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Abstract

In this paper we generalise the risk models beyond the ordinary framework of

affine processes or Markov processes and study a risk process where the claim ar-

rivals are driven by a Cox process with renewal shot-noise intensity. The upper

bounds of the finite-horizon and infinite-horizon ruin probabilities are investigated

and an efficient and exact Monte Carlo simulation algorithm for this new process is

developed. A more efficient estimation method for the infinite-horizon ruin proba-

bility based on importance sampling via a suitable change of probability measure is

also provided; illustrative numerical examples are also provided.

Keywords: Risk model; Ruin probability; Renewal shot-noise Cox process; Piecewise-deterministic Markov

process; Martingale method; Monte Carlo simulation; Importance sampling; Change of probability measure;

Rare-event simulation

JEL Classification: G22, C10, C60

Mathematics Subject Classification (2010): Primary: 91B30; Secondary: 60J75, 65C05

1 Introduction

In insurance modelling a Poisson process has a long history of being used as a classical

model for the claim-arrival process. Extensive discussions from both applied and theo-

retical viewpoints can be found in early literature, Cramér (1930), Cox and Lewis (1966),
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Bühlmann (1970) and Çınlar (1974). A Poisson process is a simple counting process that

measures the number of claim occurrences within a period of time. It is easy to use main-

ly due to its memoryless property. However, the exponential distribution underlying

claim-arrival times is often not appropriate to use for modelling the interarrival times of

claim arrivals in real situations. The likelihood of a claim given the time elapsed since

the previous one is not necessarily constant throughout time. There has been a signif-

icant volume of literature that questions the appropriateness of the Poisson process in

insurance modelling, in particular for catastrophic events; see Seal (1983) and Beard et al.

(1984).

As an alternative point process to generate claim arrivals we can employ a non-homogeneous

Poisson process or a Cox process first introduced by Cox (1955b). A Cox process is a natural

generalisation of a Poisson process by considering the intensity of Poisson process as a

realisation of a random measure (Møller, 2003). The Cox process provides the flexibility

of letting the intensity not only depend on time but also allowing it to be a stochastic

process. Hence, it can be viewed as a two-step randomisation procedure which can deal

with the stochastic nature of catastrophic loss occurrences in the real world.

Moreover, shot-noise processes (Cox and Isham, 1980) are particularly useful to mod-

el claim arrivals; they provide measures for frequency, magnitude and the time period

needed to determine the effect of catastrophic events within the same framework; as

time passes, the shot-noise process decreases as more and more losses are settled, and

this decrease continues until another event occurs which will result in a positive jump.

Therefore, the shot-noise process can be used as the intensity of a Cox process to mea-

sure the number of catastrophic losses. Previous works on insurance applications using

a shot-noise process or a Cox process with shot-noise intensity can be found in Klüppelberg

and Mikosch (1995), Brémaud (2000), Dassios and Jang (2003), Jang and Krvavych (2004),

Torrisi (2004), Dassios and Jang (2005), Albrecher and Asmussen (2006), Macci and Tor-

risi (2011), Zhu (2013) and Schmidt (2014).

In reality, when catastrophic events occur, the arrivals of the associated claims arising

from them could also depend on the time elapsed since the previous catastrophic events

(e.g. floods, storms, hails, bushfires, earthquakes and terrorist attacks). Hence, the in-

formation provided by the time intervals between the primary events is also valuable in

insurance. To model the arrivals of claims arising from catastrophic events where the in-

terarrival times between the primary events are additionally included, further improved

models are required. For this purpose, in this paper we introduce a shot-noise process
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driven by an ordinary renewal process as the claim-arrival intensity process. It is a Cox

process that further generalises the risk models beyond the ordinary framework of affine

processes or Markov processes.

The paper is structured as follows. Our model of the Cox process with renewal shot-

noise intensity is introduced and the mathematical definition is provided in Section 2.

This process is then used as the claim-arrival process in a risk model, and we find an

appropriate martingale in Section 3 to find the upper bounds of the finite-horizon and

infinite-horizon ruin probabilities in Section 4. In Section 5, we develop an associated nu-

merical algorithm for simulating this new risk process, and it is used to estimate the ruin

probabilities based on crude Monte Carlo simulation. A more efficient estimation method

for the infinite-horizon ruin probability based on importance sampling is also provided.

To illustrate in detail how this proposed model can be implemented, we provide related

numerical examples in Section 6. There, we specify that both the claim sizes and jump

sizes in the claim-arrival intensity follow exponential distributions and the interarrival

times follow an inverse Gaussian distribution.

2 A Renewal Shot-noise Cox Process

We generalise the classical Cox process with Poisson shot-noise intensity to a Cox process

with renewal shot-noise intensity as defined below. The arrivals of jumps follow a renewal

process and the impact of each jump decays exponentially over time.

Definition 2.1 (Renewal Shot-noise Cox Process). A renewal shot-noise Cox process (Cox

process with renewal shot-noise intensity) is a point process Nt ≡
¦

Tj
©

j=1,2,··· on R+ with

renewal shot-noise intensity λt, i.e. a non-negative shot-noise process driven by an ordi-

nary renewal process specified by

λt = λ0e−δt +
MtP
i=1

Yie−δ(t−T∗i ), t ≥ 0,

where

• λ0 is the initial intensity;

• δ > 0 is the constant rate of exponential decay;

•
¦

Mt
©

t≥0
is a renewal process with arrival times

¦
T∗i
©

i=1,2,···, i.e. Mt ≡
¦

T∗i
©

i=1,2,···;

•
¦

Yi
©

i=1,2,··· is a sequence of i.i.d. random variables (sizes of renewal jumps or shots)

with distribution function H (y) , y > 0, which is assumed to be absolutely contin-

uous with density function h(y) and independent of Mt.

3
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This decrease continues until another catastrophe occurs which will result in a pos-
itive jump in the shot noise process. Therefore the shot noise process can be used
as the parameter of the doubly stochastic Poisson process to measure the number
of claims due to catastrophic event, i.e. we will use it as a claim intensity function
to generate the Cox process. We will adopt the shot noise process used by Cox and
Isham (1980):

t0

λ
t

Fig. 1. Graph illustrating a shot noise process

λt = λ0e
−δt +

∑

all i
si≤t

yie
−δ(t−si)

where:
λ0 initial value of λ
yi jump size of catastrophe i where E (yi) <∞

(i.e. magnitude of contribution of catastrophe i to intensity)
si time at which catastrophe i occurs, where si < t <∞
δ exponential decay
ρ the rate of catastrophe jump arrival.

This is illustrated in Fig. 1.

The piecewise deterministic Markov processes theory developed by Davis
(1984) is a powerful mathematical tool for examining non-diffusion models. From
now on, we present definitions and important properties of the Cox and shot noise
processes with the aid of piecewise deterministic processes theory (Dassios 1987
and Dassios and Embrechts 1989). This theory is used to calculate the distribution
of the number of claims and the mean of the number of claims. These are important
factors in the pricing of any reinsurance product.

The three parameters of the shot noise process described are homogeneous
in time. We are now going to generalise the shot noise process by allowing the

Figure 1: A sample path of renewal shot-noise intensity process λt

A sample path of the renewal shot-noise intensity process λt is illustrated in Figure 1.

