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Summary. We propose a new method for estimating the extreme quantiles for a function of

several dependent random variables. In contrast to the conventional approach based on extreme

value theory, we do not impose the condition that the tail of the underlying distribution admits

an approximate parametric form, and, furthermore, our estimation makes use of the full observed

data. The proposed method is semiparametric as no parametric forms are assumed on the marginal

distributions. But we select appropriate bivariate copulas to model the joint dependence structure

by taking the advantage of the recent development in constructing large dimensional vine copulas.

Consequently a sample quantile resulted from a large bootstrap sample drawn from the fitted joint

distribution is taken as the estimator for the extreme quantile. This estimator is proved to be

consistent under the regularity conditions on the closeness between a quantile set and its truncated

set, and the empirical approximation for the truncated set. The simulation results lend further

support to the reliable and robust performance of the proposed method. The method is further

illustrated by an real world example in backtesting financial risk models.
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1 Introduction

Let {X1, · · · ,Xn} be a sample from the population of a p-variate random vectorX = (X1, · · · ,Xp).

Let ξ = h(X) be a random variable defined as a function of X, where the function h(·) is known.
The goal of this paper is to estimate the (1− α)-th quantile of ξ, i.e.

Qξ(α) = min{x : P (ξ ≤ x) ≥ 1− α }, (1.1)

where α > 0 is a very small constant such that nα is small. When α < 1/n, Qξ(α) is outside the

range of observed data. This rules out the possibility to estimate Qξ(α) by the sample quantile of

{ξ1, · · · , ξn}, where ξi = h(Xi). This study was motivated by a backtesting problem in financial

risk management, for which we need to estimate the (1 − α)-th quantile of ξ = h(X1, · · · ,Xp)

with α = 0.0005 or 0.0001, p in the range from 10 to 200, and sample size n in the order of a few

hundreds to thousands. See section 5 below.

The standard approach to estimate quantiles outside the range of the data is to assume that

the distribution of ξ is in the domain of attraction of an extreme value distribution. Based on the

characterization of this assumption (Proposition 3.3.2 of Embrechts, Klüppelberg and Mikosch,

1997), extreme quantiles can be estimated via the estimation for the parameters in the extreme

value distribution and the normalized constants. However the estimation is inefficient as only

a small proportion of the observations at a tail can be used. This causes further difficulties in

practice as the estimation is often sensitive to the proportion of the data used, although there

exist in the literature the data driven methods for choosing the sample fraction (Ferreira, de Haan

and Peng, 2003) and the bias-reduced estimators (Gomes and Pestana, 2007, and Beirlant et al.,

2004). See, e.g., Embrechts, Klüppelberg and Mikosch (1997), Coles (2001) and de Haan and

Ferreira (2006) for a detailed account of this approach.

In addition to the methods based on univariate extreme value theory, one can also assume

that X lies in the domain of attraction of a multivariate extreme value distribution; see de

Haan and Ferreira (2006). This implies that the tail distribution of each component of X can

be approximated by a parametric form determined by an extreme value distribution while the

joint tail dependence has a nice homogeneous property. For estimating extreme quantiles for the

functions of X, one can model the joint tail dependence either parametrically (Coles and Tawn,

1994) or nonparametrically, and then extrapolate data based on the homogeneous property (de

Haan and Sinha, 1999, and Drees and de Haan, 2013). Although using multivariate extreme

value theory may be more efficient than using univariate extreme value theory (Bruun and Tawn,

1988), the sensitivity on the amount of data used in estimation remains as a serious drawback.

Furthermore, when the dimension of X is not small, finding a parametric family for the joint tail

dependence is extremely difficult and the nonparametric estimation for the joint tail dependence
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is too poor to be practically usable.

In this paper, we propose a new semiparametric method for estimating Qξ(α). It consists

of three steps: (i) we apply the empirical distribution transformation to each components of X

to make all the marginal distributions approximate U [0, 1], (ii) we then select an appropriate

copula to model the joint dependence structure, (iii) finally we draw a large bootstrap sample

{X⋆
1, · · · ,X⋆

m} from the fitted joint distribution derived from (i) and (ii), and estimate Qξ(α)

by the (1 − α)-th sample quantile of {ξ⋆1 , · · · , ξ⋆m}, where ξ⋆i = h(X⋆
i ). Fitting a p-dimensional

copula in (ii) is feasible due to the recent development of vine copula construction; see section 2

below. The bootstrap sample size m can be arbitrarily large. In practice we typically require, e.g.

mα ≥ 20. This method does not impose a parametric form directly on the tail of the distribution

of ξ or the marginal distributions of X. It is free from choosing the fraction of the whole sample to

be used in estimation, which is a notorious tuning parameter often causing difficulties in practice.

Our new proposal can only work when p > 1. It is based on an important observation that

it is not necessary to go to extremes along any component of X = (X1, · · · ,Xp) in order to

observe the joint extreme event {h(X1, · · · ,Xp) > Qξ(α)}. Therefore we only need to capture the

dependence among X1, · · · ,Xp within the observed range, which is practically feasible. The fact

that p > 1 also makes it possible to generate a bootstrap sample of sizem greater, or much greater,

than n. Although this method can handle the cases when the components of X are dependent

with each other, its intuition is at its clearest when all X1, · · · ,Xp are independent, as then a

bootstrap sample for X can be easily obtained by sampling each component separately from its

n observations. Note that the corresponding bootstrap sample space consists of np elements.

It ensures sufficient diversity in the bootstrap sample even for m much greater than n. Hence

Qξ(α) can be well estimated by the (1 − α)-th sample quantile from a bootstrap sample with m

sufficiently large (Theorem 3.1 of Dekkers and de Haan, 1989).

However, as stated above, the fundamental reason for our approach to be a creditable one is

that it is not necessary to go to extremes along any component of X in order to observe a joint

extreme event. We report a simple simulation result below to illustrate this key point. Let all

components Xj be i.i.d., and ξ = 1
p

∑
1≤j≤pXj . We approximate the probability α = P{ξ >

Qξ(α)} by

α̂n = P{ ξ > Qξ(α), F
−1
j (1/n) ≤ Xj ≤ F−1

j (1− 1/n) for 1 ≤ j ≤ p },

where Fj(·) denotes the marginal distribution function of Xj . With available n observations, the

distribution range for Xj covered by the data can be regarded as from F−1
j (1/n) to F−1

j (1−1/n).

This range cannot be enlarged by resampling from the observed data. Thus α̂n can be regarded

as the probability of the event {ξ > Qξ(α)} truncated within the range covered by a sample of
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size n. Our method will work when α̂n is close to α, as we can only model the joint distribution

well within the observed range.

The table below lists the values of α̂n calculated by a simulation with 1,000,000 replications for

p = 20, n = 500 or 1, 000 and the distribution of Xj being uniform on the unit interval, standard

normal or Student’s t with 4 degrees freedom. Note that t4 is a very heavy-tailed distribution, as

E(X4
j ) = ∞ if Xj ∼ t4.

Distribution of Xj n α = .05 α = .01 α = .005 α = .001 α = .0005

U(0, 1) 500 .04741 .00942 .00436 .00078 .00045

1000 .04809 .00949 .00438 .00084 .00046

N(0, 1) 500 .04360 .00829 .00401 .00075 .00038

1000 .04645 .00896 .00439 .00083 .00043

t4 500 .03629 .00540 .00204 .00013 .00004

1000 .04183 .00609 .00251 .00020 .00005

This simulation indicates that it is possible to estimate Qξ(α) accurately for α as small as

0.0005 even with sample size n = 500 when X is uniformly distributed or normal. However for

the heavy-tailed distributions such as t4, the proposed method may incur large estimation errors,

and therefore is not adequate. In fact our approach does not involve any direct extrapolations,

it can estimate extreme but not too extreme quantiles. How extreme it can go depends on the

underlying distribution, the sample size n, and the form of function h(·) which defines ξ. However

when ξ is defined in terms of empirical marginal distribution functions, all marginal distributions

are effectively U(0, 1). Then our method will provide accurate estimation even for very small

α (see also sections 4 & 5 below). In fact many risk metrics used in backtesting fall into this

category.

