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David Hume's no-miracles argument begets a valid No-Miracles Argument   

 

 

 

Abstract    

 

Hume's essay 'Of Miracles' has been a focus of controversy ever since its publication. The 

challenge to Christian orthodoxy was only too evident, but the balance-of-probabilities criterion 

advanced by Hume for determining when testimony justifies belief in miracles has also been a 

subject of contention among philosophers. The temptation for those familiar with Bayesian 

methodology to show that Hume's criterion determines a corresponding balance-of-posterior 

probabilities in favour of miracles is understandable, but I will argue that their attempts fail. 

However, I show that his criterion generates a valid form of the so-called No-Miracles Argument 

appealed to by modern realist philosophers, whose own presentation of it, despite their 

possession of the probabilistic machinery Hume himself lacked, is invalid. 
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Introduction  

 

In his essay 'Of Miracles' forming section X of the Enquiry (1748), Hume enunciated this maxim 

(he calls it a 'general maxim worthy of our attention'):  

that no testimony is sufficient to establish a miracle, unless the testimony be of such a 

kind, that its falsehood would be more miraculous, than the fact, which it endeavors to 

establish (1748, p.115-116) 

This seems to assert a necessary condition: that only if the testimony's falsity would be more 

miraculous than the occurrence of the miracle testified to, can the miracle's occurrence be taken 

to be established by the testimony. But shortly after this passage Hume makes it clear that he 

regards the condition as both necessary and sufficient:  

if the falsehood of [an individual's] testimony would be more miraculous, than the event 

which he relates; then, and not till then, can he pretend to commend my belief or opinion. 

(X, Part II) 

 

Hume famously – for most contemporary Christians, infamously - exploited his maxim to justify 

the rejection of all testimony-based claims of miracles, possibly the main pillar of support for 
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faith, since according to him the possibilities for the testimony to be false, because the testifiers 

were lying, deceived or otherwise mistaken, vastly outweigh the minuscule likelihood he claimed 

for a miracle
1
: 'we may establish it as a maxim, that no human testimony can have such force as 

to prove a miracle, and make it a just foundation for any such system of religion' (X, Part II).  

 

That triumphant dismissal of testimony-based miracles has since been subjected to a great deal of 

critical comment. Above all, there is the question of the status of the maxim itself. Is it valid, and 

if so why? The issue has been hotly debated by philosophers pretty much since Hume's essay 

was published, and still remains the subject of philosophical controversy
2
. But the matter has 

turned out to be not so simple after all, with scholarly opinion equally divided over the form the 

parsing should take, and over whether the maxim is actually a valid thesis of probability theory. 

In Part I of this paper I will argue that the attempts to prove that it is a theorem of probability 

theory all fail, but that the relation between the two types of probability he points to, the prior 

probability of a hypothesis and the probability of the evidence on the assumption that the 

hypothesis is false, plays a crucial role in evaluating the probative power of evidence. In Part II I 

will show that in neglecting one of those two factors whose importance Hume had highlighted, a 

highly influential modern argument for scientific realism, as the No-Miracles Argument, is 

fallacious. I will also show that the inequality that figures in his maxim is the key to a valid and 

important no-miracles argument. 

 

 

Part I 

 

1. Balancing probabilities 

 

Directly following Hume's statement of his maxim, he informs us of the inferential mechanism 

by which he arrived at it:  

When anyone tells me, that he saw a dead man restored to life, I immediately consider 

with myself, whether it be more probable, that this person should either deceive or be 

                                                 
1
 Hume inferred the extreme smallness of P(M) from his definition of a miracle as an event which violates the laws 

of nature (X, Part 1): as such, according to him, it merits a minuscule probability given the vast and varied 

experience on which those laws are based. Hume's critics were not slow to point out that even granted his distinctive 

definition, it does not follow that the prior probability of a miracle must be regarded as minute: the Catholic Church, 

for example, views it as quite the normal thing for God to intervene in this way given suitably justifying 

circumstances. And Hume's claim that experience warrants denying a miracle anything but a negligible probability 

is strongly in tension, to put it mildly, with his celebrated sceptical arguments in the Enquiry that to claim that 

anything is learned by experience involves the claimer in a vicious circularity..  
2
 Though according to Boswell, even Dr Johnson was convinced of its correctness, if not of the conclusion Hume 

drew from it:  

Talking of Dr. Johnson's unwillingness to believe extraordinary things I ventured to say, 'Sir, you come 

near Hume's argument against miracles, "That it is more probable witnesses should lie, or be mistaken, than 

that they should happen." JOHNSON. 'Why, Sir, Hume, taking the proposition simply, is right. But the 