If Mt is a Poisson process instead, then λt is a classical shot-noise process (Cox and Isham,

1980). If we set Yi ≡ 1, λ0 = 0 and replace Mt by the point process Nt itself, then Nt is the

classical Markovian self-exciting Hawkes process (Hawkes, 1971) on the half line. In this

paper, we assume that Mt follows a renewal process, and our process is then a special

case of generalised shot-noise Cox processes (Møller and Torrisi, 2005).

Some distributional properties of this process such as moments have been summarised

in Dassios and Jang (2012). Note that this process is no longer within the usual frame-

work of an affine process (Duffie et al., 2000) or a Markov process due to the additional

renewal components. In order to establish a Markovian framework, we need to include

a supplementary variable Ut, the time elapsed since the last jump arrived in the intensity

process λt, i.e.

Ut := t−
MtX
i=1

Ri,

where {Ri}i=1,2,... are the interarrival times of the renewal process Mt, i.e.

Ri := T∗i − T∗i−1, i = 1, 2, ..., T∗0 = 0,

and they are i.i.d. with distribution function P(u), u > 0, which is assumed to be ab-

solutely continuous with density function p(u). The idea of adding this supplementary

variable Ut to make the process Markovian can be found as early as in Cox (1955a). Ut

increases at unit rate till a jump arrives; then it goes back to 0. Note that, if ρ (u) is the

failure rate of the distribution, we have

P(u) = 1− exp
�
−
Z u

0
ρ (v)dv

�
, p(u) = ρ (u) exp

�
−
Z u

0
ρ (v)dv

�
,
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and ρ (u) = p(u)
P̄(u) where P̄(u) := 1− P(u).

3 A Risk Process Driven by a Renewal Shot-noise Cox Process

Now, let us consider an insurance company with surplus process Xt in continuous time

on a probability space (Ω,F , P). We assume

Xt = X0 + ct−
NtX

j=1

Zj, t ≥ 0, (1)

where

• X0 ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium income;

• Nt is a renewal shot-noise Cox process (defined by Definition 2.1) with associated

claim-arrival times
¦

Tj
©

j=1,2,···;

•
¦

Zj
©

j=1,2,··· are claim sizes which are assumed to be i.i.d. with distribution function

Z(z), z > 0. We also assume they are independent of Nt.

The generator of the joint process (Xt, λt, Ut, t) acting on a function f (x, λ, u, t) be-

longing to its domain is given by

A f (x, λ, u, t) =
∂ f
∂t

+
∂ f
∂u
− δλ

∂ f
∂λ

+ c
∂ f
∂x

+ λ
�Z ∞

0
f (x− z, λ, u, t)dZ (z)− f (x, λ, u, t)

�
+

p (u)
P̄(u)

�Z ∞

0
f (x, λ + y, 0, t)dH (y)− f (x, λ, u, t)

�
, (2)

where f : (−∞, ∞) × (0, ∞) × (0, ∞) ×R+ → (0, ∞). It is sufficient that f (x, λ, u, t) is

differentiable w.r.t. x, λ, u, t for all x, λ, u, t and that����Z ∞

0
f (x− z, ·, ·, ·)dZ (z)− f (x, ·, ·, ·)

���� < ∞

for f (x, λ, u, t) to belong to the domain of the generator A. For details on generators of

piecewise deterministic Markov processes we refer to Davis (1984), Dassios and Embrechts

(1989), Davis (1993) and Rolski et al. (2008).

For simplicity, we denote first-order moments by

π1 :=
Z ∞

0
up(u)du, α1 :=

Z ∞

0
ydH(y), γ1 :=

Z ∞

0
zdZ(z).
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We also denote the Laplace transforms the moment generating functions by

p̂(ν) :=
Z ∞

0
e−νu p(u)du, ĥ (ν) :=

Z ∞

0
e−νydH (y) , φ(ν) :=

Z ∞

0
eνzdZ (z) .

We will be assuming existence of the above where necessary.

Lemma 3.1. The net profit condition under the probability measure P is

c >
γ1α1

δπ1
. (3)

Proof. If the net profit condition holds, then, the expected premium received between two

successive claims should exceed the expected amount of a claim loss, i.e. cE[T′] > E[Zj]

where T′ is the interarrival time of loss claims. It is also equivalent to the condition

d
dν

�
p̂(cν)ĥ

�
−φ(ν)− 1

δ

�� �����
ν=0

< 0.

Lemma 3.2. Consider the equation

p̂(θ + cν) ĥ
�
−φ (ν)− 1

δ

�
= 1, (4)

for a constant θ ≥ 0. Then, the following are true:

(i) for θ > 0, there exists a unique positive νθ such that (4) is satisfied for ν = νθ ;

(ii) in particular, for θ = 0, under the net profit condition (3), there exists a unique positive ν0

such that (4) is satisfied for ν = ν0.

Proof. Define

fθ(ν) := p̂(θ + cν)ĥ
�
−φ (ν)− 1

δ

�
, θ ≥ 0, (5)

which is a convex function of ν for all θ ≥ 0, as its second derivative w.r.t. ν is given by

f ′′θ (ν) =
Z ∞

y=0

Z ∞

u=0

"�
−cu +

φ′ (ν)
δ

y
�2

+
φ′′ (ν)

δ

#
e−(θ+cν)ue

�
φ(ν)−1

δ

�
y p(u)dudH(y) ≥ 0.

Also at ν = 0, we have

fθ(0) = p̂(θ + cν)ĥ
�
−φ (ν)− 1

δ

�
= p̂(θ) < 1.

Hence, if θ > 0, there exists a unique νθ which is positive and satisfies (4).

In particular, for θ = 0, we need the first derivative to be negative at ν = 0 in order

for ν0 to exist, where the uniqueness is guaranteed by convexity. The derivative at ν = 0
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Function f
0
(ν) and the Positive Solution ν

0

ν

f’
0
(0)

f
0
(ν)

f’
0
(ν

0
)

ν
0

Figure 2: Function f0(ν) and the Positive Solution ν0

is

f ′0(ν)
���
ν=0

= −cπ1 + γ1
α1

δ
,

and this is negative by (3), also see Figure 2.

Using Lemma 3.2, we will now find a suitable martingale which will be used to derive

the upper bounds of the infinite-horizon and finite-horizon ruin probabilities in Section

4.

Theorem 3.1. Suppose the net profit condition (3) holds. In this case,

e−νθ Xt e−θte
φ(νθ)−1

δ λt

R∞
Ut

e−(θ+cνθ)v p(v)dv

e−(θ+cνθ)Ut P̄(Ut)
(6)

is a P−martingale.

Proof. From (2), f (x, λ, u, t) has to satisfy the condition A f = 0 for it to be a martingale.

Setting

f (x, λ, u, t) = e−νxe−θte
φ(ν)−1

δ λh̄(u)

in (2), we get the equation

h̄′(u)− (θ + cν) h̄(u) +
p (u)
P̄(u)

�
ĥ
�
−φ (ν)− 1

δ

�
h̄(0)− h̄(u)

�
= 0. (7)
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Solving (7), we have

h̄(u) = h̄(0)

∞R
u

e−(θ+cν)v p(v)dv

e−(θ+cν)u P̄(u)
ĥ
�
−φ (ν)− 1

δ

�
+ h̄(0)

1− p̂(θ + cν) ĥ
�
− φ(ν)−1

δ

�
e−(θ+cν)u P̄(u)

.