Wang, Li and He (2012) proposed a method for estimating high conditional quantiles by

combining quantile regression with extreme value theory. It remains as an open question if the

method proposed in this paper can be further developed for estimating conditional quantiles.

Investigation in this direction is beyond the scope of this paper.

The rest of the paper is organized as follows. The methodology is presented in section 2. It

also contains a brief introduction of D-vine copulas. The asymptotic properties are developed in

section 3. We have shown that the proposed estimator is consistent under the regularity conditions

on the closeness between a quantile set and its truncated set, and the empirical approximation

for the truncated set. Simulation illustration is reported in section 4. Section 5 contains a brief

introduction on a backtesting problem in financial risk management, which actually motivated this

study. Using the example with a calibrated GJR-GARCH model for daily S&P 500 indices in 2005
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– 2014, we illustrate how the proposed method provides an adequate solution for a challenging

backtesting problem. Comparison with the conventional methods based on the extreme value

theory is reported in both sections 4 & 5. A generic R-code for implementing the proposed

method is available online at stats.lse.ac.uk/q.yao/qyao.links/paper/EEQ-Copula.R.

2 Methodology

2.1 Notation

Let X = (X1, · · · ,Xp), F (·) be the cumulative distribution function (CDF) of X, Fj(·) be the

CDF of Xj , and Uj = Fj(Xj). Then Uj ∼ U [0, 1] for 1 ≤ j ≤ p. Let Xi = (Xi1, · · · ,Xip),

i = 1, · · · , n, be a random sample from X. Put

F̂j(x) =
1

n+ 1

n∑

i=1

I(Xij ≤ x), Uij = F̂j(Xij). (2.1)

Then supx |F̂j(x) − Fj(x)|
p→ 0, and {U1j , · · · , Unj} may be approximately regarded as a sample

from U [0, 1] when n is large.

It follows from Sklar’s theorem that for x = (x1, · · · , xp) ∈ Rp,

F (x) = P (X1 ≤ x1, · · · ,Xp ≤ xp) (2.2)

=P{U1 ≤ F1(x1), · · · , Up ≤ Fp(xp)} = C{F1(x1), · · · , Fp(xp)},

where C(·) is the CDF of U ≡ (U1, · · · , Up), and is called a p-variate copula. In fact C(·) is

a distribution function on [0, 1]p with all one-dimensional uniform marginal distributions. We

always assume that C(·) admits a probability density function (PDF), denoted by c(·), which is

called a copula density function. Then the joint PDF of X can be written as

f(x) = c{F1(x1), · · · , Fp(xp)}
p∏

j=1

fj(xj), (2.3)

where fj(·) is the PDF of Xj. Hence c(·) ≡ 1 if and only if X1, · · · ,Xp are independent. For more

properties on copulas we refer to Nelson (2006). Due to the invariant property with respect to

marginals, copula models have become one of the most frequently used tool in risk management;

see McNeil, Frey and Embrechts (2005).

2.2 Estimation for F (·)

Representations (2.2) and (2.3) separate the dependence among the components of X from the

marginal distributions. They indicate clearly that the dependence is depicted by a copula. A
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natural and completely nonparametric estimator for the copula function C(·) is the empirical

copula function

Ĉ(u) =
1

n

n∑

i=1

I(Ui1 ≤ u1, · · · , Uip ≤ up), u = (u1, · · · , up) ∈ [0, 1]p. (2.4)

Obviously such a nonparametric estimator Ĉ(·) suffers from the so-called ‘curse-of-dimensionality’

even for moderately large p, though it is still root-n consistent; see, e.g. Fermanian et al. (2004).

One alternative is to impose the assumption that the unknown copula belongs to a parametric

family {c(·; θ), θ ∈ Θ}, where copula density function c(·; θ) is known up to the d unknown

parameters θ, the parameter space Θ is a subset of Rd and d ≥ 1 is an integer. Then θ can be

estimated by, for example, the pseudo maximum likelihood estimator defined as

θ̂ = argmax
θ

1

n

n∑

i=1

log c(Ui1, · · · , Uip;θ).

See also section 2.3 below for further discussion on the specification of c(·;θ). Now by (2.2), an

estimator for the CDF of X is defined as

F̂ (x) = C{F̂1(x1), · · · , F̂p(xp); θ̂}, x ∈ Rp, (2.5)

where C(·; θ) is the CDF corresponding to the PDF c(·; θ).

2.3 Copula specification: D-vines

For any integer p ≥ 3, a p-variate copula function can be effectively specified via pairwise decom-

position, leading to various forms of vine copulas (Bedford and Cooke, 2001 and 2002). Different

orders of the pairings in the decomposition yield different vines. Nevertheless, only bivariate

copula functions are to be specified. When the components of random vector X (therefore also

U) are naturally ordered, such as in the backtesting problems described in section 5 below, the

D-vine copulas are particularly easy to use. A copula density function, i.e. a PDF of U, specified

by a D-vine admits the form

c(u) =

p−1∏

j=1

p−j∏

i=1

ci, i+j|i+1,··· ,i+j−1{F (ui|ui+1, · · · , ui+j−1), F (ui+j |ui+1, · · · , ui+j−1)}, (2.6)

see, for example, (8) of Aas et al. (2009), where F (uk|ui+1, · · · , ui+j−1) denotes the conditional

CDF of Uk given (Ui+1 = ui+1, · · · , Ui+j−1 = ui+j−1), and ci, i+j|i+1,··· ,i+j−1(·) denotes the copula
density for the conditional distribution of (Ui, Ui+j) given Ui+1, · · · , Ui+j−1. Now some remarks

are in order.

Remark 1. (i) Only bivariate copula density functions are used in (2.6). See Joe (1997) for

various parametric copula families which can be used to specify those copula functions.
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1 2 3 4 5 Tree 1
12 23 34 45

12 23 34 45 Tree 2
13|2 24|3 35|4

13|2 24|3 35|4 Tree 3
14|23 25|34

14|23 25|34 Tree 4
15|234

Figure 1: Tree illustration of a D-Vine with 5 variables.

(ii) A p-variate D-vine can be represented as a graph with the maximum p-1 trees, corre-

sponding to j = 1, · · · , p − 1 on the RHS of (2.6); see, for example, Aas et al. (2009). However

the construction of those trees must be done in the order of j = 1, 2, · · · , p− 1. For example, the

conditional CDF F (ui|ui+1, · · · , ui+j−1) is required in the j-th tree. By Lemma 1 below, it can

be calculated based on a copula constructed in the (j-1)th tree:

F (ui|ui+1, · · · , ui+j−1) =
∂Ci,i+j−1|i+1,··· ,i+j−2{F (ui|ui+1, · · · , ui+j−2), F (ui+j−1|ui+1, · · · , ui+j−2)}

∂F (ui+j−1|ui+1, · · · , ui+j−2)
,

where Ci,i+j−1|i+1,··· ,i+j−2(·) is the copula corresponding to the copula density ci,i+j−1|i+1,··· ,i+j−2(·)
specified in the (j-1)th tree. For j = 1, F (ui) = ui. For j = 2,

F (ui|ui+1) =
∂Ci,i+1{F (ui), F (ui+1)}

∂F (ui+1)
=

∂Ci,i+1(ui, ui+1)

∂ui+1
.

Figure 1 illustrates the tree structure of a D-vine with p = 5 variables.

(iii) Ui and Ui+j are conditionally independent given Ui+1, · · · , Ui+j−1 if and only if

ci, i+j|i+1,··· ,i+j−1(·) ≡ 1. (2.7)

This follows from (2.3) by letting f(x) be the conditional PDF of (Ui, Ui+j) given Ui+1, · · · , Ui+j−1.

