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Does information inform confirmation?  

 

 

Abstract 

In a recent survey of the literature on the relation between information and confirmation, 

Crupi and Tentori (2014) claim that the former is a fruitful source of insight into the 

latter, with two well-known measures of confirmation being definable purely 

information-theoretically. I argue that of the two explicata of semantic information (due 

originally to Bar Hillel and Carnap) which are considered by the authors, the one 

generating a popular Bayesian confirmation measure is a defective measure of 

information, while the other, although an admissible measure of information, generates a 

defective measure of confirmation. Some results are proved about the representation of 

measures on consequence-classes. 

 

Key words: confirmation, information, explication, consequences. 

 

 

1. Introduction.  

 

Originating famously with Francis Bacon, the pursuit of a provably or even probably 

reliable set of rules of inductive inference suffered a severe reverse in the mid-eighteenth 

century, under the onslaught of Hume's celebrated sceptical arguments whose continuing 

failure to be definitively refuted after two centuries of strenuous attempts was famously 

dubbed by C.D. Broad 'the scandal of philosophy'
1
. And so matters stood until, under the 

pioneering leadership of Rudolf Carnap, attention was diverted away from trying to 

refute Hume's arguments
2
 to the less intimidating task of 'explicating' inductive concepts, 

                                                 
1
 1926, p. 67. 

2
 These arguments are all variations on the following: that any attempt to infer anything about the future 

from the past will necessarily beg the question. Howson (2013) argues that this argument translates 
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like degree of confirmation, confirming instance, evidential support, and so on, in so 

doing begetting the thriving enterprise now known as confirmation theory.  

 

One of the more interesting sub-projects to emerge from this programme has been an 

appeal to information-theoretic ideas in the hope that they would illuminate confirmation-

theoretic ones. The idea that the acquisition of new information should be related to 

confirmation and disconfirmation seems on the face of it natural enough: as the authors of 

a recent extensive survey put it,  

the impact of a piece of evidence (data, premise) on a given hypothesis (theory, 

conclusion) must reflect how the former affects an antecedent state of information 

concerning the latter. Relatedly, a rational agent would gather evidence because it 

provides information concerning certain possible states of affairs, i.e., for it can 

confirm/disconfirm relevant hypotheses. (Crupi and Tentori, 2014, p.81.)  

The subject–matter of confirmation theory is however typically statements, statements of 

hypotheses and evidence, and the application of information-theoretic notions required a 

suitable redefinition of the hitherto purely statistical definition of information introduced 

in the work of Claude Shannon. That transformation, into what he called semantic 

information, carried by the sentences of some appropriate language L, was undertaken by 

Carnap in a pioneering paper with Bar Hillel (Bar Hillel and Carnap 1953
3
), laying the 

foundations for nearly all subsequent work in the field.
4
   

 

 

2.  Improbability, measure and information  

 

The seminal nature of Bar Hillel and Carnap's paper is duly acknowledged by Crupi and 

Tentori in their survey, citing its 'canonical formulation' of the basic intuition concerning 

the amount of information conveyed by a statement: 

                                                                                                                                                 
straightforwardly into a theorem of the probability calculus, and hence that attempts to challenge it while 

remaining within a probabilistic framework are doomed to failure. 
3
 An earlier technical report by the two authors (Carnap and Bar Hillel 1952), of which their 1953 paper is a 

more concise published version, is useful for its additional explanatory remarks and will be cited often in 

the present paper.   
4
 Carnap's  ideas were further developed in a number of influential papers by Hintikka (see e.g. Hintikka 

1968, 1970). 
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Being told that the outcome of the draw is a picture of hearts provides more 

information in comparison, because this singles out a small subset of possibilities 

that was initially rather improbable. In philosophy, this basic idea found its 

canonical formulation in seminal work by Bar-Hillel and Carnap (2014, p.81) 

Two ideas are brought together here: the extent of the subset of possibilities admitted, and 

its probability. Let M(a) (my notation) denote the class of possibilities admitted by a 

proposition a in some suitable language L.
5
 Then the complement *M(a) of M(a) is the 

class of possibilities prohibited by a. The more extensive it is, the more possibilities a's 

truth rules out, and the more a can be taken as asserting: indeed, it is easy to see that a 

logically entails b just in case *M(b) is (set-theoretically) included in *M(a). Accordingly 

Bar Hillel and Carnap took *M(a) to represent qualitatively the content of a
6
. Their next 

step was to put a numerical measure on *M(a), and here they were able to exploit 

Carnap's monumental earlier work on inductive probability (1950) in which he had 

defined a restricted class of normalised measure functions m(a) on the sentences of L. 

These functions induce a corresponding class of measures on the M(a), each of which, 

since *M(a) = M(~a), takes the value m(~a) = 1-m(a) on *M(a).   