As the first term is bounded, for this function to belong to the domain of the generator

the second term, which has infinite expectation should vanish. Hence, we set

p̂(θ + cν) ĥ
�
−φ (ν)− 1

δ

�
= 1,

and therefore ν = νθ . We now have

h̄(u) = h̄(0)
R∞

u e−(θ+cνθ)v p(v)dv

e−(θ+cνθ)u P̄(u)
ĥ
�
−φ (ν)− 1

δ

�
,

and the theorem is proved.

4 Ruin Probabilities

In this section, we obtain upper bounds for ruin probabilities, by employing a martingale

approach. Similar ideas can be found in Dassios and Embrechts (1989), Dassios and Jang

(2003) and Dassios and Zhao (2011). We define the ruin time by

τ∗ := inf {t : Xt < 0} .

If Xt ≥ 0 for all t > 0, then, τ∗ = ∞. With the help of Theorem 3.1, we can obtain

upper bounds for the finite-horizon ruin probability Pr {τ∗ ≤ T | X0, λ0, U0} for a fixed

time T > 0 and the infinite-horizon (ultimate) ruin probability Pr {τ∗ < ∞ | X0, λ0, U0}.
Numerical examples will be provided later in Section 6.

Theorem 4.1. Suppose the net profit condition (3) holds. We then have

Pr {τ∗ ≤ T | X0, λ0, U0} ≤ inf
θ>0

�ℵ(U0, θ)

ℵ(θ) eθTe−νθ X0 e
φ(νθ)−1

δ λ0

�
, (8)

Pr {τ∗ < ∞ | X0, λ0, U0} ≤
ℵ(U0, 0)
ℵ(0) e−ν0X0 e

φ(ν0)−1
δ λ0 , (9)

where

ℵ(u, θ) :=
R∞

u e−(θ+cνθ)v p(v)dv

e−(θ+cνθ)u P̄(u)
, ℵ(θ) := inf

u>0

¦
ℵ(u, θ)

©
. (10)

Proof. Since (6) is a martingale and τ∗ ∧ T := min{τ∗, T} is a stopping time, by the Op-
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tional Stopping Theorem, we have

E

24e−νθ Xτ∗∧T e−θ(τ∗∧T)e
φ(νθ)−1

δ λτ∗∧Tℵ(Uτ∗∧T, θ)

������ X0, λ0, U0

35 = e−νθ X0 e
φ(νθ)−1

δ λ0ℵ(U0, θ)

and therefore

E

24e−νθ Xτ∗ e−θτ∗e
φ(νθ)−1

δ λτ∗ℵ(Uτ∗ , θ)

������ X0, λ0, U0, τ∗ ≤ T

35Pr {τ∗ ≤ T | X0, λ0, U0}

+E

24e−νθ XT e−θTe
φ(νθ)−1

δ λTℵ(UT, θ)

������ X0, λ0, U0, τ∗ > T

35Pr {τ∗ > T | X0, λ0, U0}

= e−νθ X0 e
φ(νθ)−1

δ λ0ℵ(U0, θ). (11)

Hence, we have

e−νθ X0 e
φ(νθ)−1

δ λ0ℵ(U0, θ)

≥ E

24e−νθ Xτ∗ e−θτ∗e
φ(νθ)−1

δ λτ∗ ℵ(Uτ∗ , θ)

������ X0, λ0, U0, τ∗ ≤ T

35Pr {τ∗ ≤ T | X0, λ0, U0} .

As τ∗ ≤ T, we have

e−θτ∗ ≥ e−θT, e−νθ Xτ∗ ≥ 1, e
φ(νθ)−1

δ λτ∗ ≥ 1, ℵ(Uτ∗ , θ) ≥ ℵ(θ),

almost surely and

Pr {τ∗ ≤ T | X0, λ0, U0} ≤
ℵ(U0, θ)

ℵ(θ) eθTe−νθ X0 e
φ(νθ)−1

δ λ0 , ∀ θ ≥ 0. (12)

Hence, (8) follows. If we set θ = 0 in (12), we have (9) which is true for any time T.

Remark 4.1. In order to investigate the monotonicity for the function ℵ(u, θ) of (10) w.r.t.

the variable u, we calculate its first derivative

∂

∂u
ℵ(u, θ) = −ρ(u) +

(θ + cνθ) P̄(u) + p(u)�
P̄(u)

�2 e(θ+cνθ)u
Z ∞

u
e−(θ+cνθ)v p(v)dv.

We observe that for any z > 0, we have

P̄(u + z)
P̄(u)

= exp
�
−
Z u+z

u
ρ(v)dv

�
= exp

�
−
Z z

0
ρ(s + u)ds

�
.

We then observe that

• the failure rate ρ(u) is a non-decreasing function of u, if and only if P̄(u+z)
P̄(u) is a non-

9



increasing function of u for any z > 0;

• the failure rate ρ(u) is a non-increasing function of u, if and only if P̄(u+z)
P̄(u) is a non-

decreasing function of u for any z > 0.

We now rewrite ℵ(u, θ) as

ℵ(u, θ) =

R∞
u e−(θ+cνθ)(v−u)p(v)dv

P̄(u)

=

R∞
0 e−(θ+cνθ)s p(u + s)ds

P̄(u)

=

R∞
0

�
1− R s

0 (θ + cνθ) e−(θ+cνθ)zdz
�

p(u + s)ds
P̄(u)

=
P̄(u)− R∞

s=0
R s

z=0 (θ + cνθ) e−(θ+cνθ)z p(u + s)dsdz
P̄(u)

=
P̄(u)− R∞

z=0
R∞

s=z (θ + cνθ) e−(θ+cνθ)z p(u + s)dsdz
P̄(u)

= 1− (θ + cνθ)
Z ∞

0
e−(θ+cνθ)z P̄(u + z)

P̄(u)
dz.

Hence,

• if ρ(u) is a a non-decreasing function of u, then ℵ(u, θ) is a non-decreasing function

of u and its minimum value is

ℵ(θ) = ℵ(0, θ) = p̂ (θ + cνθ) ; (13)

• if ρ(u) is a non-increasing function of u, then ℵ(u, θ) is a non-increasing function of

u and its minimum value is

ℵ(θ) = ℵ(∞, θ) = lim
u→∞

p(u)
p(u) + (θ + cνθ) P̄(u)

= lim
u→∞

ρ(u)
ρ(u) + (θ + cνθ)

=
ρ∗

ρ∗ + (θ + cνθ)
,

where ρ∗ := limu→∞ ρ(u) and L’Hôpital’s rule may need to find the limit;

• in all other cases when ρ(u) is a non-monotonic function of u, ℵ(θ) needs to be

calculated numerically. We provide numerical examples later in Section 6.

5 Estimating Ruin Probabilities by Simulation

As many ruin problems based on our generalised risk model of (1) may lead to no closed-

form results in general, we provide a numerical algorithm for efficiently simulating sam-

ple paths of the risk process Xt. Thereafter, we develop a method for estimating the

ultimate ruin probability by using importance sampling via change of measure.
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5.1 Numerical Algorithm for Exact Simulation

We will first provide an efficient numerical algorithm for exact simulation (rather than

considering a discrete time version of the process).

Algorithm 5.1. Given the initial condition
�

X0, λ0, U0
�
, we can simulate a path of

¦�
Xt, λt, Ut

�©
t≥0

recursively by the following steps:

1. Simulate the (k + 1)th interarrival time Sk+1 in the point process Nt by explicitly inverting

its tail distribution

Pr{Sk+1 > s} = exp
�
−
Z tk+s

tk

λt+k
e−δ(u−tk)du

�
= exp

�
−1− e−δs

δ
λt+k

�
.