(iv) In applications we often assume that the dependence is of the order m(< p) in the sense

that (2.7) holds for all j > m. Then (2.6) reduces to

c(u) =

m∏

j=1

p−j∏

i=1

ci, i+j|i+1,··· ,i+j−1{F (ui|ui+1, · · · , ui+j−1), F (ui+j |ui+1, · · · , ui+j−1)}. (2.8)

A particular simple case is a Markov D-vine copula which admits the dependence at order m = 1

with the copula density function of the form

c(u) =

p−1∏

i=1

ci,i+1{F (ui), F (ui+1)} =

p−1∏

i=1

ci,i+1(ui, ui+1),
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where ci,j(·) are bivariate copulas. For example, when the components of X are p successive values

of a Markov process, X admits a Markov D-vine copula.

(v) We may apply some goodness-of-fit statistics to choose among different specifications or to

test a particular model. The goodness-of-fit can be measured in terms of the difference between

the empirical copula Ĉ(·) defined in (2.4) and the fitted parametric copula C(·;θ) in (2.5). This

leads to the Kolmogorov-Smirnov and Cramér-von Mises statistics

Tn = n

∫

[0,1]p

{
C(u; θ̂)− Ĉ(u)

}2
du, Sn = sup

u∈[0,1]p

√
n
∣∣C(u; θ̂)− Ĉ(u)

∣∣.

Genest and Rémillard (2008) showed that both the above statistics lead to a consistent test in

the sense that if the true copula is not within the specified parametric family, the model will

be rejected with probability converging to 1. Unfortunately their asymptotic null distributions

depend on the underlying distribution. In practice the parametric bootstrap method described

in Appendix A of Genest et al. (2009) can be used to evaluate the P -values. The validity of the

bootstrap method is established by Genest and Rémillard (2008).

(vi) The D-vine decomposition (2.6) is valid for any continuous distribution on [0, 1]p with

uniform marginal distributions. On the other hand, with any bivariate copula density functions

used on the RHS of (2.6), the D-vine constructed in the manner described in (ii) above is a

valid p-variate copula, i.e. (2.6) is a proper PDF on U [0, 1]p with uniform marginals. Both these

assertions can be established by mathematical induction.

(vii) When the components of X are not naturally ordered as a time series, other vine copula

families such as C-vine could be used. We refer to Czado, Brechmann and Gruber (2013) for a

survey on the selection of vine copulas.

Lemma 1. Let Y and Z be two random variables, W be a random vector, and Z = (Z,W).

Denoted by, respectively, FW and CW the CDF and the copula of W. Then it holds that

FY |Z(y|z) =
∂CY,Z{FY (y), FZ(z)}

∂FZ(z)
, FY |Z(y|z) =

∂CY,Z|W{FY |W(y|w), FZ|W(z|w)}
∂FZ|W(z|w)

. (2.9)

First equality in (2.9) follows from calculus. The second equality follows from the first by

applying it to the conditional distribution of (Y,Z) given W. Those relationships were first

established by Joe (1996).

2.4 Estimation for extreme quantiles

With the estimated distribution (2.5) for X, in principle we can deduce an estimator for the dis-

tribution of ξ = h(X). Unfortunately in most applications such an estimator cannot be evaluated

explicitly. We propose to draw a bootstrap sample X⋆
1, · · · ,X⋆

m from (2.5), and to estimate the
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extreme quantile Qξ(α) of ξ (see (1.1)) by the corresponding sample quantile of {ξ⋆i = h(X⋆
i )},

i.e.

Q̂ξ(α) = ξ⋆[mα], (2.10)

where ξ⋆[j] denotes the j-th largest value among ξ⋆1 , · · · , ξ⋆m. We require m sufficiently large such

that, for example, mα ≥ 20.

We apply the inverse of the Rosenblatt transformation to draw u1, · · · , up from D-vine copula

density (2.6). Then we let

xj = F̂−1
j (uj), j = 1, · · · , p, (2.11)

where F̂j defined in (2.1). To this end, draw v1, · · · , vp independently from U [0, 1]. Let u1 = v1,

and

ui = F−1(vi|u1, · · · , ui−1) for i = 2, · · · , p,

where F−1(· |u1, · · · , ui−1) denotes the inverse function of the conditional CDF of Ui given (U1 =

u1, · · · , Ui−1 = ui−1) which is determined by the D-vine copula density (2.6). It follows from

Lemma 1 that

F (ui|u1, · · · , ui−1) =
∂C1, i|2,··· ,i−1{F (u1|u2, · · · , ui−1), F (ui|u2, · · · , ui−1)}

∂F (u1|u2, · · · , ui−1)
,

where C1, i|2,··· ,i−1(·) is the copula function corresponding to the copula density c1, i|2,··· ,i−1 con-

tained on the RHS of (2.6). Aas et al. (2009) outlined an algorithm to implement the above

scheme.

Remark 2. When all the components of X are known to be independent with each other, our

approach still applies. In this case, X⋆
i = (X⋆

i1, · · · ,X⋆
ip) can be obtained with X⋆

ij resampled

independently from {X1j , · · · ,Xnj}.

3 Asymptotic properties

In this section we present the consistency for our extreme quantile estimation. Recall C(·) =

C(·;θ) is the CDF of U = (U1, · · · , Up). The target quantile, as a function of θ, can be expressed

as

Qξ(α;θ) = min
{
x : Pθ(ξ > x) ≤ α

}
,
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where ξ = h(X) = h{F−1
1 (U1), · · · , F−1

p (Up)}; see (1.1). Put

A(x) =
{
(u1, · · · , up) : h{F−1

1 (u1), · · · , F−1
p (up)} > x

}
,

An(x) =
{
(u1, · · · , up) : (u1, · · · , up) ∈ A(x),

1

n+ 1
≤ u1, · · · , up ≤

n

n+ 1

}
,

Bn(x) =
{
(u1, · · · , up) : h{F−1

1 (Ĝ−1
1 (u1)), · · · , F−1

p (Ĝ−1
p (up))} > x,

1

n+ 1
≤ u1, · · · , up ≤

n

n+ 1

}
,

where Ĝj(x) = 1
n+1

∑n
i=1 I(Uij ≤ x), and Uij is defined in (2.1). Let θ0 denote the true value

of θ. Hence Qξ(α) = Qξ(α;θ0) is the true quantile to be estimated. As we estimate extreme

quantiles, we assume α ≡ αn → 0 as n → ∞.

Some regularity conditions are now in order.

A1. ||θ̂ − θ0|| = Op(∆n) for some ∆n → 0 as n → ∞.

A2. For any constant M > 0, if

sup
||θ−θ0||≤M∆n

∣∣∣α−1
n

∫

A(xn(θ))
c(u1, · · · , up;θ) du1 · · · dup − 1

∣∣∣ → 0

and

sup
||θ−θ0||≤M∆n

∣∣∣α−1
n

∫

A(yn(θ))
c(u1, · · · , up;θ) du1 · · · dup − 1

∣∣∣ → 0

for sequences xn(θ) and yn(θ) as n → ∞, then sup||θ−θ0||≤M∆n
|xn(θ)/yn(θ) − 1| → 0 as

n → ∞.

A3. For any constant M > 0, if

sup
||θ−θ0||≤M∆n

∣∣∣α−1
n

∫

Bn(xn(θ))
c(u1, · · · , up;θ) du1 · · · dup − 1

∣∣∣ p→ 0

and

sup
||θ−θ0||≤M∆n

∣∣∣α−1
n

∫

Bn(yn(θ))
c(u1, · · · , up;θ) du1 · · · dup − 1

∣∣∣ p→ 0

for sequences xn(θ) and yn(θ) as n → ∞, then sup||θ−θ0||≤M∆n
|xn(θ)/yn(θ) − 1| p→ 0 as

n → ∞.

A4. As n → ∞, it holds for any constant M > 0 that

sup
||θ−θ0||≤M∆n

∣∣∣
∫
Bn(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup∫
An(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup
− 1

∣∣∣ p→ 0.

