = µ′xtβ
t ∀i.

We still have to show that lim
nt→+∞

V ( 1
nt

∑nt
i=1 x

t′
i β̂

t) = 0. We start by examining the

variance matrix of the vector P̂t := (P̂ t
1, ..., P̂

t
nt). Let Ht := Xt(Xt′Xt)−1Xt′ denote

the hat matrix at time t. Using the variance decomposition we have

V (P̂t) = E(V (P̂t|Xt)) + V (E(P̂t|Xt)) = E(V (HtPt|Xt)) + V (Xtβt) =

= E(HtV (Pt|Xt)Ht′) + V (Xtβt) = σ2E(Ht) + V (Xtβt)

Since the random variables xt1, ...,x
t
nt are independent, the xt′i β

t, ...,xt′ntβ
t are also

independent. The off-diagonal elements of V (Xtβt) are thus equal to zero. On the

contrary, its diagonal elements are equal to V (xt′
i
′
βt) = βt′Σxtβt. We thus have

V (P̂ t
i ) = βt′Σxtβt + σ2E(e′iH

tei),

where ei = (0...010...0)′ denotes a nt-dimensional column vector with the i-th com-

ponent equal to 1 and zero otherwise. The covariances are given by

Cov(P̂ t
i , P̂

t
j ) = σ2E(e′iH

tej).

Let Tr denote the trace operator and U a nt×nt matrix with components equal to

1. We have

V (
1

nt

nt∑
i=1

P̂ t
i ) =

1

n2
t

nt∑
i=1

V (P̂ t
i ) +

1

n2
t

nt∑
i 6=j

Cov(P̂ t
i , P̂

t
j ) =

=
1

nt
βt′Σxtβt +

1

n2
t

nt∑
i=1

σ2E(e′iH
tei) +

1

n2
t

nt∑
i 6=j

σ2E(e′iH
tej) =
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=
1

nt
βt′Σxtβt +

σ2

n2
t

nt∑
i=1

Tr(E(e′iH
tei)) +

σ2

n2
t

nt∑
i 6=j

Tr(E(e′iH
tej)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

nt∑
i=1

nt∑
j=1

Tr(E(e′iH
tej)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

nt∑
i=1

nt∑
j=1

E(Tr(Hteje
′
i)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

E(Tr(Ht

nt∑
i=1

nt∑
j=1

eje
′
i)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

E(Tr(HtU)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

E(Tr(U)) =

=
1

nt
βt′Σxtβt +

σ2

n2
t

E(nt) =

=
1

nt
βt′Σxtβt +

ntσ
2

n2
t

−→ 0 as nt −→∞,

where we have used the fact that, since the column vectors of U are equal to

(1, ..., 1)′, their projection in the vector space generated by Xt correspond to the

identity function (the linear model contains a constant term).

Property 3. We assume a linearizable hedonic function in period t.

i) plim
nt→+∞

1
nt

∑nt
i=1((x

t
i)
′βt + εti − µ′xtβ

t)2 = βt′Σxtβt + σ2

ii) The mean 1
nt

∑nt
i=1((x

t
i)
′β̂t − µ′xtβ

t)2 does not satisfy Chebychev’s sufficient condi-

tions for convergence in probability.

Proof.

i) The mean the considered sequence of random variables is equal to E((xt′i β
t + εti −

µ′xtβ
t)2) = V (P t

i ) = βt′Σxtβt + σ2∀ i (see Property 2). Since the (xt′i β
t + εti −

µ′xtβ
t)2, i = 1, ..., nt are independent and identically distributed, this completes

the proof (Khinchine’s weak law of large numbers).

ii) Since the (xt′i β̂
t − µ′xtβ

t)2 are neither identically distributed, nor independent, we

use the Chebyshev’s inequality to prove the convergence in probability. The mean
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is equal to

E(
1

nt

nt∑
i=1

(xt′i β̂
t − µ′xtβt)2) =

1

nt

nt∑
i=1

E((xt′i β̂
t − µ′xtβt)2) =

=
1

nt

nt∑
i=1

V (xt′i β̂
t) =

=
1

nt

nt∑
i=1

(
βt′Σxtβt + σ2E(e′iH

tei)
)

=

= βt′Σxtβt +
σ2

nt
E(Tr(Ht

nt∑
i=1

eie
′
i)) =

= βt′Σxtβt +
σ2

nt
E(Tr(Ht)) =

= βtΣxtβt +
(K + 1)σ2

nt
−→ βt′Σxtβt as nt →∞.

The variance is given by

V (
1

nt

nt∑
i=1

(xt′i β̂
t − µ′xtβt)2) = E((

1

nt

nt∑
i=1

(xt′i β̂
t − µ′xtβt)2)2)−

(βt′Σxtβt +
(K + 1)σ2

nt
)2 =

=
1

n2
t

nt∑
i=1

E((xt′i β̂
t − µ′xtβt)4)+

1

n2
t

nt∑
i 6=j

E((xt′i β̂
t − µ′xtβt)2(xt′j β̂t − µ′xtβt)2)

− (βt′Σxtβt)2 − 2(βt′Σxtβt
(K + 1)σ2

nt
)+

(
(K + 1)σ2

nt
)2 =

=
1

n2
t

nt∑
i 6=j

µ4
xt′i β̂

t +
1

n2
t

nt∑
i 6=j

µ2,2

xt′i β̂
t
− (βt′Σxtβt)2

− 2(βt′Σxtβt
(K + 1)σ2

nt
)− (

(K + 1)σ2

nt
)2,

where µ4
xt′i β̂

t and µ2,2

xt′i β̂
t

represent the fourth central moment and the higher order

covariance of the variables of xt′i β̂
t, i = 1, ..., nt. Clearly, the last two terms of the

above expression tend to zero when nt goes to infinity. Thus, in order to obtain a

zero variance when nt goes to infinity, we should have that

1

n2
t

nt∑
i 6=j

µ4
xt′i β̂

t +
1

n2
t

nt∑
i 6=j

µ2,2

xt′i β̂
t
→ (βt′Σxtβt)2.
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Since in general this condition is not satisfied, the variance of the sample second

central moment will not converge toward zero.
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