 

The m-functions are formally probability functions, to signal which I will henceforth 

write p(a) instead of m(a). 1-p(a) is therefore one explication of the amount of 

information in a. But there is another sense of the amount of information in a for which 

1-p(a) is not an appropriate measure. This is the sense in which the informativeness of a 

sentence can be gauged by how unexpected its truth would be in the light of what else 

you know. Given that 1-p(a) is a decreasing function of probability, it might be thought 

that this sense is automatically captured by that measure. But this is not so. In the case of 

two probabilistically independent sentences the amount of information in their 

conjunction is plausibly the sum of the amounts in each, but to deliver this feature the 

information-measure, considered as a decreasing function of probability, must be minus 

the logarithm to some base (greater than 1) of p(a). So now we have two probability-

                                                 
5
 In Bar Hillel and Carnap's paper M(a) is finite for each a: it is the set of state-descriptions admitted by a 

when a is formulated in a finite monadic predicate language without equality (informally speaking, the 

state-descriptions are the finest partition of possibility definable in the language). 
6
 Actually they called it the Content of a (upper case 'c'). 
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based information-measures, 1-p and –logp, explicating these two different senses of 

information, respectively referred to by Bar Hillel and Carnap as cont (for 'content') and 

inf.
7
  

 

 

3. Four explicata and a difference  

 

While these explications have become canonical, the simple logical framework and the 

restricted class of probability functions employed by Bar Hillel and Carnap have since 

largely been abandoned, for a combination of mathematical and philosophical reasons too 

extensive to go into here, replaced by a largely formalism-free environment where the 

only probability function involved is some coherent representation of belief, i.e. a finitely 

or possibly countably-additive probability function defined on at the outset or extendable 

to a Boolean algebra of propositions. This is the sort of 'broadly Bayesian' context in 

which Crupi and Tentori locate their own discussion
8
, retaining Bar Hillel and Carnap's 

explicata cont and inf but employing their own notation for them as 'infD' and 'infR' 

respectively
9
.  

 

Bar Hillel and Carnap had also defined two measures of relative information, cont(a|b) 

and inf(a|b), based on the corresponding one-place functions. Where 'I' stands for either 

'cont' or 'inf', Bar Hillel and Carnap's two-place functions are explicitly defined in terms 

of the one-place functions as follows:  

I(a|b) = I(a&b) - I(b).   (1) 

From (1) we infer that inf(a|b) = -logp(a|b) and cont(a|b) = 1- p(ba), where ''  

                                                 
7
 This is admittedly a very brisk and nuance-free summary. The reader is recommended to consult Bar 

Hillel and Carnap's own exposition. 
8
 2014, p.81. It will sometimes be useful in what follows to regard the algebra of propositions as the so-

called Lindenbaum sentence algebra of a language L, where logically equivalent sentences are in effect 

identified (thus there will be just one tautology, T, and one contradiction ). But there are many contexts 

where standard finitary languages are incapable of expressing the propositions of interest: for example, the 

infinite disjunction 'a ticket numbered 1 will win or a ticket numbered 2 will win or a ticket numbered 3 

will win or ....', in the context of  a countably infinite lottery whose tickets are labelled by the (numerals 

for) the  natural numbers. 
9
 2014, p.84. The 'R' is for 'ratio', the 'D' for 'difference'; we shall see why in the following section.  
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is material implication. (1) suggests an interpretation of I(a|b) as a measure of excess, or 

added, information. Indeed, turning it round, we have I(a&b) = I(a|b) + I(b), i.e. adding 

I(a|b) to the information in b gives the information resulting from adding (conjoining) a 

to b.  Bar Hillel and Carnap put it thus: I(a|b) is 'the relative (or additional or excess) 

information' of a with respect to b (1952, p.8
10

).  

 

(1) generates interesting notions of informational independence for each of inf and cont. 

We can say that a is informationally independent of b just in case I(a|b) = I(a), and hence 

just in case I(a&b) = I(a) + I(b), which sounds intuitively right and is symmetrical in a 

and b. Instantiating this with inf, we have –logp(a&b) = -[logp(b) + logp(a)], i.e. p(a&b) 

= p(a)p(b), so informational independence holds for inf just when a and b are 

probabilistically independent. Cont is dual to probability in that the same formulas 

involving & and v symmetrically hold for both, from which follows the analogue of the 

general addition rule for probabilities:  

cont(a) + cont(b) = cont(a&b) + cont(avb).   (2)  

Hence informational independence holds iff cont(a&b) = cont(a) + cont(b) iff cont(avb) 

= 0 iff p(avb) = 1: i.e. the measure of their contingent content in common is zero. So 

informational independence holds for cont just when a and b are content-disjoint.  

