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CLAUDE AMBROSE ROGERS

1 November 1920 — 5 December 2005

Elected FRS 1959

By Kenneth Falconer1, Peter M. Gruber2, Adam Ostaszewski3 
and Trevor Stuart4

1Mathematical Institute, University of St Andrews, North Haugh, St Andrews, 
Fife KY16 9SS, UK

2Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, 
Wiedner Hauptstrasse 8-10/1046, A-1040 Vienna, Austria

3Mathematics Department, London School of Economics and Political Science, 
Houghton Street, London WC2A 2AE, UK

4Department of Mathematics, Imperial College London, London SW7 2AZ, UK

Claude Ambrose Rogers and his identical twin brother, Stephen Clifford, were born in Cambridge 
in 1920 and came from a long scientific heritage. Their great-great-grandfather, Davies Gilbert, 
was President of the Royal Society from 1827 to 1830; their father was a Fellow of the Society and 
distinguished for his work in tropical medicine. After attending boarding school at Berkhamsted 
with his twin brother from the age of 8 years, Ambrose, who had developed very different 
scientific interests from those of his father, entered University College London in 1938 to study 
mathematics. He completed the course in 1940 and graduated in 1941 with first-class honours, 
by which time the UK had been at war with Germany for two years. He joined the Applied 
Ballistics Branch of the Ministry of Supply in 1940, where he worked until 1945, apparently on 
calculations using radar data to direct anti-aircraft fire. However, this did not lead to research 
interests in applied mathematics, but rather to several areas of pure mathematics. Ambrose’s PhD 
research was at Birkbeck College, London, under the supervision of L. S. Bosanquet and R. G. 
Cooke. Although his first paper was a short note on linear transformations of convergent series, 
his substantive early work was on the geometry of numbers. Later, Rogers became known for his 
very wide interests in mathematics, including not only geometry of numbers but also Hausdorff 
measures, convexity and analytic sets, as described in this memoir. Ambrose was married in 1952 
to Joan North, and they had two daughters, Jane and Petra, to form a happy family.

 

© 2015 The Author(s)
http://dx.doi.org/10.1098/rsbm.2015.0007 405 Published by the Royal Society

 on November 19, 2015http://rsbm.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbm.2015.0007&domain=pdf&date_stamp=2015-09-02
http://rsbm.royalsocietypublishing.org/


406	 Biographical Memoirs

Introduction and overview, by Trevor Stuart

This memoir was originally planned by Professor David Larman, a student and later a 
colleague of Ambrose Rogers, including the idea of four sections to cover Rogers’s wide 
interests: geometry of numbers, Hausdorff measures, convexity, and analytic sets. Moreover 
the first of these topics, geometry of numbers, was requested by David of his friend and 
colleague, Peter M. Gruber, who wrote it before I was involved. However, difficulties arose 
over the other sections, and David therefore asked me, as Editor of Biographical Memoirs, 
to take over in organizing this memoir. I agreed to his request and consulted Professor Nick 
Bingham, who recommended Kenneth Falconer and Adam Ostaszewski, a former student of 
Ambrose Rogers. I am indebted to each of them and to Peter M. Gruber for their excellent 
collaborative work, and to Nick Bingham for his help and advice. I also acknowledge that the 
pattern of this memoir is the one planned by David Larman, and I thank him warmly.

Family background and education
Claude Ambrose Rogers had an interesting family history, as I learned first when, at the Royal 
Society, Ambrose showed me a portrait of his great-great-grandfather, Davies Gilbert [or 
Giddy], who became President of the Royal Society from 1827 to 1830; he was born with the 
surname Giddy but changed it to Gilbert a few years after he married Mary Ann Gilbert. Their 
daughter, Catherine, was Ambrose’s great-grandmother (Robinson 1980). In addition, a bust 
of Davies Gilbert is held by the Royal Society.

Ambrose Rogers’s father, Sir Leonard Rogers, was also a Fellow of the Society (see Boyd 
1963) and was distinguished for his work on tropical medicine.

An Enys family tree, which includes Catherine Gilbert, was sent to me by Ambrose’s 
nephew, Professor L. C. G. (Chris) Rogers.

A Rogers family history had been compiled by Ambrose’s daughters, Jane and Petra, and 
his nephew, Chris. Many of the remarks that follow are taken from that history. Ambrose and 
his younger (twin) brother, Stephen Clifford, were born on 1 November 1920 in Cambridge, 
which was the location of their father’s first post after returning from India. He had retired 
after a distinguished career in the Indian Medical Service. Their mother, Una Elsie North, had 
been sister in charge of surgery at the Medical College Hospital in Calcutta, where she met 
their father. They were married in 1914 and their eldest son, Gordon Leonard, was born in 
India.

The family moved to London in 1921, where Sir Leonard was appointed as a lecturer at the 
London School of Hygiene and Tropical Medicine.

Ambrose’s father was a stern figure, but his mother was a much softer personality. The three 
boys, Ambrose, Clifford and Gordon, were brought up with the aid of a nanny, and after early 
schooling were sent at the age of 8 years to board at Berkhamsted School. At that time neither 
of the twins could read or write fluently, so their father summoned them and told them in clear 
terms that they had better start to do so. Ambrose was heard later to say to his brother, ‘Well, 
Clifford, we will have to read.’ The task took them little time. Ambrose remained throughout 
his life an indifferent speller, and Clifford adopted the undecipherable handwriting of a GP. 
In the pool at Berkhamsted the twins enjoyed a form of ‘synchronized swimming’: Clifford 
would swim a length on the surface with Ambrose swimming about half a metre below him.

After leaving school in 1938 Ambrose hoped to follow his brother Gordon and study 
at Cambridge. However, his father was concerned about the possibility of another war and 
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wanted both the twins to become qualified as soon as possible. Sir Leonard persuaded his son 
not to delay for a year to take the Cambridge entrance examination and so Ambrose enrolled 
at University College London (UCL), from which he graduated in mathematics with first-
class honours, having spent part of his time in Bangor, North Wales, to which UCL had been 
evacuated to avoid the bombing of London.

Early work and marriage
Having finished his undergraduate studies in 1940 after two years, but before he formally 
graduated from the University of London in 1941, he joined the Applied Ballistics Branch 
of the Ministry of Supply for his war service until 1945; several others, who later became 
Fellows of the Royal Society, were similarly employed, including Louis Rosenhead (Stuart 
1986), David Kendall (Kingman 2009), Leslie Howarth (Stuart 2009) and Rodney Hill 
(Sewell 2015). From remarks made to his daughters in later life, it seems that Ambrose worked 
on the use of radar data to direct anti-aircraft fire, but he spoke little of it. That was typical of 
Ambrose because, even to his closest family, he said little of his early life and claimed not to 
remember much of it.

After the war ended, Ambrose Rogers returned to mathematical studies, being appointed 
as a lecturer in mathematics at UCL in 1946 and working for his PhD at Birkbeck College, 
where his supervisors were L. S. Bosanquet and R. G. Cooke. Part of his work had been 
done as a part-time break from his war work, including his first paper, which was published 
in 1946 in Journal of the London Mathematical Society. In that paper Rogers expressed 
his debt ‘to Dr L. S. Bosanquet and Dr R. G. Cooke for advice and encouragement during 
the preparation of this note’. He spent a sabbatical at the Institute for Advanced Study, 
Princeton, on a Commonwealth Fund Fellowship in 1949, where he met and collaborated 
with Aryeh Dvoretsky. After returning to UCL he was later promoted to a readership. 
His work at UCL was very much influenced by Harold Davenport FRS, whom Ambrose 
regarded as his mathematical mentor.

When his mother died in 1951, Ambrose went to live as a lodger with a cousin’s family. 
There he promptly fell in love with his landlady’s daughter (his mother’s great-niece), Joan 
North. They were married in 1952 and subsequently had two daughters: Jane was born in 1955 
and Petra in 1956. Joan wrote four children’s books, which were published under her maiden 
name. Jane and Petra mostly knew their grandfather as Uncle Leonard, having learned of him 
from their mother.

In 1954 Rogers was an applicant for the Mason Chair of Pure Mathematics in Birmingham. 
Walter Hayman (FRS 1956) also was a candidate for that chair, and he comments as follows. 
As he and Ambrose entered the building for the interviews, the porter, seeing two young-
looking men, called out ‘Scholarship candidates this way.’ However, Rogers was appointed 
to the Mason Chair!

According to David Larman this caused Davenport to write to the Provost as follows:

The departure of Dr C.  A. Rogers to take up the Mason Chair of Pure Mathematics at the 
University of Birmingham represents a serious loss to the strength of the Department. For the 
past few years he has been the most active research worker in the department and has been my 
closest collaborator in one of my research interests. From the teaching point of view also the loss 
of Dr Rogers is serious. He is one of those rare men who combine deep learning with adaptability 
and who can take any class, whatever its special needs might be, and give the class exactly what 
is best for it.
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University College London, 1958–86
But in 1958 Rogers returned to UCL to succeed Harold Davenport as Astor Professor of 
Mathematics when Davenport moved to Cambridge. In the meantime, Hayman had been 
appointed as Professor of Pure Mathematics at Imperial College in 1956.

David Larman also wrote that in 1961 Ambrose visited Maurice Sion at the University of 
British Columbia (UBC) in Vancouver and wrote most of his book on Hausdorff measures 
while there, although it was not published until 1970 (58)*. David Larman also wrote that 
it was Maurice Sion who stimulated Ambrose’s interest in analytic sets. Much later, when 
spending a year at UBC in 1972/73, on opening a drawer in his desk, Larman was astonished 
to find a pad of Ambrose’s UCL notepaper!

One of Rogers’s students, Richard Gardner, was with him from 1971 to 1974 ‘focusing on 
measure theory’ while another student, Adam Ostaszewski, was studying analytic sets and a 
third student was working on packing and covering of convex bodies.

