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Abstract

We propose new techniques for understanding agents’ valuations. Our classi-
fication into “demand types”, incorporates existing definitions (substitutes, com-
plements, “strong substitutes”, etc.) and permits new ones. Our Unimodularity
Theorem generalises previous results about when competitive equilibrium exists
for any set of agents whose valuations are all of a “demand type” for indivisi-
ble goods. Contrary to popular belief, equilibrium is guaranteed for more classes
of purely-complements, than of purely-substitutes, preferences. Our Intersection
Count Theorem checks equilibrium existence for combinations of agents with spe-
cific valuations by counting the intersection points of geometric objects. Appli-
cations include matching and coalition-formation; and the Product-Mix Auction,
introduced by the Bank of England in response to the financial crisis.
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1 Introduction

This paper introduces a new way to think about preferences for indivisible goods,
and obtains new results about the existence of competitive equilibrium.

“Demand types.” Our first key idea is to classify economic agents’ individual and
aggregate valuations into “demand types”. A “demand type” is defined by a list of vec-
tors that give the possible ways in which the individual or aggregate demand can change
in response to a small generic price change. So the vectors defining a “demand type”
are analogous to the rows of a Slutsky matrix; they specify the possible comparative
statics of any demand of that “type”.

For example, a purchaser of spectacles who values spare pairs might always buy
lenses and frames in the ratio 2:1, so increase or reduce her demand in this ratio in
response to any price change; her valuation is therefore of “demand type” ±{(2, 1)}.
As another example, you might want to book a large hotel room, or a small room, or
neither, but have no interest in both. So your response, if any, to a small change in
prices would either be to substitute one room for the other, or to increase or decrease
your demand for one of the rooms by 1 without altering your demand for the other.
That is, your valuation is of “demand type” ±{(1,−1), (0, 1), (1, 0)}.1

Our classification is parsimonious. For example, the “demand type” that comprises
all possible substitutes preferences is defined by the set of all vectors with at most one
positive integer entry, at most one negative integer entry, and all other entries zero; the
“demand type” that is all complements preferences is defined by the set of all vectors
in which all the non-zero entries (of which there may be any number) are integers of
the same sign; the class of all “strong substitutes” preferences for n goods is a “demand
type” with just n(n+ 1) vectors.

Our classification clarifies the relationships between different classes of preferences.
For example, the “demand types” descriptions above show clearly why the conditions for
indivisible goods to all be (ordinary) substitutes are in general far more restrictive than
the conditions for them to all be complements–although they are, of course, symmetric
in the two-good case.

Our classification is very general. It permits multiple units of each good; the agents
can include sellers, buyers, and traders who can both buy and sell; and it can also be
applied to matching models.

Importantly, we will see the classification is also easy to work with.

Equilibrium existence. Our focus on how agents’ demands change in response to
small price changes yields two new theorems about the existence of competitive equilib-
rium with indivisibilities:

Our “Unimodularity Theorem” characterizes equilibrium existence for “demand types”,
that is, for any valuations in classes of preferences. It states that competitive equilib-
rium always exists, whatever is the market supply, if and only if all agents’ valuations are

1In an auction in which goods’ characteristics suggest natural rates of substitution, bidders might be
asked to express valuations of the corresponding “demand type”; e.g., the Bank of England’s Product-
Mix Auction built one-for-one substitution into its design (see Klemperer, 2008, 2010).

2



concave and drawn from a demand type that is defined by a unimodular set of vectors.2

Our characterization immediately yields several earlier existence results, and exten-
sions of them. It also identifies previously-unknown environments in which existence
is assured. Moreover, it disproves the popular perception that existence requires sub-
stitutes valuations (or a “basis change” thereof). Indeed every demand type for which
equilibrium is guaranteed can be obtained as a basis change of a demand type involv-
ing only complements preferences (and for which equilibrium is guaranteed)–and the
corresponding result is not true for substitute preferences.

Our “Intersection Count Theorem”, by contrast, concerns whether competitive equi-
librium exists for combinations of agents with specific valuations. It relates whether
equilibrium always exists whatever is the market supply, for the specific agents, to the
number of price vectors at which more than one of these agents is indifferent between
more than one bundle.

To illustrate our two Theorems, recall the hotel-room example above. Like you,
Elizabeth is interested in either room (the hotel only has two rooms), but not both. Both
your and her valuations are therefore of demand type ±{(1,−1), (0, 1), (1, 0)}, which is
unimodular (because any matrix formed by two of these vectors has determinant 0 or
±1). So the Unimodularity Theorem tells us that whatever are your and Elizabeth’s
valuations (they will generally be different), there always exist competitive equilibrium
prices, that is, prices such that demand exactly equals supply, if you and she are the
only potential buyers.

Paul, however, requires two hotel rooms for his family; if they cannot have both,
they will go elsewhere. So Paul’s valuation is of demand type ±{(1, 1)}. The (smallest)
demand type from which Elizabeth’s and Paul’s valuations are both drawn is therefore
±{(1, 1), (1,−1), (0, 1), (1, 0)}, which is not unimodular (because the determinant of
(1, 1) and (1,−1) is −2). So the Unimodularity Theorem tells us that, if Elizabeth and
Paul are the potential buyers, then there are some valuation(s) of Elizabeth and Paul for
which competitive equilibrium does not exist–but this Theorem does not tell us which
those valuation(s) are.

However, our Intersection Count Theorem does tell us whether equilibrium exists for
any specific valuations: equilibrium exists for Elizabeth and Paul if and only if either
(i) there are exactly two price vectors at which both agents are indifferent between more
than one bundle, or (ii) there exists a price at which one agent is indifferent between
at least two bundles, and the other is indifferent between at least three (case (ii) is
non-generic).3

For example, imagine Elizabeth would pay up to £40 for the large room, or £30 for
the small. Paul is indifferent between paying £50 for both, and going elsewhere. Then
there is only one pair of prices, (£30,£20) for the large and small rooms respectively,
such that both agents are indifferent between more than one option. (Paul is indifferent
between taking both rooms, and taking neither, while Elizabeth is indifferent between
the two rooms so, also, each agent is indifferent between only two bundles.) So the
Intersection Count Theorem predicts–and it is not hard to check (and Section 5.1.1 will

2A unimodular set of vectors in n dimensions is one for which every subset of n of them has
determinant 0 or ±1 (with an additional condition if they are not a spanning set).

3The Intersection Count Theorem actually tells us a little more: under these conditions equilibrium
exists, for the specific valuations, whatever number of hotel rooms is available–see Section 5.
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confirm)–that competitive equilibrium will fail: at any prices at which Paul is prepared
to take both rooms, Elizabeth will also demand a room.

If, however, Paul is willing to pay up to £100 for the rooms, then there are exactly
two price vectors, (£40,£60) and (£70,£30), such that both Elizabeth and Paul are
indifferent between more than one option (Paul between taking both rooms and neither,
and Elizabeth between taking no room and the one room she considers good value). So
the Intersection Count Theorem now predicts that competitive equilibrium does exist.
(In fact, any prices that exceed £40 for the large and £30 for the small, and add to less
than £100, clear the market.) Section 5.1.1 gives full details.

Outline of the paper. Our basic tools are convex geometry and, in Section 5 in
particular, the “tropical geometry” recently developed by, among others, Mikhalkin
(2004).4 So we begin, in Section 2, by using the existing mathematics literature to
develop an economic understanding of two dual geometric objects:

The first, the “Locus of Indifference Prices” (LIP) comprises the price vectors at
which the agent is indifferent between two or more bundles, that is, the prices at which
the agent’s demand changes. Since any LIP corresponds to a valuation function, we can
develop our understanding of demand by working directly with these geometric objects.

Our dual geometric object, the “Demand Complex”, comprises the convex hulls of
the sets of bundles (i.e., quantity vectors) among which the agent is indifferent at some
price.

Section 3 then defines a “demand type” by using the set of vectors that describes
the ways in which the bundles demanded by the agent can change with prices. These
vectors are associated in simple ways with both the LIP and the Demand Complex. So
we can easily check whether a demand type is, for example, substitutes, or complements,
or “strong substitutes”, or “gross substitutes and complements”, etc.

Section 4 proves our Unimodularity Theorem. Danilov et al. (2001) provide a very
similar sufficient condition for equilibrium, but our use of tropical ideas allows a simpler
proof. We also show the necessity of the same condition, so that our theorem is a full
characterization of when equilibrium exists. Perhaps more important, our concept of
“demand types” also shows how this condition can be applied. For example, equilibrium
existence results such as those in Sun and Yang (2006), Milgrom and Strulovici (2009),
and Hatfield et al. (2013), are obvious special cases of the Unimodularity Theorem, but
none of these papers present their results as specialisations of Danilov et al.’s earlier
work, since the latter’s relevance was unclear.5

Section 5 develops our Intersection Count Theorem by applying a version of Bézout’s
classic theorem that the number of intersection points of two curves, taking into account
“multiplicities” such as tangencies, is equal to the product of the degrees of their defin-

4We believe the first version of this paper, Baldwin and Klemperer (2012), was the first to apply
tropical geometry to economics. Matveenko (2014), Shiozawa (2015), Crowell and Tran (2016) and
Weymark (2016) are other applications.

5We especially thank Gleb Koshevoy for very helpful discussions. Analysing “demand types” in price
space (as well as, like Danilov et al., in quantity space) also allows us to develop additional implications.
We discuss the relationships to Danilov and Koshevoy and their co-authors’ work in detail in Section
4.3. Our Intersection Count Theorem addresses similar issues as Bikhchandani and Mamer (1997) and
Ma (1998), but our methodology is completely different and, we believe, gives more insight.
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ing polynomials.6 (LIPs can be obtained as “tropical” transformations of “ordinary”
geometric objects, and their intersection properties are preserved under these transfor-
mations.)

Section 6 discusses applications: Sections 6.1 shows that our model encompasses
classic models, and clarifies the relationships between them. Sections 6.2-6.3 show how
to find new “demand types” for which equilibrium always exists. For example, we ex-
hibit a previously-unstudied “demand type” that might model demand for, e.g., different
kinds of workers and managers who are complements. Equilibrium always exists for this
“demand type”, although it is unrelated to any substitutes preferences (including via
any basis change). Section 6.4 shows that there are many other purely-complements
“demand types” for which equilibrium is guaranteed, and Section 6.5 uses our Unimod-
ularity and Intersection Count Theorems to provide an algorithm for determining when
equilibrium exists.

Sections 6.6-6.8 explain that our geometric techniques yield new results in other
contexts. These include matching models, and developing extensions of the Product-
Mix Auctions introduced by the Bank of England during the financial crisis.7

Section 7 concludes. The Appendix contains additional examples, and proofs of all
results not proved in the text.

This paper has been written for economists. Some of our ideas have been translated
for a mathematical audience by Tran and Yu (2015).

2 Representing Indivisible Demand Geometrically

2.1 Assumptions

An agent has a valuation u : A → R on bundles x ∈ A ( Zn. That is, the bundles
are formed of n distinct goods, which come in indivisible units. Note that a bundle
may be negative or mixed-sign. So our model allows for sellers with non-trivial supply
functions, and more general traders, as well as buyers.

The domain A of bundles that the agent considers possible, can be any finite set in
Zn. Note that A need not contain every integer bundle in its convex hull. Nor need
A include every bundle that is available in the economy. In particular, if a bundle
is completely unacceptable to the agent, it is simply not in A. This is equivalent to
(and mathematically more convenient than) allowing the agent to value some bundles
at “−∞”.

The agent has quasilinear utility, so maximises u(x)−p ·x, where p ∈ Rn is the price
vector. Thus different units of the same good all have the same price. (If they did not
we could treat them as different goods.) We do not specify that valuations are weakly

6For example, two lines intersect once (possibly at infinity). A quadratic and a line intersect at two
points (possibly including points with complex coordinates and points at infinity, and double-counting
tangencies). Two quadratics intersect four times (correctly counted), etc.

7Bidders in these auctions make sets of “either/or” bids for alternative objects. These bids can be
represented geometrically as sets of points in multi-dimensional price space. The then-Governor of the
Bank of England (Mervyn King) told the Economist that the Product-Mix Auction “is a marvellous
application of theoretical economics to a practical problem of vital importance”; current-Governor Mark
Carney announced plans for its greater use; and an updated version has been introduced–see Bank of
England (2010, 2011), Milnes (2010), Fisher (2011), Frost et al (2015) and the Economist (2012).
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increasing, or that valuations or prices are non-negative, so our model covers “bads” as
well as goods.

We will later (from Section 3.3) extend our model to a finite set of agents: agent j will
have valuation uj on integer bundles in a finite domain Aj. We will consider competitive
equilibrium among these agents, given an exogenous supply. Thus our framework will
encompass the case in which all traders (including all sellers) are explicitly modelled as
agents, that is, exchange economies (for which the exogenous supply is 0).

The remainder of Section 2 interprets existing mathematics literature in the context
of our basic (single-agent) model.

2.2 The Locus of Indifference Prices (LIP)

We will be particularly interested in the prices at which the agent’s demand set,
Du(p) = arg maxx∈A{u(x)−p ·x}, contains more than one bundle, that is, those prices
at which the agent is indifferent among more than one bundle.

Definition 2.1. The Locus of Indifference Prices (LIP) is Lu := {p ∈ Rn : |Du(p)| > 1}

This set is known as a “tropical hypersurface” in the mathematics literature (see
Mikhalkin, 2004, and others), but we are introducing new terminology to facilitate un-
derstanding among economists. We analyse the structure of this set in more detail
because (by continuity of quasilinear utility) it comprises the only prices at which de-
mand can change in response to a price change.

Definition 2.2.

(1) A cell of Lu is a non-empty set of the form
{
p ∈ Lu : x1, . . . ,xk ∈ Du(p)

}
where

|{x1, . . . ,xk}| > 1 and x1, . . . ,xk ∈ A.
(2) A facet is an (n− 1)-dimensional cell of Lu.8

Thus a cell of Lu is the subset of its prices at which the bundles that the agent
demands include a particular collection of at least two bundles. The cell therefore
specifies the prices at which the agent’s demand can change between the bundles in this
particular collection. By continuity, cells are closed.

At prices not in Lu, the agent demands a unique bundle:

Definition 2.3. A unique demand region (UDR) of u is a connected component of the
complement of Lu in Rn.

Demand is generically unique, so UDRs are n-dimensional and open in Rn. The
bundle defining the UDR is, again by continuity, also demanded in its closure. It is
straightforward that a UDR is convex and each UDR corresponds to a different bundle.
Thus the closure of a UDR gives the only points at which this particular bundle is
demanded (that is, it has the form {p ∈ Lu : x ∈ Du(p)}), while a cell of Lu gives the
only points at which some collection of multiple bundles is demanded.

Fig. 1 shows a simple example of a LIP. The agent uniquely demands one of the

8We always use the natural dimensions. Thus the dimension of a cell is the dimension of its affine
span, i.e. the dimension of the smallest linear subspace U ⊆ Rn such that the cell is contained in {c}+U
for some fixed vector c. Here, and throughout the text, we use Minkowski (set-wise) addition on sets.
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p1

(0,0) demanded

(0,1) demanded

p2

5

4
(1,0)
demanded

Figure 1: The LIP, Lu, of the valuation u for which u(0, 0) = 0, u(1, 0) = 5 and
u(0, 1) = 4. The bundle demanded in each UDR is labelled.

bundles (0, 0), (0, 1), and (1, 0), in the correspondingly-labelled 2-dimensional region, so
these regions are the UDRs. The agent demands both bundle (0, 0) and bundle (0, 1)
on the line segment {(p1, 4) ∈ R2 : p1 ≥ 5} so this is a facet (1-dimensional cell). There
are two other facets. Meanwhile, the price (5, 4) is a 0-dimensional cell (or “0-cell”)–it
is the only price at which the agent is indifferent between all three bundles.

If, instead, bundles were formed from three distinct goods, i.e. n = 3, the facets
would be the plane-segments, separating 3-dimensional UDRs; the facets would then
meet in line segments, i.e. 1-cells, which would themselves meet in 0-cells.

We give the facets a specific name because of the economic information they contain.
At any price p in a given facet, F , the agent is indifferent between the bundles x and x′

demanded in the UDRs on either side of F . That is, u(x)−p ·x = u(x′)−p ·x′,∀p ∈ F .
So p · (x′ − x) is constant across all p ∈ F . Therefore F is normal to the vector that
gives the change in demand, x′−x, between the UDRs on either side of F . For example,
in Fig. 1, the facet {(p1, 4) ∈ R2 : p1 ≥ 5} contains prices at which demand can change
by (0, 0)− (0, 1) = (0,−1), which vector is normal to this facet.

So the geometry of the LIP tells us the directions of demand changes between pairs
of prices. To know how much demand changes in any direction that the LIP specifies,
we need one more piece of information:

Definition 2.4. Let x,x′ be the bundles demanded in the UDRs on either side of facet
F . The weight of F , wu(F ), is the greatest common divisor of the entries of x′ − x.

Now 1
wu(F )

(x′ − x) is a primitive integer vector (the greatest common divisor is 1). It

points from the UDR where x′ is demanded, to the UDR where x is demanded, and
is in the opposite direction to the change denoted by x′ − x. But since F is (n − 1)
dimensional, there is a unique primitive integer vector normal to F and pointing in this
direction. So we have shown:

Proposition 2.5.

(1) If x, x′ are uniquely demanded on either side of facet F , then p·(x′−x) is constant
for all p ∈ F .

(2) The change in demand as price changes between the UDRs on either side of F,
is wu(F ) times the primitive integer vector that is normal to F, and points in the
opposite direction to the change in price.

That is, the LIP and its vector, wu, of weights, taken together, provide full informa-
tion about how demand changes between UDRs.
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2.2.1 The correspondence between LIPs and valuations

The previous subsection showed that, starting with a valuation, we could derive a
geometric object, encoding economic information. We now show, conversely, that we
can start with a purely geometric object and associate economic meaning.

We will use some standard terminology from convex geometry:

Definition 2.6.

(1) A rational polyhedron is the intersection of a finite collection of half-spaces {p ∈
Rn : p · vj ≤ αj} for some vj ∈ Zn and αj ∈ R.9

(2) A face of a polyhedron C maximises p · v over p ∈ C, for some fixed v ∈ Rn.
(3) The interior of polyhedron C is C◦ := {p ∈ C : p /∈ C ′ for any face C ′ ( C}.
(4) A rational polyhedral complex Π is a finite collection of sets C ⊆ Rn such that:

(i) if C ∈ Π then C is a rational polyhedron and any face of C is also in Π;
(ii) if C,C ′ ∈ Π then either C ∩ C ′ = ∅ or C ∩ C ′ is a face of both C and C ′.

(5) A k-cell is a cell of dimension k.
(6) A polyhedral complex is k-dimensional if all its cells are contained in its k-cells.
(7) A weighted polyhedral complex is a pair (Π,w) where Π is a polyhedral complex

and w is a vector assigning a weight w(F ) ∈ Z>0 to each facet F ∈ Π.

Since the cells of Lu, and the closures of its UDRs, are defined by collections of linear
equalities and weak inequalities, it is straightforward that they are all polyhedra and fit
together as a “complex” (details in Appendix A.1). In particular:

Proposition 2.7. The set of all cells of Lu is an (n−1)-dimensional rational polyhedral
complex.

So if C is a cell of Lu, then every face C ′ of C satisfying C ′ ( C is also a cell of Lu.
It follows that at prices in such C ′, the agent demands additional bundles to those that
she demands in C. But the agent’s demand set is constant in the interior of the cell.
That is:

Lemma 2.8. Du(p
◦) is constant across all p◦ in the interior C◦ of a cell C. Moreover

Du(p
◦) defines the cell: C = {p ∈ Rn : Du(p

◦) ⊆ Du(p)}.

Fig. 1 illustrates all these points.
Prop. 2.5 tells us that once we know the demand in one particular UDR, and we

know the weights of the LIP, we can infer the demand in every UDR, by stepping across
a series of facets. But if we follow an agent along a price path that ends where it started,
the demand at the end must be the same as that at the beginning. So the weights on
the facets must satisfy the balancing condition:

Definition 2.9 (Mikhalkin, 2004, Defn. 3). An (n−1)-dimensional weighted polyhedral
complex Π is balanced if for every (n − 2)-cell G ∈ Π, the weights w(Fj) on the facets

9We follow Mikhalkin (2004) in not restricting αj to be rational for rationality of the complex.
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F1, . . . , Fl that contain G, and primitive integer normal vectors vFj for these facets that

are defined by a fixed rotational direction about G, satisfy
∑l

j=1w(Fj)vFj = 0.10

This balancing condition is, in fact, the only condition that a weighted rational
polyhedral complex has to satisfy to be the LIP of some valuation function.11 That is:

Theorem 2.10 (Mikhalkin, 2004, Prop. 2.4). Suppose that (Π,w) is an (n − 1)-
dimensional balanced weighted rational polyhedral complex in Rn, and let L be the union
of its cells. Then there exists a finite set A ( Zn and a function u : A → R such that
Lu = L and wu = w.

By contrast with Afriat’s theorem (see e.g. Vohra, 2011, Thm. 7.2.1), which starts with
a (finite) set of prices paired with demands, this theorem uses only information about
the geometrical divisions in price space.

Thm. 2.10 is not mathematically novel, but its economic implications are important
(and, we believe, novel). It shows that a set in Rn is the LIP of a quasilinear valuation
if and only if it has some easily-checked geometric properties. It is also easy to identify
the cells of this LIP, in particular its facets, and so understand the economics of the
valuation, since:

Lemma 2.11. C ⊆ Lu is a cell iff it is the intersection of the closures of a set of UDRs
of u.

In practice it is often much easier to develop ideas and intuitions by working with these
geometric objects, than by working out explicit examples of valuations. Subsequent
sections will show in more detail how simply describing the geometry of the LIP, and of
related objects, gives insight into the economics.

The next section explores the uniqueness of valuations identified in this way.

2.2.2 The correspondence between LIPs and concave valuations

We define concavity of the valuation u in the standard “concave-extensible” sense,
but with an extra property since we allow the domain to be any finite subset of Zn:

Definition 2.12.

(1) A set A ⊆ Zn is discrete convex if it contains every integer point within its convex
hull, that is, conv(A) ∩ Zn = A.

10This is just the n-dimensional generalisation of the requirement in 2 dimensions that, when moving
in a sufficiently small circle around any point, the vectors vF all point in the direction of travel. To
choose a rotational direction around G, pick a 2-dimensional affine subspace H of Rn orthogonal to
G, such that the intersection of each Fj with H is 1-dimensional. The intersection of H with the LIP
is then a collection of 1-cells meeting at the 0-cell which is G ∩ H. An ordinary choice of rotational
direction in this two-dimensional picture gives a rotational direction around G in Rn.

11There do not necessarily exist weights to balance a general rational polyhedral complex. For
example, in two dimensions, consider three points (0-cells), each contained in three facets, such that
each pair of points are both contained in a common facet. There are six weights, which must satisfy
six equations (three balancing conditions in each of the two dimensions). But since the conditions are
trivially satisfied by setting all weights equal to zero, the conditions can only be satisfied by positive
integer weights if the conditions are not linearly independent–which is non-generic.
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(2) We write conv(u) : conv(A)→ R for the minimal weakly-concave function every-
where weakly greater than u (sometimes called the “concave majorant” of u).