 

Crupi and Tentori also define a corresponding pair of relative functions, infD(a|b) and 

infR(a|b). While they do not say explicitly what 'presystematic' notions of relative 

information these are intended to capture, it is clear from their text that each function is 

simply the result of substituting the updated probability p(a|b) for p(a) in the measures 1-

p(a) and –logp(a) respectively; i.e. infR(a|b) = -logp(a|b) and infD(a|b) = 1-p(a|b)
11

. 

infR(a|b) is extensionally the same function of a and b as Bar Hillel and Carnap's inf(a|b), 

but not so infD(a|b) and cont(a|b), which are easily seen to differ from each other by a 

factor p(b). A result of Milne (2014, cited by Crupi and Tentori) implies that the 

functions infD(a|b) and infR(a|b) can be interpreted as measures of information-added, 

raising the question of how in that case infD(a|b) and Bar Hillel and Carnap's cont(a|b) 

                                                 
10

 Bar Hillel and Carnap allow b to be a class of statements, like a body of background assumptions, but if, 

as is usually assumed, the class is finite it can of course be represented by a single conjunction 
11

 Thus conditionalisation is implicitly assumed. 
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can consistently differ. The answer is that two different notions of addition are being 

appealed to: for Bar Hillel and Carnap it is arithmetical addition expressed by (1), 

whereas in Milne's paper it is something like proportional addition: 'a proposition adds 

the more information to b the greater the proportion of possibilities left open by the 

corpus b that it rules out' (2014, p.253).
12

   

 

While that aspect of Crupi and Tentori's relative measures has some technical interest, 

their own interpretation of them as merely the result of updating the probability function 

in each case not only identifies an important concept left unnoticed, or 'unexplicated', by 

Bar Hillel and Carnap, but is also indispensable in delivering the connection Crupi and 

Tentori aim to establish between information and confirmation. As they put it, 

If the evidence acquired decreases (increases) the degree of unexpectedness of a 

hypothesis of interest, the credibility of such hypothesis is thereby positively 

(negatively) affected. A simple way to convey this natural idea is to represent the 

belief change concerning h provided by e, bc(h,e), by means of the plain 

difference between inf(h) and inf(h|e). [On substituting respectively infR and infD] 

two classical confirmation measures are thus immediately recovered: 

bcR(h,e) =  infR(h) -  infR(h|e) =  log[p(h|e)/p(h)] 

bcD(h,e) =  infD(h) -  infD(h|e) =  p(h|e) - p(h)  

(2014, p.82) 

 

These equations certainly look like a neat demonstration of some of the 'key connections 

between information and confirmation' claimed to exist by Crupi and Tentori (2014, 

p.81). Despite that apparently happy concordance, my own view of the matter, which I 

will argue in what follows, is very different from theirs, and my conclusion will be that 

                                                 
12

 Milne shows that a set of postulates based on this heuristic principle implies that the information added to 

b by a, in his sense, is a decreasing function f of p(a|b) with f(1) = 0, and he points out that both –logp(a|b) 

and 1-p(a|b) qualify in this role. His defence against the charge that the notion of a proportion in infinite 

possibility-spaces, where no limiting procedure exists, is meaningless is that 

a probability distribution P is a (weighted) measure of possibilities and so, with a measure of 

possibilities in place, we restore propriety by saying that a proposition adds the more information 

to b (according to the distribution P) the smaller P(a∧b)/P(b), i.e., the smaller P(a|b). (ibid.) 

This defence puts more weight on 'weight' than it should probably be asked to bear: a Bayesian probability, 

for example, is just a coherent degree of belief having nothing to do with 'proportions' of possibilities. 
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despite their optimistic assessment, the connections are superficial at best and certainly 

far from 'key'. That is to come; first, we need to review some salient facts about bcR and 

bcD (I will use Crupi and Tentori's terminology).  

 

 

4. Information and confirmation. 

 

bcD, i.e. p(h|e) – p(h), is of course a favourite Bayesian measure of evidential support, 

with several independent considerations in its favour. One of these is the simple 

naturalness of subtracting the prior from the posterior probability. Another, as is well-

known and easily checked, is that any consequence e of a hypothesis h confirms h so long 

as 0 < p(e),p(h) < 1. Though this might seem to invite the so-called tacking paradox, 

since the conjunction of h with any, even nonsensical, statement h' will also be positively 

supported, the paradox is neatly avoided by another easily-checked fact, that bcD(h&h’|e) 

= p(h’|h)bcD(h|e). So if h’ is tacked on to h, the support of the conjunction h&h’ measured 

by bcD will be reduced in proportion to how unlikely h’ is given h.
13

 Thirdly, bcD(h,e) 

gives a simple and intuitively satisfying explanation of why evidence used to calculate 

parameters in a theory fails to provide supporting evidence to the same extent that 

directly predicted evidence does (Howson, 1990). There is of course more to be said, as 

the extensive literature on confirmation measures testifies, and which the interested 

reader is invited to consult.  

 

What about infR? The confirmation function bcR based on it is easily seen to be equal to 

log[p(e|h)/p(e)] where p(e) and p(h) are both positive, which means that where two 

hypotheses h and h’ both entail e, bcR depends only on p(e) (it is equal to –logp(e)) and 

so h and h' both receive the same bcR value).
14 

 It follows that bcR can’t in principle 

                                                 
13

 See also Crupi and Tentori 2010. 
14

 Note that this feature is inherited also by instantiating inf(h) – inf(h|e) with Bar Hillel and Carnap's 

measures cont(h) and cont(h|e) respectively where cont(h|e) is defined by (1): the result is easily seen to be 

equal to cont(evh) and thence, when h entails e, to inf(e). It might seem surprising therefore, given their 

endorsement of (1), that a principal objective also of Bar Hillel and Carnap was to exhibit a close 

connection between confirmation and semantic information. The mystery is dispelled once we recall that by 

'degree of confirmation' Bar Hillel and Carnap meant nothing more than conditional probability where the 
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discriminate between ‘All emeralds are grue’ and ‘All emeralds are green’ on a sample of 

green emeralds, surely a disastrous feature of any theory of confirmation seeking to 

model informal inductive reasoning.
15

 By contrast bcD(h,e) depends on the prior p(h), so 

it naturally copes with the grue problem by allowing the prior probability of the 'grue' 

hypothesis to be very small, for most people probably zero
16

, compared with that of the 

other.
 