Richard Gardner writes:

These three topics, measure theory, descriptive set theory and convex geometry, were Rogers’s 
main research interests at the time. There was little small talk. He would address me, if at all, by 
my surname and almost never asked any personal questions. There was no social activity between 
us. It was a long time before he found out, quite by chance, that I was married. For my part, I 
never inquired about Rogers’s personal life either, and was just as happy to limit our discussions 
to mathematics.

(Geoffrey Burton writes: ‘Rogers was rumoured to believe that married research students 
did no work. David Larman, who married young, concealed the fact from Rogers, who was 
surprised to learn of it at the PhD viva when the External Examiner asked!’)

Richard Gardner continues:

Rogers was very generous with his time and would set up regular meetings of at least an hour 
every ten days or so. Typically I would sit in his huge office, which was equipped with two long 
desks covered with stacks of papers, while he would usually stand. When thinking he paced up 
and down, staring at the floor and jangling keys or change in his pocket. I thought Rogers was a 
wonderful supervisor, always helpful, and in his own formal way, caring and kind. Unable to wait 
for our regular meeting, I once knocked on his door to discuss something I thought I could prove. 
When I apologized for the interruption, he said, ‘Oh, don’t worry. I never consider it a waste of 
time to discuss mathematics.’ He once said to me that if a proof is easy to see, it should be easy 
to write down a proof. Also he explained the importance of being open in sharing mathematics, as 
generosity will be amply repaid in the long run. I often passed on these excellent pieces of advice.

My sad comment, as an author, is that not everyone shares that generous view.
Adam Ostaszewski, who also was a student of Rogers from 1970 to 1973, has read Richard 

Gardner’s remarks and has been stimulated to add to them as follows. ‘Rogers was not referred 
to as Ambrose, an innovation due later to Larman when he became an academic.’ Adam writes:

I was fortunate to see Professor Rogers more closely, possibly because I had been his tutee as 
an undergraduate for three years. I remember a party at his home with small talk over glasses of 
wine with Ambrose, his wife and his daughter Petra. Indeed he wanted to conduct my viva at his 
home, hoping to make Roy Davies’s visit pleasanter. However, I disagreed, feeling that I would be 
nervous in those unfamiliar surroundings, and it did not happen there. Roy decided not to question 

*	Numbers in this form refer to the bibliography at the end of the text.
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me at the viva, dismissing the matter as we had discussed things in Leicester at length and at 
leisure; so half-heartedly and with a brave face Rogers asked me what was the most important 
theorem in my thesis! Afterwards we talked about the weather. Seriously, Rogers was not above 
that; his sense of humour was always there.

During my first post-graduate year Rogers was invited to give a seminar by John Addison, 
who was then visiting Oxford, but he graciously deflected it into a first Oxford seminar for me. 
Probably to make the undertaking less frightening, he took me in his car along with Petra and 
a young friend of hers; half-way we had a surprise picnic from a hamper brought by Ambrose!

He was a most generous supervisor, caring about progress, so that when I got nowhere with the 
first topic he graciously shelved it. Once I recall his saying that he guessed I must be despondent, 
offering another problem to think about but not to be solved in a week: it was for the longer haul. 
Well it was, so I cut my teeth on it and eventually did well for myself.

Kenneth Falconer first met Ambrose Rogers in 1978 in Rogers’s office at UCL on the 
occasion of his PhD viva. The experience was ‘rather overwhelming, although the viva lasted 
only half an hour’. Falconer writes:

Over the next few years I met Ambrose fairly regularly, having common interests; he invited me 
to speak at UCL on several occasions and was very kind and supportive. I remember his telling 
me of how important it was to keep up with new methods—wise advice that I pass on to my 
own students. In 1998 when CUP [Cambridge University Press] published the revised edition 
of Hausdorff measures (89), I was very touched when Ambrose asked me to write the updating 
Foreword for the new edition.

Another aspect of Ambrose’s generous and thoughtful personality is given by Peter M. 
Gruber, who has written:

In the 1960s Ambrose Rogers left the Geometry of Numbers and started working in Measure 
Theory and Analytic Sets. Rogers was well aware that he had left a beautiful field. At a conference 
in Vienna in honour of Edmund Hlawka, I drove several participants to my home. During the 
drive a prominent participant said to Ambrose: Professor Rogers, I do not understand why you 
left such a beautiful and attractive area as is the Geometry of Numbers for ugly Measure Theory. 
In an instant a painful atmosphere filled the car, but instead of exploding, Rogers, who could be 
choleric at times, thought for a minute or so and then said calmly: yes, there is something in what 
you say. The evening was saved!

Some years ago I needed advice from a mathematician with a broad and expert knowledge 
of many areas of mathematics. Of people I knew, the name of Ambrose Rogers sprang to mind. 
The reason was that I was acting as advisor to another university about academic promotions 
in mathematics. One particular case caused me some difficulty in deciding on a suitable 
referee; I was in a quandary until I realized that I should ask Ambrose, which I then did. He 
wrote a thoughtful and detailed assessment, which was of great help as Ambrose’s care and 
honesty came through very strongly. His assessment ‘carried the day’. I was most grateful to 
him, and it sealed my respect for him.

Professor Rogers had a great influence for the good on mathematics, not least through the 
London Mathematical Society (LMS), of which he became President during 1970–72. However, 
I want to discuss an aspect of his concern for mathematics, which took place earlier. In the late 
1960s a very distinguished mathematician [A] had produced a report that classified by quality 
different areas of mathematics in the many UK departments of mathematics. Ambrose objected 
strongly to the results of this classification, as the following anecdote indicates. At a social party 
at my home in about 1968/69 the report was raised in an interchange between [A] and Keith 
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Stewartson FRS, who was instructed firmly and loudly to ‘tell Rogers that …’ The precise details 
are no longer with me, but [A] certainly had objected to Ambrose’s views. The report seemed to 
die a natural death, helped I am sure by Rogers’s strong opposition and probably by that of others.

The family biography says that ‘although he was a man of few words, he was by no means 
unaware of the feelings, needs and motivations of others.’ This was certainly true, as I know 
from those who worked with him as a researcher but also from personal knowledge. He was 
revered by many. There were occasional difficulties in his relationships with colleagues, but in 
some cases I suspect that it was, in an old phrase, ‘six of one and half-a-dozen of the other’. 
In spite of those difficulties in relationships, Ambrose’s generous qualities were always there.

After retiring in 1986, Ambrose continued to work mainly in analytic sets with John Jayne 
and Isaac Namioka. His last book, Selectors (90), which was written with John Jayne, was 
published in August 2002, when he was 81 years old.

London Mathematical Society
David Brannan has written extensively to me about Ambrose Rogers and about his influence 
through the LMS. He first met Rogers in 1971 when he visited him to discuss mathematical 
journals. By this time Rogers, who was Editor-in-Chief of Mathematika, was President of the 
LMS, having succeeded Sir Edward Collingwood FRS, who had died in mid-term. David 
Brannan writes that ‘he listened politely to my ideas and suggested that I should talk to S. James 
Taylor, who was an LMS journal secretary’. As a result David Brannan was nominated as, and 
became, secretary to the LMS Council in November 1971, and then he came to know Rogers well.

David Brannan writes:
In spite of his fierce-looking exterior, Rogers was very easy to work with. He was helpful in all 
sorts of ways, for example with potential teething problems which arose because I had not served 
on Council before. He made suggestions very discreetly beforehand to ensure that everything 
went smoothly.

An enduring contribution to the long-term life of the world mathematical community was 
certainly his drive to realize the Durham Symposia. When I became Secretary, LMS Council was 
looking at its review document which proposed that the LMS set up a conference centre like that 
at Oberwolfach in Germany.

However, financial prospects were poor in the period 1970–74, whether from the UK 
Government or from industrial sources.

David writes:
Council then decided that it might be able to persuade a UK University to host annual conferences 
under LMS auspices with funding from the then Science Research Council (SRC; later the SERC 
and later still the EPSRC). The LMS Council then decided to send a group of three composed of 
Rogers, Philip J. Higgins and David Brannan to check on facilities and university administration 
and to talk to local university administrators. We wrote the final factual report, which Council 
considered at a special Council meeting in July 1972. After a full discussion, Durham University 
was selected, Tom Willmore having been most enthusiastic. [Both Philip Higgins and S. James 
Taylor have also commented on these discussions.] Rogers guided this potentially thorny decision 
process discreetly through all its stages, so that Council was united in its final decision on location.

The LMS–Durham Symposia started in 1974, with Research Council support, and continue to 
this day, a very substantial lasting tribute to Professor Rogers.
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Mathematika and other publications
The UCL journal Mathematika was founded by Harold Davenport in 1954, with Ambrose 
as one of the four editors together with Richard Rado (FRS 1978) and William Dean. The 
journal, which concentrated on areas of research strength at UCL, attracted many seminal 
papers. Remarkably, Ambrose remained an editor until his death in 2005. Mathematika was a 
very low-cost production and in the 1980s Ambrose’s dedication to the journal led to his doing 
much of the copy-editing himself. After his involvement lessened, the journal started to suffer 
from lack of resources and by the early 2000s the publication had dropped to a single issue per 
year. However, the future became assured in 2010 when the LMS came to an arrangement to 
relaunch Mathematika on a commercial basis on behalf of UCL, with Cambridge University 
Press responsible for printing and distribution. It is fair to say that Ambrose’s enormous 
contribution to the journal was in the mind of Kenneth Falconer, then LMS Publication 
Secretary, during the negotiations!

Rogers was active for the good of mathematics in other ways. In 1960 he was asked to 
contribute to a special edition of New Scientist in celebration of the Tercentenary of the 
Royal Society (41); other contributors included E. D. (Lord) Adrian FRS OM (PRS 1950–
55), Sir Edward Bullard FRS and Dennis Gabor FRS. In 1971 he wrote the biographical 
memoir of Harold Davenport (62) jointly with B. J. Birch (FRS 1972), H. Halberstam and 
D. A. Burgess, and later (in 1977) he was a joint editor with B. J. Birch and H. Halberstam 
of The collected works of Harold Davenport (71). In 1991 he wrote the biographical memoir 
of Richard Rado (81).