A5. As n → ∞, it holds for any constant M > 0 that

sup
||θ−θ0||≤M∆n

∣∣∣
∫
An(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup∫
A(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup
− 1

∣∣∣ → 0.
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A6. As n → ∞, it holds for any constant M > 0 that

sup
||θ−θ0||≤M∆n

∣∣∣α−1
n

∫

A(Qξ(α))
c(u1, · · · , up;θ) du1 · · · dup − 1

∣∣∣ → 0.

Theorem 1. Under Conditions A1–A6, Q̂ξ(α)/Qξ(α)
p→ 1 as n → ∞.

Proof. Note that

α =

∫

A(Qξ(α;θ))
c(u1, · · · , up;θ) du1 · · · dup (3.1)

and Q̂ξ(α) satisfies

∫

Bn(Q̂ξ(α))
c(u1, · · · , up; θ̂) du1 · · · dup/α = 1 + op(1). (3.2)

Write

∫
Bn(Q̂ξ(α))

c(u1, · · · , up; θ̂) du1 · · · dup − α

=
∫
Bn(Q̂ξ(α))

c(u1, · · · , up; θ̂) du1 · · · dup −
∫
Bn(Qξ(α;θ̂))

c(u1, · · · , up; θ̂) du1 · · · dup
+
∫
Bn(Qξ(α;θ̂))

c(u1, · · · , up; θ̂) du1 · · · dup −
∫
An(Qξ(α;θ̂))

c(u1, · · · , up; θ̂) du1 · · · dup
+
∫
An(Qξ(α;θ̂))

c(u1, · · · , up; θ̂) du1 · · · dup −
∫
A(Qξ(α;θ̂))

c(u1, · · · , up; θ̂) du1 · · · dup.

Then it follows from (3.1), (3.2) and Conditions A1, A4, A5 that

1

α

∫

Bn(Q̂ξ(α))
c(u1, · · · , up; θ̂) du1 · · · dup

p→ 1, and (3.3)

1

α

∫

Bn(Qξ(α;θ̂))
c(u1, · · · , up; θ̂) du1 · · · dup

p→ 1

as n → ∞. By (3.3) and Condition A3, we have

Q̂ξ(α)/Qξ(α; θ̂)
p→ 1 (3.4)

as n → ∞. It follows from (3.1), Conditions A1, A2 and A6 that

Qξ(α; θ̂)/Qξ(α)
p→ 1. (3.5)

Hence, the theorem follows from (3.4) and (3.5). �

Remark 3. Condition A1 holds with ∆n = 1/
√
n under some regularity conditions as in Genest,

Ghoudi and Rivest (1995). Condition A2 implies that the extreme quantile is asymptotically

uniquely determined. Condition A3 implies that the extreme quantile is still asymptotically

uniquely determined when the marginal distributions are replaced by their empirical counterparts.

Condition A4 ensures that sets An and Bn are close enough. Condition A5 ensures that there
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is no need to extrapolate the marginal distributions below Ĝ−1
i ( 1

n+1) and above Ĝ−1
i ( n

n+1). We

illustrate those conditions in two examples below.

Example 1: Gumbel Copula. Suppose the distribution of X is the Gumbel copula

C(x1, · · · , xp; θ) = exp
{
−

( p∑

i=1

(− log xi)
θ
)1/θ}

,

where θ > 0. Consider h(X) = {max1≤i≤pXi}−1 and α = n−γ for some γ > 1. Then Qξ(α; θ) =

nγ/p1/θ and Qξ(α) = Qξ(α; θ0). It is easy to check that for any i = 1, · · · , p

P
{
Xi ≤ n−1,Xj ≤ Q−1

ξ (α; θ) for j = 1, · · · , i− 1, i+ 1, · · · , p} = n−(1+γθ(p−1)/p)1/θ .

So when γ < p1/θ, we have

P (Xi ≤ n−1,Xj ≤ Q−1
ξ (α; θ) for j = 1, · · · , i− 1, i+ 1, · · · , p)/α → 0,

which can be used to prove Condition A5. It is straightforward to verify Conditions A1, A2 and

A6 when γ ∈ (1, p1/θ). Use the fact that

sup
u

∣∣∣
√
n(Ĝ−

i (u)− u)

uδ(1− u)δ
I
( 1

n+ 1
≤ u ≤ n

n+ 1

)∣∣∣ = Op(1) (3.6)

for any δ ∈ (0, 1/2), we can show that for any ǫ ∈ (0, 1), the following relation

An{(1− ǫ)xn(θ)}⊃Bn(xn(θ))⊃An{(1 + ǫ)xn(θ)}

holds with probability tending to one for any sequence xn(θ)/Qξ(α; θ) converging to a positive

constant. By the above relation, one can show Conditions A3 and A4 hold when γ ∈ (1, p1/θ).

Example 2: Clayton copula. Suppose the distribution of X is

F (x1, · · · , xp; θ, β) = (1− p+

p∑

i=1

x−βθ
i )−1/θ

for some θ > 0 and β > 0. Then the copula of X is the Clayton copula

C(u1, · · · , up; θ) = (1− p+

p∑

i=1

u−θ
i )−1/θ.

Consider h(X) = {max1≤i≤pXi}−1 and α = n−γ for some γ > 1. Then Qξ(α; θ) = (n
γθ−1+p

p )1/(βθ)

and Qξ(α) = Qξ(α; θ0). It is easy to check that for any i = 1, · · · , p

P (Xi ≤ n−1,Xj ≤ Q−1
ξ (α; θ) for j = 1, · · · , i− 1, i+ 1, · · · , p)

= {1− p+ nβθ + (p−1)(nθγ−1+p)
p }−1/θ.

(3.7)
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When γ < β, the right hand side of (3.7) is o(n−γ), which can be used to show Condition A5

holds. The rest conditions can be verified as Example 1 when 1 < γ < β. When the distribution

of X is Clayton copula, i.e., β = 1 for the above distribution, the right hand side of (3.7) is the

same order as n−γ , which implies that Condition A5 does not hold. That is, the marginals have

to be modeled parametrically for estimating this extreme quantile with α = n−γ in this case.

Theorem 1 above is generic, imposing the conditions directly on the closeness between the

quantile set A and its truncated version An, the empirical approximation Bn for An. When the

copula of X is of multivariate regular variation (i.e. Condition B2 below) and the quantile set

A is asymptotically scalar-invariant (see Condition B1 below), Theorem 2 below shows that the

consistency still holds.

B1. Let S ⊂ (0, 1]p be a set independent of n. When Qξ(0;θ) = a < ∞, put ān(θ) = a−Qξ(α;θ)

and assume that for any ǫ > 0, there exist t0 > 0 and a positive function L(t) → 0 as t → 0

such that for all t ≤ t0

(1− ǫ)S ⊂ A(a− t)/L(t) ⊂ (1 + ǫ)S.

When Qξ(0;θ) = ∞, put ān(θ) = 1/Qξ(α;θ) and assume that for any ǫ > 0, there exist

t0 > 0 and a positive function L(t) → 0 as t → 0 such that for all t ≤ t0

(1− ǫ)S ⊂ A(t)/L(t) ⊂ (1 + ǫ)S.

B2. For any M > 0, there exists N such that, as t → 0

sup
n≥N

sup
||θ−θ0||≤M∆n

∣∣∣c(tu1, · · · , tup;θ)
c(t, · · · , t;θ) − l(u1, · · · , up;θ)

∣∣∣ → 0

for u1, · · · , up > 0, and

sup
n≥N

sup
||θ−θ0||≤M∆n

∣∣∣ l(tu, · · · , tu;θ)
l(t, · · · , t;θ) − uγ

∣∣∣ = 0

for u > 0 and some γ ∈ R. Further

sup
n≥N

sup
||θ−θ0||≤M∆n

∫

S
l(u1, · · · , up;θ) du1 · · · dup < ∞.

B3. For any M > 0,

sup
||θ−θ0||≤M∆n

∣∣∣ c(L(ān(θ0)), · · · , L(ān(θ0));θ)

c(L(ān(θ0)), · · · , L(ān(θ0));θ0)
− 1

∣∣∣ → 0

as n → ∞.