It might be objected that 'All emeralds are grue' is equally supported by the sample, 

the difference between the two hypotheses being not one of empirical support but simply 

of priors. There seems to be a simple answer to the objection, which is that no-one should 

regard a contradiction as supported by any evidence at all, and presumably the same 

should go for any statement probabilistically indistinguishable from it.  

 

Another well-known measure of confirmation besides bcD and bcR is the log-odds 

measure log[odds(h|e)/odds(h)] = log[p(e|h)/p(e|~h)], attributed by I.J. Good (1950) to 

A.M. Turing who developed it during World War 2 (it has the attractive feature of adding 

over a conjunction e1&e2& … &en if the ei are conditionally independent given h and 

given ~h). Crupi and Tentori claim (2014, p.89), without argument, that the information-

theoretic approach can be naturally extended to this, implying that it too is equal to inf(h) 

– inf(h|e) for some information measure inf. However, the function f(p) generating inf as 

a function of probability p is -log[odds(p)], which is arguably highly improper: it is 

negative for ½ < p < 1, and, appending plus and minus  to the real numbers (the 

enlarged set is called 'the extended real number system'), takes the value -  on 

tautologies
17

. It is far from clear what it might mean to say that a sentence contains 

negative information. Nor can negative values be eliminated simply by a shift of scale. In 

addition, this function is concave over half its domain (in the interval (1/2, 1)), and as I 

                                                                                                                                                 
probability was what Carnap called 'logical probability'. Carnap called bcD 'incremental confirmation', i.e. 

the change in Carnapian degree of confirmation. 
15

 Though it is endorsed by Milne (1996): one of Milne's key assumptions in his derivation of this 

confirmation measure is that that if e has the same probability given h and h' then h and h' are equally 

confirmed by it (desideratum 5, p.21). He remarks 'Viewed correctly, I submit, [the assumption] is ... 

utterly compelling' (1996, p.22). Utterly compelling it may seem, until viewed in both green and grue light.  
16

This of course raises the question of how p(e|h) is to be understood if p(h) is zero, given that the usual 

rule p(e|h) = p(e&h)/p(h) breaks down. Fortunately there are satisfactory axiomatisations of conditional 

probability in which p(e|h) is meaningful when p(h) = 0, so long as h is not a contradiction (among others 

de Finetti 1974, volume 2, p.339; Coletti and Scozzafava 2002, p.76; Popper 1959, Appendix *iv; the 

measures satisfying Popper's axioms are known as Popper functions). 
17

 It is also not convex in (1/2, 1): I will argue in section 6 that this is an important defect. 
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will show later, in section 6, this implies that it cannot be represented by any 

corresponding measure on consequence-classes (I will explain why this should be 

thought to be bad when we come to that discussion). It is certainly plausible that 

information should be a decreasing function of a suitable uncertainty measure which rates 

the more plausible above the less plausible, but the odds scale is extremely skewed, a 

transformation of the symmetric probability scale sending probability 1 to infinity while 

keeping 0 common to both. Also sacrificed by that transformation is the crucial property 

of additivity, and for these reasons the odds scale was superseded for scientific work by 

the probability scale, and information as a function of uncertainty is measured by 

probabilities and not by odds.
18

  

 

So what is there to support Crupi and Tentori's claim that 'treating information and 

confirmation in a unified fashion is an intuitive and fruitful approach' (2014, p.81)? bcD 

and bcR may be representable as differences between ex ante and ex post measures of 

information, but bcR seems fatally defective for the reasons described above, and if my 

argument above is correct then the Turing measure has no relation to information at all. 

As for bcD, the popular choice among Bayesians, I will argue in what follows that its 

representation as a difference of quantities of information is actually spurious. In brief, 

my argument will be that, despite its distinguished pedigree in the theory of semantic 

information, the measure 1-p( . ) should not qualify as an admissible measure of 

information at all. This might seem an absurd claim given the virtual consensus to the 

contrary, but the symptoms of infirmity are already there, as we shall now see. 

 

 

5. The infirmity of infD  

 

The trouble starts to appear with the Bar Hillel-Carnap measure cont(h|e) defined, we 

recall, by (1) as cont(h&e) – cont(e), and having the consequence, as we noted in section 

3, that cont(h|e) = cont(eh). That the definition (1) should engender any problems is 

                                                 
18

 Good notes that Turing himself thought of the log-odds measure, scaled in what he called ban units, as 

analogous to that of sound, whose bel unit is the logarithm to base 10 of a ratio of sound-intensities (1950, 

p.63). 
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rather surprising, since all it does is express a fairly natural notion of excess information 

in h with respect to e; moreover, as we also saw in section 3, and as should be expected 

of an adequate measure of excess information, cont(h|e) is informationally independent of 

e in the sense of their common content having (cont) measure 0.  