Christian revelation is not proved by the miracles alone, but as connected with prophecies, and with the 

doctrines in confirmation of which the miracles were wrought.' (1791, p.194) 
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deceived, or that the fact, which he relates, should really have happened. I weigh the one 

miracle against the other; and according to the superiority, which I discover, I pronounce 

my decision, and always reject the greater miracle (X, Part I) 

That inferential mechanism is thus a simple decision-rule based on a corresponding balance of 

probabilities. After considering which probability 'weighs' the greater - of the testimony being 

false (because the testifier is deceived or deceiving) against the probability, considered 

independently of the testimony, of the miracle having occurred - one should, according to Hume, 

reject the alternative with the lesser probability and accept that with the greater. In using this 

balance of probabilities to reject or accept the miracle's occurrence, Hume seems to have thought 

it equivalent to balancing the probabilities of the miracle occurring versus it not occurring, 

possibly reasoning thus: the testimony is false just in case the miracle did not occur; hence 

weighing the probability that the testimony is false against the probability of the miracle 

occurring is simply weighing the probability that the miracle did not occur against the probability 

that it did.  

 

The reasoning may seem plausible but it is fallacious. 'The testimony is false' is not logically 

equivalent to 'the miracle did not occur': the left-hand side contains information about a 

testimony being made while the right-hand side does not, and indeed we have seen that for Hume 

the probability of the testimony being false is sensitive to the likelihood of alternative 'non-

miraculous' explanations (e.g. the alleged witnesses were deceiving or being deceived). Hence 

the probability that the testimony is false cannot simply be equated with the probability of the 

miracle's non-occurrence, and the chain of inferences 'the probability that the testimony is false is 

less than (greater than) the independent probability of the miracle' => 'the probability that the 

miracle did not occur is less than (greater than) the probability that it did' => reject (accept) the 

hypothesis of the miracle's occurrence' is broken at the first link. If the decision to accept or 

reject the occurrence of a miracle in the light of testimony is to reflect a balance of the 

probabilities of occurrence and non-occurrence in the way Hume seems to have thought, then it 

is clear (at any rate post-Bayes) that those probabilities have to be posterior probabilities given 

that testimony. But Hume did not have access to the conceptual apparatus required to make that 

distinction: it was only just being developed by his contemporary, the mathematician and 

clergyman Thomas Bayes, around the time Hume was writing, in work not published until after 

Bayes's death in 1763 and of which the scholarly consensus is that Hume knew nothing.
3
  

 

Comfortably post-Bayes we, unlike Hume, are in a position to answer the question he could not: 

does an inequality between the probability that the testimony is false and the prior probability of 

                                                 
3
 Earman claims that even if Hume had known of Bayes's work it is unlikely that he would have understood it (1998, 

p.25). That might be true for Bayes's derivation of the posterior distribution of a binomial parameter which makes up 

the major part of his paper, but there is little doubt that Hume could have followed Bayes's derivation of the 

probability axioms without difficulty, employing as it does only elementary arithmetic (it is essentially a piece of so-

called Dutch Book reasoning which anticipates by two and a half centuries de Finetti's).  
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the miracle translate into a corresponding inequality between the posterior probability that the 

miracle occurred, given the testimony, and the posterior probability that it did not?  Curiously 

enough, it was only late in the twentieth century that the question seems to have been addressed 

and an answer offered – indeed, more than one answer. That given by the Bayesian analysis of 

Gillies (1991) is a partial affirmative: the probability that the testimony is false is less than the 

prior probability of the miracle if the posterior odds on the miracle exceed the posterior odds 

against. However if, as Sobel (1987) and Howson (2000) assume, P(T|M) = 1, then  the 'if' 

becomes 'if and only if'. Earman's analysis (1998) gives a fully affirmative answer but at the cost, 

as he himself admits, of turning Hume's maxim into a triviality (1998, p.41).  

 

In part I of this paper I will argue that all these answers are incorrect. In so doing I will make 

extensive use of Bayes's Theorem in its possibly less familiar odds form (because in that form it 

leads to a simplified treatment), so that is where we shall start. 

 

 

2. Bayes's Theorem. 

 

Let 'P(X)', where X is any event/proposition, signify the probability of X, relative to whatever 

background information is being assumed. Some authors write this as P(X|K), where K refers to 

that information. Since K occurs uniformly, however, there is no need for its explicit mention 

and so it will be regarded as implicit in the symbolism. 