B4. limn→∞ inf ||θ−θ0||≤M∆n
{nδL(ān(θ))} > 0 for some δ ∈ (0, 1).
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Theorem 2. Under Conditions A1 and B1–B4, Q̂ξ(α)/Qξ(α)
p→ 1 as n → ∞.

Proof. We shall verify conditions A2–A6 in Theorem 1. By B1, we can write

α =
∫
A(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup
≥

∫
(1−ǫ)SL(ān(θ))

c(u1, · · · , up;θ) du1 · · · dup
=

∫
(1−ǫ)S c(L(ān(θ))u1, · · · , L(ān(θ))up;θ)Lp(ān(θ)) du1 · · · dup

and

α =
∫
A(Qξ(α;θ))

c(u1, · · · , up;θ) du1 · · · dup
≤

∫
(1+ǫ)SL(ān(θ))

c(u1, · · · , up;θ) du1 · · · dup
=

∫
(1+ǫ)S c(L(ān(θ))u1, · · · , L(ān(θ))up;θ)Lp(ān(θ)) du1 · · · dup

as n large enough. Hence it follows from A1 and B2 that

α

c(L(ān(θ)), · · · , L(ān(θ));θ)Lp(ān(θ))
=

∫

S
l(u1, · · · , up;θ) du1 · · · dup. (3.8)

Like the proof of (3.8), condition A2 can be shown by using B2. Note that B1 and B4 imply

that An(Qξ(α;θ)) = A(Qξ(α;θ)) for ||θ − θ0|| ≤ M∆n and large n. Hence Condition A5 holds.

Using (3.6) we can show condition A4. Note that α−1
∫
Bn(xn(θ))

c(u1, · · · , up;θ) → 1 implies that

xn(θ) → Qξ(α;θ). Hence, like the proof of (3.8), we can show A3 by using (3.6), B1 and B2.

Condition A6 follows from B2 and B3. Hence, Theorem 2 follows from Theorem 1. �

Remark 4. Condition B1 relates the set A to a fixed set S by a scaling factor depending on

the sample size n. This idea appeared in Drees and de Haan (2013). Condition B2 assumes the

copula density is of a multivariate regular variation. We refer to Resnick (1987) for more details on

multivariate regular variation. It follows from Condition B2 that c(L(ān(θ0)), · · · , L(ān(θ0));θ) =

O(Lγ−ǫ(ān(θ0))) for any ǫ > 0. Hence, (3.8) implies

α = αn = O(Lγ+p−ǫ(ān(θ0)))

for any ǫ > 0. This reflects the fact that how small αn can be depends on the geometry of

the set A (i.e., L(ān(θ0))), the property of the copula (i.e., γ) and the dimension (i.e., p). It

is straightforward to check that Conditions B1–B4 hold for the above two examples on Gumbel

copula and Clayton copula with L(t) = tβ and β > γ0 for α = n−γ0 .

4 Numerical properties

In this section we illustrate the proposed method by simulation. We let X = (X1, · · · ,Xp)
′, where

Xj = 1.2Xj−1 − 0.6Xj−2 + εj , j = 1, · · · , p, (4.1)
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and εj are independent and identically distributed random variables. We estimate the extreme

quantiles of the following four functions:

h1(X) = X(p) +X(p−1) +X(p−2), h2(X) = min
1≤j≤p

Fj(Xj),

h3(X) =
1

p

p∑

j=1

Xj , h4(X) =
1

p

p∑

j=1

{1− Fj(Xj)},

where X(1) ≤ · · · ≤ X(p) are the order statistics of the components of X, Fj(·) is the CDF of the

j-th component of X, and hence Fj(Xj) ∼ U(0, 1).

We consider two distributions for εt in (4.1), namely the standard normal N(0, 1), and Stu-

dent’s t-distribution with 4 degrees of freedom t4. With a sample X1, · · · ,Xn drawn from the

distribution of X, we estimate the (1−α)-th quantile with α = 0.05, 0.01, 0.005, 0.001 and 0.0005.

We set the sample size n = 500 or 1,000, and the dimension p = 20 or 40. For each sample, we

fit the data with three D-vine copulas:

Copula I: two trees only (i.e. m = 2 in (2.8)) with Gaussian binary copulas.

Copula II: two trees only with all binary copulas selected by the AIC.

Copula III: the number of trees and all binary copulas are selected by the AIC.

Since Xt ∼ AR(2) (see (4.1)), Xt and Xt+3 are independent conditionally on Xt+1 and Xt+2.

Hence the dependence structure of X can be represented by a D-vine with two trees, i.e. Copula

II reflects the underlying dependence structure correctly. Furthermore Copula I specifies the

correct parametric model when εt ∼ N(0, 1) in (4.1).

The computation was carried out using the R-package CDVine which selected binary copulas

from a large number of copula families; see cran.r-project.org/web/packages/CDVine/CDVine.pdf.

We let m = 40, 000 in (2.10).

For each setting, we drew 400 samples, i.e. replicated the estimation 400 times. We calculate

the Mean Absolute Relative Error (MARE):

MARE =
1

400

400∑

i=1

∣∣∣Q̂i −Q

Q

∣∣∣, (4.2)

where Q denotes the true quantile value, and Q̂1, · · · , Q̂400 denote its estimated values over 400

replications. The true values of the extreme quantiles for h1(X), · · · , h4(X) were calculated by a

simulation with a sample of size 500,000. For the comparison purpose, we also include the simple

sample quantile estimate ξ[nα] from an original samples, where ξ[j] denotes the j-th largest value

among ξk ≡ hi(Xk) for k = 1, · · · , n, and i = 1, · · · , 4.
Table 1 lists the MARE with sample size n = 500 and X consisting of p = 20 successive values

of the AR(2) process defined by (4.1) with standard normal innovations. Since Copula I is the
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Table 1: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 500,
p = 20 and εt ∼ N(0, 1).

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0161 .0259 .0337 .0587 .0721
h1(X) Copula II .0167 .0256 .0327 .0603 .0720

Copula III .0169 .0258 .0327 .0597 .0709
sample quantile .0231 .0373 .0476 .0841 n/a

Copula I .0082 .0103 .0119 .0151 .0199
h2(X) Copula II .0128 .0125 .0126 .0169 .0189

Copula III .0138 .0132 .0130 .0168 .0213
sample quantile .0404 .0586 .0718 .1069 n/a

Copula I .0260 .0216 .0204 .0215 .0227
h3(X) Copula II .0277 .0253 .0258 .0287 .0291

Copula III .0289 .0257 .0262 .0283 .0293
sample quantile .0463 .0572 .0632 .1020 n/a

Copula I .0028 .0035 .0041 .0050 .0064
h4(X) Copula II .0035 .0045 .0050 .0056 .0063

Copula III .0042 .0051 .0057 .0066 .0074
sample quantile .0097 .0167 .0196 .0328 n/a

true parametric family for the underlying distribution, it yields the better estimates than Copulas

II and III. Note that both Copulas II and III are still correct models with more parameters to be

specified. The differences from using three copulas are not substantial; indicating that the AIC

worked well in choosing binary copula functions (for Copulas II and III) as well as specifying the

number of trees (for Copula III). Also the MARE tends to increase when α decreases; indicating

the increasing difficulty in estimating more extreme quantiles. In fact we reported in the table the

MARE which is defined as the mean absolute error (MAE) divided by the true quantile value; see

(4.2). In fact the MAE strictly increases when α decreases. Figure 2 displays the boxplots of the

estimation errors (i.e. Q̂i−Q, i = 1, · · · , 400; see (4.2)) for the estimation with Copula I, n = 500

and p = 20. It shows clearly that both the bias and variance of the estimators increase when α

decreases. Note that nα ranges from 25 to 0.25 for 0.05 ≥ α ≥ 0.0005. For the most extreme

case with α = 0.0005, we extrapolate far out of the range covered by data {hi(Xt), t = 1, · · · , n}.
Still the maximum MARE is under 8% with function h1(X), is under 3% with h3(X), and is even

smaller with h2(X) and h4(X). We also notice that the extreme quantiles of h2(X) and h4(X) can

be estimated much more accurately than those of h1(X) and h3(X). This is due to the fact that h2

and h4 are the function of the marginal distribution functions of X. Therefore they are effectively

the functions of a p random vector with all the marginal distributions being U(0, 1). Furthermore,

their estimates do not suffer from the errors due to the inverse empirical transformations (2.11)

in the bootstrap resampling. Overall with normal X, the proposed estimation method works
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Figure 2: Boxplots of the errors in estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4)
with εt ∼ N(0, 1). Copula I was used in estimation with n = 500 and p = 20.

very well. It provides much more accurate estimates than the simple sample quantiles even for

α = 0.05 when there are nα = 25 data points in the top α-tails. With sample size n = 500 or

1000, the sample quantiles at the (1 − α)-th level when α = 0.0005 are not available.