(3) u : A→ R is concave if A is discrete-convex and u(x) = conv(u)(x) for all x ∈ A.

It is a standard result that concave valuations are precisely those for which every
possible bundle is demanded at some price, and for which the demand set at any price is
discrete-convex, just as for divisible, weakly-concave valuations, and for essentially the
same reasons:12

Lemma 2.13. u : A→ R is concave
iff for all x ∈ conv(A) ∩ Zn there exists p such that x ∈ Du(p)
iff Du(p) is discrete-convex for all p.

For a simple example of failure of concavity, consider the 1-dimensional valuation
u(0) = u(1) = 0; u(2) = 10. Then Du(5) = {0, 2} is not discrete-convex, and there
exists no price p such that 1 ∈ Du(p).

If we weakly increase a valuation until it becomes concave, it is easy to see that the
only values we need change are those for bundles which were previously never demanded.
And increasing any never-demanded bundle’s value has no effect on the agent’s behaviour
until the bundle is just marginally demanded, when the value function becomes locally
affine. The marginally defined bundle is then added to the demand at some prices, but
is never demanded uniquely, and all other bundles are demanded exactly as they were
previously, so the LIP is unchanged. That is:

Lemma 2.14. Let u : A→ R. Then:

(1) for each x ∈ A, u(x) = conv(u)(x) iff there exists p such that x ∈ Du(p);
(2) Lu = Lu′, where u′ is the restriction of conv(u) to conv(A) ∩ Zn.

However, restricting to concave valuations does not resolve the only ambiguity in
associating valuations to weighted rational polyhedral complexes. Adding a constant
to u(x) leaves the LIP unchanged, as does increasing every available bundle by a fixed
bundle and making a corresponding shift in the valuation.13 So to give a full equiva-
lence between weighted LIPs and concave valuation functions we must specify the exact
demand set at some price, and the value of one bundle.

Theorem 2.15 (Mikhalkin, 2004, Remark 2.3). Let (Π,w) be an (n − 1)-dimensional
balanced weighted rational polyhedral complex in Rn, let L be the union of the cells of Π,
and let p be any price not contained in L. Then there exists a unique concave valuation
u such that Du(p) = {0}, u(0) = 0, L = Lu and w = wu.

In sum, Thms. 2.10 and 2.15 tell us that we can develop our understanding of valua-
tions by working directly with geometric pictures of unions of cells which form balanced
weighted rational polyhedral complexes. Any such geometric picture corresponds to a
concave valuation, which is unique up to the ambiguity described. However, we will not
restrict attention to concave valuations.

12See Appendix A.1; these results are illustrated by the example in the next subsection (2.3). For the
divisible case see, e.g., Mas-Colell et al. (1995) pp. 135-8, especially Prop. 5.C.1(v), since a quasilinear
valuation is equivalent to a standard profit function with a single-output technology.

13Of course, the bundle demanded at any price is then increased by the fixed bundle.
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2.3 The Demand Complex

We constructed the LIP in price space. It is now useful to construct a dual geometric
object–the demand complex–in quantity space.

We saw that the LIP consists of cells, each of which is a set of price vectors at which
a given set of bundles is demanded. Conversely, the demand complex is a collection of
cells, each cell being the convex hull of a set of bundles (quantity vectors) which are
demanded at a given set of price vectors. (We will see–Prop. 2.21–that working with
the convex hulls of demand sets, rather than with the sets themselves, yields a valuable
duality with weighted LIPs.)

Definition 2.16.

(1) The demand complex Σu is the set of all cells σ := conv (Du(p)) where p ∈ Rn.
(2) The vertices of the demand complex are its 0-cells.
(3) The edges of the demand complex are its 1-cells.
(4) The length of an edge is the number of primitive integer vectors, in its direction,

of which it is formed (i.e., its Euclidean length divided by the Euclidean length of
the primitive integer vector in its direction).

It is easy to see that every cell in Σu is a rational polyhedron. Furthermore,

Proposition 2.17. The demand complex is a rational polyhedral complex, with dimen-
sion equal to that of conv(A).

We will understand this proposition via an alternative description of the demand
complex, which aids intuition and also makes it easy to quickly develop examples.

First, note it is clear that:

Lemma 2.18. Dconv(u)(p) = conv (Du(p)) for all p ∈ Rn.

Now, conv(u) can be understood as a valuation function on divisible goods. So we
can use the standard construction for a concave valuation: any price vector defines a
hyperplane, tangent to the graph of the agent’s valuation, which meets this graph at the
agent’s demand set for that price. But because conv(u) is only weakly-concave, some
tangent hyperplanes meet the graph at more than one point, and some demand sets are
multi-valued.

For example, Fig. 2a shows a valuation function, u, and Fig. 2b illustrates, using
bars to represent the valuations, u(x), of bundles x. We will always present the feasible
bundles increasing to the left, and down. This will reveal the duality between the demand
complex and the weighted LIP most clearly.

Fig. 2c shows the graph of conv(u). We call this the “roof” of the valuation. At any
price p, the bundles, x, demanded under the valuation conv(u), are those that maximise
conv(u)(x)− p · x = (−p, 1) · (x, conv(u)(x)). That is, x is demanded at p if the point
(x, conv(u)(x)) is “farthest out” from the origin in the “direction of that price” (i.e., in
the direction (−p, 1)). So an intersection between the roof and a supporting hyperplane
is a set of the form σ̂ = {(x, conv(u)(x)) ∈ Rn+1 : x ∈ Dconv(u)(p)}, where p is such
that (−p, 1) is normal to the hyperplane. We call these sets the faces of the roof (cf.
Defn. 2.6(2)). And projecting such a face from Rn+1 to its first n coordinates (in Rn)
just yields the set Dconv(u)(p) = conv (Du(p)) for that p. So:

11



x1

2 1 0 u(x)
8 4 0 0

10 8 8 1 x2

11 11 10 2

(a) Tabular representation
of a valuation, u(x).
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(b) A representation of the valu-
ation using bars.

x2

x1

u(x)

(c) The “roof” of the valuation
(the graph of conv(u)).

Figure 2: A valuation and its roof.

Lemma 2.19. σ̂ ∈ Rn+1 is a face of the roof iff the projection of σ̂ to its first n
coordinates is a cell σ ∈ Rn of the demand complex.

So projecting the faces of the roof into Rn yields the collection of all demand complex
cells conv (Du(p)). This is illustrated by the projection beneath the roof in Fig. 2c, and
the demand complex in Fig. 3a.14 Moreover, it is clear that the faces of the roof are
faces of a polyhedron, namely, the convex hull of the points (x, u(x)). So these faces
form a polyhedral complex. Prop. 2.17 follows from the fact that the projection of this
complex to its first n coordinates is one-to-one. (Details are given in Appendix A.2).

Fig. 3a shows the three 2-cells (areas), shaded to match the corresponding pieces of
planes of the roof in Fig. 2c. The 2-cells are separated by nine edges (line-segments that
are 1-cells), that themselves meet in the seven vertices (0-cells) of the demand complex.

Note that only the “white” circles represent vertices. The grey and black circles
represent bundles that are not at vertices of the demand complex, since they are not
uniquely demanded at any price. Indeed the demand complex cannot tell us whether
non-vertex bundles such as these are ever demanded. However, it does tell us that
if a non-vertex bundle is demanded at any price, then it is demanded at the price(s)
corresponding to those cells in which it lies. This follows straightforwardly from Lemma
2.14(1)’s result that if a bundle, x, is demanded at any price, then u(x) = conv(u)(x),
together with the observation that Du(p)={x : u(x) = conv(u)(x)} ∩ Dconv(u)(p), and
Lemma 2.18. So we have proved:

Lemma 2.20. If there is any price p at which x is demanded, and if x ∈ conv (Du(p)) ,
then x ∈ Du(p).

We discuss the example in more detail in the next section.

14We depict the demand complex by drawing its top-dimensional cells, on a grid of integer bundles.
The remaining cells are easily identified as faces of the top-dimensional cells, while the grid allows us
to identify the “lengths” of edges and the bundles in any cell. We omit axes, since replacing A with
A+ x for some x ∈ Zn, and re-defining u correspondingly, yields a demand complex dual to the same
weighted LIP.
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2.4 Duality

We can now see an instructive (and beautiful) duality between the demand complex
and the weighted LIP.15

(a) Σu, with the grid of inte-
ger bundles in conv(A).

p2

p1

(0, 1) (1, 2)

(4, 8)

22

(b) The weighted LIP (Lu,wu),
which is dual to Σu.

p2

p1

22

(c) A different weighted LIP dual
to Σu.

Figure 3: (a)-(b) The demand complex and weighted LIP of the valuation u given in
Fig. 2a; dual geometric objects have the same style and shading. The weighted LIP of
a different valuation from u, also dual to the demand complex of (a), is shown in (c).

Since the vertices of the demand complex are at bundles which are uniquely de-
manded for some price, they correspond to UDRs. And an edge of the demand complex
between vertices x and x′ indicates the existence of prices, p, for which the demand set
contains both these bundles. Moreover, such p form an ((n − 1)-dimensional) facet of
the LIP, as they are defined by only one equality constraint u(x)−p ·x = u(x′)−p ·x′.16

And as we saw in Prop. 2.5, p · (x′ − x) = constant, for all these price vectors, p. So
each edge of the demand complex is normal to the facet that corresponds to it in the
LIP. And more generally:

Proposition 2.21 (Duality). There is a bijective correspondence between: vertices of
the demand complex and closures of UDRs; between edges of the demand complex and
weighted facets of the LIP; and, for k ≥ 1, between k-cells σ of the demand complex and
(n− k)-cells Cσ of the LIP; such that:

(1) σ = conv (Du(p)) iff p ∈ C◦σ;
(2) Cσ = {p ∈ Rn : σ ⊆ conv (Du(p))};
(3) inclusion relationships reverse: σ ( σ′ ⇔ Cσ′ ( Cσ;
(4) dual cells are orthogonal: (p′ − p) · (x′ − x) = 0 for all p,p′ ∈ Cσ, x,x′ ∈ σ;
(5) facets Fσ correspond to edges σ of length wu(Fσ).

15The construction uses Legendre-Fenchel duality; e.g. see Murota (2003). For more on these ‘regular
subdivisions’ and on polytopes in general see Thomas (2006) and De Loera et al. 2010.

16If there are additional points in A lying on the edge, they do not impose additional linearly inde-
pendent constraints on such p; see the discussion following relating to the “dark-grey edge”.
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The demand complex and weighted LIP of the valuation of Fig. 2a are pictured in
Figs. 3a and 3b respectively; cells which are dual are depicted in the same style.

Thus the 0-cells of the LIP at the prices (4, 8), (1, 2), and (0, 1) are dual to the
dotted-, wavy-, and light-grey-, shaded 2-cells of the demand complex, respectively; the
nine facets of the LIP are dual to the nine correspondingly-styled edges of the demand
complex; and each of the seven UDRs, around the LIP, is dual to one of the seven
bundles at the white circles that are the seven vertices of the demand complex.

Notice that the dark-grey horizontal edge at the top of the demand complex passes
through a bundle, and has length 2 (in the sense of Defn. 2.16(4)). It is dual to the dark-
grey vertical facet of the LIP, which correspondingly has weight 2, and is so labelled.
Recall from Prop. 2.5 that a facet’s “weight” times its primitive integer normal vector is
the change in demand between the UDRs it separates. All other edges of this demand
complex have length 1; all other facets of the LIP correspondingly have weight 1.

As we noted in the previous subsection, neither the grey bundle, nor the black bundle,
is at a vertex of the demand complex, since neither is ever uniquely demanded for any
price, so nor do they correspond to any UDRs.

Furthermore, neither the LIP nor the demand complex can tell us whether a non-
vertex bundle such as one of these is ever demanded. However we do know, from Lemma
2.20, that because the central wavy-shaded (five-sided) demand complex cell is the only
demand complex cell that the black bundle lies in, the corresponding wavy-shaded 0-cell
of the LIP in which that bundle is “hidden” indicates the only price, (1,2), at which
that bundle might be demanded. Similarly, because the dark-grey horizontal edge at
the top of the demand complex is the lowest-dimensional demand complex cell that the
grey bundle lies in, the corresponding dark-grey vertical facet of the LIP in which that
bundle is “hidden” indicates the only prices ((4, p2) for p2 ≥ 8–see Fig. 3b) at which
that bundle might be demanded.

In fact, (x, u(x)) is in the roof for a non-vertex bundle, x–and so the bundle is
demanded–if and only if the valuation, u, is affine in the relevant range. The grey
bundle is an example of this. It is at (1, 0), and its valuation, 4, is the average of the
valuations, 0 and 8, of the bundles (0, 0) and (2, 0), so it is demanded at the prices
{(4, p2) : p2 ≥ 8}.

However, if u is non-concave at a non-vertex bundle, the bundle’s value lies strictly
below the roof, so it is never demanded–it is “jumped over” as we cross between UDRs.
The black bundle in the centre of demand complex illustrates this. Its value under u is
strictly below its value under conv(u), so it lies strictly under the “roof” (see Fig. 2c)
and is never demanded at any price. (See Appendix A.2 for more discussion.)

Prop. 2.21, and the remark above Prop. 2.7, allow us to characterise the set of prices
at which a bundle x is demanded, if it is demanded at any prices:

Corollary 2.22. If σ is the minimal cell of the demand complex such that x ∈ σ, and
if x is demanded for any price, then x ∈ Du(p) iff p ∈ Cσ. In particular, the set of
prices at which x is demanded forms a polyhedron.

Finally, note that, for any single demand complex, there are multiple weighted LIPs
which satisfy the correspondences and orthogonality relationships of Prop. 2.21. For
example, Figs. 3b and 3c give two different weighted LIPs–and therefore two different
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valuations–that are both dual to the demand complex of Fig. 3a.17 So it is natural to
group together all valuations whose demand complexes are either the same, or differ
only by a constant shift by some bundle, x:

Definition 2.23. Two valuations u, u′ have the same combinatorial type if they have
the same demand complex, or if there exists x ∈ Zn such that σ ∈ Σu iff {x}+ σ ∈ Σu′ .

It is easy to list all the possible demand complexes, and examples of dual weighted
LIPs which exhibit the combinatorial type (thus giving all “essentially-different” struc-
tures of demand) if the domain is not too large–see Figs. 11-12 in Appendix A.2.

2.5 Representation in Price Space vs. Quantity Space

Although the weighted LIP and demand complex are dual, there is an important
distinction. In price space, any rational polyhedral complex satisfying the simple “bal-
ancing condition” of Defn. 2.9 corresponds to some valuation (see Thm. 2.10). But,
in quantity space, it is not true that every way of subdividing conv(A) into a rational
polyhedral complex yields a demand complex. (See Maclagan and Sturmfels, 2015, Fig.
2.3.9 for an example of a subdivision which corresponds to no LIP, and therefore to no
valuation.) Nor does there seem to be any simple check of which polyhedral complexes
in quantity space correspond to any valuation function.

So while we can develop examples to, e.g., test conjectures, by working with geomet-
ric objects in price space, and be certain that the corresponding valuations will exist,
it is hard to do this in quantity space. Furthermore, a demand complex shows only
collections of bundles among which the agent is indifferent for some prices, while LIPs
show the actual prices at which bundles are demanded. So we have found in practice
that it is usually easier to develop ideas by working with our geometric objects in price
space, than by working either in quantity space, or directly with valuation functions.

It is also much easier to aggregate agents’ valuations in price space (see Section 3.3).
So we mostly work in price space.
However, some information that is only implicit in the weighted LIP becomes obvious

in the demand complex. For example, we will see in Sections 4.1 and 5 that a low-
dimensional cell of the LIP sometimes “hides” important detail that is much more easily
seen in the higher-dimensional dual object in the demand complex, in quantity space.

Moreover, the easiest way to compute the LIP of a specific valuation is often by first
finding the demand complex–it is easy to go from Fig. 2a to Fig. 3a in our example, and
then also easy to use the duality to find a weighted LIP of the correct combinatorial
type, and from that to find the exact LIP (that is, Fig. 3b is easily found from Fig. 3a,
see Appendix A.2). It is generally much harder to construct the LIP directly from the
valuation, especially for more complicated examples than ours.

The fact that the different representations are useful in different contexts makes the
ability to move easily between them, using duality, especially valuable.

17We are here using category-theoretic “duality”, thus allowing an object to have multiple, equivalent,
“duals”.
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3 “Demand Types”

3.1 Definition of Demand Types, and Comparative Statics

We saw in the previous section that the LIP’s facet normals describe how demand
changes between UDRs (Prop. 2.5). They therefore give all the possible directions of
change in demand that can generically result from a small change in prices. So it is
natural to classify valuations into “demand types” according to these facet normals. A
valuation’s demand type then gives us comparative statics information that is analogous
to the information that the Slutsky matrix provides for a valuation on divisible goods.
(The dimensionality is low enough with indivisibilities that we can characterise a class of
valuations globally in this way, by contrast with the divisible case for which the Slutsky
matrix provides information only at a point.)

Definition 3.1. Let D ( Zn be a set of non-zero primitive integer vectors such that if
v ∈ D then −v ∈ D. The demand type defined by D comprises valuations u such that
every facet of Lu has normal vector in D.

(We will slightly abuse notation by also writing “u is of demand type D.”)
For example, the valuation of Fig. 1 is of demand type ±{(1, 0), (0, 1), (−1, 1)}, as

are many other valuations, for example, all those shown in Figs. 9a-c. Note that a
valuation is of any demand type which contains the facet normals of its LIP; we do not
restrict to the minimal such set.18

By duality (Prop. 2.21), we could equivalently classify valuations according to the
directions of their demand complexes’ edges.19 But our description makes clear that the
demand type provides the generic comparative statics.

Proposition 3.2. The following are equivalent for a valuation u:

(1) u is of demand type D.
(2) For valuation u and generic p, t, if ∃ ε > 0 such that p and p + εt are in distinct

UDRs, and such that @ ε′ ∈ (0, ε) such that p+ ε′t is in a third distinct UDR, then
the difference between bundles demanded at p and p + εt is an integer multiple of
some vector in D.

That is, the change in demand between a generic starting price, p, and the next UDR in
any given generic direction of price change, t, is described by one of the demand type’s
vectors. (The conditions of the proposition ensure there is no third UDR between those
containing p and p + εt.) Furthermore, since the domain A is finite, the response to
any specific price change can, generically, be broken down into a series of steps of this
form.

18Thus, the valuations of Figs. 1 and 9a-c are also of demand type ±{(1, 0), (0, 1), (−1, 1), (−2, 1)}
which is the minimal demand type of the valuations of Figs. 2–3.

Note our definition does not consider the weights on facets; see Baldwin and Klemperer (2012, note
25, and 2014, note 42).

19Danilov, Koshevoy and their co-authors’ work (see Section 4.3) examine these vectors in quantity
space. However, they do not use them to create a taxonomy of demand or, e.g., interpret them as
giving comparative statics information. We, by contrast, develop a general framework to understand
them in economic terms (see also Baldwin and Klemperer, 2012, 2014 and in preparation-b).
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That (1)⇒(2) is immediate from Prop. 2.5. For (2)⇒(1), assume (1) fails, so Lu has
a facet F with primitive integer normal v /∈ D. Then we can violate (2) by choosing
p,p′ in the UDRs adjacent to F and positioned close to F , and letting t = p′ − p.

Baldwin and Klemperer (2014 and in preparation-b) give a full discussion of non-
generic price changes (which, e.g., pass through a lower-dimensional cell than a facet)
and also give other equivalent characterisations of demand types, but Prop. 3.2 will
suffice for our purposes.

3.2 Substitutes, Complements, and other “Demand Types”

It follows straightforwardly that demand types provide simple characterisations of
familiar concepts such as ordinary substitutes, ordinary complements, and “strong sub-
stitutes”. These characterisations are easier to generalise than standard ones based on
imposing restrictions on u directly. Moreover, they more clearly reveal and explain fea-
tures such as the lack of symmetry between substitutes and complements. We begin by
recalling standard definitions:

Definition 3.3 (Standard).

(1) A valuation u is ordinary substitutes if, for any UDR prices p′ ≥ p with Du(p) =
{x} and Du(p

′) = {x′}, we have x′k ≥ xk for all k such that pk = p′k.
20

(2) A valuation u is ordinary complements if, for any UDR prices p′ ≥ p with Du(p) =
{x} and Du(p

′) = {x′}, we have x′k ≤ xk for all k such that pk = p′k.
(3) A valuation u is strong substitutes if, when we consider every unit of every good

to be a separate good, it is a valuation for ordinary substitutes.21

It is easy to use Prop. 3.2 to provide alternative, equivalent, definitions of these
concepts, as demand types. For substitutes:

Definition 3.4. The (n-dimensional) ordinary substitutes vectors are the set of non-
zero primitive integer vectors v ∈ Zn with at most one positive coordinate entry, and at
most one negative coordinate entry. They define the ordinary substitutes demand type
(for n goods).

Proposition 3.5. A valuation is an ordinary substitutes valuation iff it is of the ordi-
nary substitutes demand type.

20We write, as is standard, p′ ≥ p when the inequality holds component-wise.
We call “ordinary substitutes” what most others (e.g., Ausubel and Milgrom, 2002, Hatfield and

Milgrom, 2005) simply call “substitutes”. We do this for clarity, since some have defined “substitutes”
in other ways. In particular, although Kelso and Crawford’s (1982) definition is equivalent in their
model, it is not generally equivalent if it is extended to multiple units of three or more goods (which
yields Milgrom and Strulovici’s, 2009, definition of “weak substitutes”); see Danilov et al., 2003, Ex.
6 and Thm. 1. Our definition (3.3(1)) seems the most natural one in the general case. It is also
equivalent to several properties that seem to naturally characterise “substitutes”, and to the indirect
utility function (maxx∈A{u(x) − p · x}) being submodular–see Baldwin, Klemperer and Milgrom (in
preparation). See also Baldwin and Klemperer (2014). Hatfield et al. (2013)–see our Section 6.1–
and Danilov et al. (2003) use definitions equivalent to 3.3(1), and the latter authors make a similar
observation to our Prop. 3.5 when they say “each cell of a valuation’s parquet is a polymatroid”.

21This is equivalent to Milgrom and Strulovici’s (2009) definition–see Danilov et al (2003, Cor. 5).
There are many other equivalent definitions (see Shioura and Tamura, 2015), the most important being
M \-concavity” of the valuation (Murota and Shioura, 1999).
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increase p1

Figure 4: A facet (shaded) defined by {p ∈ R3 : p1 + p3 = p2; p1,p2, p3 ≥ 0}, with its
normal (1,-1,1) (the arrow shown in bold). Increasing either p1 (as shown with a dotted
arrow), or p3, demonstrates complementarities between goods 1 and 3, as the bundle
demanded switches from (1,0,1) to (0,1,0).