2. Simulate the (k + 1)th interarrival time Ek+1 in the intensity process λt via

Pr{Ek+1 > s} = Pr {Rk+1 > Uk + s | Rk+1 > Uk} =
P̄(Uk + s)

P̄(Uk)
, Rk+1 ∼ P,

(14)

where Ek+1 can be simulated by inversion if P̄(Uk+s)
P̄(Uk)

has an analytic inverse function, oth-

erwise, Ek+1 can be simulated by truncation; we provide a numerical example in Section

6.

3. Record the (k+ 1)th common interarrival time Ik+1 = min {Ek+1, Sk+1}, and the (k+ 1)th

arrival time tk+1 = tk + Ik+1.

4. Simulate a path of the joint process (Xt, λt, Ut) within the time interval [tk, tk + Ik+1):

• if min {Ek+1, Sk+1} = Ek+1, then, set

Utk+1 = 0, λtk+1 = λt+k
e−δIk+1 + Yk+1, Xtk+1 = Xt+k

+ cIk+1;

• if min {Ek+1, Sk+1} = Sk+1, then, set

Utk+1 = Uk + Ik+1, λtk+1 = λt+k
e−δIk+1 , Xtk+1 = Xt+k

+ cIk+1 − Zk+1.

5.2 Ruin Probability by Change of Measure

Ruin is usually a rare event under the original probability measure P in the real world.

Hence, a direct crude Monte Carlo simulation approach may not be so efficient. We

extend the importance sampling methodology of Dassios and Zhao (2012) based on a

suitable change of probability measure. This has a double effect:

1) under the new probability measure the event of ruin becomes almost certain;

11



2) under the new probability measure, the importance sampling estimator of the ruin

probability has smaller variance (or standard error).

The general method of improving the efficiency of stochastic simulation using impor-

tance sampling in the literature can be found in Siegmund (1976), Glynn and Iglehart

(1989), Glasserman (2003) and Asmussen and Glynn (2007). In particular, for ruin prob-

lems, see Asmussen (1985), Asmussen and Binswanger (1997) and Torrisi (2004).

Theorem 5.1. If the net profit condition (3) holds under the original measure P, the ruin proba-

bility conditional on (X0, λ0, U0) can be expressed under the new measure P̃ by

Pr {τ∗ < ∞ | X0 = x, λ0 = λ, U0 = u}

= e−ν0xeθ0λ̃h̄(u)Ẽ

24Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)

������ X0 = x, λ̃0 = λ̃, U0 = u

35 , (15)

where ν0 is defined in (ii) of Lemma 3.2, θ0 := φ(ν0)−1
δφ(ν0)

, λ̃ := φ(ν0)λ,

h̄(u) :=
¯̃P(u)
P̄(u)

ecν0u, ¯̃P(u) := 1− P̃(u), (16)

Ψ(u) :=
R∞

u e−ν0(z−u)dZ̃(z)
¯̃Z(u)

, ¯̃Z(u) := 1− Z̃(u), (17)

with the new equivalent probability measure P̃ defined via the Radon-Nikodym derivative (or

likelihood ratio)
dP

dP̃
:= e−ν0xeθ0λ̃h̄(u)Ψ(Xτ∗−)

e
−θ0λ̃τ∗−

h̄(Uτ∗−)
.

The associated parameter setting for the process (Xt, λt, Ut) under P transforms to the new one

under P̃ according to

P→ P̃ : λ→ λ̃, c→ c̃, δ→ δ̃, p→ p̃, P→ P̃, Z → Z̃, h→ h̃,

where c̃ = c, δ̃ = δ,

p̃(u) :=
e−cν0u

p̂(cν0)
p(u), P̃(u) :=

Z u

0
p̃(v)dv, (18)

dZ̃(z) :=
eν0z

φ(ν0)
dZ(z), h̃(u) :=

e
φ(ν0)−1
δφ(ν0)

u

φ(ν0)

h
�

u
φ(ν0)

�
ĥ
�
− φ(ν0)−1

δ

� . (19)

Proof. If we set θ = 0 in Theorem 3.1 and (7) and further assume h̄(0) = 1, we have the

P−martingale

e−ν0Xt e
φ(ν0)−1

δ λt h̄(Ut), t > 0, (20)

12



where

h̄′(u)− cν0h̄(u) +
p(u)
P̄(u)

�
ĥ
�
−φ(ν0)− 1

δ

�
h̄(0)− h̄(u)

�
= 0.

This differential equation has the solution

h̄(u) =
R∞

u e−cν0v p(v)dv
e−cν0uP̄(u)

ĥ
�
−φ(ν0)− 1

δ

�
. (21)

Clearly h̄(u) is bounded, since by L’Hôpital’s rule, we have

lim
u→∞

R∞
u e−cν0v p(v)dv

e−cν0uP̄(u)
= lim

u→∞

p(u)
P̄(u)

cν0 +
p(u)
P̄(u)

≤ 1.

Note that Z ∞

u
e−cν0v p(v)dv = p̂(cν0)

Z ∞

u
p̃(v)dv = p̂(cν0)

¯̃P(u),

which can be rewritten (21) as

h̄(u) = ĥ
�
−φ(ν0)− 1

δ

�
p̂(cν0)

¯̃P(u)
P̄(u)

ecν0u.

Moreover, by Lemma 3.2 we have

ĥ
�
−φ(ν0)− 1

δ

�
p̂(cν0) = 1

which can be simplified as (16).

We now carry out the change of measure via the analysis of Model-2 type (Dassios

and Embrechts, 1989) generator

A f (x, λ, u) = c
∂ f
∂x

+
∂ f
∂u
− δλ

∂ f
∂λ

+ λ
�Z x

0
f (x− z, λ, u)dZ(z) + Z̄(x)− f (x, λ, u)

�
+

p(u)
P̄(u)

�Z ∞

0
f (x, λ + y, 0)dH(y)− f (x, λ, u)

�
, x > 0.

The ruin probability under the original measure P

f (x, λ, u) = Pr {τ∗ < ∞ | X0 = x, λ0 = λ, U0 = u}

is the solution to the integro-differential equation A f (x, λ, u) = 0. Plugging

f (x, λ, u) = e−ν0xe
φ(ν0)−1

δ λh̄(u) f̃ (x, λ, u)

13



into A f (x, λ, u) = 0, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ

∂ f̃
∂λ

+φ(ν0)λ

�Z x

0
f̃ (x− z, λ, u)

eν0z

φ(ν0)
dZ(z) +

Z̄(x)

e−ν0xe
φ(ν0)−1

δ λh̄(u)φ(ν0)
− f̃ (x, λ, u)

�
+ĥ

�
−φ(ν0)− 1

δ

�
h̄(0)
h̄(u)

p(u)
P̄(u)

�Z ∞

0
f̃ (x, λ + y, 0)

e
φ(ν0)−1

δ y

ĥ
�
− φ(ν0)−1

δ

�dH(y)− f̃ (x, λ, u)

�
.

Hence,

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ

∂ f̃
∂λ

+φ(ν0)λ

�Z x

0
f̃ (x− z, λ, u)

eν0z

φ(ν0)
dZ(z) +

Z̄(x)

e−ν0xe
φ(ν0)−1

δ λh̄(u)φ(ν0)
− f̃ (x, λ, u)

�
+

p(u)e−cν0uR∞
u e−cν0v p(v)dv

�Z ∞

0
f̃ (x, λ + y, 0)

e
φ(ν0)−1

δ y

ĥ
�
− φ(ν0)−1

δ

�dH(y)− f̃ (x, λ, u)

�
.