Assessment
Ambrose Rogers had eight students and 34 mathematical descendants. He was devoted to 
mathematics and was revered by those associated with him in his wide range of researches. 
He was also admired by many in fields remote from his, for his mathematical understanding 
and breadth of vision. His presidency of the LMS will be remembered for his influence and 
drive to realize the enduring LMS Durham Symposia.

Geometry of numbers and discrete geometry, by Peter M. Gruber

Claude Ambrose Rogers was one of the great figures in the geometry of numbers and discrete 
geometry in the twentieth century. This section gives an account of the major contribution of 
Rogers to these fields. These include in particular his results in the context of the Minkowski–
Hlawka theorem and to measure theory in the geometry of numbers and on lattice and non-
lattice packing and covering of convex bodies.

Introduction
The work of Rogers in the geometry of numbers and in discrete geometry began in 1946 with 
an extension of Blichfeldt’s theorem involving successive minima (1) and ended in 1997 with 
a joint article with Zong (88) on the covering of a convex body by translates of another convex 
body. During these 50 years he contributed, in particular, to the following topics:
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the Minkowski–Hlawka theorem and measure theory on the space of lattices;
packing and covering with translates of a convex body;
critical determinants and reduction of star bodies, and symmetrization;
successive minima;
product of homogeneous and inhomogeneous linear forms; and
miscellanea.

For general information on the geometry of numbers see Cassels (1997), Gruber (1979, 
1993, 2007), Erdős et al. (1989), Gruber & Lekkerkerker (1987) and the handbooks of convex 
and of discrete and computational geometry edited by Gruber & Wills (1993) and Goodman 
& O’Rourke (2004), respectively. We assume that the reader is familiar with basic notions of 
the geometry of numbers such as lattice, lattice determinant, and convex body.

The Minkowski–Hlawka theorem and measure theory on the space of lattices
 A version of the Minkowski–Hlawka theorem (see Hlawka 1944), says that for any Borel set S 
in Euclidean n-space Rn of measure V(S) < 1 there is a lattice Λ of determinant 1 that contains 
no point of S with the possible exception of the origin {o}; in other words, Λ is strictly 
admissible for S. If S = K is an o-symmetric convex body, then V(S) < 1 may be replaced by 
V(S) < 2ζ(n), where ζ denotes the Riemann zeta function. Siegel’s (1945) mean value formula 
says that for a certain natural probability measure μ on the space ℒ of all lattices in Rn of 
determinant 1 we have the following: let f : Rn → R be a non-negative Borel–measurable 
function, then

∫
L

(
\{ }

( )
a o

f a
∈Λ
∑ f (a)) d ( )µ Λ =

n
∫
R  

f (x)dx.

In particular, if f is the characteristic function of a Borel set S in Rn, the formula reduces to

#( ( \{ }))d ( ) ( ),S o V Sµ∩ Λ Λ =∫
L

(#( ( \{ }))d ( ) ( ),S o V Sµ∩ Λ Λ =∫
L

)#( ( \{ }))d ( ) ( ),S o V Sµ∩ Λ Λ =∫
L

where # is the counting function, and the Minkowski–Hlawka theorem follows.
Rogers (3) and Rogers and Davenport (4) gave simple transparent proofs of the 

Minkowski–Hlawka theorem. For references to several other proofs see Gruber & 
Lekkerkerker (1987). Refinements, in particular in the sense that 1 and 2ζ(n) are replaced by 
larger quantities, were given by Rogers (24, 26, 34), where in the latter article 1 is replaced 
by 1–4 log 4–3 n = 0.07192 … n . The best-known estimate of this type is due to Schmidt (1963), 
who replaced 1 by log 2 const 0.34657 constn n− = … − . In (23) Rogers gave a version of 
the Minkowski–Hlawka theorem in which lattices are replaced by linear images of a given 
discrete set. A result dealing with spherical symmetrization of a function is contained in 
(27). In (24) Rogers gives extensions of Siegel’s formula to functions of several vector 
variables and to sums over m-tuples of lattice points. Besides Siegel’s method to introduce 
a measure on spaces of lattices, there are other ways to do it. Compare Rogers (24), the 
references mentioned there, and Rogers and Macbeath (25, 31, 33). Of interest is also the 
following variance formula of Rogers (24) (n ≥ 3), where const > 0 is an absolute constant 
and S ⊆ Rn a Borel set:

2(#( ( \{ })) ( )) d ( ) const ( ).S o V S V Sµ∩ Λ − Λ <∫
L

( 2(#( ( \{ })) ( )) d ( ) const ( ).S o V S V Sµ∩ Λ − Λ <∫
L

)2(#( ( \{ })) ( )) d ( ) const ( ).S o V S V Sµ∩ Λ − Λ <∫
L
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As a consequence we obtain that in the case V(S) = +∞, almost every lattice Λ ∈ L contains 
infinitely many points in S. For n  =  2, corresponding, slightly weaker, results are due to 
Schmidt (1960). A generalization to n-tuples of lattice points is due to Aliev & Gruber (2006). 
For more information see Gruber & Lekkerkerker (1987).

For many years it was the widespread opinion of many mathematicians that the Minkowski–
Hlawka theorem is open to substantial (polynomial or even exponential) refinements. An 
exception was Hlawka. Many mathematicians now believe that, in essence, the theorem is the 
best possible. The reasons are the increasing difficulties of the minor improvements and the 
smaller and smaller steps by which the Minkowski–Hlawka bound was finally reached by Rush 
(1989), using error-correcting codes. All known proofs of the Minkowski–Hlawka theorem 
are based on mean value arguments. Thus, it seems that the mean value, in essence, equals the 
optimum, a phenomenon that appears also in the asymptotic theory of normed spaces.

Packing and covering
Let K be a convex body in Rn. A family of translates of K is a packing if the translates are 
pairwise non-overlapping. It is a covering if their union equals Rn. We speak of lattice packing 
(or covering) if the translation vectors are the vectors of a lattice. Without attempting to be 
precise, we say that the density of a packing is the ‘proportion of Rn that is covered by the 
translates of K of the packing’ and that the density of a covering is the ‘sum of the volumes 
of the translates of K of the covering divided by the volume of Rn’. The packing density δ(K) 
of K is the supremum of the densities of packings by translates of K, and the lattice packing 
density δL(K) is the supremum of the densities of the lattice packings of K. Both suprema are 
attained. Similarly, we define the covering density ϑ(K) of K as the infimum of the densities 
of all coverings by translates of K, and the lattice covering density ϑL(K) as the infimum of 
the densities of all lattice coverings of K. These infima are also attained. An easy proof (using 
precise definitions) shows that

( ) ( ) 1 ( ) ( ).L LK K K Kδ δ ϑ ϑ≤ ≤ ≤ ≤

Rogers (13) proved that, for o-symmetric K,
1 1( ) 2 ( ) 2 and ( ) 3 ( ) 3 ,n n n n

L LK K K Kϑ δ ϑ δ− −≤ ≤ ≤ ≤    and    
1 1( ) 2 ( ) 2 and ( ) 3 ( ) 3 ,n n n n

L LK K K Kϑ δ ϑ δ− −≤ ≤ ≤ ≤

thereby improving on a result of Hlawka (1949) that ϑL (K) ≤ nnδL(K). The following is a list 
of successive improvements of the upper estimates for ϑL (K) and ϑ(K):

	 ϑL (K) ≤ 2n    (13, 32),

	 ϑL (K) ≤ 1.8774n    (34),

	 ϑ(K) ≤ n log n + n log log n + 5n    (28),

	 ϑ(K) ≤ n log n + n log log n + 4n

and there is a covering of this density where each point of Rn is covered by at most 
e(n log n + n log log n + 4n) translates of K (44),

	
2log log const( ) n

L K nϑ +≤     (39).

The latter bounds are achieved by an ingenious random method. No better estimate seems to 
be known.
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In Rogers’s last article, written jointly with Zong (88), the following result is proved: Let 
H, K be two convex bodies in Rn. Then the minimum number of translates of H required to 
cover K is bounded above by

( ) ( ),
( )

V K H K
V H

ϑ

where { : }K H x H x K= + ⊆  is the Minkowski difference of K and H. A similar result holds 
in the case where K is covered by lattice translates of H.

The star number of a covering of K is the maximum number of translates of K that meet 
any given translate. Erdős and Rogers (50) proved that the star number of any covering of an 
o-symmetric convex body by translates has star number at least 2n + 1 − 1. The 2-dimensional 
case is due to Boltyanskii (1950).

Let Bn be the solid Euclidean unit ball in Rn. Rogers (21) gave an upper estimate for the 
volume of a convex polytope in Bn with k facets. This estimate was used by Erdős and Rogers 
(19) to show that

16( ) (1) 1.0666 (1) as .
15

nB o o nϑ ≥ − = …− → ∞

Slightly earlier, Bambah & Davenport (1952) proved
4( ) (1) 1.3333 (1) as .
3

n
L B o o nϑ ≥ − = …− → ∞

A substantial refinement of these results is due to Coxeter, Few and Rogers (40):

( ) ( ) ( ) 0.22313 ( ) as .
e e

n n
L

nB B o n n o n nϑ ϑ≥ ≥ + = … + → ∞

An improvement of Rogers (36) over earlier estimates of Blichfeldt (1929) and others for 
packing densities says that

0.5 0.5( ) 2 (1 (1)) 0.36787 2 (1 (1)) as .
e

n n n
L

nB o n o nδ − −≤ + = … + → ∞

For many years the Blichfeldt bound

0.52( ) 2
2

n n
L

nBδ −+
≤

was believed to be, in essence, the final say. With the use of spherical harmonics, the best 
known upper estimate in high dimensions is due to Kabatjanskiĭ & Levenšteĭn (1978):

δL (Bn) ≤ 2−0.599n + o(n)   as   n → ∞.