(Figs. 1 and 3b-3c illustrate the substitutes property holding, and Fig. 4 shows it failing.)
So a vector that is normal to a facet of a substitutes LIP cannot have two non-zero entries
of the same sign. To understand the necessity of this, see Fig. 4, which depicts a facet
whose primitive integer normal vector’s first and third coordinates have the same sign.
Increasing the price on either good 1 (as pictured) or good 3, can therefore take us
across the facet–decreasing demand for both goods 1 and 3. So any such facet generates
complementarities at some prices, and so cannot be part of a substitutes LIP.

To prove that being of the ordinary substitutes demand type is sufficient for a val-
uation to be ordinary substitutes, we apply Prop. 3.2 as we cross the finite number of
facets between prices p and p′ ≥ p. (The fact that Prop. 3.2 refers only to generic
p, t does not matter, because Defn. 3.3(1) only requires us to examine UDR prices, and
UDRs are open and dense in Rn. So we can always pick “close-by” prices p̃ and p̃′ so
that Prop. 3.2 does apply for this starting price and direction of price change, and so
that demand is the same as at p and p′, respectively.) Now recall the standard result
that (x′′ − x) · (p′′ − p) < 0, where x′′,x are the bundles demanded at any prices p′′,p,
respectively (see e.g. Mas-Colell et al., 1995, Prop. 2.F.1). So, as we cross each facet,
demand is strictly reduced for some good whose price has strictly increased (since the
remaining prices are constant). Since this good corresponds to a negative entry in the
facet’s normal vector, and since there is at most one such entry in an ordinary substi-
tutes vector, demand weakly increases at each facet crossing for all goods whose price
does not change, so Defn. 3.3(1) is satisfied.

For complements, a price change that reduces demand for a good can of course reduce
(but not increase) demand for other goods. So, applying Prop. 3.2 in the same way as
for Prop. 3.5, we define and then prove:

Definition 3.6. The (n-dimensional) ordinary complements vectors are the set of non-
zero primitive integer vectors v ∈ Zn whose non-zero coordinate entries are all of the
same sign. They define the ordinary complements demand type (for n goods).
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Proposition 3.7. A valuation is an ordinary complements valuation iff it is of the
ordinary complements demand type.

The lack of symmetry between substitutes and complements, and the reason for it
are now clear: ordinary complements vectors may have any number of non-zero entries
(of the same sign), but any pair of non-zero entries in an ordinary substitutes vector
must be of opposite signs (recall Fig. 4), so ordinary substitutes vectors can have at
most two non-zero entries (see Ex. A.3 for more discussion).

The characterisation of strong substitutes as a demand type also gives an intuitive
description of them:

Definition 3.8. The strong substitute vectors are those non-zero v ∈ Zn which have at
most one +1 entry, at most one −1 entry, and no other non-zero entries. They define
the strong substitutes demand type.

Proposition 3.9 (See Baldwin and Klemperer, 2014, Cor. 5.20; and Shioura and
Tamura, 2015, Thm. 4.1(i)). A valuation is strong substitutes iff it is concave and is
of the strong substitutes demand type.

So Figs. 1, 5a, and 9a-c show examples of LIPs of strong substitutes valuations. Note
that this characterisation is also parsimonious; with n goods, the strong substitutes
demand type is defined by just n(n+ 1)/2 vectors (and their negations).22

We will see in Sections 6.2 and 6.3 that demand types also allow us to characterise
significant new classes of valuations.

In Section 4 we show that analysing the properties of demand types helps us under-
stand when competitive equilibrium exists.

3.3 Aggregate Demand, and the “Demand Type” of the Ag-
gregate of Multiple Agents

An important feature of our “demand types” classification–that, in particular, greatly
facilitates the study of equilibrium–is that the demand type when we aggregate valua-
tions from multiple agents is just the union of the sets of vectors that form the individual
agents’ demand types.

So we now consider a finite set J of agents: agent j ∈ J has valuation uj for integer
bundles in a finite set, Aj. Their aggregate demand is, of course, the (Minkowski) sum
of the individual demands, but to apply our techniques to this, we want to treat it as
the demand of a single “aggregate” agent.

Definition 3.10. An aggregate valuation of {uj : j ∈ J} is a valuation uJ with domain
A :=

∑
j∈J A

j such that DuJ (p) =
∑

j∈J Duj(p) ∀p ∈ Rn.

Note that aggregate valuations are not uniquely defined. However, this does not
matter: since the aggregate demand sets are unambiguous, properties such as concavity
of aggregate valuations are also unambiguous, and the aggregate weighted LIP is unique.

22Our description is closely related to the “step-wise gross substitutes” of Danilov et al. (2003), which
they link to the edge vectors of (what we call) the demand complex; these edge vectors are also linked
to M \-concavity by Murota and Tamura (2003).
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(The fact that we can construct the aggregate LIP from the individual LIPs without
knowing the form of uJ–so without using any cumbersome formula for uJ–is an important
advantage of aggregation in price space.23)

The rest of this subsection proves and discusses:

Lemma 3.11. Given a finite set of valuations {uj : j ∈ J}:
(1) an aggregate valuation uJ exists;
(2) LuJ =

⋃
j∈J Luj ;

(3) If F is a facet of LuJ , then wuJ (F ) =
∑

F j∈F wuj(F
j), in which F is the set of all

facets of the individual Luj which contain F .

Corollary 3.12. A collection of individual valuations are all of demand type D iff every
aggregate valuation of every finite subset of them is of demand type D.

For example, Figs. 5a-b show the LIPs of Elizabeth’s and Paul’s valuations for the ho-
tel rooms of our introductory example. Both valuations have domain {0, 1}2. Elizabeth
regards the rooms as substitutes; her valuation is us(x1, x2) = max{40x1, 30x2} (Fig.
5a). Paul regards them as complements; his valuation is uc(x1, x2) = min{50x1, 50x2}
(Fig. 5b).
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p2
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(a) Lus
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50
(b) Luc

p1

p2

30

20

50

50
(c) Lu{s,c}

p1

p2

40

30

60

70
(d) Lu{s,c∗}

Figure 5: The LIPs of (a) a simple substitutes valuation; (b) a simple complements
valuation; (c) any aggregate valuation of the substitutes and complements valuations
shown; (d) any aggregate valuation of the substitutes valuation shown and a comple-
ments valuation with a higher value for the bundle of both rooms together.

It is easy to see that an aggregate demand set consists of a unique bundle iff all the
individual demand sets do (and so to prove Lemma 3.11(2)).24 Thus Fig. 5c shows the
aggregate LIP, Lu{s,c} , for the valuations us and uc. It is obvious that a demand type
contains the individual valuations iff it contains any aggregate valuation (Cor. 3.12).

From the aggregate LIP we can obtain a polyhedral complex, Π, in the usual way
(Prop. 2.7 and Lemma 2.11). Its cells are either cells, or subsets of cells, of the individual

23An implication of quasi-linear preferences is that max
{∑

j∈J u
j(xj) : xj ∈ Aj ,

∑
j∈J x

j = y
}

is an

aggregate valuation, as is well-known. Mathematically, this aggregate valuation is the tropical product
of the tropical polynomials that are the individual valuations. Economically, it says that the aggregate
value of a bundle is the maximum sum of agents’ values that can be obtained by apportioning the
bundle among the agents.

Adding a constant to the valuation, and/or changing the value of never-demanded bundles to leave
them never demanded, also provide aggregate valuations according to Definition 3.10.

24This has been previously observed in pictures of demand correspondences, see for example Murota,
2003, Section 11.2.
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LIPs: cells of individual LIPs that intersect in their interiors are split up into new,
smaller cells in the aggregate LIP. Thus the price (30, 20) in Fig. 5c is a 0-cell, on the
boundary of four distinct 1-cells.

The change in aggregate demand between any pair of prices is just the sum of the
changes of the individual demands. So the weight of any facet F of the aggregate LIP is
just the sum of the weights of all the facets F ′ of the individual LIPs for which F ⊆ F ′

(which proves Lemma 3.11(3)). And since the weighted polyhedral complex (Π,w) is
derived from balanced complexes, it is itself balanced, and so (using Thm. 2.10) it is the
LIP of some valuation (so Lemma 3.11(1) holds).

Notice, however, that we cannot find the demand complex of an aggregate valuation
using only the individual demand complexes–because a demand complex does not cor-
respond to a unique valuation, and different valuations may aggregate in different ways.

(a) Σus (b) Σuc , Σuc∗ (c) Σu{s,c} (d) Σu{s,c∗}

Figure 6: Demand complexes dual to the LIPs in Figs. 5a-d, when every facet has
weight 1. (We also show grids of relevant integer bundles; we do not distinguish which
bundles are never demanded.)

For example, the demand complexes corresponding to the LIPs of Figs. 5a-b are
shown in Figs. 6a-b. The demand complex corresponding to their aggregate LIP (Fig.
5c) is shown in Fig. 6c; its domain is {0, 1}2 + {0, 1}2 = {0, 1, 2}2. If Paul’s valuation
increases to uc∗(x1, x2) = min{100x1, 100x2}, then his demand complex remains that of
Fig. 5a. However, the LIP Lu{s,c∗} is shown in Fig. 5d, and its demand complex is that of
Fig. 6d. So there is no unique aggregate demand complex corresponding to the demand
complexes of Fig. 6a and Fig. 6b.

4 The Unimodularity Theorem–when does Equilib-

rium always exist for a “Demand Type”?

This section shows that our “demand types” classification yields a powerful theorem
about when competitive equilibrium is and is not guaranteed.

This theorem requires much weaker assumptions about agents’ preferences than used
in the existing leading economics literature (though we retain the standard assumption
of quasilinear preferences). So our condition for equilibrium is correspondingly much
more general. It immediately generalises, for example, equilibrium results in Kelso
and Crawford (1982), Gul and Stacchetti (1999), Sun and Yang (2006), Milgrom and
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Strulovici (2009), Hatfield et al. (2013), and Teytelboym (2014). In particular it is not
necessary for all agents to have substitutes valuations (or some basis change thereof) for
equilibrium to always exist; complements valuations guaranteeing equilibrium are easy
to find.

We state the Unimodularity Theorem and some immediate corollaries in the next
subsection; give intuition and the proof in Section 4.2; and explain the close connections
with Danilov et al. (2001) in Section 4.3.

A variety of applications of the theorem are in Section 6.

4.1 Statement of Results

We are interested in the standard notion of competitive equilibrium:

Definition 4.1. An equilibrium exists, for a market supply x ∈ Zn and a finite set of
valuations, if x is in the valuations’ aggregate demand set for some price.

It is standard (Lemma 2.13) that concavity of an aggregate valuation uJ is neces-
sary and sufficient for equilibrium to exist for all integer bundles in the convex hull of
the domain of uJ . We therefore refer to these bundles as the relevant supply bundles :
equilibrium will clearly never exist for other bundles, as they are the wrong “size”.

Concavity of individual valuations is therefore necessary even for all one-agent economies
to have equilibrium, so our results will also restrict attention to concave valuations.

With indivisible goods (unlike with divisible goods), individual concavity is not
sufficient to guarantee aggregate concavity (and so, for example, supporting hyperplanes
do not necessarily exist). However, our geometric approach provides a simple additional
condition that is sufficient to guarantee equilibrium. First we define:

Definition 4.2. A set of vectors in Zn is unimodular if every linearly independent subset
can be extended to a basis for Rn, of integer vectors, with determinant ±1.

By “the determinant” of n vectors we mean the determinant of the n× n matrix which
has them as its columns.25 If the set of vectors spans Rn, then there exist sets of
n of them that are linearly independent; it is therefore, of course, sufficient to check
that all n-element sets have determinant ±1 or 0. Alternative equivalent conditions for
unimodularity are given by Facts 4.8 and A.5, so unimodularity of a demand type’s
vectors is not too hard to check (see also Remark A.24). We refer to “unimodular
demand types” in the obvious way. We can now state:

Theorem 4.3 (The Unimodularity Theorem). An equilibrium exists for every pair
of concave valuations of demand type D, for all relevant supply bundles, iff D is uni-
modular.

We will prove Thm. 4.3 as the combination of Props. 4.10 and 4.17, below.
It follows that if the demand type is unimodular, then a valuation obtained by

aggregating any two concave valuations is also a concave valuation, so we can apply the
result repeatedly:

25We ignore the order of the vectors since we are only interested in determinants’ absolute values.
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Corollary 4.4. An equilibrium exists for every finite set of concave valuations of de-
mand type D, for all relevant supply bundles, iff D is unimodular.

It is also immediate from the discussion above that:

Corollary 4.5. With n goods, if the vectors of D span Rn, then an equilibrium exists for
every finite set of concave valuations of demand type D, for all relevant supply bundles,
iff every subset of n vectors from D has determinant 0 or ±1.

Many standard results are immediate special cases. For example, it is well-known
that “strong substitute” vectors form a unimodular set (Poincaré, 1900), and these
valuations are (by definition) concave, so:

Proposition 4.6 (Danilov et al., 2001, 2003, and Milgrom and Strulovici, 2009). An
equilibrium exists for every finite set of strong substitutes valuations, for all relevant
supply bundles.

Other familiar equilibrium results, such as those of Kelso and Crawford (1982) and
Gul and Stacchetti (1999), of course also immediately follow.

Section 6 gives many other applications.

4.2 Intuition and Proof for the Unimodularity Theorem

4.2.1 The Role of Intersections

The first critical observation is that we can determine whether equilibrium exists by
focusing only on intersections of individual LIPs: we know equilibrium always exists,
that is, every relevant bundle is demanded at some price, iff any aggregate valuation is
concave iff the aggregate demand set is discrete-convex at every price (Lemma 2.13).
But if all but one of the agents have unique demand at some price, the aggregate demand
set is simply the shift of the remaining agent’s demand set by the other agents’ (unique)
demands. And this set must be discrete-convex, since we assumed that every individual
valuation is concave. So we only need to check prices at which two or more agents have
non-unique demand. This proves:

Lemma 4.7. For concave valuations u1, . . . , us, an equilibrium exists for every relevant
supply bundle iff the aggregate demand set is discrete-convex at every price in every
intersection Luj ∩ Luj′ for j, j′ = 1 . . . , s, j 6= j′.

So, for example, for the case of our “hotel rooms” example in the introduction which
had simple two-goods substitutes and complements valuations us(x1, x2) = max{40x1, 30x2}
(Fig. 5a) and uc(x1, x2) = min{50x1, 50x2} (Fig. 5b), whose aggregate LIP is shown in
Fig. 5c, the only price we need to analyse is the intersection (30, 20).

4.2.2 Unimodularity

Our “hotel rooms” example also illustrates the role of unimodularity.
The aggregate demand of us and uc at the (only) price we need to check, the inter-

section price (30, 20), is the sum of the individual demands, Dus(30, 20) = {(1, 0), (0, 1)}
and Duc(30, 20) = {(0, 0), (1, 1)}. So Du{s,c}(30, 20) consists of the bundles at the corners
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of a square, {(1, 0), (0, 1), (2, 1), (1, 2)} (the diamond at the centre of Fig. 6c). However,
this square also contains the non-vertex integer bundle (1, 1), and since (1, 1) is not in
the demand set at this price, it is not demanded at any price (by Lemma 2.20). So equi-
librium fails; although both us and uc are concave, any aggregate valuation for them is
not. (Note we did not need to actually aggregate the valuations us and uc to determine
this. However, Fig. 13 and Ex. A.4 show directly that u{s,c} is indeed non-concave.)

To see the relevance of unimodularity to the example and also, we will see, more
generally, note two equivalent conditions to unimodularity:

Fact 4.8. A set of vectors in Zn is unimodular iff the following equivalent conditions
hold for every linearly independent subset {v1, . . . ,vs} of this set:

(1) the parallelepiped whose edges are these vectors, that is,
{∑s

j=1 λ
jvj : λj ∈ [0, 1]

}
,

contains no non-vertex integer point;
(2) if x ∈ Zn and x =

∑s
j=1 α

jvj with αj ∈ R, then αj ∈ Z for all j.

Fact 4.8(1) says that a parallelepiped (that is, an s-dimensional parallelogram) whose
vertices are integer points contains a non-vertex integer point iff the vectors along its
edges do not form a unimodular set. Now recall two geometric facts for the case s = n:
that the volume of a parallelepiped is given by the (absolute value of the) determinant
of its edge vectors; and that a parallelepiped whose vertices are integer points contains
a non-vertex integer point iff its volume strictly exceeds 1. In our example, the edges of
the demand complex cell (the diamond in Fig. 6c) are in directions (1, 1) and (−1, 1).
Their determinant is 2, so the area of the cell is 2, and it therefore contains a non-
vertex integer point at which equilibrium may fail. (Thm. 4.3 warned of this, since the
determinant being 2 directly reveals a failure of unimodularity.)

So equivalent condition 4.8(1) will help to demonstrate the necessity of Thm. 4.3’s
condition for equilibrium.26

A second way to see the relevance of unimodularity is given by Fact 4.8(2), which
tells us that any vector in the space spanned by a given set of vectors can be created as
an integer combination of the set iff the set is unimodular. The four corners of the square
are vertices of the aggregate demand complex cell, and are therefore dual to UDRs that
each contain the price (30, 20) in their boundary (Prop. 2.21). If we move between these
UDRs, around the price (30, 20), aggregate demand changes by the vector normal to
any facet crossed (Prop. 2.5), that is, by the vector in the direction of one of the square’s
edges. Moreover, at (30, 20), the only possible changes in individual demand, and hence
the only possible changes in aggregate demand, are made up of these vectors. So the
impossibility of demanding (1,1) on aggregate at this price vector, and so (by Lemma
2.20) anywhere, is equivalent to the impossibility of obtaining (1,1) by starting at any of
the four bundles at the corners of the square ((1, 0), (0, 1), (2, 1), and (1, 2)), and adding
integer combinations of the edge vectors (1,1) and (-1,1).

More generally if, by contrast, every demand complex cell’s edge vectors were a
unimodular set, this problem could not arise. So equivalent condition 4.8(2) will be
useful for demonstrating the sufficiency of Thm. 4.3’s condition for equilibrium.

26When the set of vectors is not unimodular, the number of non-vertex bundles in such a paral-
lelepiped is one less than the determinant (Fact 5.15). So we expect these determinants should give
bounds on the extent to which supply constraints need to be relaxed to achieve equilibrium. (More-
over, the extension of our results to matching theory–see Section 6.6–might then yield results related
to Nguyen and Vohra, 2014 and Nguyen et al., 2016.)
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4.2.3 Proof of Necessity Condition for the Unimodularity Theorem

It is now easy to prove the necessity of the condition of our Thm. 4.3 by replicating
the situation of the simple example discussed in Sections 4.2.1-4.2.2 above.

Let agent j have a concave valuation, and be indifferent between (only) the bundles
xj,xj + vj, at some price p, for j = J , with |J | ≤ n. (This requires that vj are

primitive integer vectors.) So DuJ (p) =
{∑

j∈J(xj + δjv
j) : δj ∈ {0, 1}; j ∈ J

}
. If the

vj are linearly independent, then this set is precisely the vertices of a |J |-dimensional
parallelepiped in Zn with edges vj. By Fact 4.8(1) there exists a non-vertex integer
bundle in this parallelepiped iff the set {vj : j ∈ J} is not unimodular. So, applying
Lemma 2.20:

Lemma 4.9. Under the hypotheses of the paragraph above, the set {vj : j ∈ J} is
unimodular iff every integer bundle in conv(DuJ (p)) is demanded for some price.

For Thm. 4.3, we need to show a failure of equilibrium with only two agents. So for
any non-unimodular linearly independent set of primitive integer vectors v1, . . . ,vs ∈ D,
find the k such that the set v1, . . . ,vk is unimodular, but the set v1, . . . ,vk+1 is not.27

Let agents j = 1, . . . , k+ 1 be as above and specify that xj,xj + vj are the only bundles
in the domain of j’s valuation. Write J = {1, . . . , k}. By Lemma 4.7, equilibrium could
possibly fail for {uj : j ∈ J} only at the intersection of two or more of their LIPs. But
by Lemma 4.9, this does not happen, since the set {vj : j ∈ J} (and any subset thereof)
is unimodular, so uJ is concave (by Lemma 2.13). But if uJ is the valuation of a new
agent k∗, then we can set u{k

∗,k+1} = uJ∪{k+1}, for which equilibrium clearly fails, so we
have proved:

Proposition 4.10. If D is not unimodular, then there exists a pair of concave valuations
of demand type D and a relevant supply bundle for which equilibrium fails.

4.2.4 Transverse Intersections

If LIPs only had intersections of the simple form discussed above, a similar argument
would demonstrate the sufficiency part of Thm. 4.3. For the general case, we need
to consider more complex intersections, but we now show that we need only directly
prove existence of equilibrium for generic intersections, more precisely, “transverse” LIP
intersections:

Definition 4.11 (see e.g. Maclagan and Sturmfels, 2015, Defn. 3.4.9).

(1) The intersection of Lu1 and Lu2 is transverse at p if dim(C1 + C2) = n, in which
Cj is the minimal cell of Luj containing p, for j = 1, 2.

(2) The intersection of Lu1 and Lu2 is transverse if they intersect transversally at every
point of their intersection.

(3) The intersection of {Luj : j ∈ {1, . . . , k}} is transverse at p if the intersection of
Lu{1,...,j}and Luj+1 is transverse at p, for all j = 1, . . . , k − 1.28

27Clearly 1 ≤ k ≤ s− 1; a single primitive integer vector is a unimodular set, by Fact 4.8(2).
28This definition is independent of the order in which the LIPs are taken; see e.g. Lemma A.6(2).
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For example, in two dimensions, two lines crossing at a single point are intersecting
transversally. So the intersections in Figs. 5c and 5d are both transverse. However, two
coincident lines do not intersect transversally, and nor does a line crossing through a
0-cell intersect transversally. So the grey LIP and the black dotted LIP of Fig. 7a, which
intersect at (4, 1) and along the line from (4, 3) to (5, 4), do not intersect transversally
at any price. (For each of the three prices (4, 1), (4, 3) and (5, 4), the minimal cell of
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4 5

1
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3

(a) The grey and black dotted LIPs do not
intersect transversally at any price.

p1

p2

4 5

1

4

3

(b) After a small translation, the intersec-
tion is transverse, cf. Prop. 4.12.

Figure 7: Illustration of intersections that are (a) non-transverse; (b) transverse.

the grey LIP containing the price is the 0-cell at the price itself.) In three dimensions,
an intersection is transverse at all of the prices where a 1-cell meets a facet in a single
point, or two facets meet along a line, or three facets meet in a single point.

We will make use of two important features of transverse intersections.
First, as is intuitive, the intersections of “tropical hypersurfaces”, and therefore of

LIPs, are generically transverse:

Proposition 4.12 (Maclagan and Sturmfels, 2015, Prop. 3.6.12). For any Lu1 and
Lu2, and generic v ∈ Rn, the intersection of Lu1 and Lu2 + {εv} is transverse for all
sufficiently small ε > 0.

For example, a small translation of the black dotted LIP of Fig. 7a by {ε(1, 0)} yields the
transverse intersection shown in Fig. 7b, which consists of the points (4, 1+ ε), (4+ ε, 1),
(4, 3− ε) and (5 + ε, 4).