 

This pleasing appearance of harmony is deceptive, however, and you don't have to look 

far to see that something is actually very dissonant in eh cast in the role of carrying the 

excess content in h over e. For suppose h is a general hypothesis of science and e the 

statement of the necessarily finite amount of evidence gathered so far and predicted by h. 

In comparison with h, eh is an extremely weak statement, being implied by the already 

very weak ~e.
19

 In other words, we must have cont(~e)  cont(eh).  But since cont(e) + 

cont(eh) = cont(h) when h entails e, we infer that cont(e) + cont(~e)  cont(h), which 

seems absurd in the type of case pointed out by Richard Jeffrey (1984), where h is a 

universal hypothesis of universal scope, and e records a relatively small finite number of 

its instances. But it is what (1) tells us we should accept. Reductio! (surely?) 

 

At this point the reader acquainted with some of the stranger byways of philosophy of 

science may recall that Miller and Popper's notorious 'disproof' of probabilistic induction 

(1983) turned on the fact that eh is negatively supported by e according to the bcD 

measure if h entails e. Instead of seeing in this fact something amiss with taking eh as 

representing the excess content of h over e, Miller and Popper bizarrely viewed it as a 

reductio of the claim that e inductively supports h, on the ground that truly inductive 

support must extend to the part of h's informational content going beyond e. Since 

bcD(h,e) = bcD(eh,e) + bcD(e,e), the positive value of bcD(h,e) consequent on the fact 

that h entails e (assuming 0 < p(h), p(e) < 1) can only be due to the confirmation of e by e 

outweighing the disconfirmation of eh, the (supposed) excess content.  Hence, 

reasoned Miller and Popper, the confirmation of h by e must be the purely deductive 

confirmation of e by itself.  

 

                                                 
19

 Bar Hillel and Carnap themselves noted the curious weakness of eh (1953, p.151; they use i and j for h 

and e). 
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 As virtually all commentators have agreed, this must be wrong. If, as Miller and Popper 

claim, and (1) endorses, eh is truly the information in h going beyond e, then it is 

absurd to claim that eh can be countersupported by e: e should be confirmationally 

neutral vis-à-vis eh, an informationally-independent piece of information ('supported' 

would of course have been just as bad). That granted, the obvious target of Miller's and 

Popper's reductio should surely have been the claim that eh represents the excess 

information in h over e.
20

 Small wonder then that Crupi and Tentori feel confident in 

maintaining their own construal of infD(h|e): 'our reliance on infD throughout this paper 

does not imply in any way Popper and Miller’s ... controversial assumption that eh 

represents all of the content of h that goes beyond e' (2014, p.82). And the Crupi-Tentori 

construal has, of course, the additional bonus of delivering the confirmation measure bcD.  

But, pace Crupi and Tentori, it is no mere 'assumption' that eh represents all of the 

information in h that goes beyond e. On the contrary, it is a theorem: a consequence of 

the equation (1) of arithmetical information-difference, together with the definition infD( . 

) = cont( . ) = 1-p( . ). Moreover, (1) seems quite unimpeachable as a definition of 

information-added if the 'added' means 'arithmetically-added': what is less unimpeachable 

is that eh should even represent the arithmetical difference in information between h 

and e. But that is what (1) says it does, assuming that I( . ) is equal to 1-p( . ). If the 

Popper-Miller example is a reductio of anything, then it seems that it can only be that 

assumption.   

 

If the very definition of cont( . )/infD( . ) is fundamentally flawed, however, one would 

expect to see other pathological consequences of it which have nothing to do with (1).  

And indeed one does, without looking any further than (2) above. For it follows 

immediately from (2) and the fact that cont is non-negative, that 

cont(a&b)  cont(a) + cont(b)    (3)  

with equality only when cont(avb) = 0, i.e. p(avb) = 1. Carnap and Bar Hillel list (3) 

among the properties of cont, failing however to note how strongly it conflicts with any 

                                                 
20

 Miller and Popper themselves argued for eh as carrying the excess information of h over e on the 

ground that eh is the weakest statement which, conjoined with e, delivers h as a consequence. Cf 

Hintikka (1968, p.313). 
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ordinary concept of information
21

 - a failure all the more remarkable in the light of the 

basic and well-understood fact about conjoining statements that one typically gets much 

more in the way of consequences than the individual conjuncts by themselves would 

suggest. We have just encountered a prime example in e and eh, both very weak 

statements that conjoin to give h (we are still assuming that h entails e), which can be any 

hypothesis as content-rich as you like. But since ev(eh) is tautologous, (3) tells us that 

the content of h is nevertheless exactly equal to the sum of the contents of e and  eh.  