Although the method of proof of the successive refinements of the upper bound seems to be 
exhausted, many number theorists see no reason why the lowering of the upper bound should 
not continue until the Minkowski–Hlawka bound 2−n + o(n) as n → ∞ is reached; compare the 
earlier remarks.

In his book Packing and covering, Rogers (52) presents his results on the minimum 
covering density. Moreover he describes Dirichlet–Voronoi tilings and their applications to 
the packing of balls and Delone tilings in the context of the empty ball method. The latter is 
applied to coverings with balls.
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For first steps in extending Voronoi’s theory for lattice packing of balls and the empty 
sphere method of Delone to lattice packing and covering of convex bodies, see the articles by 
Gruber (2014, 2015) and the short report by Gruber (2011). For more information we refer to 
Rogers’s little book (52), Gruber & Lekkerkerker (1987), Erdős et al. (1989), Bambah (1999), 
Gruber (2007, 2011) and Schürmann (2009).

We next consider the planar case. Various results of L.  Fejes Tóth (1972, 1983, 1985), 
Fáry (1950), Rogers (16), Bambah and Rogers (17), Bambah, Rogers and Zassenhaus (51), 
G. Fejes Tóth (1988) and others deal with the problem of for which convex discs C we have

δ(C) = δL(C)    and    ϑL (C) = ϑ(C),

and give estimates for these quantities in terms of circumscribed and inscribed hexagons and 
triangles of minimum and maximum areas, respectively. We cite a result of Bambah, Rogers 
and Zassenhaus (51): let C ⊆ R2 be a convex disc of area A and let T be the largest area of a 
triangle contained in K. Then

	 ϑ(C) ≥ A/(2T)
and
	 ϑ(C) = ϑL (C) = A/(2T)    if C is centrally symmetric.

Surveys on results of this type are due to G.  Fejes Tóth & Kuperberg (1993), Bambah 
(1999) and G. Fejes Tóth (2004). A commented English translation by G. Fejes Tóth & 
W. Kuperberg of L. Fejes Tóth’s classical book of 1972 is forthcoming.

Critical determinants and reduction
A star body S ⊆ Rn is a closed set with o in its interior, such that each ray starting at o meets 
the boundary of S in at most one point. The critical determinant Δ(S) of S is the infimum of 
the determinants of the strictly admissible lattices of S. If K = S is a convex body, then

( )( ) ,
( )L
V KK
K K

δ =
∆ −

where K − K = {x − y : x, y ∈ K} is an o-symmetric convex body, the difference body of K. For 
the following inequality see Rogers and Shephard (30):

2
2 ( ) ( ) ( ).n n

V K V K K V K
n

 
≤ − ≤  

 

This inequality relates the lattice packing density of a convex body K to that of the symmetrized 
body K − K = {x − y : x, y ∈ K}. See Rogers and Shephard (35) for a related result.

Chalk and Rogers (6) proved that for a planar o-symmetric convex body C we have

Δ(C) = Δ(K),    where K = C × [−1, 1] is a cylinder in R3.

Before the effective algorithm of Betke & Henk (2000) was known, the critical determinants 
of convex 3-polytopes had only been determined for the Platonic solids, the Euclidean ball B3 
and a few 3-polytopes, for example truncated cubes.

For star bodies the situation is different. Rogers (7) specified a star body S in R2 such that

Δ(S) < Δ(S × [−1, 1]),

and Davenport and Rogers (14) showed that there are planar star bodies S such that
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( )
( [ 1,1])

S
S
∆

∆ × −

is arbitrarily small. A general result of Davenport and Rogers (12) on critical determinants 
yields the critical determinants of certain star bodies, including the following:

2 2| | 1: 7 and | | ( ) 1:xyz x y z≤ ∆ = + ≤ ∆ = 1–2 23.

A star body S is reduced if there is no star body T ⊊ S with Δ(S) = Δ(T). The major problems 
are to characterize reduced star bodies and to find out whether a star body contains a reduced 
star body with the same critical determinant. Rogers (2,  5,  18) proved a series of general 
pertinent results, gave simple proofs of some theorems of Mahler (1946a, b), and answered 
a question of Mahler in the negative. Yet the great hopes in the 1950s of achieving progress 
in the context of critical determinants by means of reduction results on star bodies have not 
materialized.

Successive minima
Let K be an o-symmetric convex body and Λ a lattice. The successive minima λi = λi (K, Λ) of 
K with respect to Λ are defined by

λi = inf { λ > 0 : dim lin (λK ∩ Λ) ≤ i} for i = 1, …, n.

Clearly,

0 < λ1 ≤ λ2 ≤ ⋯ ≤ λn < +∞.

The second fundamental theorem of Minkowski says that

1
2 ( ) ( ) 2 ( ).

!

n
n

n
d V K d
n

λ λΛ
≤ ≤ Λ

Results of Jarník (1941) and Jarník & Knichal (1946) deal with extensions where K is replaced 
by more general sets.

Rogers (8) considered a set S ⊆ Rn with positive Lebesgue measure V(S) and successive 
minima for S − S = { x − y : x, y ∈ S} instead of K. Then

λ1 ⋯ λnV(S) ≤ 2(n − 1)/2 d(Λ).

For more precise results see Rogers (8), Chabauty (1949) and Rogers (29). An unsolved con-
jecture claims that

λ1 ⋯ λn Δ(K) ≤ d(Λ).

This is true for n = 2 and when K ⊆ Rn is an o-symmetric ellipsoid. Chalk and Rogers (10) 
proved this when K = C × [−1, 1] is an o-symmetric convex cylinder in R3. For n = 3 a proof 
is due to Woods (1956).

Product of homogeneous and inhomogeneous linear forms
Let L1, ⋯,  Ln  be n real linear forms in n variables of determinant 1. The homogeneous 
minimum λ = λ(L1, ⋯, Ln) of | L1, ⋯, Ln | is defined by

λ = inf {| L1 (u) ⋯ Ln (u) | : u ∈ Zn \ {o}},
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where Zn is the integer lattice. Then hold the upper estimates,
1 1 (1) 0.22313 (1) as (9),

e e
n o o nλ ≤ + = … + → ∞

1

0.17524 (1) as (11).n o nλ ≤ … + → ∞

For other estimates and related results see Gruber & Lekkerkerker (1987). Chalk and Rogers 
(15) showed that for n = 3 there are u, v, w ∈ Z3 \ {o} such that

| (L1 (u) L2 (u) L3 (u))(L1 (v) L2 (v) L3 (v))(L1 (w) L2 (w) L3 (w)) | ≤ 1/73.

The solvability of simultaneous inequalities of the form

| (L1 (u) + c1) ⋯ (Ln (u) + cn) | < 1,

(L1 (u) + c1)2 + ⋯ + (Ln (u) + cn)2 < ε,

L1 (u) + c1, …, Ln (u) + cn > 0, etc.,

is studied in Rogers (22).

Some remarks
In the 1960s Ambrose Rogers left the geometry of numbers and started working in measure theory 
and analytic sets. Similarly, Edmund Hlawka, Wolfgang Schmidt, Enrico Bombieri, Ian Cassels, 
Alexander Macbeath and other workers left the field; exceptions were the schools of Bambah and 
Hans-Gill in Chandigarh, and Delone and Ryshkov in Moscow. Presumably it was the exceeding 
difficulty of the relevant problems that led to this development. Rogers was well aware that he had 
left a beautiful field. In recent years, progress has been achieved in several important problems 
of the geometry of numbers, including the subspace theorem, the conjecture on the product 
of inhomogeneous linear forms, Mordell’s converse problem of the linear form theorem, and 
extensions of Voronoi’s theorem. The geometry of numbers now seems to be flourishing again.

Conclusion
The contributions of Rogers to packing and covering are classical. His beautiful little 
Cambridge tract (52), Packing and covering, in which some of his more important results 
are elegantly presented, will long be a source of inspiration. Equally important are his 
contributions to measure theory on spaces of lattices. Unfortunately, a comprehensive 
systematic presentation of measure in the geometry of numbers is still missing.

Besides works of a systematic character such as the upper bound for the minimum covering 
density, Rogers produced several small pearls, among which was his concise proof of the 
Minkowski–Hlawka theorem.

His published work exhibits excellent mathematical taste, a clear feeling for relevance and 
future developments, and he had the strength to solve the chosen problems. In his work in the 
geometry of numbers and in discrete geometry, Rogers kept the right balance between being 
too specialized and too general. Many of his results have led to further work and will definitely 
continue to do so.

We consider that, among other results, his estimates for the covering density, his variance 
theorem, and the Rogers–Shephard and Rogers–Zong inequalities will remain his legacy in 
the far future.
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Hausdorff measures, by Kenneth Falconer

Hausdorff measures and dimensions
Ambrose Rogers became interested in Hausdorff measures while he was at Birmingham in 
the mid 1950s, where he met S. James Taylor, a former student of Besicovitch. Although 
Rogers wrote relatively few papers on Hausdorff measures, his influence on the area has been 
enormous. Not least, his beautifully written tract Hausdorff measures (58) remains by far the 
best treatment for both student and advanced researcher. The book, which was written mainly 
while visiting Maurice Sion at UBC in Vancouver in 1961 but was not published until 1970, 
introduces and develops the subject in a detailed but readable way and includes much original 
material. The book was reprinted in 1998 in the Cambridge Mathematical Library series of 
mathematical classics with a new appendix on dimension prints and an updating foreword by 
Kenneth Falconer (89).