Letting λ̃ = φ(ν0)λ, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ̃

∂ f̃
∂λ̃

+λ̃

�Z x

0
f̃ (x− z, λ̃, u)

eν0z

φ(ν0)
dZ(z) +

Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)

− f̃ (x, λ̃, u)

�

+
p(u)e−cν0uR∞

u e−cν0v p(v)dv

�Z ∞

0
f̃
�

x, λ̃ + φ(ν0)y, 0
� e

φ(ν0)−1
δ y

ĥ
�
− φ(ν0)−1

δ

�dH(y)− f̃ (x, λ̃, u)

�
.

By the change of variable u = φ(ν0)y, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ̃

∂ f̃
∂λ̃

+λ̃

�Z x

0
f̃ (x− z, λ̃, u)

eν0z

φ(ν0)
dZ(z) +

Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)

− f̃ (x, λ̃, u)

�

+
p(u)e−cν0uR∞

u e−cν0v p(v)dv

�Z ∞

0
f̃
�

x, λ̃ + u, 0
� e

φ(ν0)−1
δφ(ν0)

u

φ(ν0)

h
�

u
φ(ν0)

�
ĥ
�
− φ(ν0)−1

δ

�du− f̃ (x, λ̃, u)

�
.
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Using an Esscher transform (Gerber and Shiu, 1994) on (18) and (19), we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ̃

∂ f̃
∂λ̃

+λ̃

�Z x

0
f̃ (x− z, λ̃, u)dZ̃(z) +

Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)

− f̃ (x, λ̃, u)

�

+
p̃(u)
¯̃P(u)

�Z ∞

0
f̃
�

x, λ̃ + u, 0
�
h̃(u)du− f̃ (x, λ̃, u)

�
.

It is easy to check that
R∞

0 h̃(u)du = 1, so h̃(u) is a well defined density function. Note

that,
¯̃Z(x) =

Z ∞

x
dZ̃(z) =

R∞
x eν0zdZ(z)

φ(ν0)
.

Therefore,

Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)

=
e−

φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)

R∞
x e−ν0(z−x)dZ̃(z)

¯̃Z(x)
¯̃Z(x) =

e−
φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)
Ψ(x) ¯̃Z(x).

Hence, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u
− δλ̃

∂ f̃
∂λ̃

+λ̃

�Z x

0
f̃ (x− z, λ̃, u)dZ̃(z) +

e−
φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)
Ψ(x) ¯̃Z(x)− f̃ (x, λ̃, u)

�

+
p̃(u)
¯̃P(u)

�Z ∞

0
f̃
�

x, λ̃ + u, 0
�
h̃(u)du− f̃ (x, λ̃, u)

�
,

with the solution

f̃ (x, λ̃, u) = Ẽ

264Ψ(xτ∗−)
e
− φ(ν0)−1

δφ(ν0)
λ̃τ∗−

h̄(Uτ∗−)
1 {τ∗ < ∞}

������ X0 = x, λ̃0 = λ̃, U0 = u

375 .

We will prove in the next theorem that, if the net profit condition (3) holds under the

original measure P, then ruin occurs almost surely under the new measure P̃. Hence, we

have the ruin probability (15).

Theorem 5.2. If the net profit condition (3) holds under the original measure P, then, ruin occurs

almost surely under the new measure P̃.

15



Proof. Note that first-order moments under the new measure P̃ are given by

π̃1 := Ẽ[Ri] =
Z ∞

0
up̃(u)du =

R∞
0 ue−cν0u p(u)du

p̂(cν0)
,

α̃1 := Ẽ[Yi] =
Z ∞

0
uh̃(u)du = φ(ν0)

R∞
0 ye

φ(ν0)−1
δ ydH(y)

ĥ
�
− φ(ν0)−1

δ

� ,

γ̃1 := Ẽ[Zj] =
Z ∞

0
zdZ̃(z) =

R∞
0 zeν0zdZ(z)

φ(ν0)
.

The loss rate under the new measure P̃ is given by

γ̃1α̃1

δ̃π̃1
=

p̂(cν0)

δĥ
�
− φ(ν0)−1

δ

� R∞
0 zeν0zdZ(z)

R∞
0 ye

φ(ν0)−1
δ ydH(y)R∞

0 ue−cν0u p(u)du
.

From (5), we have

f0(ν) = p̂(cν)ĥ
�
−φ(ν)− 1

δ

�
,

f ′0(ν) = p̂(cν)

R∞
0 zeνzdZ(z)

δ

Z ∞

0
ye

φ(ν)−1
δ ydH(y)− cĥ

�
−φ(ν)− 1

δ

�Z ∞

0
ue−cνu p(u)du.

From the net profit condition (3), we have

f ′0(ν)
���
ν=0

= −cπ1 +
γ1α1

δ
< 0.

This is due to the convexity of f (ν) as proved in Lemma 3.2, i.e. f ′′(ν) > 0. Recall that v0

is the unique positive solution to (4) for θ = 0 (see Figure 2) and we have f ′0(ν)
���
ν=ν0>0

> 0.

Then,

p̂(cν0)

R∞
0 zeν0zdZ(z)

δ

Z ∞

0
ye

φ(ν0)−1
δ ydH(y) > cĥ

�
−φ(ν0)− 1

δ

�Z ∞

0
ue−cν0u p(u)du

which can be rewritten as

p̂(cν0)
R∞

0 zeν0zdZ(z)
R∞

0 ye
φ(ν0)−1

δ ydH(y)

δĥ
�
− φ(ν0)−1

δ

� R∞
0 ue−cν0u p(u)du

> c,

i.e.
γ̃1α̃1

δ̃π̃1
> c̃.

Hence, the expected loss rate exceeds the expected premium rate, and ruin is almost

certain to happen under the new measure P̃.

We now analyse the efficiency of our simulation scheme based on importance sam-

pling developed in Theorem 5.1. In the following Corollary 5.1, we prove that, for a
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relatively large initial reserve, the new variance of the estimator for the ultimate ruin

probability based on importance sampling in Theorem 5.1 is less than the variance of the

estimator based on the crude simulation of Algorithm 5.1 under the original probability

measure.

Corollary 5.1. For any initial reserve x > x where

x :=
1
ν0

�
θ0λ̃ + ln

ℵ(u, 0)
ℵ(0)

�
,

and ℵ(u, 0), ℵ(0) are defined by (10), we have

V > Ṽ,

where V is the variance of the estimator for the ultimate ruin probability based on the crude

simulation under the original measure P, and Ṽ is the variance based on the importance sampling

procedure under the new measure P̃, i.e.

V := Var
�

1 {τ∗ < ∞ | X0 = x, λ0 = λ, U0 = u}
�

,

Ṽ := ÞVar

24e−ν0xeθ0λ̃h̄(u)×Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)

������ X0 = x, λ̃0 = λ̃, U0 = u

35 .

Proof. We have that V = ψ(1−ψ) where ψ := Pr {τ∗ < ∞ | X0 = x, λ0 = λ, U0 = u} and

Ṽ = ÜE264�e−ν0xeθ0λ̃h̄(u)×Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)

�2 ������ X0 = x, λ̃0 = λ̃, U0 = u

375− ψ2.