Tables 2–5 list the MARE when εt ∼ t4 in (4.1). Now components of X are heavy-tailed

with E(||X||4) = ∞. The extreme quantiles to be estimated are more likely to be impacted by

the extreme values of the components of X than the cases with εt ∼ N(0, 1). The MARE with

α = 0.001 and 0.0005 in Tables 2–5 tend to be too large with functions h1(X) and h3(X), while

the estimation for the extreme quantiles of h2(X) and h4(X) remains accurate with the MARE

smaller than 3%. Nevertheless when the sample size increases from n = 500 to n = 1000, the

MARE decreases. When the number of components of X increases from p = 20 to p = 40, the

MARE with h1(X) or h2(X) increases while that with h3(X) and h4(X) decreases. Note that

h1(X) or h2(X) are extreme functions of the components X, and they become more extreme when
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Table 2: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 500,
p = 20 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0277 .0601 .0918 .2070 .2766
h1(X) Copula II .0277 .0582 .0853 .1887 .2383

Copula III .0277 .0576 .0808 .1866 .2399
sample quantile .0332 .0703 .0950 .2456 n/a

Copula I .0264 .0114 .0112 .0197 .0260
h2(X) Copula II .0094 .0181 .0224 .0210 .0214

Copula III .0104 .0188 .0227 .0227 .0220
sample quantile .0401 .0579 .0657 .1046 n/a

Copula I .0309 .0289 .0334 .0626 .0848
h3(X) Copula II .0357 .0702 .0897 .1339 .1405

Copula III .0370 .0696 .0904 .1343 .1377
sample quantile .0496 .0651 .0738 .1569 n/a

Copula I .0063 .0080 .0075 .0078 .0089
h4(X) Copula II .0029 .0045 .0048 .0067 .0090

Copula III .0037 .0051 .0054 .0075 .0093
sample quantile .0089 .0163 .0192 .0305 n/a

Table 3: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 500,
p = 40 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0290 .0802 .1234 .2349 .2868
h1(X) Copula II .0287 .0635 .0943 .2095 .2435

Copula III .0288 .0635 .0932 .2096 .2424
sample quantile .0326 .0748 .1014 .2746 n/a

Copula I .0613 .0379 .0299 .0235 .0248
h2(X) Copula II .0255 .0144 .0132 .0156 .0202

Copula III .0280 .0173 .0157 .0169 .0208
sample quantile .0427 .0654 .0769 .1188 n/a

Copula I .0283 .0248 .0269 .0440 .0604
h3(X) Copula II .0379 .0667 .0861 .1114 .1179

Copula III .0377 .0659 .0864 .1147 .1204
sample quantile .0486 .0657 .0742 .1350 n/a

Copula I .0051 .0069 .0075 .0075 .0066
h4(X) Copula II .0018 .0029 .0036 .0045 .0050

Copula III .0026 .0041 .0046 .0053 .0058
sample quantile .0065 .0114 .0144 .0253 n/a

p increases. In contrast, h3(X) or h4(X) are the means of the components of X, they behave

more like normal when p increases due the CLT. With εt ∼ t4, Copula I misspecified the model

while Copula II provides a correct dependence structure (i.e. a D-vine with two trees only). With
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Table 4: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 1000,
p = 20 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0225 .0475 .0689 .1786 .2441
h1(X) Copula II .0210 .0422 .0586 .1419 .2043

Copula III .0207 .0424 .0587 .1370 .2039
sample quantile .0256 .0516 .0721 .1630 n/a

Copula I .0282 .0111 .0097 .0186 .0265
h2(X) Copula II .0079 .0144 .0185 .0167 .0168

Copula III .0087 .0147 .0186 .0183 .0201
sample quantile .0279 .0407 .0499 .0764 n/a

Copula I .0226 .0210 .0258 .0556 .0808
h3(X) Copula II .0223 .0410 .0563 .0990 .1128

Copula III .0237 .0412 .0577 .0988 .1150
sample quantile .0351 .0466 .0589 .1065 n/a

Copula I .0052 .0069 .0061 .0062 .0077
h4(X) Copula II .0021 .0028 .0032 .0050 .0067

Copula III .0029 .0037 .0042 .0055 .0073
sample quantile .0061 .0102 .0144 .0258 n/a

the functions h1(X), h2(X) and h4(X), the Gaussian copula (i.e. Copula I) is the least preferable,

the estimation with Copula II leads to smaller MARE than those with Copula III across Tables

2–5 although the differences are not substantial, and are certainly smaller than the differences

between the estimates based on Copula II and those based on Copula I. However with h3(X), the

estimation with the Gaussian copula is the best. One possible explanation is that with p = 20 or

p = 40, it holds approximately that

h3(X) =
1

p

p∑

t=1

Xt ∼ N
(
0,

1

p
Var(X1) +

2

p

p∑

k=2

(1− k − 1

p
)Cov(X1,Xk)

)
.

Since the Gaussian copula also specifies the correlation among the components of X correctly, it

is an approximately correct parametric model. Overall the proposed method provides more, or

much more, accurate estimates than the sample quantiles across Tables 2–5.

For further illustration, we now repeat the above exercise with (4.1) replaced by the MA(2)

model:

Xj = εj + 1.5εj−1 − 0.5εj−2, j = 1, · · · , p,

where εt are independent t4 random variables. Now Xj+3 and Xj are no longer conditional

independent given Xj+2 and Xj+1. Hence both Copulas I and II represent misspecified models.

For comparison with the methods based on univariate extreme value theory (EVT), we employ
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Table 5: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 1000,
p = 40 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0191 .0595 .0957 .2167 .2595
h1(X) Copula II .0187 .0426 .0631 .1638 .2292

Copula III .0181 .0414 .0617 .1673 .2318
sample quantile .0242 .0557 .0754 .1717 n/a

Copula I .0618 .0388 .0298 .0235 .0242
h2(X) Copula II .0250 .0152 .0136 .0148 .0180

Copula III .0262 .0158 .0143 .0163 .0212
sample quantile .0309 .0438 .0559 .0871 n/a

Copula I .0207 .0195 .0209 .0397 .0573
h3(X) Copula II .0218 .0412 .0576 .0832 .0948

Copula III .0226 .0408 .0575 .0827 .0990
sample quantile .0356 .0471 .0542 .0969 n/a

Copula I .0047 .0066 .0070 .0073 .0063
h4(X) Copula II .0012 .0020 .0024 .0034 .0042

Copula III .0020 .0028 .0032 .0043 .0052
sample quantile .0048 .0082 .0106 .0194 n/a

the quantile estimator

Q̂EV T
ξ (α) = ξn,n−k + σ̂M

( k
nα)

γ̂M − 1

γ̂M
, (4.3)

where

M (j)
n =

1

k

k−1∑

i=0

(log ξn,n−i − log ξn,n−k)
j , γ̂M = M (1)

n + 1− 1

2
{1− (M

(1)
n )2

M
(2)
n

}−1,

γ̂− = 1− 1

2
{1− (M

(1)
n )2

M
(2)
n

}−1, σ̂M = ξn,n−kM
(1)
n (1− γ̂−),

and ξn,1 ≤ · · · ≤ ξn,n denote the order statistics of ξ1, · · · , ξn. See Chapter 4.3 of De Haan and

Ferreira (2006) for details. Note that this quantile estimator depends on the tuning parameter

k, the number of upper order statistics used. Although some data-driven methods for choosing

k exist in the literature, we calculate the above estimator for different values of k, i.e. k =

25, 50, 75, 100, 200, 300.