Hausdorff measures are of great intrinsic interest, relating to the topology of the underlying 
metric space in a natural way. They are a fundamental tool in the study of the sets that are 
now termed ‘fractals’. Hausdorff measures are not in general σ-finite on the entire underlying 
space, a feature that both heightens their utility and gives rise to many technical difficulties.

Let (Ω, ρ) be a metric space. A function h  :  [0, ∞) →  [0, ∞] that is monotonic, increasing 
and continuous on the right with h(t) > 0 when t > 0 is termed a gauge function. For notational 
convenience we also regard h as a function on the subsets of Ω by setting h(A) = h(d(A)) for 
each non-empty A ⊆ Ω, where d(A) = sup{ρ(x, y) : x, y ⊆ A} is the diameter of A, with ( ) 0h ∅ = .

The Hausdorff measure corresponding to h or just h-Hausdorff measure is the measure μh 
obtained using Carathéodory’s construction as follows. For E ⊆ Ω and δ > 0 let

	 ( ) infh Eδµ = {
1 1

( ( )) : , ( )i i i
i i

h d A E A d A δ
∞∞

= =

⊆ ≤∑  }.	 [1]

Since this infimum cannot decrease as δ decreases, the limit

0
( ) lim ( )h hE Eδ

δ
µ µ

+→
=

exists, either as a non-negative number or infinity, and is called the Hausdorff (outer) measure 
corresponding to h or just the h-Hausdorff measure of E. Then μh is a Borel regular measure 
with all Borel sets measurable and with each set containing an Fσ set of the same measure.

The most commonly used gauge functions are the dth-power functions, h(t) = td for d ≥ 0, 
in which case h-Hausdorff measure is referred to as d-dimensional Hausdorff measure, written 
μd. The Hausdorff dimension of a non-empty set E ⊆ Ω is then defined to be

dim E = sup{d ≥ 0 : μd (E) > 0} = inf {d ≥ 0 : μd (E) < ∞},

these two values being equal. For classical sets, 1-dimensional Hausdorff measure gives the 
lengths of curves and 2-dimensional measure gives the area of surfaces (to within a constant 
multiple). However, Hausdorff measure and dimension quantify general sets, in particular 
fractals; for example, if E ⊂ [0, 1] is the middle third Cantor set (consisting of those numbers 
expressible in base 3 using only the digits 0 and 2), then dim E = log 2/log 3 and μlog 2/log 3 (E) = 1.

Subsets of finite measure
Typically the Hausdorff measure of a metric space (Ω, ρ) is non-σ-finite—that is, it cannot be 
expressed as a countable union of sets of finite measure—so that many of the fundamental 
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techniques of measure theory cannot be used directly. One way to address this difficulty is, 
given a set of infinite measure, to find a subset that has positive finite measure and thus obtain 
a relatively large subset on which there is no problem applying the main tools of measure 
theory. In particular, if E ⊆ Ω has Hausdorff dimension d then 1 ( )d Eµ = ∞ if 0 < d1 < d, where 
d1 may be taken arbitrarily close to d. If there is a subset of E with positive finite 1dµ -measure, 
properties derived by working on such subsets can often be transferred back to the original 
set E. This has proved very useful for certain problems in fractal geometry, such as finding 
the dimension of products of sets (see Marstrand 1954; Larman 1967b) and the dimensions of 
self-affine sets (see Falconer 1988).

Thus, finding subsets of finite positive measure of sets of infinite Hausdorff measure is a 
key problem. It was first considered in Euclidean space by Besicovitch (1952) and in more 
general spaces by Larman (1967a, b). A very general treatment is presented in Hausdorff 
measures (58, 89) which includes original work of Davies and Rogers. The normal approach 
uses net measures h

Nµ ; that is, measures of Hausdorff type but defined using coverings from a 
restricted ‘net’ N of sets in equation [1]. Roughly, a net N consists of a countable collection 
of sets such that each point of the space is contained in arbitrarily small sets of N and such 
that any two sets of N are either disjoint or one is a subset of the other. If ( )h

N Eµ = ∞ for 
some compact (or, more generally, Souslin) set E then, by using the sets of N in a sequential 
manner to cut down the set E, a set of positive finite h

Nµ -measure can be constructed. Many 
Hausdorff measures μh, including those on Euclidean spaces for natural gauge functions, have 
comparable net measures h

Nµ , for which there are constants 0 < c1 ≤ c2 < ∞ such that

1 2( ) ( ) ( )h h h
N Nc A A c Aµ µ µ≤ ≤

for all A. In this case a subset of E of positive finite h
Nµ -measure automatically has positive 

finite μh-measure.
With such positive results on reasonably ‘nice’ spaces, a natural, but very challenging, 

question was whether for every gauge function h, every compact metric space of infinite 
μh-measure contains a subset of positive finite measure. A remarkable counter-example 
was eventually constructed by Davies and Rogers (54), depending on an ingenious graph-
theoretic argument invoking the Lyusternik–Shnirel’man–Borsuk theorem on antipodal 
points.

Answering a related question, Rogers (46) showed that if a metric space has non-σ-finite 
μh-measure for some gauge function h, then there is another gauge function g such that 

0
lim ( ) / ( ) 0
t

g t h t
+→

=  such that the space has non-σ-finite μg-measure.

Decomposition of set functions
Around 1959, Rogers embarked on an extensive collaboration on the decomposition of 
countably additive set functions with S. James Taylor, a mathematician who pioneered the 
use of Hausdorff measures to study sample paths of Brownian and other stochastic processes.

Let F be a finite-valued, countably additive set function defined on the Borel subsets 
of some cube in n-dimensional Euclidean space. By classical Lebesgue theory F has a 
decomposition F = F1 + F2 + F3, where F1 is absolutely continuous with respect to Lebesgue 
measure, F2 is mutually singular to Lebesgue measure and is diffuse, and F3 is atomic. In 
a series of papers Rogers and Taylor (38, 43, 48) and Rogers (42) formulated and obtained 
analogues of this decomposition but with respect to Hausdorff measures rather than Lebesgue 
measure, and also showed that the diffuse component can be broken down further using a 
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range of Hausdorff measures. One of the complications is that the measures involved are non-
σ-finite, unlike in the Lebesgue case.

Let F be as above and let h be a gauge function that gives rise to the Hausdorff measure μh. 
The upper h-density of F at x is defined as

0 ,0 ( )

| | ( )( ) lim sup ,
( ( ))h

x I d I

F ID F x
h d Iδ δ→ + ∈ < <

 
=  

 

where the supremum is over the n-dimensional intervals I of diameter less than δ that contain 
x. Let F1, F2 and F3 be the restrictions of F to the sets of x where ( )hD F x  is zero, positive and 
finite, and infinite, respectively, so that F = F1 + F2 + F3. These three set functions provide a 
decomposition with the following properties: (i) F1 is strongly continuous with respect to μh in the 
sense that F1 (E) = 0 for every set E with σ-finite μh-measure, (ii) F2 is absolutely continuous with 
respect to μh, so that F2 (E) = ∫E ∩ S f d μh, where f (x) ≠ 0 on some set S with μh

 (S) non-negative 
and σ-finite, and (iii) F3 is concentrated on a set K with μh

 (K) = 0 so that F3 (E) = F3 (E ∩ K).
Such a set function F has a further ‘Hausdorff dimension decomposition’, in the sense that 

there is a finite or countable set of numbers 0 ≤ d, d1, d2, … ≤ n such that
1 2d ddF F F F= + + +

where, if Fd is decomposed as above with respect to d-dimensional Hausdorff measure, then 
2 0dF = , and for each i if dim E < di then ( ) 0idF E =  but there is a set Ki with dim Ki = di such 

that ( ) ( )i id d
iF E F E K= ∩ . Thus the singular diffuse part of F can be decomposed into parts 

corresponding to different Hausdorff dimensions. Even finer decompositions of these set 
functions are obtained in (48).

A related paper (43) constructs a completely additive Borel set function F on [0, 1] such that 
for every gauge function h either there is a set K with μh (K) = 0 such that F (E) = F (E ∩ K) 
for all E, or for each set E with μh  (E)  <  ∞ we have F  (E)  =  0; thus the ‘F2’ part of the 
decomposition does not occur for any h.

Hausdorff-like measures
Hausdorff measures are not very suited to ‘large’ spaces; for example, the Hausdorff measure of 
any infinite-dimensional Banach space is infinite for every gauge function. Working with Roy 
Johnson, Rogers introduced ‘local measures’ to obtain a more useful alternative when (Ω, ρ) is 
a large metric space (75). Given a gauge function h and any collection C of open balls in X, let

( ) sup ( ( )) :  and { }h

A A

h d A Aλ
∈ ∈

= ⊆ ≠ ∅∑ 

A A

C A C

then define

0
( ) lim inf ( ) :  covers  and ( )  for all .{ }h hE E d C C

δ
λ λ δ

+→
= < ∈

C
C C C

Although λh defines an outer measure, few sets of positive outer measure are measurable, in 
particular λh (E ∪ F) = max {λh (E), λh (F)} if E and F are separated sets. Paper (77) considers 
the same definition but with covers by open balls replaced by covers of open sets, and the 
resulting outer measure has similar properties. The name ‘local measure’ is justified by the 
fact that if a set E is covered by any collection of open sets of local measure 0 then E itself has 
local measure 0. The concept is illustrated by explicit calculation of local measures of various 
subsets of the Banach space of all real sequences convergent to zero with the supremum norm, 
which can have positive finite local measure for appropriate gauge functions.
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In a different direction it is natural to consider whether Hausdorff-type measures might be 
defined on topological spaces rather than just on metric spaces. By using coverings taken from 
increasingly fine finite partitions of the space, Rogers and Sion (47) extended the definition 
of Hausdorff measure to obtain Borel regular measures on topological spaces. As is typical of 
all Rogers’s work this is illustrated by insightful examples.