Based on h̄(u) as specified in (21) and further discussions on lower bounds in Remark

4.1, we have

h̄(u) = ℵ(u, 0)ĥ
�
−φ(ν0)− 1

δ

�
≥ ℵ(0)ĥ

�
−φ(ν0)− 1

δ

�
.

Moreover, note that Ψ(Xτ∗−) < 1 always holds, so we have

Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)
≤ 1

ℵ(0)ĥ
�
− φ(ν0)−1

δ

� .

Given h̄(u) from (21) and ℵ(u, 0) from (10), it is clear that, if x is large enough, more

precisely, if x > x, we have

e−ν0xeθ0λ̃h̄(u)×Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)
< 1.
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Therefore,

Ṽ−V = ÜE264�e−ν0xeθ0λ̃h̄(u)×Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)

�2 ������ X0 = x, λ̃0 = λ̃, U0 = u

375− ψ

< ÜE24e−ν0xeθ0λ̃h̄(u)×Ψ(Xτ∗−)
e
−θ0λ̃τ∗−

h̄(Uτ∗−)

������ X0 = x, λ̃0 = λ̃, U0 = u

35− ψ

= ψ− ψ = 0

and Ṽ < V.

Remark 5.1. If ρ(u) is a non-decreasing function of u, then, using (13) and Lemma 3.2, we

have ℵ(0) = p̂ (cν0), and an explicit lower bound for x,

x =
1
ν0

�
θ0λ̃ + ln h̄(u)

�
.

If we further assume u = 0, we simply have x = θ0
ν0

λ̃.

Remark 5.2. In fact, Theorem 5.1 combined with Corollary 5.1 tells us that,

Ṽ = V×O
�
e−ν0x

�
,

which demonstrates the efficiency of the importance sampling approach for a large initial

reserve x. In practice, the initial reserve is usually large, so the condition x > x is not a

serious restriction. Further improvements to the efficiency of our algorithm can be a

subject of future research.

6 Numerical Implementation

For numerical implementation, we assume explicitly that, under the measure P, the claim

sizes
¦

Zj
©

j=1,2,··· and jump sizes
¦

Yi
©

i=1,2,··· follow exponential distributions, and the in-

terarrival times {Ri}i=1,2,... follow an inverse Gaussian distribution, say,

Z ∼ Exp(γ), H ∼ Exp(α), P ∼ IG
�

µIG =
a
b

, λIG = a2
�

,

where α, γ, a, b are all positive constants. We will now explain how to implement our

model step by step.

Distribution of Claim Sizes Z: If the claim sizes are exponentially distributed with

parameter γ under the measure P, we have γ1 = 1/γ, φ(ν0) = γ
γ−ν0

, and Ψ(u) of (17)

can be simplified as Ψ(u) = γ−ν0
γ and is independent of Xt. Hence, we do not need to
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record Xτ∗− during the simulation for this special case. By transformation (19), we have

dZ̃(z) = (γ − ν0)e−(γ−ν0)zdz, which implies that Z̃ ∼ Exp(γ − ν0), γ > ν0 under the

measure P̃.

Distribution of Interarrival Times P: The distributional properties of inverse Gaussian

distribution have been well documented in Chhikara and Folks (1989). If P follows an

inverse Gaussian distribution, say, P ∼ IG
�
µIG = a

b , λIG = a2
�

with mean π1 = µIG =

a/b and the shape parameter λIG = a2, then, we have the density

p(u) =
a√

2πu3
e−

(a−bu)2
2u ,

the Laplace transform

p̂(v) = e−(
√

2v+b2−b)a,

and the cumulative distribution function

P(u) = Φ
�

bu− a√
u

�
+ e2abΦ

�
−bu + a√

u

�
, (22)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

To calculate an upper bound for the ruin probability as given by Theorem 4.1 and

further based on Remark 4.1, since the failure rate, ρ(u), is a non-monotonic function

(Chhikara and Folks, 1977), we need to calculate ℵ(θ) numerically. The key function

ℵ(u, θ) defined by (10) can be calculated explicitly by

ℵ(u, θ) = e(θ+cνθ)u−a
�√

b2+2(θ+cνθ)−b
�Φ

�
−
√

b2+2(θ+cνθ)u−a√
u

�
− e2a

√
b2+2(θ+cνθ)Φ

�
−
√

b2+2(θ+cνθ)u+a√
u

�
Φ
�
− bu−a√

u

�
− e2abΦ

�
− bu+a√

u

� .

(23)

For the Monte Carlo simulation via Algorithm 5.1, we note that by (14), we have

Pr{Ek+1 > s} = P̄(Uk + s)
P̄(Uk)

,

where

P̄(u) = Φ
�
−bu− a√

u

�
− e2abΦ

�
−bu + a√

u

�
.

However, the analytic inverse function for s does not exist, so we have to simulate Ek+1

by truncating the inverse Gaussian distribution. An efficient simulation algorithm of the

inverse Gaussian distribution can be found in Michael et al. (1976). By transformation

(18), it remains an inverse Gaussian distribution, since the density under the measure P̃
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is given by

p̃(u) =
a√

2πu3
e−

�
a−
√

2cν0+b2u
�2

2u ,

then, P̃ ∼ IG
�
µ̃IG = ã

b̃
, λ̃IG = ã2

�
where ã = a, b̃ =

√
2cν0 + b2, and

P̃(u) = Φ
�

b̃u− ã√
u

�
+ e2ãb̃Φ

�
− b̃u + ã√

u

�
. (24)

Distribution of Jump Sizes H: If we further assume H ∼ Exp(α), then, we have α1 =

1/α, ĥ(ν) = α
α+ν and

h̄(u) =
1− P̃(u)
1− P(u)

ecν0u,

where P(u) and P̃(u) are specified by (22) and (24) respectively. By transformation (19),

we have

h̃(u) =
�

αδ + φ(ν0)− 1
δφ(ν0)

�
e−
�

αδ+φ(ν0)−1
δφ(ν0)

�
u
.

Hence, H̃ ∼ Exp
�

αδ+φ(ν0)−1
δφ(ν0)

�
under the measure P̃.

Note that, the function f0(ν) as defined by (5) is given by

f0(ν) = e−(
√

2cν+b2−b)a × α

α−
γ

γ−ν−1
δ

, ν ∈
�
0,

αδ

1 + αδ
γ

�
.

The key parameter ν0 can be found numerically (see Figure 2). From (3), the net profit

condition is c > b
δaγα . We set the following parameter values

(δ, c; λ0, X0, U0; a, b, α, γ) = (2, 8; 1.5, 10, 0; 0.5, 5, 2, 0.5).

We can now estimate the ruin probability Pr {τ∗ ≤ T | X0, λ0, U0} for any fixed time T

based on Algorithm 5.1 using crude Monte Carlo simulation1 with 10, 000 replications,

and the estimated ruin probabilities for different times T. The corresponding standard

errors and running (CPU) times are given by Table 1 respectively. As each path is in-

dependently generated, it is obvious that, the standard error is
q

ψ(1−ψ)
n where ψ is the

associated true ruin probability and n is the total number of replications.