As before we report MARE defined in (5.2) in Tables 6 and 7. Now Copula I (i.e. a Gaussian

copula with two tree) is a very wrong model in terms of both the tree structure and the distri-

butions at all nodes. It should not be used in practice, as it leads to larger MAREs than those

with Copulas II and III. The performances from using Copulas II and III are comparable. This

may be due to the fact that for i ≥ 2, the dependence between Xj+i and Xj , conditionally on

Xj+i−1, · · ·Xj+1, is not too strong to be overlooked.
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The EVT-based method with all chosen values of k provides overall less or much less accu-

rate estimates than the proposed method with Copulas II and III. The exception occurs for the

estimation of h1(X) = X(p) + X(p−1) + X(p−2) with α ≤ 0.005. This is due to the fact that the

distribution of h1 can be approximated well by an extreme value distribution. Also the estimation

may fluctuate with k, especially for the small values of k.

Table 6: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 1000,
p = 20 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0361 .0984 .1301 .2204 .2628
Copula II .0179 .0391 .0554 .1327 .1603
Copula III .0181 .0382 .0553 .1333 .1559
EVT(k=25) .0581 .0477 .0623 .1220 .1560

h1(X) EVT(k=50) .0219 .0439 .0577 .1152 .1465
EVT(k=75) .0203 .0417 .0561 .1116 .1397
EVT(k=100) .0203 .0411 .0557 .1096 .1355
EVT(k=200) .0199 .0413 .0555 .1080 .1318
EVT(k=300) .0208 .0424 .0545 .1066 .1277

Copula I .0740 .0565 .0478 .0392 .0414
Copula II .0093 .0146 .0151 .0226 .0287
Copula III .0116 .0126 .0146 .0177 .0197
EVT(k=25) .0760 .0408 .0442 .0677 .0884

h2(X) EVT(k=50) .0300 .0376 .0421 .0723 .0927
EVT(k=75) .0271 .0360 .0427 .0765 .0963
EVT(k=100) .0266 .0357 .0442 .0800 .0992
EVT(k=200) .0247 .0391 .0536 .0944 .1126
EVT(k=300) .0241 .0476 .0680 .1189 .1400

Copula I .0498 .0649 .0751 .1051 .1263
Copula II .0335 .0226 .0285 .0617 .0768
Copula III .0228 .0393 .0513 .0931 .1071
EVT(k=25) .0825 .0433 .0494 .0944 .1272

h3(X) EVT(k=50) .0325 .0397 .0476 .0913 .1191
EVT(k=75) .0297 .0390 .0491 .0923 .1174
EVT(k=100) .0298 .0393 .0505 .0920 .1142
EVT(k=200) .0298 .0441 .0583 .0998 .1225
EVT(k=300) .0438 .0662 .0865 .1415 .1716

Copula I .0067 .0081 .0085 .0086 .0090
Copula II .0061 .0063 .0059 .0050 .0053
Copula III .0031 .0049 .0058 .0088 .0103
EVT(k=25) .0138 .0088 .0106 .0179 .0230

h4(X) EVT(k=50) .0052 .0083 .0100 .0178 .0225
EVT(k=75) .0047 .0081 .0100 .0179 .0225
EVT(k=100) .0047 .0079 .0100 .0184 .0231
EVT(k=200) .0045 .0081 .0108 .0192 .0236
EVT(k=300) .0044 .0083 .0115 .0225 .0285
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Table 7: MARE for estimating the (1 − α)-th quantiles of hi(X) (i = 1, · · · , 4) with n = 1000,
p = 40 and εt ∼ t4.

Function Model α = .05 α = .01 α = .005 α = .001 α = .0005

Copula I .0352 .0993 .1297 .2216 .2600
Copula II .0181 .0402 .0609 .1516 .1801
Copula III .0174 .0388 .0592 .1533 .1776
EVT(k=25) .0534 .0455 .0618 .1267 .1673

h1(X) EVT(k=50) .0222 .1599 .0592 .1188 .1548
EVT(k=75) .0204 .0426 .0582 .1160 .1496
EVT(k=100) .0202 .0418 .0575 .1129 .1444
EVT(k=200) .0199 .0413 .0568 .1053 .1302
EVT(k=300) .0198 .0421 .0568 .1025 .1238

Copula I .0984 .0819 .0779 .0745 .0702
Copula II .0075 .0086 .0109 .0196 .0234
Copula III .0132 .0166 .0163 .0173 .0216
EVT(k=25) .0786 .0437 .0511 .0835 .1058

h2(X) EVT(k=50) .0298 .1825 .0491 .0879 .1117
EVT(k=75) .0261 .0384 .0488 .0906 .1158
EVT(k=100) .0257 .0387 .0499 .0908 .1146
EVT(k=200) .0247 .0433 .0607 .1091 .1355
EVT(k=300) .0237 .0518 .0741 .1325 .1642

Copula I .0553 .0636 .0666 .0936 .1075
Copula II .0333 .0237 .0245 .0534 .0671
Copula III .0232 .0336 .0440 .0814 .0951
EVT(k=25) .0730 .0421 .0502 .0905 .1182

h3(X) EVT(k=50) .0346 .1766 .0501 .0918 .1164
EVT(k=75) .0328 .0399 .0513 .0964 .1205
EVT(k=100) .0332 .0402 .0536 .0996 .1224
EVT(k=200) .0337 .0468 .0619 .1036 .1233
EVT(k=300) .0494 .0674 .0840 .1315 .1551

Copula I .0050 .0067 .0066 .0063 .0074
Copula II .0046 .0057 .0054 .0047 .0060
Copula III .0021 .0031 .0040 .0063 .0066
EVT(k=25) .0098 .0063 .0076 .0134 .0179

h4(X) EVT(k=50) .0038 .0295 .0073 .0133 .0174
EVT(k=75) .0034 .0058 .0072 .0138 .0179
EVT(k=100) .0035 .0056 .0072 .0141 .0182
EVT(k=200) .0035 .0056 .0075 .0142 .0184
EVT(k=300) .0034 .0061 .0084 .0165 .0219

5 Application in backtesting

This study was motivated by a real world backtesting problem in financial risk management.

Under the current Basel III regulatory framework (see Basel Committee, 2011), investment banks
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are required to hold adequate capital to cover the counterparty credit risk (CCR), which is the

potential loss in derivative positions due to the default of trading counterparties. The failures

of Lehman Brothers and MF Global are recent examples of such disruptive events. The Basel

III CCR capital is typically computed by jointly simulating various market risk factors (such as

interest rates, equities and foreign exchange rates) into the future, and valuing all the derivative

positions of the bank at each time horizon of each simulated market scenario paths to determine

the potential loss due to counterparty’s default. The market risk factors are typically modeled as

stochastic processes that are calibrated to corresponding historical time series.

The Basel III CCR capital is one of the most complicated modeling problems for investment

banks, as it typically requires the modeling and simulation of tens of thousands of risk factors, and

the valuation of millions of trades under each simulated market scenarios. In practice, it is only

possible to run the simulation and valuation for a small number (e.g., hundreds to thousands) of

paths, due to the large scale of the problem and banks’ IT system limitations.

Backtesting is a critical component in the Basel III regulation; it is the primary analytical

tool for a bank and its regulators to monitor the performance of its risk factor simulation and

valuation models. Figure 3 is an illustration of the backtesting setup for a risk factor, where the

actual realization of the risk factor path is represented by (X1, · · · ,Xp); and solid curves represent

the risk factor distributions at different time horizon according to the risk factor model. If the

actual realization of the risk factor path is deemed an extreme event with very small probability

(the typical threshold is 0.01%), then a ‘red light’ is designated, which is a strong indication of

misspecified simulation models. In practice, the same backtesting procedure is also applied to

the trade or portfolio prices in addition to the market risk factors, in which case the backtesting

also covers the pricing models and the correlations between risk factors. Mitigations, such as

additional capital add-ons for the affected risk factors and/or trades, are often required to ensure

capital adequacy in case the ‘red light’ persists.