 

Bayes's Theorem is the classic Bayesian tool for evaluating the probability of a hypothesis H in 

the light of evidence E. An elementary consequence of the probability axioms, it assumes a 

particularly simple form when expressed in terms of odds. When P(H) lies strictly between 1 and 

0 the unconditional odds on H, Odds(H), defined as the quotient P(H)/P(~H), where ~H signifies 

the negation of H, with a corresponding quotient P(H|E)/P(~H|E) for Odds(H|E), the conditional 

odds on H given E. Odds (H|E) are often called the posterior odds on H, and Odds(H) the prior 

odds on H. In odds form, Bayes's theorem is just this: 

  Odds(H|E) = L(H|E).Odds(H),    

where L(H|E) is the ratio P(E|H)/P(E|~H) of so-called likelihoods. If we idealise, as is commonly 

done in this sort of discussion, and assume that H actually entails E modulo the background 

information implicit in P, then P(E|H) = 1 and we infer that   

Odds(H|E) = Odds(H)/P(E|~H)
4
     

whence we obtain immediately the biconditional 

  Odds(H|E) > q iff Odds(H)/q > P(E|~H).   (1) 

In what follows I shall assume that all the prior probabilities lie strictly between 0 and 1, 

including that of a miracle. Sobel models Hume's claim that the prior probability of a miracle is 

                                                 
4
 It follows that H has only to predict E for P(H|E) to exceed P(H). According to Bayesians, this constitutes a partial 

justification of inductive reasoning. 



5 

 

negligible by assigning it an infinitesimal probability, where an infinitesimal is a number smaller 

in absolute value than every positive real number. It was proved in the mid-twentieth century that 

it is consistent to assume the existence of such numbers, and reciprocally-infinitesimal numbers, 

extending the real number field; the members of any such extension – there are infinitely many - 

are called hyperreals. However, since the hyperreals obey the same arithmetical rules as the 

reals, assigning a miracle an extremely small real probability makes little practical difference for 

Bayes's Theorem calculations.  

 

 

3. Probability theory and Hume's maxim 

 

Any Bayesian investigation of the validity of Hume's maxim will of course need a plausible 

translation of the probabilities mentioned in Hume's maxim into the formal language of modern 

probability theory. In what follows let T be the statement that testimony was given claiming that 

the miracle occurred, and M the proposition that the miracle occurred as claimed. The probability 

of the miracle given the testimony is a straightforward Bayesian posterior probability P(M|T), 

and the probability of the miracle independently of T is its prior probability P(M). This leaves 

the probability that the testimony is false to be parsed formally.  Surprisingly, that apparently 

straightforward task has seen the widest degree of scholarly dissension in Bayesian discussions 

of Hume's maxim. Three candidates to date have been proposed: Gillies (1991), in common with 

Sobel (1987) and Howson (2000), advances P(T&~M) (in my notation), while Earman's gloss, 

proposed in the course of his sustained attack on Hume's argument (1998), is P(~M|T) (again, in 

my notation). The third, advanced by Dawid and Gillies (1989), is P(T|~M).
5
 Which is correct? 

 

I believe the third is correct, and my argument for it will piggyback on my answer why Earman's 

is not. Earman's is not because as a representation of the probability of the testimony being false 

P(~M|T) addresses the probability of the wrong event, M: by contrast, the question 'how likely is 

T given ~M?', i.e. 'what is P(T|~M)?', does seem to convey the correct sense, an opinion 

implicitly endorsed by Hume himself who cited, as relevant to assessing that probability, the 

possible causes for the testimony to be false: 

When anyone tells me, that he saw a dead man restored to life, I immediately consider 

with myself, whether it be more probable, that this person should either deceive or be 

deceived, or that the fact, which he relates, should really have happened. 

In other words, the probability of the falsity of the testimony is a function of the probabilities of 

alternative explanations of the testimony being given other than the miracle being genuinely 

                                                 
5
 Since T is itself a part of background knowledge K it might be thought that P(T) must be 1, trivially rendering 

P(T|~M) = 1, P(M|T) = P(M) and P(~M|T) = P(~M). The question of how to deal with this apparent problem has 

generated an extensive sub-literature under the heading 'The Old Evidence Problem'). This is not the place to discuss 

it, so I will only state my opinion, and what seems to be that of the other authors offering probabilistic analyses of 

Hume's argument, which is that T should be counterfactually excluded from K for the purpose of the discussion (for 

a supporting argument, see Howson and Urbach 2006, final chapter.).  