An extreme case of this example is got by letting h be  itself. In some formalisations of 

classical logic  replaces ~ as a primitive symbol and negation is defined by ~a := a, 

so in this case e&(eh) can be rewritten as e&~e. But intuitively the content generated 

by a contradiction (every sentence is a consequence of it) is to all intents and purposes 

infinite by comparison with those of e and ~e. By contrast, of course, infR(e&~e) offers 

no such affront to intuition, being actually infinite while both infR(e) and infR(~e) are 

finite under the reasonable assumption that p(e) and p(~e) are positive.  

 

Even without simple counterexamples from elementary logic, the history of science is an 

object-lesson in the fact that conjoining individually unremarkable assumptions can 

generate an explosion of remarkable, and sometimes revolutionary consequences. But 

that is just what (3) appears to deny, implying as it does that any conjunction will carry at 

most as much information as the sum of the amounts of information carried by the 

conjuncts separately. Inf, i.e. the –logp measure, does on the other hand satisfy the 

intuition that there will be non-extreme cases where according to any minimally-

reasonable measure of information the conjunction of a pair, or in general a finite 

number, of statements contains more information than the sum of the information-

contents of the statements separately.  

 

That is all very well, it might be said, but what has information construed as 

unexpectedness necessarily to do with consequence-classes?  I might not be at all 

surprised to be told that a particular logically very strong statement is true, and very 

                                                 
21

 'cont(i) is offered as one ... explicatum of the ordinary concept "amount of information conveyed by i"' 

(1953, p.149). 
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surprised to learn that a much weaker one is.
22

 But that purely subjective sense of 

unexpectedness is not the relevant one here: because of their dependence on probability 

measures all information functions have to obey the rule that if Cn(a)  Cn(b), where Cn( 

. ) is the consequence-class of ' . ', then inf(a)  inf(b)
23

. You may indeed be less 

surprised to be told that b is true than that a is, but that is because you are violating a 

basic rule of probability which states that if a is entailed by b, i.e. Cn(a)  Cn(b), then 

p(b)  p(a); and if you do this while believing that your probability evaluations are the 

basis for sound bets then, as Ramsey and de Finetti famously pointed out, you leave 

yourself open to a so-called Dutch Book, i.e. a finite set of bets that will leave you with a 

certain loss. Respecting the relation of consequence-class inclusion thus partially 

'objectifies' both estimates of uncertainty and the information measures based on them. 

 

Nevertheless, it is not obvious that sensitivity to the relation of consequence-class 

inclusion should necessarily extend to sensitivity to measures of consequences 

themselves, nor that such measures, if they exist, should be measures of unexpectedness. 

However, in the next section I will show that such measures do exist on consequence-

classes, where the measure-terminology is justified by the fact that they are the 

restrictions of measures, in the technical sense, on all sets of sentences of an appropriate 

language L. I will show that these measures can be represented as decreasing functions 

f(p) of a probability p for a wide class of functions f which includes 1-p and –logp, and 

that they therefore qualify as measures of unexpectedness. However, it will also be 

shown that the measure on consequence-classes determined by the function 1-p is 

uniformly blind to new consequences generated by conjunction.  

 

                                                 
22

 The following report in Aubrey's Brief Lives about the philosopher Thomas Hobbes is an amusing 

illustration: 

He was 40 years old before he looked in on Geometry; which happened accidentally. Being in a 

Gentleman's Library, Euclid's Elements lay open, and 'twas the 47 El. libri I. He read the 

Proposition. By God, sayd he (he would now and then swear an emphaticall Oath by way of 

emphasis) this is impossible! So he reads the Demonstration of it, which referred him back to such 

a Proposition; which proposition he read. That referred him back to another, which he also read. Et 

sic deinceps that at last he was demonstratively convinced of that trueth. This made him in love 

with Geometry. (Aubrey 2015) 

23
 This is in fact one of Carnap and Bar Hillel's basic rules for measures of semantic information  (1952, 

p.12) 
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6. Consequences 

 

It is an interesting fact that Cn(a) was Bar Hillel and Carnap's initial choice of a 

'presystematic' qualitative explication of the semantic information contained in a
24

 which, 

however, they discarded in favour of *M(a) (see above, section 2), citing in the latter's 

favour its intuitive plausibility and being 'in accordance with the old philosophical 

principle "omnis determinatio est negatio"' (1952, p.11). But the main reason, they rather 

disarmingly claimed, is that it wins on simplicity (ibid.). They did not elaborate, but since 

the next stage of their procedure was to put a measure on whatever qualitative exemplar 

is selected, and since the Cn(a) do not form an algebra (only an upper semi-lattice under 

the operation of intersection) whereas the M(a) do (an algebra moreover isomorphic to 

the Lindenbaum sentence algebra of L), this may well be what they had in mind in 

preferring the *M(a) explication to the Cn(a) one.  As we saw in section 2, any 

probability P on the M(a)-algebra assigns a value to *M(a), namely 1-P(M(a)), inducing 

the measure cont(a) on the sentences of L.  