There are two technical issues in the backtesting process described above. First it is difficult

to test the multiple distributions along different tenors directly. A common practice is to use

an appropriate risk metric ξ = h(X1, · · · ,Xp) which can be viewed as a test statistic for the

original backtesting problem. Therefore we need to evaluate the extreme quantile for ξ under

the distribution determined by the simulation and pricing models. Secondly, the simulation and

pricing models used in practice do not admit explicit solutions, e.g. the distributions displayed in

Figure 3 do not admit explicit formulas. Therefore a small number of paths (typically hundreds

to thousands) are drawn from the simulation and pricing models instead, which are regarded as

distributions of the risk factors or trade prices. In order to accurately designate the red flag,

we need to calculate an extreme quantile of α = 0.01% for ξ = h(X1, · · · ,Xp) based on a small
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1 month 6 months 1 year 10 years

X1

X2

X3

Xp

Figure 3: Theoretical risk factor distribution varies with respect to tenor (such as 1 month, 6
months, 1 year, · · · , 10 year). The blue path (X1,X2, · · · ,Xp) represents the realized risk factor
paths (e.g. equity prices). The goal of a backtesting is to test the hypothesis that the theoretical
distributions are correct based on the observed path (X1,X2, · · · ,Xp). A ‘red light’ is designated
if the observed path (X1,X2, · · · ,Xp) is regarded as extreme event with probability less than
0.01% under the hypothesis.

sample size of hundreds to thousands. The number of tenors p varies, but is typically in the range

of 10 to 200, depending on the trade maturities.

One would think that the problem of estimating extreme quantiles can be easily resolved

by generating more paths from the simulation and pricing models. However, the sheer volume

of trades and risk factors make this brute-force approach infeasible in practice; as we discussed

earlier, it is prohibitively expensive to run adequate number of simulation paths and valuations

for an extreme quantile of α = 0.01%.

Hereby we use a GJR-GARCH model to illustrate how our proposed method provides an

adequate solution for such backtesting problems. We fit the following GJR-GARCH(1,1,1) model

for the daily return volatility process of the S&P 500 equity index:

εt = σtet, σ2
t = ω + αε2t−1 + γε2t−1I(εt < 0) + βσ2

t−1, (5.1)

where et is independent and N(0, 1), εt = log(Pt/Pt−1) − µ is the centered daily logarithmic

return, where Pt is the index price and µ is historical average of the daily log(Pt/Pt−1), so that

εt is constructed to have zero mean. Furthermore the parameter ω is assumed to be positive, and

α, γ, β are non-negative. It can be viewed as the standard GARCH(1,1) model with an addition

of asymmetric term (with coefficient γ) which captures the well established empirical fact that

the down movements in stock prices impacts the volatility much more than the up movements.

Under the condition α + γ/2 + β < 1, σt defined by (5.1) is strictly positive with the long-run
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variance

σ2 ≡ Var(εt) = ω/{1− (α+ γ/2 + β)} > 0.

We refer to Glosten (1993) for the further details of the GJR-GARCH model.

We estimate the parameters in GJR-GARCH(1,1,1) model (5.1) by the maximum likelihood

method using the historical daily prices of S&P 500 in 3 January 2005 – 18 June 2014. The

estimated values are:

σ̂2 = 0.0100, α̂ = 0.000, γ̂ = 0.1696, β̂ = 0.8949.

Now suppose we use the fitted GJR-GARCH(1,1,1) model to simulate the future evolution of

S&P 500 index. To backtest the model’s performance, we draw 1000 simulated paths up to 10

years from the fitted GJR-GARCH(1,1,1) model, and we use the average quantile of the quarterly

prices over the 10 year period as the test metric:

ξ =
1

40

40∑

j=1

F̂j(Xj), (5.2)

where Xj denotes the price at the j-th quarter in the 10 year period, and F̂j(·) is the empirical

distribution of Xj (based on the 1000 observations). Different metrics, such as a weighted mean,

a geometric mean or some extreme values of F̂j(Xj), are used in practice, to test different aspects

of the model. We use the proposed method, fitting directly the data Zj ≡ F̂j(Xj) with the three

types of copula specification used in section 4, to estimate the extreme quantiles in the top tail of

the distribution of ξ. For the comparison purpose, we also report the estimates obtained based on

the extreme value theory method using the k extreme observations; see (4.3). All the estimates

are listed in Table 8. To assess the goodness of the different estimation method, we also report

the true values of the extreme quantiles of ξ which were evaluated based on 500,000 simulations

from the fitted GJR-GARCH(1,1,1) model. The proposed method with Copulas II & III provides

reasonable estimates. In fact the performances with II and III are close and the method with

Copula II is slightly better. When α ≤ 0.01, the Gaussian copula (i.e. Copula I) performs worse

than the two others. Note that Xj is not stationary in j and ξ defined in (5.2) is far from normal.

On the other hand the EVT method with all chosen values of k performs worse or substantially

worse than the proposed method with Copulas II & III when α ≤ 0.01. Furthermore the EVT

method is sensitive to the choice of k.

Conclusions

We propose in this paper a new method for estimating the extreme quantiles of a function of

several random variables. The extreme quantiles concerned are typically outside the range of the
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Table 8: Estimated (1 − α)-th quantiles of ξ defined in (5.2) by the proposed methods with 3
copulas specified in section 4, and also the EVT methods using k extreme observations.

α .1000 .0100 .0010 .0001

True quantile .8207 .9481 .9831 .9946

Copula I .8160 .9406 .9758 .9889
Copula II .8110 .9432 .9806 .9929
Copula III .8101 .9425 .9804 .9928

EVT (k = 25) .7589 .9428 .9690 .9728
EVT (k = 50) .8194 .9398 .9786 .9910
EVT (k = 75) .8146 .9402 .9761 .9863
EVT (k = 100) .8112 .9392 .9685 .9752
EVT (k = 200) .8109 .9379 .9705 .9788
EVT (k = 300) .8094 .9329 .9608 .9671

observed data. Unlike the standard methods based on extreme value theory, the new method

models the marginal distributions nonparametrically, and fits the high dimensional dependence

structure within the observed range with a vine copula model. Hence the new method does not

impose any explicit parametric forms on the tails of the underlying distribution, and it avoids the

difficulties in choosing a fraction of the sample to be used for estimation.

The underpinning idea of the new method is that it is not necessary to go to extremes along

any component variable in order to observe a joint extreme event. This also indicates that the

method may fail to handle excessively extreme cases. How extreme it can do depends on the

underlying distribution and the number of the variables involved. Nevertheless if the function

concerned depends on each random variable through its CDF transformation (such as h2(·) and

h4(·) used in section 4, the risk metric used in section 5), we effectively deal with the cases when

all random variables are bounded. Then the new method can provide accurate estimation for very

extreme quantiles.

The proposed method fits the dependence among X1, · · · ,Xp within the observed range by a

vine copula. When those components can be ordered such that the dependence between Xi and

Xj decays as |i−j| increases, some parsimonious fitting may be obtained by using a D-vine copula;

see Remarks 1(iii-iv). The empirical evidences reported in sections 4 and 5 also indicate that the

copulas specified by AIC (such as Copula III) or partially specified by AIC (such as Copula II)

often provide satisfactory estimates. On the other hand, Gaussian copulas should not be used

in general unless the data are normal or close to normal. However, for the functions in the form

ξ = h(p−1
∑

j g(Xj)) with moderately large p and stationary Xj (in j), fitting a Gaussian copula

to capture the dependence (i.e. the correlation) among g(X1), · · · , g(Xp) may leads to a good

estimation for the quantiles of ξ. This is due to the fact that p−1
∑

j g(Xj) would then behave
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like a normal random variable, the fitted Gaussian copula should provide adequate estimates for

its first two moments.
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