It is not so efficient (in fact, impossible in the strict sense) to estimate the ultimate

ruin probability based on crude Monte Carlo simulation under this original probability

measure P, as we need to set the time T sufficiently large in order to approximate the

infinite horizon case. Ruin has a relatively small probability, so most of the simulated

1All simulations in this paper are based on MatLab on a desktop PC with Intel Core i7-3770
CPU@3.40GHz processor, 8.00GB RAM, 64-bit Operating System Windows 7.
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Table 1: Ruin probability Pr {τ∗ ≤ T | X0, λ0, U0} estimated based on crude Monte Carlo simula-
tion of 10, 000 replications under the measure P

Time T Ruin Probability Standard Error
�×10−4� CPU Time (sec)

10 8.45% 27.82 29.59
20 9.37% 29.14 54.18
30 9.22% 28.93 93.02
40 9.32% 29.07 104.71
50 8.47% 27.84 128.76
60 9.06% 28.71 162.01
70 9.27% 29.00 191.74
80 9.01% 28.63 204.56
90 8.94% 28.53 244.25
100 9.01% 28.63 257.95

samples are thrown away.

Alternatively, we can change the measure from P to P̃ according to Theorem 5.1, and

the transformed parameters under P̃ are given by

(δ̃, c̃; λ̃0, X0, U0; ã, b̃, α̃, γ̃) = (2, 8; 2.20, 10, 0; 0.5, 5.25, 1.52, 0.34), ν0 ≈ 0.1594,

where we find that all replications lead to ruin occurring before time T = 200 and 91.70%

of the replications before time T = 20, see the second column in Table 2. By using the

formula (15), we estimate the ultimate ruin probability as Pr {τ∗ < ∞ | X0, λ0, U0} ≈
10.29%. Note that, λτ∗− = λτ∗ as λt is continuous at τ∗.

Table 2: Ultimate ruin probability Pr {τ∗ < ∞ | X0, λ0, U0} estimated based on Monte Carlo simu-
lation of 10, 000 replications under the measure P̃

Time T Ruin Probability under P̃ Ultimate Ruin Probability Standard Error
�×10−4� CPU Time (sec)

20 91.70% 10.34% 2.09 17.00
40 97.75% 10.29% 2.07 19.38
60 99.40% 10.28% 2.09 23.43
80 99.72% 10.29% 2.07 20.61
100 99.90% 10.25% 2.10 21.23
120 99.96% 10.25% 2.08 20.56
140 99.98% 10.29% 2.07 20.00
160 99.96% 10.29% 2.10 21.04
180 100.00% 10.31% 2.08 20.16
200 100.00% 10.29% 2.10 19.36

The standard error is used for measuring the error, and it is estimated by the sample

standard deviation of the simulation output divided by the square root of the number of

trials. Comparing Table 1 and Table 2, we see that the simulation is much more efficient

under P̃ than the one under P. The standard error is substantially reduced by about 14

times under P̃ in average. Moreover, the computing speed is much faster under P̃; the

simulation for the case T = 200 in Table 2 needed 19 seconds, whereas the simulation for

an even shorter period of T = 100 in Table 1 needed 258 seconds. This demonstrates the

points we made under Corollary 5.1 Remark 5.2.
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Figure 3: Simulated ruin probabilities v.s. estimated upper bounds

We also provide an estimated upper bound for the ultimate ruin probability based on

Theorem 4.1 by letting the initial conditions X0, λ0 free and keeping other parameters the

same, i.e. (δ, c; U0; a, b, α, γ) = (2, 8; 0; 0.5, 5, 2, 0.5). We can calculate ℵ(U0, 0) = ℵ(0) =

ℵ(0, 0) = 0.8830 based on (23), and then the upper bound can be derived by

Pr {τ∗ < ∞ | X0, λ0} ≤ e−0.1594X0 e0.2340λ0 .

It is plotted in Figure 3 for (X0, λ0) ∈ [10, 20]× [1, 2] against the associated estimated ruin

probabilities by simulation under the measure P̃. Higher initial intensity λ0 corresponds

to higher ruin probability, as it signifies a higher rate of incidence of claims initially. The

underlying numerical results are represented in Table 3 and Table 4. This is provided as

a very quick alternative (without simulation) to the other two methods.

In particular, we are interested in exploring how the distribution P of the renewal

interarrival times affects the ultimate ruin probability. The inverse Gaussian distribution

has two parameters: the mean µIG = a/b and the shape parameter λIG = a2 specified

at the beginning of Section 6. Note that λIG also controls the variance as the variance

is µ3
IG/λIG. It is obvious that the lower the mean µIG the higher the ruin probability.

However, it is unclear how the shape parameter λIG affects the ruin probability. So, we
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Table 3: Ultimate ruin probability Pr {τ∗ < ∞ | X0, λ0} (%) estimated based on Monte Carlo simu-
lation of 10, 000 replications under the measure P̃

X0 \ λ0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
10 9.17 9.37 9.55 9.84 10.07 10.29 10.55 10.77 11.01 11.28 11.49
11 7.74 7.95 8.15 8.35 8.54 8.74 8.93 9.15 9.34 9.60 9.77
12 6.61 6.75 6.94 7.09 7.25 7.43 7.59 7.78 7.97 8.13 8.33
13 5.61 5.73 5.88 6.03 6.18 6.30 6.45 6.61 6.77 6.90 7.07
14 4.77 4.88 5.00 5.12 5.25 5.37 5.51 5.64 5.74 5.88 6.01
15 4.05 4.18 4.25 4.35 4.47 4.56 4.67 4.79 4.89 5.02 5.12
16 3.45 3.54 3.62 3.71 3.80 3.89 3.98 4.08 4.16 4.28 4.39
17 2.94 3.01 3.08 3.16 3.24 3.32 3.39 3.47 3.55 3.62 3.72
18 2.50 2.57 2.62 2.69 2.75 2.81 2.89 2.95 3.03 3.08 3.17
19 2.14 2.19 2.23 2.29 2.35 2.40 2.46 2.51 2.58 2.64 2.69
20 1.82 1.86 1.90 1.96 1.99 2.04 2.09 2.14 2.19 2.24 2.29

Table 4: The estimated upper bounds for the ultimate ruin probability Pr {τ∗ < ∞ | X0, λ0} (%)

X0 \ λ0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
10 25.67 26.28 26.90 27.53 28.19 28.85 29.54 30.24 30.95 31.68 32.44
11 21.89 22.40 22.94 23.48 24.03 24.60 25.19 25.78 26.39 27.02 27.66
12 18.66 19.10 19.56 20.02 20.49 20.98 21.47 21.98 22.50 23.04 23.58
13 15.91 16.29 16.67 17.07 17.47 17.89 18.31 18.74 19.19 19.64 20.11
14 13.57 13.89 14.22 14.55 14.90 15.25 15.61 15.98 16.36 16.75 17.14
15 11.57 11.84 12.12 12.41 12.70 13.00 13.31 13.63 13.95 14.28 14.62
16 9.86 10.10 10.34 10.58 10.83 11.09 11.35 11.62 11.89 12.18 12.46
17 8.41 8.61 8.81 9.02 9.24 9.45 9.68 9.91 10.14 10.38 10.63
18 7.17 7.34 7.52 7.69 7.88 8.06 8.25 8.45 8.65 8.85 9.06
19 6.12 6.26 6.41 6.56 6.72 6.87 7.04 7.20 7.37 7.55 7.73
20 5.21 5.34 5.46 5.59 5.73 5.86 6.00 6.14 6.29 6.44 6.59

fix the same level for the mean µIG = a/b = 0.1 as before and at the same time vary

λIG; all other parameters of course are kept constant, i.e. (δ, c; λ0, µIG, X0, U0; µIG, α, γ) =