The significance of this is that modifying a valuation from u(x) to u(x) + εv · x
translates its LIP from Lu to Lu+{εv}, since any bundle demanded at p under valuation
u(x) is demanded at p + εv under valuation u(x) + εv · x.

Furthermore, failure of equilibrium is preserved by a sufficiently small modification
of this kind:

Proposition 4.13. If equilibrium does not exist for valuations u1 and u2, and some
relevant supply bundle, then for any v ∈ Rn, equilibrium also fails for valuations u1 and
u2ε, in which u2ε(x) = u2(x)+εv ·x, for the same supply and all sufficiently small ε > 0.

To prove Prop. 4.13, consider an allocation of the supply bundle between agents with
valuations u1 and u2. Failure of equilibrium means, by definition, that the two sets of
prices at which these agents do demand their respective allocations, must be disjoint.
But if the set of prices at which an agent demands a bundle is non-empty, it is either the
closure of a UDR or a cell of the LIP, and so is a polyhedron (see Cor. 2.22). And if two
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polyhedra are disjoint, then there is a positive minimum Euclidean distance between
any point in one and any point in the other (even if the polyhedra are not bounded;
see, e.g., Gruber, 2007, p. 59). Let δ be the minimum such distance, over the pairs of
polyhedra corresponding to the finite set of all possible allocations between the agents.

Now consider u2ε(x) = u2(x) + εv · x. Since Du2ε (p + εv) = Du2(p), the polyhedron
of prices in which an agent with valuation u2ε demands a bundle is shifted by {εv},
compared with the corresponding prices for u2. Suppose ‖εv‖ < δ. Then however we
allocate the supply between agents with valuations u1 and u2ε , the sets of prices at which
these agents demand their allocations are still disjoint. So equilibrium will still fail.

Combining Props. 4.12 and 4.13, we see that we need only prove sufficiency in Thm.
4.3 for transverse intersections:

Corollary 4.14. If equilibrium does not exist for a pair of concave valuations of demand
type D and some relevant supply bundle, then it does not exist for a pair of concave
valuations of demand type D whose LIP intersection is transverse and some relevant
supply bundle.

The second important fact about transverse intersections is that the changes in the
bundles considered by agents at any prices in these intersections are in fundamentally
different directions, in the sense that:

Definition 4.15. The linear span of changes in demand, Kσ, associated to a demand
complex cell σ, is the set of linear combinations of vectors in {y − x : x,y ∈ σ}.

Lemma 4.16. Suppose Lu1 and Lu2 intersect at p, and the two agents’ individual
demand complex cells at this price are σ1 and σ2, while the aggregate demand complex
cell is σ{1,2}. Then the intersection is transverse at p iff every vector in Kσ{1,2} can be
written uniquely as a sum of a vector in Kσ1 and a vector in Kσ2.

In our example of Sections 4.2.1-4.2.2, at the transverse intersection at price (30, 20),
we have Kσ{1,2} = R2, while Kσs = {λ(1,−1) : λ ∈ R} and Kσc = {λ(1, 1) : λ ∈ R}. And
any vector in R2 can be uniquely written as λ1(1,−1) + λ2(1, 1) for some λ1, λ2 ∈ R.

The next subsection will use this second fact to complete the proof of the Unimod-
ularity Theorem.

4.2.5 Proof of Sufficiency Condition for the Unimodularity Theorem

Cor. 4.14 shows that we need only prove sufficiency of the condition of Thm. 4.3 for
concave valuations whose LIP intersection is transverse:

So let u1 and u2 be such valuations of a unimodular demand type. By Lemma
4.7 it suffices to show that the demand set is discrete convex at any price p in their
intersection. Write σ1 and σ2 respectively for the individual demand complex cells at
p, and let σ{1,2} be the aggregate demand complex cell at p. We want to show that
any integer supply y ∈ σ{1,2} = conv (Du{1,2}(p)) is demanded, that is, also satisfies
y ∈ Du{1,2}(p).

To do this, consider any vertex, x, of σ{1,2}. By Defn. 4.15, the change in demand,
y − x, is in Kσ{1,2} . Fix a basis for Kσ{1,2} , composed of edge vectors of σ{1,2}.29 These

29That such a basis exists follows from, e.g., combining Gruber (2007) Thms. 14.2 and 15.8.
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vectors are, equivalently, the normals to the facets of Lu{1,2} which contain p (see Prop.
2.21). So this set is unimodular and, by Fact 4.8(2), y − x can therefore be written as
an integer combination of these vectors. Furthermore, since Lu{1,2} = Lu1 ∪Lu2 , each of
these vectors is normal to a facet of Lu1 or of Lu2 . So we can separate the basis vectors
into two sets, correspondingly. Then our presentation of y − x, in terms of this basis,
splits as y−x = z1 + z2, in which zj ∈ Kσj , for j = 1, 2, and the zj are integer bundles.

On the other hand, since σ{1,2} = σ1 + σ2 (see e.g. Cox et al 2005, Section 7.4, Ex.
3) there exist yj ∈ σj, j = 1, 2, such that y = y1 + y2. And since x is a vertex of σ{1,2},
it is demanded in a UDR adjacent to p, so x ∈ Du{1,2}(p), i.e. x = x1 + x2 in which
xj ∈ Duj(p) (and so are integer bundles). So y−x = (y1−x1) + (y2−x2), and we also
have yj − xj ∈ Kσj , j = 1, 2.

So, by transversality (Lemma 4.16), yj − xj = zj. And, since we already showed xj

and zj are integer, it follows that yj are also integer, for j = 1, 2.
So we have yj ∈ σj = conv (Duj(p)) and yj ∈ Zn. But since uj is concave, its

demand sets are all discrete convex (Lemma 2.13) and so yj ∈ Duj(p), for j = 1, 2.
Therefore, since y = y1 + y2, we can conclude y ∈ Du{1,2}(p). So we have proved:30

Proposition 4.17. If D is unimodular, then an equilibrium exists for every pair of
concave valuations which are of demand type D, for all relevant supply bundles.

4.3 Related Work

Danilov et al. (2001) have developed results that are very closely related to our
Thm. 4.3. In particular, their Thms. 3 and 4 together provide a sufficient condition for
equilibrium, which is analogous to our condition on demand types.31 (Howard’s (2007,
Thm. 1) subsequent work is equivalent to Thm. 4 of Danilov et al.)

However, the economic interpretation or usefulness of this condition is not clear. By
contrast, our Thm. 4.3 both demonstrates the applicability of the result, and clarifies
the connections to existing economic results. We will see in Section 6 that our Thm.
4.3 generalises many results in well-known work subsequent to Danilov et al.’s, including
results in Sun and Yang (2006), Milgrom and Strulovici (2009), Hatfield et al. (2013),
and Teytelboym (2014).32

30Ex. A.7 in Appendix A.3 provides additional intuition for the sufficiency condition by illustrating
the failure of this argument for the simple two-goods substitutes and complements example discussed
in Section 4.2.2.

31Their Thm. 3 shows that equilibrium is guaranteed if the valuations are “D-concave” for some “class
of discrete convexity” D . (This notation D is not connected with our use of D to represent demand
types.) “D-concave” valuations are concave valuations such that every demand set Du(p) belongs to
a specified set “D” of subsets of Zn. A collection of such sets is a “class of discrete convexity” if every
set it contains, and every sum and every difference of these sets, is discrete convex.

Their Thm. 4 (which is proved by Danilov and Koshevoy, 2004, Thm. 2) is that D is a class of discrete
convexity if the edges of the convex hulls of the sets in D form a unimodular set of vectors. But this is
true if, in our language, all the valuations are of the demand type defined by this unimodular set. So
the sufficiency part of our Thm. 4.3 follows from combining their two results.

32Danilov et. al.’s lack of our notion of demand types or of any economic interpretation of their “D-
concavity”, and the presentation of their work in relatively unfamiliar terms (namely the relationships
between sets of primitive integer vectors which are parallel to edges of specific collections of integral
pointed polyhedra and their “classes of discrete convexity”) seem to have resulted in leading economists
being unaware of their work or of its implications. (We were also unaware of their work until after we
had developed our own results.)
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Danilov et al. also prove no necessity result. Because they have no concept of “de-
mand types”, and have not developed their definition as a taxonomy of demand, there is
no natural result for them to give. But once our concept of demand types is introduced,
a necessity result can easily be developed from their work (using our Lemma 2.20).

However, our methods seem simpler and more accessible to economists than Danilov
et al.’s extremely advanced mathematics. So we prefer the proof we have given above
(which we developed before we knew of their work). Tran and Yu (2015) provide another
proof, via integer programming, in their recent exposition of our work.

Danilov et al. also state their results under different assumptions from ours. They
assume the domain, A, of every agent’s valuation is contained in Zn≥0, which precludes,
for example, the application to agents who both buy and sell which our more general
assumption permits. For example, our model, unlike theirs, applies to (and extends)
Hatfield et al. (2013)–see Section 6.1.

Finally, our techniques lead to an additional set of results about when equilibrium
exists for specific valuations; the next section turns to these.

5 The Intersection Count Theorem–when does Equi-

librium exist for Specific Valuations?

The Unimodularity Theorem (Thm. 4.3) tells us exactly which demand types always
have a competitive equilibrium. But even when equilibrium is not guaranteed to exist for
every concave valuation, it of course exists for many specific valuations. Our Intersection
Count Theorem (Thm. 5.12) gives results about which these valuations are.

The key to the Unimodularity Theorem was to understand which demand types
permitted “over-large” volumes to potentially arise in the demand complex; thus the
key to the Intersection Count Theorem is to understand whether such large volumes in
fact arise for agents’ actual valuations.

As in Section 4.2’s development of the Unimodularity Theorem, we need only analyse
certain isolated points in the LIP intersection. Furthermore, tropical intersection theory
bounds the number of such points; remarkably, a simple count of them often suffices to
tell us whether there are “over-large” volumes, and hence demonstrate the existence or
failure of equilibrium.

Section 5.1 provides a preview and explanation of the theorem. Although much of
the intuition is clear from the two-dimensional case, the analysis for higher dimensions
requires additional techniques. So Section 5.2 develops the necessary machinery, and
provides a technical theorem–the “Subgroup Indices Theorem”(Thm. 5.16)–which is
the backbone of all our results. Section 5.3 can then state, and sketch the proof of, the
general Intersection Count Theorem (Thm. 5.12). Section 5.4 explains the limitations
of the Theorem, but gives a small extension for transverse cases.

5.1 Preview, and Explanation, of the Theorem

5.1.1 The simple “Hotel Rooms” example

Recall the introduction’s “hotel rooms” example. As discussed in Section 4.2.2,
equilibrium fails when the supply is (1, 1) for the valuations us and uc, illustrated in
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Figs. 5a-b. This is shown by the fact that, if we look at the only price in the intersection
of these LIPs, the dual demand complex cell has area 2, which exceeds 1 (see Fig. 6c).

But equilibrium exists for valuations us and uc∗, which have the same aggregate
demand type. The two demand complex cells dual to the two prices at which their LIPs
intersect both have area 1 (see Fig 6d). It is not a coincidence that the number of the
points in the intersection, weighted by the corresponding areas, is constant: this follows
from the tropical version of the Bernstein-Kouchnirenko-Khovanskii (BKK) Theorem.33

Specifically, in 2-dimensions, consider any two valuations with individual domains,
A1 and A2, whose LIPs intersect transversally. The tropical BKK Theorem tells that
the number of price points at which the LIPs intersect, weighting each point by the area
of the dual demand-complex cell is a constant, Γ2(A1, A2).

Fig. 6 illustrates why: the total area of any 2-dimensional demand complex is the
sum of the areas of its 2-cells. These 2-cells are dual, of course, to the 0-cells of its
LIP. Furthermore, the 0-cells of the aggregate LIP correspond either to the 0-cells of the
individual LIPs, or to points in the intersection between these LIPs (which categories are
mutually exclusive when the intersection is transverse). But the 0-cells of the individual
LIPs are dual in turn to the 2-cells of their individual demand complexes. That is,
the triangular 2-cells in Figs. 6c and 6d are exactly the collection of 2-cells in Figs. 6a
and 6b. So the total area of these aggregate demand complex 2-cells is the sum of the
areas of the individual demand complexes, that is the sum of the areas of conv(A1)
and conv(A2). Furthermore, the total area of the aggregate demand complex is the area
of conv(A1 + A2). And, by definition, Γ2(A1, A2) is the total area of all the aggregate
demand complex cells that are dual to intersection prices. So Γ2(A1, A2) equals the area
of conv(A1 + A2) minus the sum of the areas of conv(A1) and conv(A2).

Moreover, in two dimensions, a price at which the intersection of two LIPs is trans-
verse is dual to a parallelepiped in the aggregate demand complex, which must have
area at least 1. It follows that the number of points in the intersection is bounded by
Γ2(A1, A2). Furthermore, Sections 4.2.2-4.2.3 showed that equilibrium exists at a supply
corresponding to such an intersection of facets of weight 1, if and only if the correspond-
ing area is 1 (combine the discussion immediately below Fact 4.8 with Lemma 4.9). So,
in two dimensions, if the valuations u1 and u2 are concave, all facets are weight 1, and
the LIP intersection is transverse: (i) there are at most Γ2(A1, A2) points in the LIP
intersection, and (ii) equilibrium exists for every possible supply if and only if there are
exactly Γ2(A1, A2) points in this intersection.

In the hotel example, the domain of each individual valuation is {0, 1}2, so the
domain of the aggregate valuation is {0, 1, 2}2, and Γ2({0, 1}2, {0, 1}2) = 4− 1− 1 = 2.
Moreover, the intersection is transverse and the facets are weight 1. So the previous
paragraph tells us that there are at most two points in the intersection, and equilibrium
exists for every supply if and only if there are exactly two points in the intersection

33As noted in the introduction, Bézout’s (1779) theorem tells us that in two dimensions the number
of intersection points of two (ordinary) geometric curves equals the product of their degrees, if we
weight the intersection points by appropriate “multiplicities” (e.g., a tangency between a line and a
parabola has multiplicity 2). Bernstein (1975), Kouchnirenko (1976) and Khovanskii (1978) extended
the theorem, including to higher dimensions. LIPs are particular limits of logarithmic transformations
of algebraic hypersurfaces (in complex projective space) (see, e.g., Maclagan and Sturmfels, 2015), and
similar intersection theorems hold. Moreover, because a LIP is in real (not complex) space, we can
“see” the intersection points.
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(which results are consistent with the cases analysed above).
Our full Intersection Count Theorem develops these ideas in several directions:

5.1.2 Facet Weights

Reconsider the hotel example, but with weight 2 on every facet: let concave valu-
ations u2s, u2c and u2c∗, have the same LIPs as us, uc and uc∗, respectively, but with
weight 2 on every facet. (So, for example u2s is equivalent to an aggregate valuation
of two identical copies of Elizabeth.) The demand complexes of u2s, u2c, u{2s,2c} and
u{2s,2c∗} are pictured in Fig. 8. As in Section 2.4, bundles are coloured white if they are
uniquely demanded for some price, black if they are never demanded, and grey if they
are demanded, but never uniquely.

(a) Σu2s (b) Σu2c , Σu2c∗ (c) Σu{2s,2c} (d) Σu{2s,2c∗}

Figure 8: Demand complexes dual to the LIPs in Figs. 5a-d, when every facet has weight
2. The cells dual to intersection prices of the LIPs are shaded. (The dashed lines show
they are grids of copies of cells from Figs. 6c-d.) Bundles uniquely demanded for some
price are white; those never demanded are black; the remainder are grey. (As usual, we
present the bundles increasing from top to bottom, and from right to left.)

The demand set Du2s(30, 20) is {(2, 0), (1, 1), (0, 2)}: the non-vertex bundle in the
diagonal demand complex 1-cell in Fig. 8a is demanded at this price, because the valua-
tion is concave–indeed it is locally linear. Similarly, Du2c(30, 20) = {(0, 0), (1, 1), (2, 2)}.
So aggregate demand at the intersection price of Lu2s and Lu2c is Du{2s,2c}(30, 20) =
{(2, 0), (1, 1), (0, 2)} + {(0, 0), (1, 1), (2, 2)}. Thus the vertices of the cell highlighted in
Fig. 8c, (2, 0), (0, 2), (2, 4), (4, 2), the bundles on the mid-points of its edges, (1, 1), (1, 3),
(3, 1), (3, 3), and its central bundle, (2, 2), are all demanded at (30, 20), while the cell’s
remaining four bundles are never demanded.

Observe that this cell is therefore just a grid of 2 × 2 = 4 copies of the central cell
of Fig. 6c, as shown by the dashed lines in Fig. 8. This corresponds to the fact that
the relevant 1-cells of the individual demand complexes have “length” 2 (Defn. 2.16(4)),
that is, each of the facets of the individual LIPs have weight 2. The intuition for which
bundles of the central cell of Fig. 8c are demanded is exactly as for the central cell of
Fig. 6c in Section 4.2.2–the issue is which bundles can be reached from a vertex by an
integer combinations of vectors that are (primitive) edge vectors of the cell.
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Likewise, at the two prices at which the LIPs Lu2s and Lu2c∗ meet, the dual cells of
the aggregate demand complex Σu{2s,2c∗} (shaded in Fig. 8d) are each 2 × 2 = 4 copies
of their corresponding cell in Σu{s,c∗} (see Fig. 6d).

Ex. A.8 gives further details on both these cases.
This result is general: if the intersection is transverse, then multiplying any one

facet weight multiplies the area of the demand complex cell by the same factor, without
affecting the existence or otherwise of equilibrium for concave valuations.34 So, applying
this to the discussion of the previous subsection, in the two-dimensional transverse
intersection case: (i) the weighted count of points in the LIP intersection, where each
point is weighted by the product of the weights of the facets passing through it is bounded
above by Γ2(·, ·); and (ii) equilibrium exists for every relevant supply for two concave
valuations if and only if this bound holds with equality.

It is easy to check for the example of Fig. 8 that Γ2(A2s, A2c) = 8, and that each
intersection point has weight 4. So there are at most two points in the LIP intersection,
and equilibrium is guaranteed if and only if there are exactly 2, just as before.

5.1.3 Non-Transverse Intersections

As in our development of the Unimodularity Theorem in Section 4, we can handle
non-transverse intersections by considering the effects of small perturbations.

Return to the weight-one example of Figs. 5a-b, but modify the complements val-
uation to uc#(x1, x2) = min{70x1, 70x2}. Then Luc# intersects Lus non-transversely,
exactly through its 0-cell at (40,30). This case is intermediate between those illustrated
in Figs. 5c-d. So the aggregate demand complex is like that of Fig. 6c, but without
the edge that includes the bundles (1,0) and (0,1); equivalently, the aggregate demand
complex is like that of Fig. 6d, but without any of the three edges that include the
bundle (1,1).

If we translate Luc# by ε(1, 1), for small ε > 0, we return to the situation of Fig. 5d.
So, by Prop. 4.13, equilibrium exists for all supplies: the bundle (1,1) is now “grey”.
So our count will give us the “right” result for this non-transverse case if we weight the
intersection point by the sum of the weights that apply after this translation, that is,
by 2: then the weighted count equals Γ2({0, 1}2, {0, 1}2), as with the case of Fig. 5d.

But if we had translated in the other direction, and returned to the Fig. 5c case, the
sum of the weights would have been only 1, that is “too low”. We therefore choose the
translation that yields the maximum possible sum of weights.

Weighting non-transverse intersection points in this way handles situations like this
one. As in the transverse case, Γ2(·, ·) is an upper bound on the possible count. That
is, a weighted count equal to Γ2(·, ·) remains sufficient, though, we will see, no longer
necessary for equilibrium to exist for all supplies.

5.1.4 Illustration: the case of strong substitutes

An example the power of our approach is that it provides an elegant illustration of
Prop. 4.6 that strong substitutes valuations always have equilibrium:

34A distinction is that bundles that are not at the vertices of the aggregate demand complex cells
are not uniquely demanded, when they are demanded–that is, they are “grey”, not “white”. This is
because concave valuations are locally linear at facets with weights greater than one.
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Consider agents j = 1, 2 wanting up to dj units, respectively, in total of two goods.
Figs. 9b and 9c show two different cases for the LIPs of generic “strong substitutes”
valuations for d1 = 1, d2 = 3. Observe that the LIP intersection contains 1 × 3 = 3
points in both cases.35 It is not hard to check that this will remain true after any
generic translation of either LIP. Moreover, since all “strong substitutes” facet normals
for two goods are in ±{(1,0), (0,1), (-1,1)} (Prop. 3.9), all generic “strong substitutes”
LIPs have similar “honeycomb” structures, so it is a general result that any intersection
has d1d2 points. It is also straightforward that the area of conv(Aj) is d2

j/2 and that
of conv(A1 + A2) is (d1 + d2)2/2, so Γ2(A1, A2) = d1d2 (see also Fact A.11(3)). So
equilibrium exists for all supplies in the generic case.

p2

p1

(a) LIP of a strong substitutes
valuation for up to 3 units.

p2

p1

(b) The LIP from (a), and a LIP
of a valuation for up to 1 unit.

p2

p1

(c) As (b), but with a different
valuation for up to 1 unit.

Figure 9: The LIPs of two generic strong substitutes valuations, one for up to 3 units,
and one for a single unit, always intersect exactly 3× 1 = 3 times.

For non-generic cases, it is obvious from Figs. 9b and 9c, that any translation of a
non-transverse LIP intersection to create a transverse intersection yields the count d1d2.
Furthermore if, e.g., all the facets of the LIP in Fig. 9a had weight w, we would obtain
the “correct” count wd1d2. So the argument can be extended to confirm equilibrium
always exists in non-generic cases too.

5.1.5 Higher Dimensions

Handling n > 2 dimensions is harder. First, intersections have dimension at least
n − 2, so do not consist of isolated points when n > 2. However, we will show it is
sufficient to focus our analysis on “intersection 0-cells”. Second, even if the intersection
is transverse at such prices, the dual cell in the demand complex need not be a paral-
lelepiped. Correspondingly, the individual LIP cells at an intersection point need not
be facets, so we need to extend our definition of facet “weights” to cover all cells.

As in two dimensions, our results can be thought of in terms of whether or not there
are problematic bundles within appropriate parallelepipeds. But we proceed in a similar
way to Section 4.2.5. We there used an alternative equivalent definition of unimodularity
(Fact 4.8(2)): whether all integer bundles in a demand complex cell can be reached by
combinations of appropriate vectors. (We also used this for the second intuition of
Section 4.2.2.) Our key tool here will be the “subgroup indices” that are exactly the

35The LIP of any valuation for up to d units in total is the tropical transformation of an “ordinary”
polynomial of degree d. So Figs. 9a-c show tropical cubics and lines that intersect 3× 1 = 3 times.
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tool used by mathematicians to generalise the 2-dimensional tropical BKK Theorem
to higher dimensions, but are also, as we show, intimately connected with existence of
equilibrium (Thm. 5.16). Thus, for all n, there is an upper bound Γn(A1, A2) (Defn.
5.11) for an appropriately weighted count of intersection 0-cells (in general, the domains
A1, A2 ( Zn). And moreover, the weighted count equalling Γn(A1, A2) is a sufficient, but
for n ≥ 4 not a necessary, condition for equilibrium to always exist–hence the general
version of the Intersection Count Theorem (Thm. 5.12).