6 

 

witnessed. Now a simple exercise in the probability calculus shows that P(T|~M) does indeed 

convey this idea, for it is proportional to the average of the probabilities of the testimony being 

given relative to the alternative possible explanations of it – the deception of the testifier or they 

themselves being deceived, as Hume puts it – weighted by their own probabilities. In the 

statistical analyses of clinical treatments, where Y is a 'yes' test-result for the presence of a 

disease D, P(Y|~D) always represents the probability of T being a false positive, which is of 

course just what a testimony to the truth of M is when M is not actually true.  

 

But if P(T|~M) is the correct parsing then Gillies's and Sobel's P(T&~M) must, like Earman's, 

also be wrong. That it is wrong is independently supported by noting that, as the unconditional 

probability of the testimony being given and the miracle not occurring, it will, other things being 

equal, increase or decrease with the prior probability of the testimony being given
6
. Thus 

P(T&~M) is equal both to the product P(~M|T)P(T) and, assuming that P(T|M) = 1
7
, to the 

difference P(T) - P(M)
8
. In each of the two cases, keeping the other factor constant, the 

multiplicative in the first case and the additive in the second, simply increasing the prior 

probability of the testimony being given would increase the probability of its falsity on this 

parsing. Hence that parsing cannot be right.  

 

In what follows I will assume that, for the reasons given, P(T|~M) is the correct formal rendering 

of the probability that the testimony given is false. Unfortunately for Hume's maxim, the 

inequality P(T|~M) < P(M) is not equivalent to P(~M|T) < P(M|T): it is easily seen to be 

sufficient for P(~M|T) < P(M|T), but it is not necessary. I conclude, therefore, that the aim of 

exhibiting Hume's inequality P(T|~M) < P(M) as necessary and sufficient for establishing the 

occurrence of M, in the sense of raising its odds above 1, fails. It might anyway be objected that 

allowing a hypothesis as important as that of a miracle occurring to be established with posterior 

odds arbitrarily close to 1 from above is an unacceptably lenient interpretation of 'established'. 

Even the Roman Catholic Church's criteria, not an obvious patent of authority in epistemological 

matters, are more demanding (or so it believes). The 'more likely than not' criterion is employed 

in civil cases, but the 'beyond reasonable doubt' criterion for criminal convictions would 

arguably be the appropriate one in a matter where human lives, to say nothing of immortal souls, 

could hang in the balance. One might argue that at the very least the condition for M to be 

'established' on the basis of T should be that the posterior odds are bounded away from 1 by 

some suitably substantial margin, i.e. there is a positive number k of a suitable magnitude such 

that the posterior odds exceed 1+k. 'Suitable magnitude' is of course very vague, but it is still 

good enough to show that the condition P(T|~M) < P(M) is not sufficient for M to be established 

                                                 
6
 Earman also points this out (1998, p.40), dismissing P(T) as irrelevant to the probability of the testimony being 

false. 
7
 Given that Hume's discussion concerns the testimony of supposed witnesses, the assumption that P(T|M) can be set 

equal to 1, or as near to 1 as makes no difference seems fully warranted: given that the miracle did occur, these 

people would be practically certain to report it faithfully.  
8
 Since P(T) = P(T&~M)+P(T&M) = P(T&~M)+P(T|M)P(M) = P(T&~M)+P(M). 
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according to this more stringent condition (Odds(M|T) only exceeds 1+k if k is sufficiently 

small). In fact, as I will show in the following section, the condition P(T|~M) < P(M) implies 

only that Odds(T|M) exceeds 1+Odds(M) where, of course, for Hume Odds(M), and hence 

P(M)
9
, are minuscule.  

 

 

4. A Humean induction theorem 

 

Hume's maxim may not itself be a theorem, but his intuition that the inequality P(T|~M) < P(M) 

is a crucial factor in determining the degree of confidence it is proper to invest in the truth of M 

in the light of T is nevertheless correct. Indeed, again assuming that P(E|H) = 1, the following 

little theorem is easily provable from (1) and the fact that Odds(H)/[1 + Odds(H)] = P(H): 

P(E|~H) < P(H)  Odds(H|E) > 1 + Odds(H) 

In other words, the inequality P(E|~H) < P(H) is the condition not only for the posterior odds to 

exceed 1, but for the difference between the posterior and prior odds to exceed a fixed number 

(1) independent of both. We already know that satisfaction of the inequality P(E|~H) < P(H) is 

sufficient for the posterior odds on H to exceed 1 given P(E|H) = 1, but this result tells us much 

more. In particular, it tells us that so long as the prior probability of H is not negligible, then if 

the inequality is satisfied the posterior probability of H can be quite considerable. So, for 

example, if P(E|~H) is less than P(H) = ½, P(H|E) will be in excess of 2/3. So significant in the 

light of these observations is the inequality P(E|~H) < P(H) that I shall call it Hume's Inequality. 