 

On the other hand, if the foregoing is correct, cont. gives a strongly defective theory of 

semantic information, suggesting that the initial qualitative identification of the 

information in a as *M(a), despite its claimed simplicity, was misguided. In what follows 

I will attempt to demonstrate that this is indeed the case. The argument will be developed 

with the help of some elementary measure theory, where despite the apparently 

unpromising formal structure of the consequence-classes, the measures will actually be 

defined directly on them. There is no paradox, and certainly no inconsistency, in this 

proposal: the Cn(a) might not form an algebra, but the set of all subsets of the set of 

sentences of whatever language L is involved is an algebra, the power set algebra 

(assuming as before that the sentences are factored by equivalence), on which a finitely 

                                                 
24

 Carnap considered two possibilities: the class of nontautologous consequences versus the class of all 

consequences, but regarded a choice between them as unnecessary once the decision was taken in favour of 

the sets *M(a) of possibilities excluded by a (see immediately below).  
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additive measure certainly exists; in fact there are infinitely many.  Clearly, we can take 

the restriction of any such measure on that to be a measure on the Cn(a).
25

  

 

Now we can investigate what constraints are imposed on information functions f(p) by 

identifying them with finitely additive measures on the classes Cn(a). One relation 

between consequence-classes we already know to be reflected in a constraint on f(p): f 

must be a decreasing function of p to accommodate the fact that Cn(a)  Cn(b)  inf(a) 

 inf(b) where inf ( . ) is given by f(p( . )). Also we should want f to be not only 

continuous but also sufficiently smooth, at least to the extent of possessing a first 

derivative everywhere in the open interval (0,1). All this so far tells us little we don't 

already know. But there is a further fundamental fact about consequence-classes, namely 

that for all a, b,  

Cn(a)  Cn(b)  Cn(a&b),    (4) 

for which there exists (so far) no corresponding constraint on f(p). And as I will show, the 

anomalous character of the function 1-p (i.e. infD) derives from just this omission. Indeed, 

I will prove that the function 1-p is not just blind to the relationship described in (4), but 

actually forces any measure Q on consequence-classes representing it to set at measure 0 

all additional consequences created by conjunction. There are a couple of key 

assumptions on which the proof will rest: (a) that Q(Cn(a)) satisfies the basic rules of a 

measure inf(a) of the semantic information in a, and (b) that there is a measure Q 

agreeing with the function f(p(a)) = 1-p(a) on the consequence-classes Cn(a). But in 

order not to disrupt the narrative I will give the very simple proof first and deal with the 

assumptions afterwards.  

 

As a first step, the basic properties of measure tell us that 

Q(Cn(a)  Cn(b)) = Q(Cn(a)) + Q(Cn(b)) – Q(Cn(a)  Cn(b)).  

                                                 
25

 Since the set of sentences of L is assumed to be countable (hardly a restrictive assumption) there are also 

countably additive measures on the full power set (since the existence of measures depends only on 

cardinality, this is equivalent to saying that there are countably additive measures on the power set of ℕ, the 

set of natural numbers). But countably additive measures even on measure-spaces of this cardinality are 

very restrictive: there can be no uniform distributions over countably infinite partitions, unlike the case of 

finitely additive measures (where every singleton, and every finite subset, receives the value 0 if the 

measure is finite). Kadane and O'Hagan (1995) investigate three familiar types of finitely additive uniform 

probability measure on ℕ.  
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But Cn(a)  Cn(b) = Cn(avb), so we have 

Q(Cn(a)  Cn(b)) = Q(Cn(a)) + Q(Cn(b)) – Q(Cn(avb)). (5) 

But if f(p) = 1-p we also have  

f(p(a)) + f(p(b)) – f(p(avb)) = f(p(a&b))    

whence, assuming that f(p(a)) = Q(Cn(a)), we infer that 

  Q(Cn(a)) + Q(Cn(b)) – Q(Cn(avb)) = Q(Cn(a&b)).  (6) 

And putting (5) and (6) together, we infer that Q(Cn(a)  Cn(b)) = Q(Cn(a&b))! So Q 

does indeed assign measure 0 to the additional consequences generated by conjunction. 

 

Conversely, it is easy to show that if Q is one of those measures Q which have this 

property then according to it, e and the Popper-Miller sentence eh jointly exhaust the 

information in h when h entails e, however strong a statement h might be; yet eh is a 

weaker sentence even than ~e. For given that h entails e, the conjunction of eh and e is 

equivalent to h, so that Q(Cn(e)  Cn(eh)) = Q(Cn(h)). Since the only common 

consequence of e and eh is T, with Q({T}) = 0, this implies that Q(Cn(e)) + 

Q(Cn(eh)) = Q(Cn(h)). In general however, for arbitrary Q, we have Q(Cn(e)) + 

Q(Cn(eh))  Q(Cn(h)). 

 

It is time to verify the two assumptions (a) and (b) stated above on which this result rests. 