(2, 8; 1.5, 10, 0; 0.1, 2, 0.5). The results of this experiment with different values for λIG are

represented in Table 5, and each estimated value is based on 10, 000 replications under

the measure P̃ within the time T = 200. The second column tells that all the replications

simulated under P̃ had ruin occurring before time T = 200 which also confirms Theorem

5.2. The third column shows that the estimated ultimate ruin probabilities have some

negative relationship with λIG (i.e. positive relationship with variance of renewal inter-

arrival times). However, sensitivity to this parameter decreases, as λIG increases.
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Table 5: Ultimate ruin probability Pr {τ∗ < ∞ | X0, λ0, U0} for µIG = 0.1 with different λIG, esti-
mated based on Monte Carlo simulation of 10, 000 replications under the measure P̃

λIG Ruin Probability under P̃ Ultimate Ruin Probability Standard Error
�×10−4� CPU Time (sec)

0.1 100.00% 11.71% 2.5369 22.15
0.2 100.00% 10.52% 2.1741 19.22
0.3 100.00% 10.13% 2.0316 23.46
0.4 100.00% 9.94% 1.9770 17.96
0.5 100.00% 9.80% 1.9162 18.22
0.6 100.00% 9.71% 1.8614 17.82
0.7 100.00% 9.67% 1.8603 17.52
0.8 100.00% 9.61% 1.8375 16.97
0.9 100.00% 9.57% 1.8399 16.94
1 100.00% 9.56% 1.8093 17.53
2 100.00% 9.47% 1.7774 16.16
3 100.00% 9.45% 1.7677 16.01
4 100.00% 9.44% 1.7435 16.47
5 100.00% 9.45% 1.7593 16.72
6 100.00% 9.42% 1.7636 15.71
7 100.00% 9.42% 1.7184 15.69
8 100.00% 9.42% 1.7576 15.54
9 100.00% 9.44% 1.7348 15.63

10 100.00% 9.43% 1.7557 15.91

References

Albrecher, H. and Asmussen, S. (2006). Ruin probabilities and aggregrate claims distributions for

shot noise Cox processes. Scandinavian Actuarial Journal, 2006(2):86–110.

Asmussen, S. (1985). Conjugate processes and the simulation of ruin problems. Stochastic Processes

and their Applications, 20(2):213–229.

Asmussen, S. and Binswanger, K. (1997). Simulation of ruin probabilities for subexponential

claims. Astin Bulletin, 27(2):297–318.

Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer.

Beard, R. E., Pesonen, E., and Pentikäinen, T. (1984). Risk Theory. Springer.

Brémaud, P. (2000). An insensitivity property of Lundberg’s estimate for delayed claims. Journal

of Applied Probability, 37(3):914–917.

Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag, Berlin, Heidelberg.

Chhikara, R. and Folks, J. (1977). The inverse Gaussian distribution as a lifetime model. Techno-

metrics, 19(4):461–468.

Chhikara, R. and Folks, L. (1989). The Inverse Gaussian Distribution: Theory, Methodology, and Ap-

plications. Marcel Dekker, New York.

Çınlar, E. (1974). Introduction to Stochastic Processes. Prentice-Hall.

Cox, D. and Lewis, P. (1966). The Statistical Analysis of Series of Events. Muthuen, London.

Cox, D. R. (1955a). The analysis of non-Markovian stochastic processes by the inclusion of supple-

mentary variables. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3):433–441.

24



Cox, D. R. (1955b). Some statistical methods connected with series of events. Journal of the Royal

Statistical Society. Series B (Methodological), 17(2):129–164.

Cox, D. R. and Isham, V. (1980). Point Processes. Chapman and Hall, London.

Cramér, H. (1930). On the Mathematical Theory of Risk. Centraltryckeriet.

Dassios, A. and Embrechts, P. (1989). Martingales and insurance risk. Stochastic Models, 5(2):181–

217.

Dassios, A. and Jang, J. (2003). Pricing of catastrophe reinsurance and derivatives using the Cox

process with shot noise intensity. Finance and Stochastics, 7(1):73–95.

Dassios, A. and Jang, J. (2005). Kalman-Bucy filtering for linear systems driven by the Cox process

with shot noise intensity and its application to the pricing of reinsurance contracts. Journal of

Applied Probability, 42(1):93–107.

Dassios, A. and Jang, J. (2012). Moments of a shot noise process driven by a renewal process.

Working paper. London School of Economics.

Dassios, A. and Zhao, H. (2011). A dynamic contagion process. Advances in Applied Probability,

43(3):814–846.

Dassios, A. and Zhao, H. (2012). Ruin by dynamic contagion claims. Insurance: Mathematics and

Economics, 51(1):93–106.

Davis, M. H. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion

stochastic models. Journal of the Royal Statistical Society. Series B (Methodological), 46(3):353–388.

Davis, M. H. (1993). Markov Models and Optimization. Chapman & Hall/CRC.

Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-

diffusions. Econometrica, 68(6):1343–1376.

Gerber, H. U. and Shiu, E. S. (1994). Option pricing by Esscher transforms. Transactions of the

Society of Actuaries, 46:99–140.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.

Glynn, P. W. and Iglehart, D. L. (1989). Importance sampling for stochastic simulations. Manage-

ment Science, 35(11):1367–1392.

Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Journal of the Royal

Statistical Society. Series B (Methodological), 33(3):438–443.

Jang, J. and Krvavych, Y. (2004). Arbitrage-free premium calculation for extreme losses using the

shot noise process and the Esscher transform. Insurance: Mathematics and Economics, 35(1):97–

111.

Klüppelberg, C. and Mikosch, T. (1995). Explosive Poisson shot noise processes with applications

to risk reserves. Bernoulli, 1(1/2):125–147.

25



Macci, C. and Torrisi, G. L. (2011). Risk processes with shot noise Cox claim number process and

reserve dependent premium rate. Insurance: Mathematics and Economics, 48(1):134–145.

Michael, J. R., Schucany, W. R., and Haas, R. W. (1976). Generating random variates using trans-

formations with multiple roots. The American Statistician, 30(2):88–90.

Møller, J. (2003). Shot noise Cox processes. Advances in Applied Probability, 35(3):614–640.

Møller, J. and Torrisi, G. L. (2005). Generalised shot noise Cox processes. Advances in Applied

Probability, 37(1):48–74.

Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (2008). Stochastic Processes for Insurance and

Finance. Wiley.

Schmidt, T. (2014). Catastrophe insurance modeled by shot-noise processes. Risks, 2(1):3–24.

Seal, H. L. (1983). The Poisson process: its failure in risk theory. Insurance: Mathematics and

Economics, 2(4):287–288.

Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. The

Annals of Statistics, 4(4):673–684.

Torrisi, G. L. (2004). Simulating the ruin probability of risk processes with delay in claim settle-

ment. Stochastic Processes and their Applications, 112(2):225–244.

Zhu, L. (2013). Ruin probabilities for risk processes with non-stationary arrivals and subexponen-

tial claims. Insurance: Mathematics and Economics, 53(3):544–550.

26


	Dassios_Risk modelcover_v1
	Dassios_Risk model_author_2015Paper_Ruin_Renewal(17)
	1 Introduction
	2 A Renewal Shot-noise Cox Process
	3 A Risk Process Driven by a Renewal Shot-noise Cox Process
	4 Ruin Probabilities
	5 Estimating Ruin Probabilities by Simulation
	5.1 Numerical Algorithm for Exact Simulation
	5.2 Ruin Probability by Change of Measure

	6 Numerical Implementation
	References