5.2 Definitions for the Theorem

5.2.1 Intersection 0-cells

Recall that the existence of equilibrium depends on whether the aggregate demand
set is discrete convex at all prices in the LIP intersection (Lemma 4.7). For more than
two goods, and for some non-transverse intersections, these prices are not a set of isolated
points. However, it will suffice to focus our analysis on a particular (finite) set of 0-cells
in the intersection:

Definition 5.1. An intersection 0-cell for LIPs Lu1 and Lu2 is a 0-cell of their aggregate
LIP, Lu{1,2} , contained in the intersection Lu1 ∩ Lu2 .36

Proposition 5.2. If two individual valuations are concave, and their aggregate demand
complex has dimension n, then equilibrium exists for every relevant supply bundle iff the
aggregate demand set is discrete-convex at every intersection 0-cell.

If the aggregate demand complex is n′-dimensional for n′ < n, we can simply make a
unimodular basis change so that its linear span is the span of the first n′ coordinate
directions. This transforms the problem to an equivalent one with n′ new “goods”,
and the proposition can then be applied. (Otherwise we would have to analyse higher-
dimensional cells.)

5.2.2 Parallel Lattices, and Cell Weights

As we saw in Section 5.1.2, the facets weights provide a measure of the “relative
size” of the dual demand complex cell. To generalise this to lower-dimensional cells, we
need a “lattice-volume” of a polytope analogous to the “length” of Defn. 2.16(4).

Definition 5.3.

(1) A lattice is a set Λ ⊆ Zn such that 0 ∈ Λ and if v,v′ ∈ Λ then v − v′ ∈ Λ.37

(2) Λ′ is a sublattice of Λ if Λ′ ⊆ Λ and Λ′ has the structure of a lattice.
(3) An (integer) basis for a lattice Λ is a set {v1, . . . ,vk} such that any v ∈ Λ can be

uniquely presented as v =
∑

j αjv
j for αj ∈ Z.38

(4) The rank of a lattice is the dimension of its basis.

36If the intersection is transverse, then the set of intersection 0-cells is exactly the obvious set of
0-cells of Lu1 ∩ Lu2 . If the intersection is not transverse the set may contain additional points which
are not 0-cells in the simplest structure of a polyhedral complex that one might impose on Lu1 ∩ Lu2 .

37This is the group-theoretic meaning of “lattice” (see, e.g., Cassels, 1971), not the (completely
different) order-theoretic meaning of, e.g., Milgrom and Shannon (1994).

38We will refer to “integer bases” rather than just “bases” when there is ambiguity.
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Importantly, every lattice has an integer basis, and the rank is well-defined (see e.g.
Cox et al., 2005, p. 334). The lattices important to us are (recalling–Defn. 4.15–that
Kσ denotes the linear span of changes in demand associated with σ):

Definition 5.4. The parallel lattice to a demand complex cell σ is Λσ := Kσ ∩ Zn.

It is easy to see that if σ is a k-cell then Λσ has rank k.
For our “hotel room” example (Figs. 5 and 6), if we let σs, σc and σ{s,c} be the demand

complex cells at p = (30, 20) of us, uc and u{s,c} respectively, then Λσs = {m(−1, 1) :
m ∈ Z}, and Λσc = {m(1, 1) : m ∈ Z}, while Λσ{s,c} = Z2 (see Fig. 10 in Section
5.3.1). The parallel lattices are the same in the weight two version of this example
(Section 5.1.2): at p = (30, 20) and cells σ2s, σ2c and σ{2s,2c} of Σu2s ,Σu2c and Σu{2s,2c}

respectively, Λσ2s = Λσs , Λσ2c = Λσc and Λσ{2s,2c} = Λσ{s,c} .
We now generalise the “weight” of Defn. 2.4. Given a rank-k lattice Λ, we can find a

k×n matrix GΛ such that GΛΛ := {GΛv : v ∈ Λ} = Zk.39 We can use this identification
to give volumes relative to the lattice Λ (as usual, the k-dimensional volume of X ( Rk

is volk(X) :=
∫
· · ·
∫
X

1 dp1 . . . dpk):

Definition 5.5. If X ( Rn is a polytope with vertices in Λ, define the lattice-volume
of X in Λ as volΛ(X) := volk(GΛX), where GΛ is a k × n matrix such that GΛΛ = Zk.

It is standard that this is independent of the choice of GΛ: if also ĜΛΛ = Zk then the
images of X under the two transformations are related by a change of basis matrix on
Zk, which must be unimodular, and so the volumes of the images are the same.

For example, given Λσs as above, we may set GΛσs = (−1
2
, 1

2
). Then GΛσs (−1, 1)′ = 1

and so, since (−1, 1) is a basis for Λσs , it follows that GΛσsΛσs = Z. That is, operating
with GΛσs on the lattice Λσs “rotates it” to “match it up” with Z. So GΛσsσ

s is just
the interval [0, 1], which has length (1-dimensional volume) equal to 1, that is, its facet
weight according to Defn. 2.4. In general, σ does not lie in Kσ, but for any x ∈ σ, the
shifted cell σ′ := σ + {−x} lies in Kσ, and clearly has the same volume as σ.

Definition 5.6. Let Cσ be an (n−k)-cell of the LIP, dual to the demand complex k-cell
σ. The weight of Cσ is wu(Cσ) := k!volΛσ(σ + {−x}), where x ∈ σ.

So if k = 1 the weight of a cell is just its “length” in terms of the primitive integer
vector in the direction of its demand-complex cell. Thus this definition generalises Defn.
2.4. For example, wuc(Cσc) = wus(Cσs) = 1 and wu2c(Cσ2c) = wu2s(Cσ2s) = 2.

The factor of k! ensures that the cell weight is an integer (all cells are measured
relative to a lattice simplex). So in our “hotel room” example, the weights of the 0-cells
of Lus are both 1 (see Figs. 5a and 6a). Since the lattice-volume of the central cell in the
aggregate demand complex, σ{s,c}, is 2, this means that wu{s,c}(Cσ{s,c}) = 4. Similarly,
wu{2s,2c}(Cσ{2s,2c}) = 16.

5.2.3 Näıve Multiplicities

Definition 5.7. If the intersection of Lu1 and Lu2 is transverse at an intersection 0-cell
C, define the näıve multiplicity m̂(C) := wu1(C

1) · wu2(C2), where Cj is the smallest
cell of Luj containing C, for j = 1, 2.

39Specifically, if HΛ is an invertible n× n matrix whose first k columns give a basis {v1, . . . ,vk} for
Λ, then HΛe

i = vi and so H−1
Λ vi = ei for i = 1, . . . , k: we set GΛ to be the first k rows of H−1

Λ .
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To extend this to non-transverse cases, we first write:

Definition 5.8. If C is an intersection 0-cell for Lu1 and Lu2 , and if C ′ is an intersection
0-cell for Lu1 and {εv}+Lu2 (for any ε > 0 and v ∈ Rn), then we say C ′ emerges from C if
there exist cells Cj of Luj for j = 1, 2, such that C1∩C2 = C and C1∩({εv}+ C2) = C ′.

There can be several intersection 0-cells emerging from C under the same translation;
for example, the intersection 0-cells at (4, 1 + ε) and (4 + ε, 1) in Fig. 7b emerge from
the intersection 0-cell at (4, 1) in Fig. 7a. There is always at least one:

Lemma 5.9. For every v ∈ Rn and sufficiently small ε > 0, there exists an intersection
0-cell for Lu1 and {εv}+ Lu2 emerging from every intersection 0-cell for Lu1 and Lu2.

Now if Lu1 and {εv} + Lu2 intersect transversally, each of their intersection 0-cells
has a näıve multiplicity. Moreover, for fixed v and small enough ε > 0, the set of these
multiplicities, and therefore also the sum of these multiplicities, is independent of ε. But
as there are only finitely many cells in each LIP, there are only finitely many different
sums that can be obtained in this way.

Take, for example, the intersection 0-cell at (4, 1) in Fig. 7a. When v = (1, 0), as
shown in Fig. 7b, we obtain intersection 0-cells whose näıve multiplicities sum to 2.
But for v = (−1, 0), only one intersection 0-cell, with näıve multiplicity 1, would have
emerged. We will always want the maximum of the sums, so:

Definition 5.10. The näıve multiplicity m̂(C) at an intersection 0-cell C for Lu1 and
Lu2 is the maximum number that can be obtained by adding the näıve multiplicities of
0-cells emerging from C under a small translation of Lu2 which makes the intersection
transverse at C.

Note that this “näıve multiplicity” is not the “true multiplicity” of the tropical BKK
Theorem (Defn. 5.18).

5.2.4 General definition of Γn(·, ·)

Finally, we extend the definition of Γ2(·, ·) to n > 2:

Definition 5.11. If A1, A2 ( Zn are finite then, for k = 1, . . . , n− 1, define:

(1) Γnk(A1, A2) :=
∑k

r=0

∑n−k
s=0 (−1)n−r−s

(
k
r

)(
n− k
s

)
voln conv(rA1 + sA2).

(2) Γn(A1, A2) :=
∑n−1

k=1 Γnk(A1, A2)

Thus Γn(A1, A2) is a linear combination of ordinary volumes; Γnk(A1, A2) is the
“mixed volume” of k copies of the convex hull of A1 with n − k copies of the con-
vex hull of A2 (Fact A.11 gives more details and special cases). Importantly, Γnk(A1, A2)
is therefore a non-negative integer.
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5.3 The Intersection Count Theorem

Theorem 5.12 (The Intersection Count Theorem). For j = 1, 2, let uj be concave
valuations, on finite domains Aj ( Zn such that dim conv(A1 + A2) = n. Then the
number of intersection 0-cells for Lu1 and Lu2, counted with näıve multiplicities, is
bounded above by Γn(A1, A2). If the number equals this bound, equilibrium exists for all
relevant supplies.

Suppose additionally that the intersection is transverse and that n ≤ 3. The number
of intersection 0-cells for Lu1 and Lu2, counted with näıve multiplicities, is equal to
Γn(A1, A2) iff equilibrium exists for all relevant supplies.

The remainder of Section 5.3 develops the proof. Full details are in Appendix A.4.

5.3.1 Subgroup Indices

As usual, we will want to investigate whether, starting at a point at which we know
equilibrium exists, a change in aggregate supply can be matched by a change in aggregate
demand. Write σj and σJ for the individual and aggregate demand complex cells that
correspond to bundles in the convex hull of aggregate demand at some price p. Then
changes in aggregate supply are in the directions given by the lattice ΛσJ , while changes
in aggregate demand are in the directions in

∑
j∈J Λσj . So we use a standard tool to

compare these lattices:

Definition 5.13. Let Λ be a lattice, and Λ′ ⊆ Λ a sublattice of the same rank as Λ.

(1) A fundamental parallelepiped of Λ is a set ∆Λ := {
∑

j λjv
j ∈ Rn : 0 ≤ λj < 1},

where {v1, . . . ,vk} are a basis for Λ.40

(2) The subgroup index [Λ : Λ′] is the lattice-volume in Λ of a fundamental paral-
lelepiped of Λ′, that is, [Λ : Λ′] := volΛ(∆Λ′).

41

Lemma 5.14. If {uj : j ∈ J} are a finite set of valuations with individual and aggregate
demand complex cells σj and σJ , respectively, at p, then

∑
j∈J Λσj is a sublattice of ΛσJ

of the same rank as ΛσJ .

The parallel lattices for our “hotel room” example (as given in Fig. 5), with p =
(30, 20), are given in Fig. 10. By considering Λσs and Λσc , we see that the sublattice
Λσs + Λσc = {m(1,−1) + m′(1, 1) : m,m′ ∈ Z}. (That is, this sublattice comprises
the white bundles in Fig. 10c, while the lattice Λσ{s,c} = Z2 comprises all the bundles
in Fig. 10c.) A fundamental parallelepiped, ∆Λσs+Λσc , of this sublattice is shown; its
lattice-volume in Λσ{s,c} is 2. So the subgroup index [Λσ{s,c} : Λσs + Λσc ] = 2.

Observe in Fig. 10c that the subgroup index also corresponds to the ratio of the total
number of bundles to the number of white bundles. We can in fact understand subgroup
indices generally in terms of such ratios (see Fact A.13). Subgroup indices generalise
unimodularity, as is seen by comparing Fact 5.15(1), below, with Fact 4.8(1), and Fact
5.15(3) with Defn. 4.2:

Facts 5.15. Let Λ be a lattice, and Λ′ ⊆ Λ a sublattice of the same rank as Λ.
40Different fundamental parallelepipeds are images of one another under unimodular basis changes.
41These are the ordinary group-theoretic subgroup indices (see the proof of Fact 5.15), and so are

independent of the choice of parallelepiped.
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(a) Λσs (b) Λσc (c) Λσ{s,c} , with Λσs + Λσc in white, and
an example of ∆Λσs+Λσc shaded.

Figure 10: The parallel lattices corresponding to demand complex cells σs, σc and σ{s,c},
of respectively, us, uc and u{s,c} (as shown in Figs. 5a-c and Figs. 6a-c) at p = (30, 20).

(1) [Λ : Λ′]−1 is equal to the number of elements of Λ in ∆Λ′ which are not vertices.42

(2) [Λ : Λ′] = 1 iff Λ = Λ′.
(3) If Λ = Zn, and {v1, . . . ,vn} are a basis for Λ′, then [Λ : Λ′] = | det({v1, . . . ,vn})|.43

(4) Suppose Λ = K ∩ Zn for some linear subspace K of Rn. Then [Λ : Λ′] = 1 iff any
basis for Λ′ is unimodular.

In our example, there is one element of Λσ{s,c} in ∆Λσs+Λσc which is not at a vertex
(see Fig. 10c). This illustrates Fact 5.15(1). As Λσ{s,c} = Z2 we can use Fact 5.15(3) to
calculate [Λσ{s,c} : Λσs+Λσc ] as the determinant of the matrix with columns (1,−1), (1, 1)
(cf. Section 4.2.2). This basis is not unimodular, and so Fact 5.15(4) verifies for us again
that Λσs + Λσc 6= Λσ{s,c} .

5.3.2 The Relationship Between Subgroup Indices and Equilibrium

Subgroup indices allow us to determine whether the aggregate demand set is discrete
convex at a particular intersection price–and hence identify the bundles for which equi-
librium fails. The logic of Section 4.2.5 shows that it is sufficient that the facet normals
at this price form a unimodular set. However, the following theorem gives a weaker
sufficient condition than this. Although the Intersection Count Theorem only requires
the r = 2 case of Thm. 5.16, we give it in a more general form:

Theorem 5.16 (The Subgroup Indices Theorem). Let uj be concave for j in a
finite set J , and suppose the intersection of those LIPs which contain p is transverse at
p. Write σj, σJ for the demand complex cell at p of respectively uj (where j ∈ J), uJ .

(1) If
[
ΛσJ :

∑
j∈J Λσj

]
= 1 then DuJ (p) is discrete-convex.

(2) If
[
ΛσJ :

∑
j∈J Λσj

]
> 1 and if also ∃j0 ∈ J with dimσj0 ≤ 2, while dimσj ≤ 1

for j ∈ J \ {j0}, then DuJ (p) is not discrete-convex.

To translate part (1) back to the familiar terms of Section 4.2, first suppose |J | = 2
and suppose both LIPs contain p. Recall that Λσ = Kσ ∩ Zn (Defn. 5.4). So, by Fact

42Since fundamental parallelepipeds are not closed, we do not count points on the “upper” boundary.
43When Λ 6= Zn, we can calculate [Λ : Λ′] by fixing a matrix GΛ identifying Λ with Zk for some k,

as in Footnote 39, and then applying GΛ to Λ′.

38



5.15(4), [Λσ{1,2} : Λσ1 + Λσ2 ] = 1 iff any basis for Λσ1 + Λσ2 is unimodular. Moreover, the
combination of a basis for Λσ1 with a basis for Λσ2 gives a basis for Λσ1 + Λσ2 (see Fact
A.12(3) for more details). The proof in Section 4.2.5 that Du{1,2}(p) is discrete-convex
depended on a unimodular basis for Kσ{1,2} , consisting of integer vectors in either Kσ1

or Kσ2 . Exactly the same arguments prove Thm. 5.16(1).
But this result is more powerful than showing only that equilibrium exists if the

normals to agents’ facets at p are a unimodular set. Thm. 5.16(1) shows that all that is
required for equilibrium existence is an integer basis for the changes in demand that each
agent considers, such that the combination of these integer bases forms a unimodular set.
When the dimension of an individual agent’s demand complex cell exceeds 1, equilibrium
does not require that the changes in demand that the agent considers can be broken
down as integer combinations of vectors along the edges of this cell.

For example, if Figs. 5c and 6c correspond to an individual agent with a concave
valuation, the bundle (1, 1) is demanded at price (30, 20). In this case the edges to this
demand complex cell do not provide a basis for its parallel lattice. By combining two
such agents in 4-dimensional space, Ex. A.14 shows that Thm. 5.16(1) demonstrates
equilibrium in situations in which Thm. 4.3 does not.

Now we consider Thm. 5.16(2). If dimσj ≤ 1 for j ∈ J , then the LIP cells are all
facets. If additionally they have weight 1, then the situation at the price p is exactly
that described in Lemma 4.9. So, just as in Lemma 4.9, unimodularity is necessary (as
well as sufficient) for equilibrium; now apply apply Fact 5.15(4). But, for any weights,
σJ is a grid of copies of a “small parallelepiped”, as we saw in Section 5.1.2. This
“small parallelepiped” is (the closure of) a fundamental parallelepiped of

∑
j∈J Λσj .

So equilibrium fails for some supply if and only if such a fundamental parallelepiped
contains a non-vertex integer point. Applying Fact 5.15(1) therefore yields Thm. 5.16(2)
if dimσj ≤ 1 for all j ∈ J .

But if dimσj > 1 for some j, then σJ need not be a parallelepiped. In such cases,
even if any fundamental parallelepiped of

∑
j∈J Λσj contains a non-vertex integer point,

it does not necessarily follow that a corresponding point lies in
∑

j∈J σ
j = σJ itself: it

can fall outside the aggregate demand set at this price.
However, when we have one 2-cell, along with 1-cells, then we can capture this

point. The reason is that a 2-cell will always contain a triangle, two of whose edges give
a basis for its parallel lattice (see Appendix A.4). And this triangle is a copy of half
of a fundamental parallelepiped. Meanwhile, each 1-cell contains an entire fundamental
parallelepiped of its parallel lattice. The sum of these, σJ , therefore contains at least
half of a fundamental parallelepiped of

∑
j∈J Λσj . So by symmetry, if, in this case,[

ΛσJ :
∑

j∈J Λσj

]
> 1, the aggregate demand complex cell σJ does contain a bundle not

in
∑

j∈J Λσj , i.e., one that cannot be reached via changes in demand among the agents.
Examples A.15-A.18 show that this is the furthest we can go:

Proposition 5.17. For both the case in which dimσ1 = dimσ2 = 2, and the case in
which dimσ1 = 3, dimσ2 = 1, there exist examples in which [Λσ{1,2} : Λσ1 + Λσ2 ] > 1 and
in which Du{1,2}(p) is discrete-convex, and other examples in which [Λσ{1,2} : Λσ1 +Λσ2 ] >
1 and in which Du{1,2}(p) is not discrete-convex.
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5.3.3 The Tropical Bernstein-Kouchnirenko-Khovanskii (BKK) Theorem

We now define the “true multiplicity”, mult(C), of an intersection 0-cell, C:44

Definition 5.18 (Bertrand and Bihan, 2013, Defn. 5.2). For valuations u1, u2 whose
LIPs have an intersection 0-cell at p, write σ1, σ2, σ{1,2} for their individual and aggregate
demand complex cells at p; write Cσ1 , Cσ2 , Cσ{1,2} for the dual cells in Lu1 ,Lu2 ,Lu{1,2} .

(1) If the intersection of Lu1 and Lu2 is transverse at Cσ{1,2} , then the true multiplicity
of Cσ{1,2} is mult(Cσ{1,2}) := [Λσ{1,2} : Λσ1 + Λσ2 ] · wu1(Cσ1) · wu2(Cσ2).

(2) In general, the true multiplicity, mult(Cσ{1,2}), of Cσ{1,2} , is the sum of the multiplic-
ities at all the intersection 0-cells emerging from Cσ{1,2} after any small translation
of Lu2 which makes the intersection transverse.

So the distinction between “true” and “näıve” multiplicities is embodied in the sub-
group indices that capture our results on equilibrium (Thm. 5.16). Thus, for example,
the intersection 0-cell at (30, 20) in Fig. 5c has näıve multiplicity 1 but (see Section
5.3.1) true multiplicity 2.

The use of subgroup indices means that true multiplicities, unlike näıve multiplicities,
are unchanged by small translations in any directions. Note that both multiplicities are
positive integers, since this is true of cell weights (and by Lemma 5.9 and Fact 5.15(1)).

A version of the “tropical BKK Theorem” is now:

Theorem 5.19 (Bertrand and Bihan, 2013, Thm. 6.1).

(1) The number of intersection 0-cells for Lu1 and Lu2, counting with their true mul-
tiplicities, is equal to Γn(A1, A2).

(2) If the intersection is transverse whenever a k-cell of Lu1 meets an (n − k)-cell of
Lu2, then the number of such intersection 0-cells, counting with their true multi-
plicity, is equal to Γnk(A1, A2).

5.3.4 Proving the Intersection Count Theorem

It is now easy to prove the sufficiency result for the transverse case. From Defns.
5.7 and 5.18, and Fact 5.15(1) (which implies that the subgroup index is always at least
1) we know that m̂(C) ≤ mult(C) for any intersection 0-cell C. Equality holds iff the
subgroup index at this price is 1. So, by Thm. 5.19(1), the number of intersection 0-cells,
counted with näıve multiplicities, is bounded above by Γn(A1, A2), and this bound holds
with equality iff the subgroup index at every intersection 0-cell is 1. If this is true, then
the aggregate demand is discrete-convex at every intersection 0-cell (Thm. 5.16(1)) and
so equilibrium exists for every relevant supply (Prop. 5.2).

For necessity, we additionally assume n ≤ 3. Every intersection 0-cell is the inter-
section of a 2-cell and a 1-cell of the two individual LIPs. So apply Thm. 5.16(2): if
the number of intersection 0-cells, counted with näıve multiplicities, is strictly below
Γn(A1, A2) then the subgroup index is greater than 1 for some intersection 0-cell, and
this implies a failure of equilibrium for some relevant supply.

When the intersection is not transverse, the logic is similar, but we need a little more
care. We need to translate in the “right direction” to find the näıve multiplicity for each

44We follow the conventions of Bertrand and Bihan (2013) although these ideas and theorems are
older (see, e.g., McMullen, 1993, Huber and Sturmfels, 1995 and Fulton and Sturmfels, 1996).
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intersection 0-cell, but these directions need not be the same across all intersection 0-
cells. However, we can combine Prop. 4.13 with Thms. 5.16(1) and 5.19(1) by working
locally at each 0-cell. See Appendix A.4 for details.