(a), recall, is the assumption that Q(Cn(a)) satisfies the basic rules for a measure of the 

semantic information in a. This is very straightforward if we take the rules for a measure 

inf to be Carnap and Bar Hillel's two, (i) that inf(T) = 0, and (ii) that if a entails b then 

inf(b)  inf(a) (1952, p.12
26

): we simply set Q({T}) = 0, and we know from the preceding 

section that (ii) is satisfied. There is just one thing to be said in addition, and that is that 

we need the inequality in (ii) to be strict in interesting cases, like the one above, which 

means that Q(Cn(a)) must be finite for sufficiently weak a (this may sound vague but it is 

little different in principle from the usual sort of Bayesian condition that where e is an 

evidence statement, p(e) should be strictly between 0 and 1). We can't stipulate that Q 

must be finite on S however, because if we identify Q(Cn(a)) with f(p(a)) for a 

                                                 
26

 Carnap and Bar Hillel also added a third, that the information measure of a contingent sentence be 

positive, but this is now usually regarded as too restrictive. 
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continuous decreasing continuous function f from [0,1] into the extended non-negative 

real line (i.e. the non-negative reals together with +), we need to accommodate the case 

of f(p) = -logp, whence Q(S) = Q(Cn()) = -logp() = +. The possibly diverse class of 

information-functions f(p) therefore means that we are talking not about a single measure 

Q but a class of measures depending on the types of function f(p).  

 

Now to assumption (b), that there is a measure Q agreeing with the function f(p(a)) = 1-

p(a) on the consequence-classes Cn(a). In fact we can show that the class of functions 

f(p) representable as measures on consequence-classes are exactly those which are 

convex in (0,1). First, suppose that Q is a measure and Q(Cn(a)) = f(p(a)). Since Q is a 

measure and Cn(a)  Cn(b))  Cn(a&b) we must have  

Q(Cn(a)  Cn(b))  Q(Cn(a&b).    (7) 

Hence, from (5) and (7),  

f(p(a)) + f(p(b)) – f(p(avb))  f(p(a&b))   (8) 

Now let p(a) = x, p(b) = y and p(a&b) = x-h, for some h0, and suppose that x<y. From 

the identity p(a) + p(b) = p(avb) + p(a&b) we also infer that p(avb) is equal to y+h. We 

thus obtain from the inequality (8) another: 

   f(x) – f(x-h)  f(y+h) – f(y)    (9) 

for all h  0 and all x, y in the open interval (0,1). Dividing by h, (9) is the condition for a 

differentiable function f to be convex in (0,1) (where in addition f(1) = f(p(T)) = 0).  

Included in the class of such functions f are both f = 1-p and f = -logp; excluded is the 

pseudo information function -log(p/(1-p)), which is concave for values of p greater than 

½ and f(1) = -. But we have (I hope) seen from the foregoing that the extremal case 1-p 

should also be excluded. 

 

It is not difficult to prove the converse, that the requirement that f be convex in (0,1) with 

f(1) = 0 is sufficient for the associated information function f(p) to be identified with the 

restriction of a finitely additive measure Q on the power set of S to the set of 

consequence-classes. For Q(Cn(a)  Cn(b)) can simply be defined to be equal to f(p(a)) 

+ f(p(b)) – f(p(avb)) for the finite additivity axiom for measures to be satisfied. All that 
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remains is to show that  Q(Cn(a)  Cn(b))  Q(Cn(a&b)), i.e. f(p(a)) + f(p(b)) – 

f(p(avb))  f(p(a&b)). But we know that this follows from the convexity of f.  

These results are to my knowledge new to the literature. As we have seen, they follow 

straightforwardly from the assumption that any information function f(p(a)) should 

reflect the properties of a measure Q on consequence-classes. That assumption can of 

course be questioned. As I pointed earlier, it follows the lead of Bar Hillel and Carnap 

who first selected a set-theoretical object to serve as the qualitative definition of 

information, and then put a measure on it which they identified with a decreasing 

function f(p) of p: all that is different here is that Bar Hillel and Carnap chose the classes 

*M(a) for the qualitative definition, with the deleterious consequence that the information 

function f(p) := 1-p is then determined if the measure on the *M(a) is normalised, while I 

have chosen their own first choice, the classes Cn(a). Despite their failure to pursue it 

further, the case for that choice is, I believe, independently compelling: surely a 

fundamental feature of information, of central importance methodologically when we 

consider new, unifying and extending theories in science, is that in general new 

information is generated by the logical operation of conjunction, should be recognised by 

any adequate measure of semantic information. Hence the identification of f(p(a)) with 

Q(Cn(a)), whose power to generate novel and intuitively satisfying results has I believe 

amply proved itself. But the proof the pudding is not just in the eating: it also depends on 

the recipe. In this case both together, I believe, generate a reasonably satisfying dish.   

 

 

7. Conclusion 

 

According to Crupi and Tentori,   

[Bar Hillel and Carnap's] classical analyses [of semantic information] have not 

remained unchallenged ... but stand as a sound basis at least for our purposes. 

(2014, p.81) 

In the light of the foregoing this claim must I think be strongly qualified. Of Bar Hillel 

and Carnap's two classic measures cont and inf of semantic information, only inf, i.e. –
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logp, seems to possess the credentials of a legitimate measure, but if my earlier argument 

is correct then the support measure based on it is fatally defective. On the positive side, 

we have another way of explicating semantic information, which Bar Hillel and Carnap 

themselves thought the most natural before prematurely abandoning it, which, unlike 

infD, is not in conflict with the unexpectedness criterion.   
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