Dimensions of specific sets
An important application of Hausdorff measures and dimensions is to estimate the size of sets 
that arise naturally in other areas of mathematics. For example, bounds have been obtained for 
the dimension of fractal attractors of systems of differential equations (see Robinson 2011).

A nice theorem of Ewald, Larman and Rogers (55) shows that, for a convex body K in 
n-dimensional Euclidean space, the set of directions of line segments contained in the surface 
of K cannot be too big; in fact it has σ-finite (n − 2)-dimensional Hausdorff measure (as a 
subset of the (n − 1)-dimensional unit sphere of direction vectors). This is considerably harder 
for general n than in 3 dimensions, a case that had previously been addressed by McMinn 
(1960). More generally, (55) also obtains bounds for the dimension of the set of orientations of 
r-dimensional balls that can lie in the surface of a convex body in terms of Hausdorff measures 
on the Grassmann manifold of r-dimensional subspaces of Rn.

The task of finding the Hausdorff dimension of sets of real numbers defined in terms 
of their continued fraction expansion goes back many years. Good (1941) showed that 
dim E2 ≈ 0.532, where E2 is the set of numbers in [0, 1] whose continued fraction expansions 
contain only the digits 1 and 2, and showed, in principle, how to calculate this dimension 
to any desired accuracy. Rogers (49) considered a related question by putting a measure on 
the set E2 in a natural way corresponding to Lebesgue measure on the base 2 numbers given 
directly by the digits, and seeking the infimum of the Hausdorff dimensions of the subsets of 
E2 of full measure (in modern parlance this is termed the upper Hausdorff dimension of the 
measure). With some intricate calculations involving Euler polynomials he obtained a value 
of about 0.514, noting in particular that this is strictly less than dim E2.

Since 1980, problems involving dimensions of continued fraction sets or measures on such 
sets have been unified within a very general theory of multifractal analysis of measures on 
self-conformal sets (see, for example, Mauldin & Urbański 1999). Indeed, the dimension of 
E2 is now known to hundreds of decimal places (see Hensley 1989).

Dimension prints
Although Hausdorff dimension provides information on the fullness of a set when viewed 
at fine scales, two sets of the same dimension may have very different appearances. Various 
quantities, such as lacunarity and porosity, have been introduced to complement dimension 
(see Mattila 1995). In 1988 Rogers (79) proposed dimension prints, based on measures of 
Hausdorff type, to provide more information about the local affine structure of subsets of Rn.

Let B be a box (a rectangular parallelepiped) in Rn with edge lengths l1, …, ln , and write 
1 2
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defines a Hausdorff-like Borel measure on Rn. The dimension print E of a set E ⊆ Rn consists 
of the set of non-negative vectors d in Rn for which μd (E) > 0.

Dimension prints are convex and satisfy a range of natural properties such as monotonicity 
(if E ⊆  F then print E ⊆  print F) and countable stability (the print of a countable union 
of sets is the union of their prints). One disadvantage is that prints are unstable under 
smooth deformation of sets. The prints of various classical and fractal sets are calculated in 
(79, 83, 86, 89) and succeed in distinguishing between many sets of equal dimension but of 
differing characters.

Convexity, by Kenneth Falconer

The 1960s and 1970s were a golden age in the study of convex bodies. (Here, for the most 
part, a ‘convex body’ will mean a bounded, compact convex set with proper interior in finite-
dimensional Euclidean space.) During that period many attractive and easily understood 
questions were resolved, often requiring considerable ingenuity but with elegant and 
sometimes simple solutions once seen. Ambrose Rogers contributed widely to the area, both 
individually and with collaborators including Clinton Petty, Geoffrey Shephard and especially 
David Larman, who graduated as Rogers’s PhD student in 1965 and continued to work with 
him at UCL. Rogers was keen on proposing and promulgating problems on convexity, and 
some of these appear in published collections, including those of the 1975 Durham Symposium 
on Convexity (68) and the 1980 Coxeter Festschrift (74). His enthusiasm for the subject was 
manifested in many ways, not least by his choice of ‘Probabilistic and combinatorial problems 
in convex and other geometry’ as the title of his invited lecture at the International Congress 
of Mathematicians in Vancouver in 1974 (67).

Although single convex bodies have fascinating properties, there are many questions involving 
families of convex sets, where both their individual geometry and combinatorial aspects of their 
arrangement are key. Rogers was able to combine these elements in his foundational work on 
packing and covering by convex sets, discussed elsewhere in this memoir.

Volumes that provide a broad overview of convex geometry include collections edited by 
Gruber (2007), Gruber & Wills (1983, 1993) and Lay (2007).

Sections and projections of convex bodies
A recurring theme in Rogers’s work is the relationship between convex bodies in Rn and 
their sections by k-dimensional planes and their projections onto k-dimensional subspaces 
(1 ≤ k ≤ n − 1). For example, he showed that if two convex bodies in Rn (n ≤ 3) are such that 
their projections onto every 2-dimensional plane are directly homothetic (that is, similar and 
similarly situated) then the two bodies are also homothetic (53). (The special case when one 
of the bodies was centrally symmetric had earlier been proved by Groemer (1962).) The paper 
also includes the corresponding result for homothetic plane sections through a given point of 
each of the bodies.

A beautiful theorem, proved together with Aitchison and Petty (59), is stated simply in 
the title of the Mathematika paper ‘A convex body with a false centre is an ellipsoid’. A false 
centre of a convex body K in Rn (n ≤ 3) is an interior point p such that every 2-dimensional 
section of K through p has a centre of symmetry. Clearly, every point inside an n-dimensional 
ellipsoid is a false centre. The paper shows, by first reducing the problem to the case of bodies 
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of revolution, that no other convex bodies can have a false centre. Larman (1974) removed 
the necessity for p to be interior, and a simpler proof, along with other characterizations of 
ellipsoids, was later given by Montejano & Morales-Amaya (2007).

The following question was posed by Busemann & Petty (1956): if a convex body K in 
Rn (n ≤ 3) that is symmetric about the origin o is such that every (n − 1)-dimensional section 
through o has strictly smaller (n − 1)-dimensional volume than that of a central section of 
the n-dimensional unit ball B, does K necessarily have n-dimensional volume less than that 
of B? The problem was eventually solved in 1975 by Larman and Rogers (66), who used a 
probabilistic method to construct counter-examples in 12 and higher dimensions by removing 
a collection of thin spherical caps from a ball. Counter-examples have since been obtained 
for smaller n, and it is now known that the conclusion is true for n ≤ 4 but not for n ≥ 5 (see 
Gardner 2006).

One of the most notorious problems in convexity was posed by Fujiwara (1916) and also 
by Blaschke et al. (1917). The ‘equichordal point problem’ asks whether a planar convex set 
K can have two equichordal points; that is, two distinct points through which all chords of K 
have the same length. In 1981 Rogers wrote (74):

The problem appears to be most intractable. If you are interested in studying the problem, my 
first advice is ‘Don’t,’ my second is ‘If you must, do study the work of Wirsing and Butler,’ and 
third is ‘You may well have to develop sophisticated techniques for obtaining extremely accurate 
asymptotic expansions for the solution of a certain recurrence relation ….’

Eventually, Rychlik (1997) gave a 72-page proof that no convex body with two equichordal 
points exists, using a combination of complex analysis and algebraic geometry. Nevertheless, 
Rogers obviously thought about the problem himself and proved a different equichordal theorem: 
if K is a plane convex domain with two interior points p and p′ such that every chord through 
p has the same length as the parallel chord through p′ then K is centrally symmetric about the 
midpoint of p and p′ (73). His elegant method involved ‘chord-chasing’ along a sequence of 
chords of K alternately passing through p and p′. Larman & Tamvakis (1981) extended this result 
to higher dimensions and for points that are not necessarily interior to the set. The technique was 
subsequently generalized to address ‘tomography’ questions on reconstructing convex bodies 
knowing the lengths of all chords passing through two points (see Gardner 2006).

Extremal problems
Extremal problems arise naturally in convexity, with the isoperimetric inequality (that the 
sphere is the convex body of given volume with minimum surface area) the most fundamental. 
One of Rogers’s earliest results in convexity has this flavour, with his determination of the 
maximum n-dimensional volume of a convex polytope with N faces that is contained in the 
n-dimensional unit sphere (20).

In a series of papers Rogers and Shephard investigated convex bodies that may be derived 
naturally from a given convex body K in Rn, in particular comparing various measures, such 
as their n-dimensional volume Vn, with those of K. Such inequalities have proved valuable 
in applications across many branches of mathematics and science. For the difference body 
K − K = {x − y : x, y ∈ K} they showed that
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these bounds being best possible (30). Equality on the right occurs if and only if K is a 
simplex. To establish this they showed that K is a simplex if and only if K ∩  (K + x) is a 
non-negative homothetic image of K whenever it is non-empty, refining an earlier result of 
Choquet that was the starting point for Choquet theory; see Gruber (2007) for details. This was 
further generalized by Gruber (1970), who showed that K ∩ (K + x) is an affine image of K 
for all x for which the intersection is proper if and only if K is a finite direct sum of simplices. 

Again, the reflexion body about the interior point a of K is the minimal convex body Ra K 
that contains K and is centrally symmetric about a. Rogers and Shephard obtained the best 
possible inequalities

Vn (K) ≤ Vn (Ra K) ≤ 2n
 Vn (K),

with equality on the left when K is centrally symmetric about a and on the right when K is a 
simplex with a as a vertex (35).

Rogers and Shephard also derived inequalities involving pairs of convex bodies (37); see 
also Rogers (45). Let C(A) denote the convex hull of a set A; that is, the minimal convex set 
containing A. The following inequality gives a lower bound for the volume of the convex hull 
of intersecting translates of a pair of convex bodies H and K in Rn:

( )( ) ( )( )
: ( ) : ( )

max ( ) max ( ) ,
H K

n H K nx B B x x H K x
V C B B x V C H K x

∩ + ≠∅ ∩ + ≠∅
∪ + ≤ ∪ +

where BH and BK are spherical balls of the same volumes as H and K, and A + x denotes the 
set A translated by the vector x.