5.4 Limitations, and Extension, of the Theorem

5.4.1 Necessity

The condition of the Intersection Count Theorem is necessary for equilibrium only
when the intersection is transverse and n ≤ 3.

If the intersection is not transverse, it is possible for equilibrium to exist for every
relevant supply, but to fail for some relevant supply after any small translation of the
LIPs (see Ex. A.20). However, if an intersection is not transverse, our results relating
unimodularity and subgroup indices to equilibrium fail to hold (recall, for example, the
proof given in Section 4.2.5). So we cannot hope to identify these “fragile” equilibria
with these tools, and so cannot give a necessary result in the non-transverse case.

The failure of our condition to give necessity for n ≥ 4 is immediate from Prop. 5.17.
(Recall we needed Thm. 5.16(2) to prove necessity for n ≤ 3.)

Note, however, that our upper bound Γn(·, ·) is tight (strong substitutes valuations
illustrate this for both non-transverse cases and arbitrary n; see Prop. 4.6 and Section
5.1.4) so this bound cannot be improved on.

5.4.2 Sufficiency

If the bound in Thm. 5.12 is not met with equality, the combination of Thm. 5.19(2)
with Thm. 5.16 provides an alternative sufficient condition for equilibrium existing at
particular prices. (Note that an intersection is transverse at a 0-cell iff the minimal
cells of Lu1 and Lu2 that contain that 0-cell have dimensions k and (n− k) for some k.)
An argument analogous to that in Section 5.3.4 (for the transverse case of Thm. 5.12)
shows:

Proposition 5.20. Let uj : Aj → R be concave valuations for j = 1, 2, suppose
dim conv(A1+A2) = n, and fix k ∈ {1, . . . , n−1}. Suppose the intersection is transverse
at every intersection 0-cell C such that the minimal cell of Lu1 containing C has dimen-
sion k. Then the number of these intersection 0-cells, counted with näıve multiplicities,
is bounded above by Γnk(A1, A2). If the number equals this bound, then equilibrium exists
for all supplies in the convex hull of demand at each of these intersection 0-cells.

6 Applications

6.1 Interpreting Classic Models in a Unified Framework

Our model encompasses some classic studies as special cases, so clarifies connections
between them. It also facilitates our understanding of them. In particular, it makes
many of their equilibrium-existence results straightforward.

It is straightforward that Bikhchandani and Mamer (1997)’s model is the special
case of ours in which each agent’s domain is restricted to {0, 1}n.
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Kelso and Crawford’s (1982) seminal analysis of n1 firms, each of which is interested
in hiring some of n2 workers, can be understood as a model with n1n2 distinct “goods”,
each of which is the “transfer of labour” by a specified worker (a “seller”) to a specified
firm (a “buyer”); the “price” of a good is the salary to be paid. So the full set of
bundles is {−1, 0, 1}n, in which n = n1n2. However, each worker’s valuation is defined
only over a subset of this domain of the form {−1, 0}n1 (that is, only over the n1 goods
that correspond to its own labour), and only over the subset of these vectors that have
at most one non-zero entry (it can work for at most one firm). Obviously, their only
possible demand complex edges are the strong substitute vectors (non-zero vectors with
at most one +1 entry, at most one −1 entry, and no other non-zero entries, see Prop.
3.9). Similarly, each firm’s valuation is defined only over a subset of the form {0, 1}n2

(that is, it has preferences only over the n2 goods that correspond to workers it can
employ). Kelso and Crawford assume firms have ordinary substitutes preferences over
workers but, since there is only one unit of each good, the only substitute changes of
demand are the strong substitutes vectors, so all valuations are of this type.45

It may be less obvious that Hatfield et al.’s (2013) model of networks of trading
agents, each of whom can both buy and sell, both fits into our framework, and is also
closely related to Kelso and Crawford’s model. To show this, we again treat each transfer
of a product from a specified seller to a specified buyer as a distinct good, so each agent
again has preferences over a subset of {−1, 0, 1}n, where n is the number of distinct
goods.

Since Hatfield et al. restrict each agent to be either a seller or a buyer (or neither)
on any one good, an agent j which is the specified seller in nj1 potential trades and is
the specified buyer in nj2 potential trades simply has preferences over a subset of the
domain which, after an appropriate re-ordering of the goods for that agent, is of the

form {−1, 0}n
j
1 × {0, 1}n

j
2 . (As in Hatfield et al., we can restrict an agent’s domain of

preferences further so that, e.g., it cannot sell good 1 unless it also buys one of goods
2 or 3. They do this by using “−∞” valuations, while we simply exclude bundles
from the domain, but the effect is the same–see Section 2.1.) Furthermore, although
Hatfield et al. describe goods to be sold as complements of goods to be bought, this
is because they measure both buying and selling as non-negative quantities. So, since
in our framework selling is just “negative buying”, the “complementarities” disappear
and it is clear that the condition they impose is exactly ordinary substitutes.46 Just
as for Kelso and Crawford’s model, the only demand complex edges of such a domain
that are vectors of the ordinary substitutes demand type are also vectors of the strong
substitutes demand type.

Trivially, any valuation over any subset of {−1, 0}n1 or {0, 1}n2 or {−1, 0}n
j
1×{0, 1}n

j
2

is concave so, in both Kelso and Crawford’s and Hatfield et al.’s models, the existence
of equilibrium follows immediately from Section 4.1’s discussion.

Another model that is easy to analyse using our methods is a “circular ones” model
(cf. Bartholdi et al., 1980) in which each of n kinds of agent is only interested in a single,

45Kelso and Crawford make a superficially more restrictive assumption than ordinary substitutes,
but it is equivalent in their context: see Danilov et al. (2003), Baldwin and Klemperer (2014), and
Baldwin, Klemperer and Milgrom (in preparation).

46Their “choice language” definition differs superficially from Defn. (1), but Hatfield et al., 2015,
Thm. B.1 confirms the equivalence.
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specific, pair of goods, and these pairs form a cycle. The Unimodularity Theorem imme-
diately tells us equilibrium is guaranteed to exist if and only if n is even. Furthermore,
we can use our method of proof of Prop. 4.10 to find examples of equilibrium failure if
n is odd; Ex. A.22 in Appendix A.5 gives details. More generally, our proof of Prop.
4.10 shows how to easily construct an explicit example of failure of equilibrium for any
model that permits valuations from a non-unimodular demand type.

Reformulating models in our framework also shows clearly how we can generalise
them. It is immediate, for example, that as long as we retain concavity and the strong
substitutes demand type, we can remove Hatfield et al.’s restriction that an agent cannot
be both a buyer and a seller on any one good (by simply extending their domain to be
any subset of {−1, 0, 1}n) and can also permit their agents to trade multiple units of
the same products (by enlarging the domain to any subset of Zn).

6.2 Basis Changes of LIPs and Demand Types

Obviously, many properties are preserved if we re-package goods so that any integer
bundle can still be obtained by buying and selling an integer selection of the new pack-
ages. This corresponds, of course, to a unimodular change of basis;47 it simply distorts
the LIP by a linear transformation which leaves its important structure unaffected.

Specifically, for a unimodular n×n matrix G, it is standard to define the “pullback”
of a valuation u : A→ R to be G∗u : G−1A→ R via G∗u(x) := u(Gx). Then:

Proposition 6.1 (cf. e.g. Gorman, 1976, p. 219-220).

(1) x ∈ Du(p) ⇐⇒ G−1x ∈ DG∗u(G
Tp).

(2) LG∗u = GTLu := {GTp : p ∈ Lu};
(3) u(·) is of demand type D iff G∗u(·) is of demand type G−1D := {G−1v : v ∈ D}.

Ex. A.23 gives an illustration.
Baldwin and Klemperer (2014, especially Section 5; and in preparation-b) use the

fact that important properties of demand are unaffected by unimodular basis changes
in their analysis of the comparative statics of individual valuations. But the most
immediate pay-off from this and our method of categorising valuations into “demand
types” is that it is straightforward (see Appendix A.5) that:

Proposition 6.2. “Having equilibrium for every finite set of concave valuations, for
all relevant supply bundles” is a property of a demand type that is preserved under
unimodular basis changes.

So we can find demand types which always have equilibrium. For example, it is
immediate that equilibrium is guaranteed for the following demand types:

“Consecutive Games” (see Greenberg and Weber, 1986, and also Danilov et al.,
2013). Premultiplying the strong substitutes vectors, ei and (ei − ej), by the upper
triangular matrix of 1s (of the appropriate dimension) yields the vectors

∑i
k=1 ek and∑i

k=j+1 ek for i > j, respectively (and their negations). This is the demand type for

47A unimodular matrix is an integer matrix with integer inverse, or, equivalently, an integer matrix
with determinant ±1.
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goods which have a natural fixed order, and for which any contiguous collection of goods
may be considered as complements by any agent. For example, valuations for bands of
radio spectrum, or for “lots” of sea bed to be developed for offshore wind (see Ausubel
and Cramton, 2011) may be of this form.

“Generalised Gross Substitutes and Complements Valuations”. Premultiplying
the strong substitutes vectors by a matrix formed of {ei : i ≤ k} ∪ {−ei : i > k}, for
some k, yields the demand type for which goods can be separated into two groups, with
goods within the same group being strong substitutes, and each good also may exhibit
1:1 complementarities with any good in the other group.48

6.3 New Demand Types which Guarantee Equilibrium

Our Unimodularity Theorem helps identify new demand types of economic interest
which are not unimodular basis changes of ordinary substitutes, or any subset thereof,
for which equilibrium is guaranteed. For example, consider the demand type whose
vectors are the columns of:

D :=


1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1

 .

This might, for example, model a firm’s demand for “bundles of” four kinds of
workers–three sorts of specialist (the first three goods) and a supervisor (the fourth
good). The first three columns of D show that any one of the three kinds of specialist
has value on his own; the middle three columns of D show that a supervisor increases
the value of any specialist (that is, there are pairwise complementarities between any
one of the first three “goods” together with the fourth); the last three columns of D
show that there are also complementarities between any pair of different specialists if
(but only if) a supervisor is also present; but a supervisor on her own is worthless.49

This demand type is pure complements, and is not a basis change of ordinary sub-
stitutes, or any subset thereof, as we show in the supplementary material to this paper
(O’Connor, 2015; Baldwin and Klemperer (2014) give a mathematical proof that it is
not a basis change of strong substitutes). It is routine to check that it is unimodu-
lar. In fact, it is a basis change of a “cographic” unimodular set (see Seymour 1980)
but we think it has not previously been presented in this way as an example of purely
complementary preferences. Cographic matrices are mathematically closely related to
matrices formed of the strong substitute vectors (also known as “graphic”, or “network”
matrices) but are not in general related by basis changes, and so Prop. 6.1 cannot be

48The demand type’s vectors are {ei, ej , ei − ei
′
, ei + ej , ej − ej

′
: i, i′ ∈ {1, . . . , k}, j, j′ ∈ {k +

1, . . . , n}}. This extends the valuations introduced by Sun and Yang (2006, 2009) to permit multiple
units of goods, and sellers as well as buyers. Shioura and Yang (2015) have independently made the
same extension, and shown that equilibrium always exists for it.

49The reason is that e4 /∈ D; perhaps each firm’s owner is a supervisor, and an additional supervisor
without any workers would merely “spoil the broth”. (There are, of course, many basis changes of
D–and of any unimodular demand type–that include all the coordinate vectors.)
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used to link valuations of these types. Indeed very little appears to be known on the
relationship between “graphic” and “cographic” valuations. Their economic properties
are clearly very different.

6.4 Relationships between Equilibrium and Complements; and
between Equilibrium and Substitutes

Understanding the relationship between equilibrium and unimodularity shows that
much conventional wisdom is mistaken in connecting the existence of equilibrium to
substitutabilities: taking advantage of existing mathematical work on unimodular sets,
demonstrates a link between equilibrium and complements that is, if anything, stronger.50

First, we can easily extend the previous section’s example to obtain:

Proposition 6.3. With n > 3, there exist demand types which are not a unimodular
basis change of ordinary substitutes, or a subset thereof, and for which an equilibrium
exists for every finite set of concave valuations of the demand type, for all relevant supply
bundles. For n ≤ 3 there exist no such demand types.

To see the result for n > 3, consider the demand type defined by the matrix D of
Section 6.3, with its vectors extended by n − 4 zeros, and with the coordinate vectors
ei, i = 5, . . . , n appended. Any basis change taking such a demand type to a substitutes
demand type would restrict to a basis change taking D to substitutes, contradicting
the result given in Section 6.3. The result for n ≤ 3 follows from Seymour’s (1980)
characterisation.

We can also make use of mathematical results from Grishukhin et al. (2010) that
imply that every unimodular set of vectors is a unimodular basis change of a set that
contains only vectors in ±{0, 1}n. Since demand types containing these vectors contain
only complements valuations, Prop. 6.2 tells us:

Proposition 6.4. Every demand type for which an equilibrium is guaranteed (that is,
exists for every finite set of concave valuations of the demand type, for all relevant
supply bundles) is a unimodular basis change of a demand type which contains only
complements valuations and for which equilibrium is guaranteed.

Observe that Prop. 6.3 shows the corresponding statement cannot be made about
substitutes.51 It is true (and easy to show) that the strong substitutes vectors are
maximal as a unimodular set of vectors. So, given any one valuation not for strong
substitutes, we can find valuations which are strong substitutes such that equilibrium
fails (see Section 4.2.3). Some have interpreted this result as a necessity of substitutes,
but this overlooks the fact that not all strong substitutes valuations need be within the
demand type in question.52

50Seymour (1980) developed a characterisation of unimodular sets of vectors; Danilov and Grishukhin
(1999) extended this to give a full characterisation of all maximal such sets.

51For two goods (but not more–see Section 3.2), substitutes are a basis change of complements via the

matrix

(
1 0
0 −1

)
(see Section 6.2) so (only) for two goods, equilibrium fails “as often” for substitutes

as for complements.
52Gul and Stacchetti demonstrate this maximality result using n-dimensional variants of our “simple
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6.5 An Algorithm to Check for Existence of Equilibrium

The following algorithm checks for (and summarises our results on) existence of
equilibrium:

Algorithm 6.5. Given concave valuations uj : Aj → R on finite Aj ( Zn for j =
1, . . . ,m: apply steps (1)-(8), below, to uk∗ := u{1,...,k−1} and uk, for each of k = 2, . . . ,m.
If, for each k, equilibrium exists for uk and uk∗ for all relevant supplies, then equilibrium
exists for u1, . . . , um, for all relevant supplies.

(1) Are uk, uk∗ of the same unimodular demand type?

(i) If yes, equilibrium exists for uk and uk∗ for all relevant supplies. End here.
(ii) If no, continue.

(2) If dim conv(Ak + Ak∗) = n′ < n, make a unimodular change of basis so that
Ak, Ak∗ ( Zn′ , and use n′ instead of n in the following steps.

(3) Calculate Γnk(Ak, Ak∗) for k = 0, . . . , n and Γn(Ak, Ak∗). Find the intersection
0-cells.

(4) Does the number of intersection 0-cells equal Γn(Ak, Ak∗)?

(i) If yes, equilibrium exists for uk and uk∗ for all relevant supplies. End here.
(ii) If no, continue.

(5) Find the näıve multiplicity of each intersection 0-cell C; note if the intersection is
transverse at C, and the dimension of the minimal cell of Luk containing C.

(6) Does the näıvely-weighted count of all intersection 0-cells equal Γn(Ak, Ak∗)?

(i) If yes, equilibrium exists for uk and uk∗ for all relevant supplies. End here.
(ii) If no, if n ≤ 3, and if the intersection is transverse, then equilibrium fails for

some relevant supply; end here. Otherwise continue.

(7) Identify all intersection 0-cells C such that the dimension k of the minimal cell of
Luk containing C does not satisfy both:

(i) the intersection of Luk and Luk∗ is transverse at every intersection 0-cell, C ′,
for which the minimal cell of Luk containing C ′ has dimension k,

and (ii) the number of all intersection 0-cells C ′ as in (7)(i), counted with näıve mul-
tiplicities, is equal to Γnk(Ak, Ak∗).

(8) Is Du{k,k∗}(p) discrete-convex for all p at intersection 0-cells identified in Step (7)?

(i) If yes, equilibrium exists for uk and uk∗ for all relevant supplies.
(ii) If no, equilibrium fails for some relevant supply.

Step (1) summarises the Unimodularity Theorem (Thm. 4.3). Step (4) uses a special
case of the Intersection Count Theorem (Thm. 5.12): if all näıve multiplicities equal 1,

substitutes” valuation (Fig. 5a). Such valuations are not, of course, in (e.g.) any purely-complements
demand type, but Gul and Stacchetti’s description of them as “unit demand” might suggest they
should be in any set of interest (cf., the paper’s remark (p. 96) “in a sense, the GS [gross substitutes]
condition is necessary to ensure existence of a Walrasian equilibrium”). See also Kelso and Crawford
(1982). And Azevedo et al.’s (2013, p.286) remark “adding a continuum of consumers . . . eliminates the
existence problems created by complementarities” can also be misinterpreted. (However, Bikhchandani
and Mamer, 1997, Prop. 3, previously noted the existence of non-substitute preferences which guarantee
equilibrium if just two agents each value at most one unit of each good.)
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then the weighted count of intersection 0-cells is just the number of these cells. (This
can save computations.) Step (6) is the Intersection Count Theorem itself. Finally,
Steps (7)-(8) use Prop. 5.20 (with Prop. 5.2).

It is not surprising that we cannot rule out needing Step (8). The question of equilib-
rium with indivisible goods is closely related to a long-studied problem in mathematics:
the question of when the integer points in the Minkowski sum of two polytopes, is equal
to the Minkowski sum of the integer points in those polytopes (see, e.g., Haase et al.,
2007). However, we know (Thm. 5.12 with Prop. 5.2) that we have to check at most
Γn(A1, A2) prices.

Appropriate tools exist for each step of this algorithm. These tools often behave well
in “usual” conditions, but may have bad worst-cases. (See Remark A.24.) So it seems
hard to give clean results of computational complexity, or to compare the efficiency
of using earlier stages of our algorithm with simply resorting to many “brute force”
calculations, as in Step (8). And, because we may often need to resort to Step (8), it is
also hard to compare with Bikhchandani and Mamer’s (1997) algorithm which checks
for equilibrium by the alternative “brute force” approach of comparing the solution of
an integer programming problem with the corresponding linear programming problem
for every relevant supply.

Of course, an important virtue of the Unimodularity and Intersection Count Theo-
rems is that, when the earlier Steps do suffice to determine existence, they increase our
understanding and intuition as to why equilibrium exists or fails.

6.6 Multi-Party Matching

Section 6.1 showed Kelso and Crawford’s (1982) model of bipartite matching was a
special case of our model.

We can also apply our model to other forms of matching and coalition-formation. The
example in Section 6.3 can be interpreted as a multi-player matching problem in which
the columns of D are the coalitions of workers that create value: Baldwin and Klemperer
(2014, Thm. 6.7) show that, assuming perfectly transferable utility, a stable matching
in which no subset of workers can gain from re-matching (that is, an allocation in the
core of the game among the workers) corresponds exactly to an equilibrium allocation
of workers in our model (in which every worker receives its competitive wage, and no
further gains from trade are possible). So, since the demand type is unimodular, it
describes a class of multi-player matching problems for which a stable match always
exists.

More generally, Baldwin and Klemperer (2014 Sections 2.5, 6.2, 6.3.1) show that
any model of coalition formation with perfectly transferable utility can be modelled
using our tools; it corresponds to a demand type containing some subset of vectors
in ±{0, 1}n. And a stable match always exists iff this demand type is unimodular
(Baldwin and Klemperer, 2014, Cor. 6.11), as it is in the case of the “workers” example
above. If the demand type is not unimodular, the methods of Section 5 tell us for
what coalitions’ valuations there are stable matchings. Moreover, applying Prop. 6.3 to
matching problems shows that stable matchings can be guaranteed for a broader class
of preferences than many people assume.53

53Consider, e.g., Hatfield and Milgrom’s (2005) statement that “preferences that do not satisfy the
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Baldwin and Klemperer (in preparation-a) develops the applications to matching
and coalition-formation in more detail.54

6.7 Understanding Individual Demand

Our techniques are powerful tools for understanding individual demand. In particu-
lar, Thm. 2.10 tells us that any balanced rational polyhedral complex is the LIP of some
quasilinear valuation and conversely. This allows us to explore properties of valuations
by drawing and analysing appropriate geometric diagrams without needing to undertake
the typically much more challenging task of constructing valuations that generate these
diagrams.

Baldwin and Klemperer (2014, especially Section 5; and in preparation-b) further
explores the comparative statics of individual demand, in order to better understand
demand changes at non-UDR prices.

Unimodularity turns out to have important implications for the structure of indi-
vidual demand, as well as (as we saw in our discussion of the existence of equilibrium)
for aggregate demand. This work also leads to a generalisation of Gul and Stacchetti’s
(1999) “Single Improvement Property”.

Related work (joint with Paul Milgrom) uses our framework to help understand
implications of different notions of substitutability for indivisible goods that have been
suggested in the literature.55

6.8 Auction Design

Practical auctions need to restrict the kinds of bids that can be made, thus restricting
the preferences that bidders can express. Restricting to a demand type is often natural,
since the economic context often suggests appropriate trade-offs between goods. For
example, the Bank of England expected bidders to have £1:£1 trade-offs between any
pair of the several different “kinds” of money it loaned in the financial crisis.56 Such
trade-offs represent a form of strong substitutes preferences. So the Bank chose auction
rules that made it easy for bidders to communicate such preferences, and was also
unconcerned about ruling out the expression of other preferences.57

Knowing that the bids in an auction must all express preferences of a demand type
also clarifies the meaning, and the implications, of the restrictions that have been im-

substitutes condition cannot be guaranteed always to select a stable allocation”, though the Proposition
(p.921) that their introductory remark loosely summarises is, of course, correct in its context.

54Since our framework allows us to consider multiple players of each kind, it easily yields results along
the lines of Chiappori, Galichon, and Salanié (2014, see also Balinski, 1970).

55Baldwin, Klemperer, and Milgrom (in preparation). This paper also develops the relationship
between the existence of equilibrium for substitutes and properties of the Vickrey auction and the core.

56The different “goods” were long-term loans (repos) against different qualities of collateral.
57Any strong substitutes preference could be expressed if the Bank’s “Product-Mix” Auctions were

augmented by permitting “negative” bids (see Klemperer, 2010, and Baldwin and Klemperer, in
preparation-c). Product-mix auctions are “one-shot” auctions for allocating heterogeneous goods. Their
equilibrium allocations and prices are similar to those of clock or Simultaneous Multiple-Round Auc-
tions in private value contexts, but they permit the bid-taker to express richer preferences; they are
more robust against collusive and/or predatory behaviour; and they are, of course, much faster.
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posed on the bidders.58 In particular, the motivation of the Product-Mix Auction is
to find competitive equilibrium, given bidders’ and the bid-taker’s reported preferences.
Since the Bank of England’s implementation of the Product-Mix auction allows rationing
(which makes “goods” divisible) ensuring the existence of equilibrium is not too hard.59

But in many contexts rationing is less sensible. For example, a too-small piece of radio
spectrum may not be useful. Similarly, a government may be interested in offers to build
gas-fired plants, nuclear-power stations, wind farms, etc., and these may be indivisible.
So results about equilibrium with indivisibilities tell us when Product-Mix Auctions can
easily be used.