 

In the next section we will fast-forward more than two centuries to find that Hume's insight 

about the significance of the relation between the likelihood P(E|~H) and the prior P(H) does not 

seem to have been shared by the advocates of a twentieth-century no-miracles argument, who 

unlike Hume know the basic rules of probability but nevertheless believe that all that is needed 

to catapult Odds(H|E) (well) past 1 is that P(E|~H) be very small.  

 

 

Part II 

 

1 The No-Miracles Argument 

 

Hume's declaration that he 'always rejects the greater miracle' when balancing the probabilities of 

competing hypotheses was echoed two and a half centuries later by John Worrall, in the course 

of advancing what has, unsurprisingly, come to be called the No-Miracle Argument 

(henceforward NMA): 

                                                 
9
 Small enough odds are approximately equal to small probabilities. The odds for a given probability p are given by 

the function f(p) = p/(1-p). Expanding about p = 0 we have f(p) = p + O(p
2
). 
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It would be a miracle, a coincidence on a near-cosmic scale, if a theory made as many 

correct empirical predictions as, say, the general theory of relativity or the photon theory 

of light without what the theory says about the fundamental structure of the universe 

being correct or "essentially" or "basically" correct. But we shouldn't accept miracles, not 

at any rate if there is a non- miraculous alternative . . . . So it is plausible to conclude that 

presently accepted theories are indeed "essentially" correct. (1996, p.140; my emphasis) 

But the inference drawn in the last sentence is fallacious, since it might be a greater miracle, in 

Humean language, for H to be true, in which case, according to Worrall, there would then be 

more reason to reject the 'essential' correctness of the theory itself. Without knowing how 

miraculous or otherwise the latter is, no inference as to its 'essential' correctness can be drawn at 

all. The rest, as Hamlet said, is – or should be – silence. Nor is Worrall the only offender in this 

matter; Popper is another: 

it cannot be just due to an improbable accident if a hypothesis is again and again 

successful when tested in different circumstances, and especially if it is successful in 

making previously unexpected predictions . . . If a theory h has been well-corroborated, 

then it is highly probable that it is truth-like. (1983, p.346; emphasis in the original) 

Perhaps 'the No-Miracles Fallacy' would be a better name for this argument. 

 

But to acknowledge what was clear to Hume, namely the need to balance the miraculousness of 

the agreement with the data against that of the theory, means acknowledging the indispensable 

role played by prior probabilities in evaluating empirical success. However, the No-Miracles 

argument is the inference–rule of choice for non-, even anti-, Bayesians of whom Popper is of 

course one par excellence, who claim for it an objective character free of the taint of 

subjectivism they see epitomised in prior probability distributions.
10

 Yet what other than 

subjectivism informs the evaluation of P(E|~H) as extremely small and P(H) as non-negligible in 

the frequently-cited example of the prediction by QED to eleven places of decimals of the 

magnetic moment of the electron? It is logically a trivial matter to manufacture an infinity of 

mutually incompatible alternatives that are also in agreement with E (think grue(t)), and there 

seems no good reason to believe that it is extremely improbable that in the fullness of time some 

alternative explanation of the phenomenon will not be accepted. In a celebrated passage Hilary 

Putnam declared that 'the positive argument for realism is that it is the only philosophy that 

doesn't make the success of science a miracle.' (1975, p.73). Putnam is surely wrong in 

suggesting that the approximate truth of the theories in mature science (whose terms typically 

refer
11

) is the only explanation which does not make the latter's success a miracle. Be that as it 

may, the fact remains that without appeal to prior odds, or probabilities, the NMA remains 

invalid. 

 

 

                                                 
10

 See the recent attempt by another defender of the NMA, Psillos (2009) and the reply by Howson (2013). 
11

 Ibid. 
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2. A valid no-miracles argument 

 

The little theorem proved in Part I section 4 shows that the inequality I called Hume's Inequality 

in a tribute to his prescience, is a sufficient condition for the posterior odds on H given E to 

exceed the prior odds on H by an amount greater than 1 if E is predicted by H.
12

 This subsumes a 

valid Humean no-miracles argument, since it tells us that if P(H) is very small, then if the 

agreement of H with the evidence would be even more improbable ('even more miraculous') 

were H false than H's own truth, then we can infer that H is 'established' to the extent of being 

more probable than not. As far as no-miracles arguments are concerned that is, to partially quote 

another poet, if not all ye know on earth, at any rate pretty much all ye need to know.    
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