Boundary structure of convex bodies
The boundary or surface of a convex body may be smooth and rotund or may contain 
points of non-differentiability of various types and/or flat components, with a wide range of 
local forms possible. However, there are limitations to the irregularity of the boundary of a 
convex body; for example, it cannot contain line segments pointing in ‘too many’ directions. 
More precisely, Ewald, Larman and Rogers (55) showed that the set of directions of line 
segments in the boundary of an n-dimensional convex body K, considered as a subset of the 
(n − 1)-dimensional sphere, is of σ-finite (n − 2)-dimensional Hausdorff measure. This had 
previously been established by McMinn in 3 dimensions and Pepe in 4 dimensions, but the 
higher-dimensional cases required new ideas. Subsequently, Larman and Rogers (61) refined 
their conclusion by showing that the set of line segments in the boundary of K parallel to any 
given (n − 1)-dimensional plane and not contained in the pair of parallel planes touching K 
must have (n − 2)-dimensional Hausdorff measure zero.

The 1-skeleton of a convex body K in Rn (n ≥ 3) comprises those points on the boundary 
of K that are not the centre of any 2-dimensional disc contained in K. Although ‘most’ points 
on the boundary of a convex body must belong to the 1-skeleton, it may be topologically very 
awkward; for example, it need not be closed or locally connected. Nevertheless, Larman and 
Rogers (56) were able to show, using the aforementioned result on the Hausdorff measure 
of surface line segments, that any two exposed points of K can be joined by n continuous 
arcs, disjoint except for their end points, and lying entirely in the 1-skeleton. (A point x is an 
exposed point of K if there is a supporting hyperplane touching K solely at x.)

Not surprisingly, Rogers’s interest in descriptive set theory informed some of his work 
on convexity. The Borel and analytic structure of a convex set that is not closed depends on 
which parts of the set’s topological boundary lie within the set. There is some regularity; for 
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example, the set of exposed points and the set of extreme points of a Borel convex set in Rn 
are both Borel, as was pointed out in (57, 69). (A point is extreme if it does not lie on any open 
line segment contained in the convex set.) Indeed, relatively recently, Holický & Keleti (2005) 
have analysed the Borel classes of extreme and exposed points. Rogers (57) showed that the 
projections of convex Borel sets in Rn onto lower-dimensional subspaces are always Borel, a 
property that fails for Borel sets in general. In the same paper he showed that the convex hull 
of the union of two convex Borel sets is also Borel.

Questions concerning the boundaries of convex sets are also relevant in infinite-dimensional 
spaces. In a general topological vector space, the r-skeleton (r a non-negative integer) of a 
compact convex set K consists of those points of K that are not in the relative interior of 
an (r  +  1)-dimensional convex subset of K. Thus, the extreme points form the 0-skeleton. 
Choquet (1969) had shown that, in a Hausdorff locally convex topological vector space, the 
set of extreme points of a compact convex set is of second category in itself, and in the case 
of a metrizable space it is a Gδ-set (that is, the intersection of a countable number of open 
sets). Using an earlier result of theirs (64) that reduced consideration to sets in normed spaces, 
Larman and Rogers (65) obtained the same conclusions for r-skeletons for all non-negative 
integers r.

The structure of the extreme and exposed sets of non-compact convex sets in Banach 
spaces can be very strange, as Rogers and Jayne (69) demonstrated with several striking 
examples. These included closed bounded convex subsets of the sequence spaces of l1 
(summable sequences) and of c0 (sequences convergent to zero) with the sets of extreme 
points and of exposed points neither Borel nor analytic. In the same spirit they constructed a 
relatively compact convex Gδσ subset (that is, one formed by countable unions of countable 
intersections of open sets) of l2 (square summable sequences) for which neither the extreme 
points nor exposed points formed Borel sets.

Miscellaneous problems in Euclidean geometry

Several other highly innovative papers deserve mention.
Peano’s construction of a space-filling curve—that is, a continuous map from the unit 

interval [0, 1] onto the unit square—is well known. Mihalik and Wieczorek asked if there was 
such a curve with the image of every sub-interval of [0, 1] a convex subset of the square. Pach 
and Rogers (76) gave an ingenious construction of a Peano curve with the property that the 
images of every initial segment [0, a] and also of every final segment [b, 1] are convex. The 
complexity of this construction suggests that the original problem, which remains unsolved, 
is extremely challenging.

A question in combinatorial geometry, going back at least to Kelly (1947), asked what is 
the greatest number of points in a finite set S in Rn with just two distinct distances occurring 
between any pair of points in S. Larman, Rogers and Seidel (70) obtained various bounds, and 
in particular they gave a remarkably simple demonstration that S can have at most 1–2(n + 1)
(n + 4) points. With r and s as the two distances, the set of polynomials {Fy : y ∈ S} given 
by Fy (x) = (| x − y |2 − r2)(| x − y |2 − s2) are linearly independent, since Fy (x) = 0 for all x ∈ S 
unless x  =  y. On expansion, these polynomials are easily seen to be spanned by a set of  
1–2(n + 1)(n + 4) primitive polynomials, so the conclusion follows.

Hadwiger (1944) showed that if Rn is covered n + 1 by closed sets, then one of the sets 
realizes all distances; that is, it contains a pair of points any given distance apart. Raiskii 
(1970) then showed that this remains true for coverings by n + 1 arbitrary sets. It was long 
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believed that the conclusion should be true for coverings by much larger numbers of sets, and 
this was established in 1972 in a remarkable paper by Larman and Rogers (63). Let S be a 
configuration of M points in Rn such that every subset of S of more than D points includes 
a pair of points distance 1 apart. A short, elegant argument establishes that if Rn is covered 
by fewer than M/D sets then at least one of the sets realizes all distances. By investigating 
many possible configurations, the paper obtains improved bounds in all dimensions n ≥ 5. For 
example, the configuration given by the Special Leech–Conway spindle showed spectacularly 
that if Rn is covered by 101 sets for 24 ≤ n ≤ 76 then one of the sets realizes all distances. For 
n ≥ 77, certain spherical configurations lead to the conclusion for all coverings by fewer than 
4–3n sets, with even better results when n ≥ 139. Asymptotically, some set from any covering of 
Rn by ~n2/(log2 n)3 sets realizes all distances.

Topological descriptive set theory, by Adam Ostaszewski

From 1960 to the end of his life, Rogers was fascinated by analytic sets (see below). He would 
often give talks entitled ‘Which sets do we need?’, his answer being: analytic sets. He, and 
his co-authors, contributed much to the detailed development of the field. Perhaps even more 
important, and influential, was the—almost messianic—proseletizing zeal that Rogers brought 
to his mission to bring analytic sets to the centre of the mathematical stage, and to the attention 
of mathematicians.

Rogers’s move in 1954 to Birmingham, and so to the Midlands mathematical community, 
led to several fruitful collaborations in measure theory, among them with Roy Davies, who 
was based in Leicester. Through him Rogers learned about the significance to measure theory 
of analytic sets, manifest already in the Hausdorff measures book (58, 89), which marked the 
end of Rogers’s ‘measure’ phase. These sets, or more accurately their context of descriptive set 
theory, provide an interweaving thread connecting several themes in Rogers’s work (measure 
theory, convexity, functional analysis)—a veritable code-name for a lifelong passage from 
classical to functional analysis, summarized by two more milestone books of his.

The first (published in 1980), with the brief title Analytic sets (72), spans aspects from 
classical, topological and mathematical logic angles, and includes the then-new vistas from 
functional analysis, centring on analyticity in the weak-topology of Banach spaces that are 
spanned by a weakly compact set (which include all separable Banach spaces); the latter 
theme was inspired by the seminal paper (Corson 1961) on the weak topology. The book 
was forged at an important conference (in 1978), which brought together its co-authors and 
captured the main trends of the time, and, while serving also to integrate his own research up 
to that time, marked him out as the spiritus movens of the modern topological concept. This 
was inspirational, and its influence continues to be felt strongly today.

The second, published in his last years (in 2002, with John Jayne), even more briefly 
entitled Selectors (90), is concerned with wide-ranging applications of analytic sets, turning 
on the construction of functions of ‘very good’ descriptive character (such as Baire of level 1; 
see below), which thus ‘nicely’ select representative points from a family of sets also with 
good descriptive character, yielding what Dellacherie calls ‘théorème du bon choix’ ((72), 
p.  221). The subject, which goes back a long way to the ‘uniformization’ theorems of the 
founders of descriptive set theory (‘live’ to this day in the literature of mathematical logic—
again, see below), received a more general topological development in the pioneering work 
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in 1956–57 of E. (‘Ernie’) Michael (1925–2013)—see, for example, Michael (1956)—and 
soon afterwards in Kuratowski & Ryll-Nardzewski (1965). Modern applications visited by the 
book involve maximal monotone maps (including subdifferentials), nearest-point maps and 
convex-valued maps—marrying convexity with analyticity. The book’s title harks back to one 
of the earliest applications of analytic sets—via a measurable selection theorem proved by von 
Neumann—in ring theory (in 1949), not mentioned explicitly in the book because its emphasis 
is on non-separable Banach spaces. (The theorem itself was later central to the ‘continuum of 
agents’ models in mathematical economics; see Hildenbrand (1974).) The book is a testament 
to the pioneering work of Rogers and his several collaborators in the field of functional 
analysis, building on all themes present in the first of the two books, except on the connections 
here with mathematical logic (for which see, for example, Koszmider (2005)). A central 
concept of the book is fragmentability, and particularly its generalization: σ-fragmentability, 
a term that Rogers (and Jayne) coined at a meeting of minds with Namioka and Phelps at the 
23rd Semester (On Banach Spaces) of the Stefan Banach International Mathematical Centre 
in Warsaw (in the spring of 1984). The concept captures the interplay between the norm and 
the weak topologies of a Banach space, with attendant connections to the Radon–Nikodym 
Property (RNP) of its dual space (a notion originally formulated by reference to representation 
by Bochner-integrable functions); see (78,  80,  82,  84,  85,  87). There are connections here 
between set-valued maps (with values that may be closed, or compact, relative to the weak 
topologies in play) with Rogers’s other area of interest: convexity. Whereas weakly compact 
subsets of a Banach space are always fragmented, on the other hand, according to Namioka & 
Phelps (1975), a Banach space is an Asplund space (that is, its continuous convex functions 
are generically Fréchet differentiable) if and only if its dual, when equipped with the weak-star 
topology, is fragmented. So, according to Stegall (1978) or Stegall (1981), this is equivalent 
to the dual having RNP; there is a further connection with convexity through the notion of 
‘dentability’; see (80) and the references therein for definitions and background. For the 
contributions to this field he will be long remembered. Indeed, this new topological notion 
provoked a rush of papers, broadening the context (for example to groups, as in Kenderov & 
Moors (2012)), and would also have benefited from a book treatment with his Midas touch; 
sadly, however, death cut short his intentions.