Our techniques also facilitate the analysis of Product-Mix Auctions. Individuals’ bids
in these auctions are aggregated in exactly the same simple way that (weighted) LIPs are
combined to find aggregate demand. This also makes the auctions more “user-friendly”,
which is critical for getting them implemented in practice. Moreover, geometric analysis
can develop methods for finding equilibrium in new versions of the Product-Mix Auction;
this may help resolve problems currently facing regulators such as the U.S. Federal
Communications Commission, the U.K.’s Ofcom and the U.K. Department for Energy
and Climate Change.

7 Conclusion

An agent’s demand is completely described by its choices at all possible price vectors.
So it can also be described by the divisions between the regions of price space in which
the agent demands different bundles, and hence by the vectors that define these divisions.
This suggests a natural way of classifying valuations into “demand types”.

Using this classification, together with the duality between the geometric represen-
tations of valuations in price space and in quantity space, yields significant new insights
into when competitive equilibrium exists.

A demand type’s vectors also encode the possible comparative statics of demand,
and we expect many other results can be understood more readily, and developed more
efficiently, using our geometric perspective.

Companion papers60 use our framework and tools to obtain new results about the
existence of stable matchings in multiple-agent matching models; about individual de-
mand; and further develop the Product-Mix Auction implemented by the Bank of Eng-
land in response to the 2007 Northern Rock bank run and the subsequent financial
crisis.

58Restricting to a demand type also permits relatively complex “bids” while still checking that they
satisfy the restrictions, since there are easy software solutions to calculate the normal vectors of the
LIP for any valuation and so reveal the demand “type” (see Remark A.24).

59So the updated (2014) implementation of the Bank’s auction also permitted some complements
preferences while maintaining the existence of equilibrium.

60See Baldwin and Klemperer (in preparation-a and b) and Baldwin, Goldberg and Klemperer (in
preparation). Preliminary work is in Baldwin and Klemperer (2014).
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A Proofs and Additional Examples

Results are given below in the order in which it is most convenient to prove them.

A.1 Proofs for Section 2

Proof of Prop. 2.7. Write Π for the set containing all cells of the LIP as well as
closures of its UDRs. There are finitely many objects in Π, as A ( Zn is finite. Each
is defined by a collection of equalities p · (x − x′) = u(x) − u(x′) and inequalities
p·(x−x′) ≥ u(x)−u(x′), so it follows (since A ( Zn) that each is a rational polyhedron.
Conversely, a set defined by equalities and inequalities of this form is in Π. A face of a
polyhedron C in Π is the subset of C on which at least one of these inequalities holds with
equality: it is therefore a cell of the LIP. To consider C∩C ′, where C 6= C ′ in Π, suppose
X,X ′ are such that C = {p ∈ Rn : X ⊆ Du(p)} and C ′ = {p ∈ Rn : X ′ ⊆ Du(p)}.
Then X 6= X ′ and C ∩ C ′ = {p ∈ Rn : X ∪ X ′ ⊆ Du(p)}. If this is non-empty, it is
itself a cell of the LIP and a face of both C and C ′. Thus Π is a polyhedral complex.

If more than one bundle is demanded then p · (x − x′) = u(x) − u(x′) for some
x 6= x′; as there are only finitely many bundles it is thus generic for only one bundle
to be demanded, and hence the closures of UDRs are all n-dimensional. So the LIP is
equal to the boundary of the closures of the UDRs, and thus is contained in its (n− 1)-
dimensional components, and any cell of Π of dimension k < n is a cell of the LIP. Thus
the set of cells of the LIP forms an (n− 1)-dimensional rational polyhedral complex.�

Proof of Lemma 2.8. It is easier to prove these statements in the opposite order.
The set {p ∈ Rn : Du(p

◦) ⊆ Du(p)} is non-empty (it contains p◦ itself) and so defines
a cell, C ′. If X ⊆ A is such that C = {p ∈ Rn : X ⊆ Du(p)} then X ⊆ Du(p

◦) and so
any p ∈ C ′ satisfies X ⊆ Du(p), so C ′ ⊆ C. From Prop. 2.7, we know that C ∩ C ′ is a
face of C and of C ′. However C ∩ C ′ contains a point, p◦, that is in the interior of C.
This is only consistent if C ∩ C ′ = C. As C ′ ⊆ C we conclude C ′ = C.

So Du(p
◦) ⊆ Du(p) iff p ∈ C. But since this holds for any p◦ ∈ C◦, we may reverse

the roles of p and p◦ to see that Du(p
◦) = Du(p) if p ∈ C◦. �

Proof of Lemma 2.11. As in the proof of Prop. 2.7 above, the set of all cells of the
LIP together with the closures of UDRs forms a polyhedral complex, and in particular
therefore the intersection of two or more distinct closures of UDRs is a cell of the LIP.

Conversely, given any cell C of the LIP and p◦ ∈ C◦, let X be the set of all bundles
uniquely demanded at some price in a small neighbourhood of p◦. Then C ′ = {p ∈ Rn :
X ⊆ Du(p)} is a cell of the LIP. By continuity of the indirect utility in p, that is, of
p 7→ u(x) − p · x, every bundle in X is demanded at p◦, so p◦ ∈ C ′ and hence (since
p◦ is in the interior of C) C ⊆ C ′. So C is a face of C ′: there exists v ∈ Rn such that
p′ · v ≤ p · v for all p′ ∈ C ′, p ∈ C. Suppose for a contradiction that C ( C ′, so there
exists p′ ∈ C ′ such that p′ · v < p◦ · v. But because the UDRs are dense in Rn, for
any ε > 0 there exists a UDR price p ∈ Rn such that 0 < v · (p − p◦) < ε. Thus, if
{x} = Du(p), we must have x ∈ X. However, again by continuity of indirect utility,
x is only demanded in the closure of the UDR containing p, and by construction, p′ is
not in this set. Thus, by contradiction, C = C ′.

By construction, C ′ is the intersection of the closures of a set of UDRs. This com-
pletes the proof. �
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Proof of Lemma 2.18. Let G be the upper boundary, with respect to the final
coordinate, of conv ({(x, u(x)) : x ∈ A}). Then G is the graph of a weakly-concave
function on conv(A), which clearly satisfies the definition of conv(u). By the supporting
hyperplane theorem, for every x ∈ conv(A) there exists a supporting hyperplane, H, to
G, at (x, conv(u)(x)). Both conv(Du(p)) and Dconv(u)(p) are equal to the projection of
H ∩G to its first n coordinates, and thus are equal. �

Proof of Lemma 2.13. Suppose that A is discrete-convex. It is a standard application
of the supporting hyperplane theorem that a function u : A → R is concave iff, for all
x ∈ A, there exists p ∈ Rn such that x ∈ Du(p). As we have defined concavity
to require discrete-convexity of domain, this provides the first equivalence. Moreover,
since the intersection between a supporting hyperplane and a convex set is always itself
convex, discrete-convexity of Du(p) also follows.

Conversely, suppose Du(p) is discrete-convex for all p. Let u′ : conv(A) ∩ Zn → R
be the restriction of conv(u) to conv(A) ∩ Zn. Consider any x ∈ conv(A) ∩ Zn. By the
previous paragraph, there exists p such that x ∈ Du′(p). As conv(u) = conv(u′), it
follows by Lemma 2.18 that conv (Du(p)) = conv (Du′(p)). But then, by assumption,
x ∈ Du(p). So the second property holds (and in particular A is discrete-convex). �

Proof of Lemma 2.14. Restrict u to conv(Du(p)) ∩ Zn to see that Part (1) follows
from Lemma 2.13. For (2), recall that conv(u) = conv(u′) and so, by Lemma 2.18,
Du(p) = {x} iff Du′(p) = {x}, for any bundle x. So |Du(p)| = 1 iff |Du′(p)| = 1. �

Proof of Prop. 2.17. The “roof” is {(x, conv(u)(x)) ∈ Rn+1 : x ∈ conv(A)} (it is the
graph of conv(u)). It is clearly the upper boundary, with respect to the final coordinate,
of the convex hull of the points {(x, u(x)) ∈ Zn × R : x ∈ A}. The set of faces of the
“roof” thus has the structure of a polyhedral complex (see e.g. Grünbaum and Shephard,
1969). Moreover, there is a clear bijection between conv(A) and the “roof”, which is
linear on each of these faces. So the projections of these faces to their first n coordinates
also form a polyhedral complex. Now the result follows from Lemma 2.19 (which is
shown in the text to be a consequence of Lemma 2.18, which is proved above). �

Proof of Prop. 2.21. By Lemma 2.8, the demand set is constant in a cell interior; it is
clearly also constant in a UDR. So the correspondence in (1) is well-defined. Moreover,
the affine span of Cσ is given by the set of prices p′ such that u(x)−p ·x = u(x′)−p ·x′
for all x,x′ ∈ Du(p), i.e. all prices such that p′ · (x − x′) = u(x) − u(x′) for all such
x,x′. If σ = conv (Du(p)) is k-dimensional, there are k linearly independent vectors of
the form x− x′, and so k linearly independent constraints p′. So dimCσ = n− k.

For (2), recall from Lemma 2.8 that Cσ = {p ∈ Rn : Du(p
◦) ⊆ Du(p}, where p◦ ∈

C◦σ. But for such p◦, we show Du(p
◦) ⊆ Du(p) iff σ = convDu(p

◦) ⊆ conv (Du(p)). Ne-
cessity is obvious, and sufficiency follows from Lemma 2.20: if we assume conv (Du(p

◦)) ⊆
conv (Du(p)), then any x ∈ Du(p

◦) ( conv (Du(p)) must satisfy x ∈ Du(p). So p ∈ Cσ
iff σ ⊆ conv (Du(p)). Now (3) follows from the combination of (1) and (2).

For (4), we saw already that p′ · (x− x′) = u(x)− u(x′) for all x,x′ ∈ Du(p) and all
p′ ∈ Cσ where σ = conv(Du(p)). Thus (p′′ − p′) · (x′ − x) = 0 for all p′,p′′ ∈ Cσ, also
for any x,x′ ∈ conv (Du(p)) = σ. Now (5) is immediate from Defns. 2.4 and 2.16(4). �
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Corollary A.1. If the demand complex is n-dimensional then every k-cell Cσ of Lu has
some 0-cell Cτ in its boundary, with σ ⊆ τ . Moreover if x ∈ σ but x /∈ Du(p

◦
σ) for

p◦σ ∈ C◦σ, then also x /∈ Du(p
◦
τ ) for p◦τ ∈ C◦τ .

Proof. If σ is an (n− k)-cell of an n-dimensional demand complex, then σ is contained
in an n-cell τ . So Cτ is a 0-cell of the LIP and Cτ ⊆ Cσ (Prop. 2.21(3)). By Prop.
2.21(1) we know σ = conv(Du(p

◦
σ)), so by Lemma 2.20, x /∈ Du(p

◦
τ ). �

A.2 Examples for Sections 2 and 3

Additional Discussion of Figs. 2 and 3. In Figs. 3b-3c, the bundles demanded in
the UDRs are (0,0), (0,1), (0,2), (1,2), (2,2), (2,1), and (2,0), clockwise from the top
right of the LIP in Fig. 3a.

Observe that if the “black bundles”’s value was greater, so the corresponding bar in
Figs. 2b and 2c just touched the roof, then it would still not be at a vertex of Fig. 3a
but it would be demanded at the price corresponding to the wavy-shaded 0-cell (that
is, (1, 2)) that is at a vertex of the LIP. And if it had an (even) higher valuation (so
“poked through” the current roof), then the corresponding demand complex point would
become a vertex, and the corresponding LIP 0-cell would “open up” to form a new UDR
corresponding to the range of prices at which the bundle (1, 1) would then be demanded.

To find the exact LIP of Fig. 2a’s valuation using the demand complex of Fig. 3a,
compare the values of bundles in adjacent UDRs: the valuations of bundles (1, 0) and
(0, 1) show that the dotted 0-cell of the LIP is at p = (4, 8), since 4 and 8 are the prices
below which the agent will first buy any of goods 1 and 2, respectively, when the other
good’s price is very high. And the wavy-shaded 0-cell must be at (1,2) since 10− 8 = 2
is the incremental value of a second unit of good 2, when the agent has none of good 1,
and 11− 10 = 1 would be the incremental value from then adding a unit of good 1, etc.

So constructing the LIP via the demand complex separates the questions “in what
directions are there line segments?” and “where in space are they?”, and clarifies which
bundle values have to be compared to fix the precise locations of the LIP’s cells.

Example A.2. For A = {0, 1}2 it is easy to draw every possible demand complex and
so obtain every possible combinatorial type of weighted LIP–see Fig. 11. It is clear that

(a) (b) (c)

Figure 11: All possible demand complexes, and examples of their dual weighted LIPs,
giving all the combinatorial types when A = {0, 1}2.

Fig. 11a applies when u(0, 0) + u(1, 1) < u(1, 0) + u(0, 1), so represents substitutes; Fig.
11b applies when u(0, 0) + u(1, 1) = u(1, 0) + u(0, 1), so is additively separable demand;
and Fig. 11c applies when u(0, 0) + u(1, 1) > u(1, 0) + u(0, 1), so is complements. (See
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Section 3.2 for these distinctions). Importantly, it is also clear that these are the only
possibilities.

Observe that Fig. 11b can be seen as a limit of Fig. 11a (or Fig. 11c). In the LIP, the
two 0-cells become arbitrarily close and then coincide in the limit; in quantity space, the
faces of the roof tilt until they are coplanar, so that a demand complex edge disappears.

More generally, any demand complex in which the subdivision is not maximal (that
is, additional valid (n− 1)-faces could be added) can be recovered by deleting (n− 1)-
faces from some demand complex whose subdivision is maximal. For example, Fig.
12 shows all the demand complexes with maximal subdivision, and examples of their
dual weighted LIPs, for A = {0, 1} × {0, 1, 2}; we can then easily recover the remaining
combinatorial types of weighted LIP if desired.

(a) (b) (c) (d) (e) (f)

Figure 12: All possible demand complexes with maximal subdivision, and examples of
their dual weighted LIPs, giving all such combinatorial types when A = {0, 1}×{0, 1, 2}.

Example A.3. To illustrate why the condition for indivisible goods to be substitutes is
so restrictive, consider three trips: trip A can be made only by bus or train; trip B only
by car or train; and trip C only by car or bus. As divisible goods, the three modes of
transport are all mutual substitutes. But if the price of either bus tickets or train tickets
is raised, a consumer might buy a car and use less of both forms of public transport,
which are therefore locally complements–the car takes the role of good 2 in Fig. 4.61

A.3 Proofs and Additional Examples for Section 4

Example A.4 (Failure of aggregate concavity in “hotel rooms” example).
Figs. 13a-c show the valuations us, uc, and an aggregate valuation for them, u{s,c}(y) =
max {us(xs) + uc(xc) : xs,xc ∈ {0, 1}2, xs + xc = y}, respectively. The failure of aggre-
gate concavity at (1, 1) is clear from the fact that 1

4
(u{s,c}(1, 0)+u{s,c}(0, 1)+u{s,c}(2, 1)+

61Even if all goods are mutual substitutes, there can never be trade-offs between more than two of
them across the whole of a facet. One mutual substitute might trade-off against two others at prices
where more than one facet meet, if at least one of those facets has weight greater than 1. For example,
an agent might switch 2 units of some good A for 1 each of two other goods, B and C, which it treats
as indistinguishable, in the intersection of all three weight-2 facets where the agent switches between
two of the three goods.
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u{s,c}(1, 2)) = 60 > 50 = u{s,c}(1, 1). This is illustrated in Fig. 13d, which shows u{s,c}

together with the cell of its roof that corresponds to the price vector (30, 20); the bundles
(1, 0), (0, 1), (2, 1), and (1, 2) are all demanded at this price, but (1, 1) is not demanded
at any price.

x1

1 0 us(x)
40 0 0

x240 30 1

(a) Valuation us(x).

x1

1 0 uc(x)
0 0 0

x250 0 1

(b) Valuation uc(x)

x1

2 1 0 u{s,c}(x)
40 40 0 0
90 50 30 1 x2

90 80 30 2

(c) Valuation u{s,c}(x).

x2

x1

u{s,c}(x)

(d) The p = (30, 20) cell of
the “roof”.

Figure 13: Illustration of an aggregate valuation u{s,c} which is not concave.

Proof of Fact 4.8. That (2) is equivalent to unimodularity follows from Cassels (1971)
Lemma I.1 and Cor. I.3. For (1)⇔(2) consider a parallelepiped P whose vertices are
y+

∑s
j=1 ajv

j for aj ∈ {0, 1}. If z is a non-vertex integer point in P , then z−y exhibits

the failure of (2). Conversely, if failure of (2) is exhibited by an integer vector
∑s

j=1 bjv
j

where bj are not all integers, then y +
∑s

j=1 ajv
j exhibits failure of (1), where aj is the

non-integer part of bj in each case. �

Fact A.5 (see, e.g. Cassels, 1971, Lemma I.2). A set of s ≤ n linearly independent
vectors in Zn are unimodular iff, among the determinants of all the s × s matrices
consisting of s rows of the n× s matrix whose columns are these s vectors, the greatest
common factor is 1.

Lemma A.6. For a finite set of valuations {uj : j ∈ J}, and p ∈ Rn, write σj =
conv(Duj(p)) and σJ = conv(DuJ (p)).

(1) σJ =
∑

j∈J σ
j and KσJ =

∑
j∈J Kσj .

(2) If the LIPs intersect at p, they are transverse at p iff KσJ =
⊕

j∈J Kσj .

Proof. (1): by definition DuJ (p) =
∑

j∈J Duj(p), from which σJ =
∑

j∈J σ
j follows

(see e.g. Cox et al 2005, Section 7.4, Exercise 3). Thus, by Defn. 4.15, KσJ =
∑

j∈J Kσj .

(2): First suppose r = 2 and write kj = dimσj = dimKσj , and kJ = dimσJ =
dimKσJ . By Part (1) it follows that kJ = k1 +k2−dim(Kσ1∩Kσ2). But also, dim(Cσ1 +
Cσ2) = dimCσ1 + dimCσ2 − dimCσJ = (n− k1) + (n− k2)− (n− kJ). By Defn. 4.11,
the intersection is transverse at p iff this is equal to n, that is, iff k1 + k2 = kJ . So we
conclude that the intersection is transverse at p iff Kσ1 ∩ Kσ2 = {0}, which, together
with (1), is the definition of KσJ = Kσ1 ⊕Kσ2 . The r ≥ 3 case now follows, as we check
for transversality incrementally using the r = 2 case (Defn. 4.11). �

Proof of Lemma 4.16 This is a standard consequence of Lemma A.6(2). Every vector
x in Kσ{1,2} can be written as a sum of a vector x1 ∈ Kσ1 and a vector x2 ∈ Kσ2 . If we also
write x = x1′+x2′, where xj′ ∈ Kσj , j = 1, 2, then x1−x1′ = x2−x2′ ∈ Kσ1∩Kσ2 = {0}
and so x1 − x1′ = x2 − x2′ = 0. �
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Example A.7. (The “hotel rooms” example, and Section 4.2.5’s argument.)
It helps intuition to see which parts of the argument of Section 4.2.5 are, and are not,
valid for our simple two-goods substitutes, us(x1, x2) = max{40x1, 30x2} (Fig. 5a), and
complements, uc(x1, x2) = min{50x1, 50x2} (Fig. 5b), valuations, for which the failure
of equilibrium was discussed in Section 4.2.2.

Consider the (transverse) intersection price p = (30, 20), and the bundle y =(1, 1) ∈
σ{s,c} = conv (Du{s,c}(p)). So σ{s,c} is the central square 2-cell in Fig. 6c. In this example
it is clear that the corresponding cells, σs = conv(Dus(p)) and σc = conv(Duc(p)), of
Figs. 6a and 6b, respectively, are the two diagonal 1-cells. (The general procedure for
identifying σs and σc is to examine the LIP intersection in Fig. 5c, hence to identify the
relevant cells of the LIPs in Figs. 5a-b, and so the relevant cells in Figs. 6a-b.)

We have Kσ{s,c} = R2, and the edges of σ{s,c} are {(1,−1), (1, 1)} (see Fig. 6c), and
in this case the whole set of edges is needed to form a basis of Kσ{s,c} . And (see Figs.
5a, 5b) Kσs and Kσc are the sets of scalar multiples of (1,−1) and (1, 1), respectively
(and these vectors give a basis for each).

Now say, for example, x = (1, 0) ∈ σ{s,c}. We can write y− x =(0, 1) as λ1(1,−1) +
λ2(1, 1) by choosing λ1 = −1

2
, λ2 = 1

2
. So y − x = zs + zc in which zs =

(
−1

2
, 1

2

)
and

zc =
(

1
2
, 1

2

)
. (These are not integer bundles because unimodularity fails in this example.)

On the other hand, we use σ{s,c} = σs + σc to write y = ys + yc with ys ∈ σs and
yc ∈ σc. We can see from Figs. 6a, 6b that the unique way to do this is ys = yc =

(
1
2
, 1

2

)
.

Also, since x ∈ Du{s,c}(p), we can write x = xs + xc in which xs and xc are integer
bundles. In fact, xs=(1, 0) ∈ Dus(p) and xc=(0, 0) ∈ Duc(p), as can be seen by using
Fig. 5c to see that the UDR of x is the region above the price (30, 20), hence the relevant
UDRs in Figs. 5a and 5b are (1, 0) and (0, 0), respectively. So ys − xs =

(
−1

2
, 1

2

)
and

yc − xc =
(

1
2
, 1

2

)
.

The intersection is transverse at p and so, as predicted, ys−xs = zs, and yc−xc = zc.
However, in this example, the set of edges of σ{s,c}, that is, {(1,−1), (1, 1)} is not
unimodular, so zs and zc, and hence also ys and yc, are not integer bundles, so the
method does not demonstrate equilibrium. (Indeed, in this case it demonstrates the
failure of equilibrium.)

A.4 Proofs and Additional Examples for Section 5

Example A.8 (The “hotel rooms” example with weight 2 facets–further dis-
cussion of Section 5.1.2). We can understand “mid-point bundles” such as (1,1) and
(1,3) in Fig. 8c as being reached by starting from a vertex bundle, and then changing
demand to move one “step” along an edge. These bundles correspond to demand chang-
ing part-way along a diagonal edge in Figs. 8a and 8b. Likewise the “central bundle”
(2, 2) can be reached by a combination of these part-way diagonal steps, as shown by
the dashed grey lines. Meanwhile the remaining four bundles (the black grid points in
Fig. 8c) cannot be reached by any such moves, so are not demanded.