The main impetus to engage with the field came during a stay in Canada, from meeting 
with Maurice Sion’s work on analytic sets in topological spaces (Sion 1960). Rogers became 
an immediate convert to the need to extend classical descriptive set theory to a broader context. 
In lectures, he stressed how the classical programme from the turn of the twentieth century, 
on the heels of Cantor’s introduction of sets into analysis, was motivated by a desire to avoid 
the logical pitfalls of naive theory, by relying on the basic building blocks of G (the family 
of open sets) and F (the family of closed sets, including importantly the perfect sets), and 
focusing on sets manufactured only via some intuitively acceptable ‘positive’ operations. He 
was particularly allied to this view. Historically, the initial focus was on the hierarchy of Borel 
sets (arising from the iteration of countable unions and intersections, so yielding, for example, 
the Fσ sets—countable unions of sets in F, the Fσδ sets—countable intersections of sets from 
Fσ, and likewise the Gδ, Gδσ sets, and so on) and on a parallel hierarchy of Baire functions, built 
from the continuous functions by iteration of (pointwise) sequential limits of functions (so 
that limits of continuous functions are Baire of level 1); Rogers invested significant effort into 
taking much of the ‘Borelian’ theory to a broader context, starting in 1965 and again later from 
1979 onwards, now working with John Jayne. But the main attraction was just one step beyond.
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In seeking an ‘analytical’ description of the Baire functions, Lebesgue (1905) overlooked 
the fact that the projection of a planar Borel set might fail to be Borel. Identification of the 
mistake, by Souslin (1917), opened the study of the broader hierarchy of projective sets, 
obtained by a further iteration, this time of projections and also complementation. At the first 
level (corresponding to a single use of projection, and no complementation) lie the analytic 
sets, with excellent structural properties that were uncovered in quick strides (within a couple 
of years) by Luzin*, Sierpiński and their followers in the classical phase of the subject, 
summed up by their respective monographs (Lusin 1930; Sierpiński 1950) (much later, but 
with the broader remit of the projective sets). The higher levels had to wait much longer for 
the marriage of several other parallel developments—the axioms of determinacy arising from 
the infinite games of Banach and Mazur, the study in mathematical logic of computability, and 
notions of recursion started by Kleene in the 1930s (linked by Addison and Mostowski to the 
projective hierarchy), and the consequences for classical analysis of very-large-cardinal axioms 
(recognized by Woodin; see Woodin (2010)). Although these mutual interconnections tell a 
most astonishing story of the twentieth century, they would take us beyond this appreciation 
of the work of Rogers; suffice it to say that this backdrop was recognized by Rogers, who 
was careful to include, in the formative conference and his first book, the story then unfolding 
from the pens of Kechris and Martin (see also the very fine Kechris (1995)). In addition, 
the great importance of analyticity and capacitability (see below) to probability theory and 
stochastic processes was developed by Dellacherie and Meyer; see Dellacherie (1972a, b) and 
Dellacherie’s contribution to (72). All this greatly enhanced the book’s influence.

Analytic sets, under a simple reinterpretation—as continuous images of the irrationals, 
conventionally represented as NN via continued-fraction expansion—were readily transferred 
with the same structural properties into the realm of Polish spaces. Their further development 
seemed called for, given the already important role established not only in ring theory 
(mentioned above) and group theory (first in Mackey (1957); later, Effros (1965) brought to 
bear on this area his celebrated Open Mapping Principle) but also in measure theory, where 
the contribution of Davies (1952) on subsets of finite measure in analytic sets was a harbinger.

The first noteworthy advance beyond Euclidean space was due to Choquet (1951), who 
considered sets in Hausdorff spaces which are continuous images of a more general domain 
but one that is still an Fσδ subset, albeit of an arbitrary compact space, just as the irrationals 
are an Fσδ subset of the compact interval [0,1]. The significance of his approach soon became 
apparent through his celebrated theorem on capacitability (Choquet 1953). This is a general 
‘inner regularity’ property on the approximation of an analytic set by its compact subsets, 
already anticipated by Roy Davies (Davies 1952).

Rogers joined in this development a decade later, engaging with Frolík’s apparently broader 
definition (Frolík 1961), which retains the classical domain NN, but its image in the range space 
arises by sending points σ ∈ NN not to points but to compact subsets K (σ), whose union yields 
a K-analytic space. Furthermore, continuity is relaxed to an ‘outer continuity’ (traditionally 
called ‘upper semicontinuity’; that is, omitting any lower semicontinuity considerations). 
Despite their greater scope, such spaces adequately resemble Polish spaces by allowing as 
much countability as category and measure considerations require—for background on the 
latter see, for example, Fremlin (2003). Ultimately, this is the consequence of an underlying 
completeness: manifested extrinsically as (roughly speaking) Gδ-embeddability in some 

*	Lusin according to the earlier French usage.
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compactification (in fact more general than topological/Čech-completeness, and pursued 
by Frolík, the mathematical descendent of Čech), and intrinsically as offering an ‘analytic 
Cantor theorem’ (see (72), Lemma  3.1.1, more recently examined in Ostaszewski (2011)). 
Capturing some of these aspects, although straying further from this concept, one encounters 
a remarkable weakening (in 1963): Arhangel’skiĭ’s topological plumed-spaces (p-spaces) 
(Arhangel’skiĭ 1963), which embrace in particular all metric spaces and all locally compact 
spaces (see, for example, Gruenhage (1984)), although this requires reference to a domain κN, 
with κ an arbitrary cardinal (again, compare Ostaszewski (2011)).

It was not until 1976 that Jayne proved the equivalence of the Frolík and Choquet approaches. 
At this stage two other useful approaches to widening the scope of classical analyticity emerged 
and gained acceptance, as being close in spirit. One, non-separable analyticity, employing the 
technical apparatus of general metrization theory (involving forms of discrete decomposability), 
was initially undertaken by A. H. Stone (Stone 1962); after a revival a decade later, this received 
a systematic and far-ranging development from his pupil R. W. Hansell (from 1971 onwards, 
and incorporating a significant collaboration with E. Michael), and here again κN plays a part. A 
second, Čech-analyticity, derives from the extrinsic formulation (above) and is due to Fremlin 
(in 1980, unpublished but recorded a decade later in (84) and elsewhere, for example in Hansell 
(1992)); in the case of a complete metric space, the analytic subsets defined by Hansell turn out 
to be Čech-analytic ((84), Theorem 8.2)—that is, they are embraced by Fremlin’s approach.

Here again Rogers proceeded to integrate and unify these developments, collaborating 
also with Hansell, with functional analysis in mind. A memorable theorem, bringing together 
the various themes above, is the equivalence of σ-fragmentability of a Čech-analytic space 
with the fragmentability of all of its compact subsets ((84), Theorem 4.1), which in particular 
also characterizes the RNP of a dual Banach space as its being (norm) σ-fragmentable when 
equipped with the weak-star topology. For ramifications to Radon measures, see (80). This 
prompted Namioka and Pol (1996, Theorem 5.2) to strengthen the result with an innovation, 
replacing Čech-analytic above with a notion generalizing almost analyticity (‘analyticity 
modulo category’), namely almost Čech-analyticity. This for a Banach space equipped 
with its weak topology is equivalent to (norm) σ-fragmentability, justifying the authors in 
commenting on the central role of the latter in topological characterizations of renormabilities, 
such as those that achieve locally uniformly convex, or Kadec, norms (for background see, for 
example, Bessaga & Pełczyński (1975), chapter 6).

In the meantime a connection was made between K-analyticity and de  Wilde’s earlier 
use, in solving Grothendieck’s conjecture concerning generalizations of the closed-graph 
theorem, of a coarser and thus more flexible notion, that of a compact resolution; here order 
preservation, in the notation above, K (σ) ⊆ K (τ) for σ ≤ τ (in all components), is a central 
theme (for example the ability to swallow (that is, cover) an arbitrary compact set with a single 
K (σ)) together with adjuvant weakenings of continuity. The interplay between K-analyticity 
and various forms of resolution, in which the webbings (σ1, …, σn) → ⋃ {K (τ)  :  τ extends 
(σ1, …, σn)} play a role, is a constant theme in the descriptive theory of function spaces. These 
have been studied by a succession of generations and contributors too many to list here, 
following the pioneering work of Corson (1961) (see above) and the trail-blazing work of 
Rogers with Jayne and Namioka, as well as Christensen, Orihuela, Pol, Preiss, Talagrand and 
Valdivia; the voluminous tome by Kąkol et al. (2011) is a further testimony to the long-lived 
effects of the founding fathers. Foremost among these, Rogers stands out as the personification 
of modern topological analyticity and its prolific theory-builder.
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