As in the discussion of Fig. 6c in Section 4.2.2, this illustrates the relevance of Fact
4.8(2). Unimodularity is the ability to create any vector in the space spanned by the
vectors of the demand type as an integer combination of any spanning set of vectors of
the demand type. u{2s,2c} is not of a unimodular demand type; there is therefore the
possibility that some bundles cannot be reached using combinations of the edge vectors
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of the relevant demand complex cell; and indeed these four bundles are unreachable.
Fig. 8d can be understood similarly to Fig. 8c. Now all bundles can be reached

via changes of demand that take the agents part-way along their individual demand
complex cells (so are edge vectors of the relevant aggregate demand complex cell; these
are again denoted by dashed lines). So equilibrium always exists in this case.

Proof of Prop. 5.2. Necessity of this condition follows from Lemma 2.13.
Conversely, suppose that equilibrium fails for some relevant supply. By Lemma 4.7,

there exists a price p in Lu1 ∩ Lu2 such that Du{1,2}(p) is not discrete-convex. So there
exists x ∈ Zn such that x ∈ σ{1,2} := conv(Du{1,2}(p)), but x /∈ Du{1,2}(p). By Lemma
2.8, Du{1,2}(p

′) is constant for p′ ∈ C◦
σ{1,2}

, and thus both individual demand sets must
be constant in C◦

σ{1,2}
. So Cσ{1,2} ⊆ Lu1 ∩ Lu2 .

Since the aggregate demand complex is n-dimensional, we may apply Cor. A.1: there
exists a 0-cell Cτ of Lu{1,2} such that σ ⊆ τ and which also satisfies x /∈ Du{1,2}(pτ ) for
pτ ∈ Cτ . Moreover, Cτ ⊆ Cσ (by Prop. 2.21(3)) and so Cτ ⊆ Lu1 ∩ Lu2 . �

Lemma A.9. Fix p ∈ Rn and write u∗ for the restriction of u to Du(p). Then there
exists δ > 0 such that Du(p

′) = Du∗(p
′) for all p′ ∈ Bδ(p) = {p′ ∈ Rn : ‖p′ − p‖ < δ}.

In particular the LIPs coincide for all such p′.

Proof. There exists some ε > 0 such that u(x) − p · x > u(y) − p · y + ε for every
x ∈ Du(p), y /∈ Du(p). So if we choose δ < ε

‖x‖ for all x ∈ Du(p) then it is easy to show

that u(y) − p′ · y < u(x) − p′ · x for all p′ ∈ Bδ(p), x ∈ Du(p), y /∈ Du(p). Thus, at
prices p′ ∈ Bδ(p), only bundles in Du(p) might be demanded; Du(p

′) = Du∗(p
′). �

Lemma A.10. Suppose Lu1 and Lu2 have an intersection 0-cell C at p. Suppose v ∈ Rn

is such that Lu1 and {εv}+ Lu2 intersect transversally for sufficiently small ε > 0, and
write C for the set of their intersection 0-cells emerging from C. Write x1, x2 for the
bundles such that {x1} = Du1(p + εv), {x2} = Du2(p− εv). Then the demand complex
cell σC ∈ Σu{1,2} dual to C is equal to ({x2}+σ1)∪ ({x1}+σ2)∪

⋃
{σC′ : C ′ ∈ C}, where

σj = conv(Duj(p)) and σC′ ∈ Σu{1,2ε} is dual to C ′ ∈ C.

Proof. Use the notation of Lemma A.9; using that lemma, choose δ > 0 sufficiently
small so that, for all p′ ∈ Bδ(p), both Du1(p

′) = Du1∗(p
′) and Du2(p

′) = Du2∗(p
′).

We write u2∗ε for the valuation given by u2∗ε(x) = u2∗(x) + εv · x. Since Bδ(p) is
topologically open, and since Lu2ε = {εv}+Lu2 , we can choose ε sufficiently small that
Du2ε (p

′) = Du2∗ε (p
′) for all p′ ∈ Bδ(p). Moreover, by Defn. 5.8, emerging 0-cells get

arbitrarily close to C for arbitrarily small ε. So we can choose ε sufficiently small that
all intersection 0-cells for Lu1 and Lu2ε , emerging from C, are contained in Bδ(p). Now,
it is sufficient to prove the result for Lu1∗ , Lu2∗ and {εv}+ Lu2∗ = Lu2∗ε .

The cell σC is, by definition, the convex hull of the domain of u{1∗,2∗}, and hence also
convex hull of the domain of u{1∗,2∗ε}. So σC is equal to the union of the top-dimensional
cells in the demand complex Σu{1∗,2∗ε} , i.e., the demand complex cells dual to 0-cells of
Lu{1∗,2∗ε} . But the 0-cells of Lu{1∗,2∗ε} are: those in C; and, if they exist, 0-cells at p
of Lu1∗ , Lu2∗ . Take duals, and in the latter cases account for the demand of the other
agent. Since in every case {x1}+ σ2 ⊆ σC and {x2}+ σ1 ⊆ σC , we obtain the result.�

Proof of Lemma 5.9. Write σ1, σ2 and σ{1,2}, respectively, for the demand complex
cells at p of valuations u1, u2 and u{1,2}. For any v and ε, if there exist no intersection
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0-cells emerging from C then, by Lemma A.10, voln(σ1) + voln(σ2) ≥ voln(σ{1,2}). But
this is impossible since σ{1,2} = σ1 + σ2, since both σ1 and σ2 contain more than one
element, and since dimσ{1,2} = n, which implies voln(σ{1,2}) 6= 0. �

Fact A.11. The quantity we have defined as Γnk(A1, A2) is the n-dimensional mixed
volume of k copies of conv(A1) with (n− k) copies of conv(A2). In particular:

(1) Γnk(A1, A2) ∈ Z≥0 for finite A1, A2 ( Zn.
(2) Γnk(A,A) = n!voln conv(A) for k = 0, . . . , n.
(3) If Aj = {x ∈ Zn≥0 :

∑
i xi ≤ dj} for j = 1, 2 then Γnk(A1, A2) = dk1d

n−k
2

(and so Γ2(A1, A2) = d1d2).
(4) Γn(A1, A2) = 0 if dim conv(A1 + A2) < n.

Proof. Cox et al. (2005, Thm. 7.4.12.d) shows that Γnk(A1, A2) is the mixed volume
described. (1) is now Cox et al. (2005, Exercise 7.9.a). (2) is Cox et al. (2005, Exercise
7.7.b). (3) is an elementary calculation. (4) is clear by Defn. 5.11. �

Facts A.12. Write KΛ for the linear span in Rn of a lattice Λ ⊆ Zn, so KΛ is the set of
all linear combinations of finite subsets of Λ.

(1) KΛ is the minimal vector subspace of Rn containing Λ.
(2) If Λ′ ⊆ Λ is a sublattice, then KΛ′ = KΛ iff rank(Λ′) = rank(Λ) = dim KΛ.
(3) If Λ′,Λ ⊆ Zn are lattices then Λ′ + Λ is a lattice. If additionally KΛ′ ∩ KΛ = {0}

then a basis for Λ′ and a basis for Λ together give a basis for Λ′ + Λ.

Proof. (1) is clear. An integer basis for Λ provides a set spanning KΛ, and these are
linearly independent by Cassels (1971, Thm. III.VI; our definition of lattices is in line
with the characterisation given there), so (2) follows. (3) is also easy to see. �

Proof of Lemma 5.14. From Lemma A.6(1),
∑

j∈K Kσj = KσJ . It follows that
Kσj ⊆ KσJ , and so Λσj ⊆ ΛσJ , for all j ∈ J . Thus, as ΛσJ is additively closed,∑

j∈J Λσj ⊆ ΛσJ . Moreover
∑

j∈J Λσj is a sublattice by Fact A.12(3).
The linear span of ΛσJ is KσJ . The linear span of

∑
j∈J Λσj contains Kσj for all j ∈ J ,

and so it contains their sum; on the other hand
∑

j∈J Λσj ⊆
∑

j∈J Kσj and the latter is
linear; so

∑
j∈J Kσj is the linear span of

∑
j∈J Λσj . Since, again,

∑
j∈J Kσj = KσJ , the

result follows by Fact A.12(2). �

Fact A.13. [Λ : Λ′] is the number of disjoint “cosets” {v}+ Λ′ where v ∈ Λ.

Proof of Facts 5.15 and A.13. Cassels (1971) assumes that all lattices Λ ⊆ Zn have
rank n. To adapt his results to our conventions, first fix a k × n matrix GΛ such that
GΛΛ = Zk. Then GΛΛ′ is a rank-k sublattice of Zk. From our definitions it is clear
that [GΛΛ : GΛΛ′] = [Λ : Λ′]. Now Cassels (1971) Lemma I.1 gives Fact A.13. And
Fact 5.15(1) follows: if v,w ∈ ∆Λ′ ∩ Λ but {v} + Λ′ = {w} + Λ′ then v − w ∈ Λ′,
so v − w =

∑
i αiv

′i where v′i are our basis for Λ′, and αi ∈ Z; then w ∈ ∆Λ′ and
v = w + (v −w) ∈ ∆Λ′ are consistent only if v = w; the converse is argued similarly.
Fact 5.15(2) follows immediately from Fact A.13. Fact 5.15(3) is given by Cassels (1971,
p. 69).Fact 5.15(4) follows from (2) and Fact 4.8(1). �

Proof of Thm. 5.16. Part (1) is very similar to the proof of “sufficiency” for Thm.
4.3, given in Section 4.2.5. Let x ∈ σJ ∩ Zn. By Lemma A.6, σJ =

∑
j∈J σ

j and so
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x =
∑

j∈J xj, where xj ∈ σj for j ∈ J . We wish to show that each xj ∈ Zn; then

xj ∈ Duj(p) by concavity of uj (Lemma 2.13) and so x ∈ DuJ (p).
Fix y ∈ DuJ (p), so y =

∑
j∈J yj where yj ∈ Duj(p) ( Zn for j ∈ J . Then

y − x ∈ ΛσJ . But ΛσJ =
∑

j∈J Λσj (by Fact 5.15(2)) and so y − x =
∑

j∈J zj, where

zj ∈ Λσj ⊆ Zn. But now
∑

j∈J zj =
∑

j∈J(yj − xj). By Lemma 4.16, yj − xj = zj for

j ∈ J . Thus xj = yj − zj ∈ Zn for j ∈ J , as required.
We prove Part (2) in the case when dim σj0 = 2. The case in which dimσj0 = 1 may

be seen from the following argument by ignoring the role of σj0 . So suppose dimσj0 = 2.
Assume that 0 ∈ σj for j ∈ J (otherwise the following arguments are simply aug-

mented by a fixed shift). If dimσj = 0 for any j ∈ J then Λσj = {0} and inclusion of
σj has no effect on σJ . So we assume dimσj = 1 for all j ∈ J \ {j0}.

For j ∈ J \ {j0}, fix a minimal integer non-zero vector vj ∈ σj. In each case this
vector then forms a basis for the corresponding lattice Λσj .

We also need a basis for Λσj0 consisting of vectors v0,v1 contained inside σj0 . Start
by taking w0,w1 ∈ σj0 which are linearly independent integer vectors. If these are
a basis for Λσj0 , we are done. If not, they span a sublattice Λ′1 of Λσj0 , such that
[Λσj0 : Λ′1] > 1, and so there must exist w ∈ Λσj0 which is a non-vertex point of ∆Λ′1

.
Then w = α0w0 + α1w1 with α0, α1 ∈ [0, 1). If α0 + α1 ≤ 1 then we fix w2 := w; if
α0 + α1 > 1 then let w2 = w0 + w1 −w. In either case now w2 = β0w0 + β1w1 with
β0 + β1 ≤ 1. As σj0 is convex we conclude that w2 ∈ σj0 .

Recalling by definition that w /∈ Λ′1, we know w2 is distinct from w0,w1,0. So w2

is a non-vertex point of the convex hull ∆0 of 0,w0,w1. Hence the convex hull ∆1 of
0,w1,w2 has strictly smaller area than ∆0. Moreover, the parallelepipeds spanned by
w0,w1 and by w1,w2 have areas equal to twice the areas of ∆0, ∆1, respectively. So, if
Λ′2 is the sublattice of Λσj0 spanned by w1,w2, then [Λσj0 : Λ′2] < [Λσj0 : Λ′1].

As all subgroup indices are positive-integer-valued, after a finite number of repe-
titions of this process, the subgroup index is 1, and hence (by Fact 5.15(2)) we have
obtained vectors in σj0 which are a basis of Λσj0 , as required. Label these vectors vj0

and vj1 where j1 /∈ J and write J ′ = J ∪ {j1}.
Now, by Fact 5.15(2), there exists x ∈ ΛJ

σ , x /∈
∑

j∈J Λσj . And by Fact A.12(3),

our identified vectors {vj : j ∈ J ′} are an integer basis for
∑

j∈J Λσj . By Lemma
5.14 and Fact A.12(2), they are thus a vector space basis for KσJ , so we can write
x =

∑
j∈J ′ α

jvj. Moreover, since subtracting integer multiples of the vj from x yields

a new element of ΛσJ , we can assume that αj ∈ [0, 1) for j = J ′. Additionally, we can
assume that αj0 + αj1 ≤ 1: if αj0 + αj1 > 1 then replace x with

∑
j∈J ′ v

j − x ∈ ΛσJ .

Now αj0vj+0 + αj1vj1 ∈ σj0 and, for all other j ∈ J , also αjvj ∈ σj. So, x ∈
∑

j∈J σ
j =

σJ = conv (DuJ (p)). Moreover, x ∈ ΛσJ ⊆ Zn. But, by assumption, x /∈
∑

j∈J Λσj , and
so x /∈

∑
j∈J Duj(p) = DuJ (p). �

Example A.14 (Equilibrium demonstrated by the Subgroup Indices Theo-
rem but not the Unimodularity Theorem). Suppose n = 4 and that Du1(p) =
{e1, e2, e1 + e2, 2e1 + e2, e1 + 2e2} while Du2(p) = {e3, e4, e3 + e4, 2e3 + e4, e3 + 2e4}
(Prop. 2.21 and Thm. 2.10 show how to construct u1, u2 with these properties). Write
σj = conv(Duj(p)) for j = 1, 2, {1, 2}. Then Λσ1 = {v ∈ Z4 : v1 = v2 = 0} and
Λσ2 = {v ∈ Z4 : v3 = v4 = 0}, while Λσ{1,2} = Z4, so [Λσ{1,2} : Λσ1 + Λσ2 ] = 1, and
Du{1,2}(p) is discrete-convex (as may also be checked directly).
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However, the facets to Agent 1’s demand at p have normal vectors (1, 1, 0, 0) and
(1,−1, 0, 0), while the facets normals for Agent 2 are (0, 0, 1, 1) and (0, 0, 1,−1). This
set is not unimodular, and so equilibrium is not assured by application of Thm. 4.3.

Example A.15. Let n = 4. Agent 1 has valuation u1(0, 0, 0, 0) = 0, u1(1, 1, 0, 0) = 6,
u1(0, 0, 1, 1) = 6. So for prices in the LIP 2-cell {p ∈ R4 : p1 + p2 = 6, p3 + p4 = 6},
Agent 1 is indifferent between these three bundles; the dual demand complex cell is
σ1 = conv((0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1)).

Agent 2 has valuation u2(0, 0, 0, 0) = 0, u2(0, 1, 1, 0) = 9, u2(4, 0, 0, 1) = 6. So for
prices in the LIP 2-cell {p ∈ R4 : p2+p3 = 9, 4p1+p4 = 6}, Agent 2 is indifferent between
these three bundles; the dual demand complex cell is σ2 = conv((0, 0, 0, 0), (0, 1, 1, 0), (4, 0, 0, 1)).

These two individual LIP 2-cells intersect at p = (1, 5, 4, 2). At this price, the indi-
vidual demand complex cells are σ1 and σ2 as above. The aggregate demand complex cell
σ{1,2} is 4-dimensional and so Λσ{1,2} = Z4. Meanwhile Λσ1 and Λσ2 are rank-2 lattices,
and we check that the non-zero vectors we already know in each lattice do give a basis in
each case, by checking that the sets {(1, 1, 0, 0), (0, 0, 1, 1)} and {(0, 1, 1, 0), (4, 0, 0, 1)}
are unimodular (use Fact A.5). Thus the union of these sets is a basis for Λσ1 + Λσ2

(use Fact A.12(3)). But this union is not unimodular, and calculating its determinant
tells us (by Fact 5.15(3)) that [Λσ{1,2} : Λσ1 + Λσ2 ] = 3.

So, by Fact 5.15(1), we now know that there are exactly 2 non-vertex integer points
to a fundamental parallelepiped of Λσ1 + Λσ2 . In terms of the basis vectors, these are:
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These expressions show clearly that (2, 1, 1, 1) can be decomposed to give a part in σ2

and a part not in σ1, whereas (3, 1, 1, 1) can be decomposed to give a part in σ1 and a
part not in σ2. Moreover, by linear independence of this set of four vectors, these are
the only possible decompositions into sums of bundles in the affine spans of σ1, σ2. So
neither is in σ1 + σ2 = σ{1,2} = convDu{1,2}(1, 5, 4, 2). So the only integer vectors in
convDu{1,2}(1, 5, 4, 2) are in fact in Du{1,2}(1, 5, 4, 2) itself: it is discrete-convex.

Examples A.16–A.18 (Modifications of Ex. A.15) In each of these examples
we specify a demand complex containing a single maximal cell σj, for each of our two
agents j = 1, 2. In each case a dual LIP is easy to find, and so (Thm. 2.15) there exists
a concave valuation with these properties.62 The analysis then proceeds as in Ex. A.15.

62In these examples it is not hard to find u1 and u2 once p has been chosen. For example, for Ex.
A.16, let p = (1, 5, 4, 2). Then u1(0, 0, 0, 0) = 0, u1(1, 1, 0, 0) = 6, u1(0, 1, 1, 0) = 9 and u2(0, 0, 0, 0) = 0,
u2(0, 0, 1, 1) = 6, u2(4, 0, 0, 1) = 6 have the required properties.
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Example A.16. Swap a pair of the bundles: σ1 = conv((0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0))
and let σ2 = conv((0, 0, 0, 0), (0, 0, 1, 1), (4, 0, 0, 1)). In this case the decompositions (1)
and (2) of Ex. A.15 show that both (2, 1, 1, 1) and (3, 1, 1, 1) are in σ1 + σ2. Thus they
are in conv (Du{1,2}(p)) but not in Du{1,2}(p): this set is in this case not discrete-convex.

Example A.17. Let σ1 = conv((0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)) while σ2 =
((0, 0, 0, 0), (4, 0, 0, 1)). This time dimσ1 = 3 and dimσ2 = 1, and expressions (1) and
(2) show that in neither case do these vectors decompose to give a part in σ1, and so
cannot be in σ1 + σ2 = σ{1,2}. So in this case, Du{1,2}(p) is discrete-convex.

Example A.18. Let σ1 be as in Ex. A.17, but let σ2 = conv((0, 0, 0, 0), (4, 1, 1, 1)). By
the same techniques as in Ex. A.15, see that [Λσ{1,2} : Λσ1 + Λσ2 ] = 3. A non-vertex
integer point in the fundamental parallelepiped of Λσ1 + Λσ2 is given by
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This point does lie in σ1 + σ2, and hence does demonstrate failure of discrete-convexity.

Lemma A.19. m̂(C) ≤ mult(C) for an intersection 0-cell C, with equality holding
iff there exists a small translation such that the subgroup indices are 1 at all emerging
intersection 0-cells.

Proof. If the intersection is transverse at C then mult(C) is the product of m̂(C) with
a subgroup index (Defns. 5.7 and 5.18). Moreover, m̂(C) > 0 by definition, and any
subgroup index is at least 1 (by Fact 5.15(1)), so the result follows. The non-transverse
case is similar; here m̂(C) > 0 because emerging 0-cells always exist (Lemma 5.9). �

Proof of Thm. 5.12. It is clear from Thm. 5.19(1) and Lemma A.19 that Γn(A1, A2)
is an upper bound for intersection 0-cells counted with näıve multiplicities, and that the
count equals this bound iff m̂(C) = mult(C) for every intersection 0-cell C.

Suppose that equilibrium does not exist for all relevant supplies. By Prop. 5.2 there
exists an intersection 0-cell C at price p, and a bundle y ∈ Zn, such that y /∈ Du{1,2}(p),
but y ∈ σ{1,2} := conv(Du{1,2}(p)). Let v ∈ Rn and small ε > 0 be such that Lu1 and
{εv}+Lu2 intersect transversally and the sum of the näıve multiplicities of intersection
0-cells emerging from C is equal to m̂(C). By Lemma A.10, there exists an intersection
0-cell C ′ at p′ for Lu1 and {εv}+Lu2 emerging from C, such that y ∈ conv(Du{1,2ε}(p

′))
(where u2ε(x) = u2(x) + p · x); the fact y /∈ Du{1,2}(p) rules out the other cases. By
Prop. 4.13 we know y /∈ Du{1,2ε}(p

′). By Theorem 5.16(1) we conclude that the subgroup
index for u1, u2ε and u{1,2ε} at p′ is greater than 1. By Lemma A.19, m̂(C) < mult(C),
so as argued above, the count with näıve multiplicities is strictly below Γn(A1, A2).

“Necessity” with transverse intersection and n ≤ 3 is presented in the text. �

Example A.20 (A “fragile” equilibrium). Consider two identical agents whose
demand sets at price (2, 2) are the bundles (0, 0), (1, 2), (2, 1) and (1, 1). (For exam-
ple, u : {0, 1, 2}2 → R and u(x, 0) = x;u(0, y) = y;u(1, 1) = 4;u(1, 2) = u(2, 1) =
6;u(2, 2) = 7). Then the bundle (2, 2) is in the aggregate demand set at this price:
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we assign bundle (1, 1) to both agents. But observe that bundle (1, 1) is an interior
point of each agent’s demand complex cell with the vertices (0, 0), (1, 2), and (2, 1). So
if we make any small translation to either agent’s valuation, then equilibrium fails: for
any prices close to (2, 2) the perturbed agent’s demand must be some subset of these
vertices, and it is easy to see that then (2, 2) cannot be an aggregate demand.

Example A.21. In both Exs. A.15 and A.16, we can calculate Γ4(A1, A2) to be 3
(indeed Γ4

2(A1, A2) = 3; and Γ4
k(A

1, A2) = 0 for k 6= 2). The weights of the individual’s
2-cells that meet at (1, 5, 4, 2) are both 1. This illustrates again that the condition of
Thm. 5.12 is sufficient, but not necessary, for existence of equilibrium when n ≥ 4.

A.5 Proofs and Additional Examples for Section 6

Example A.22. (Circular Ones Model, cf. Bartholdi et al. (1980)). Consider
“complements” consumers, each of whom is only interested in a single, specific, pair of
goods, such that these pairs form a cycle. Thus there are n kinds of consumers and n
goods, and we can number both goods and consumers 1, . . . , n, such that every consumer
of kind i < n demands goods i and i + 1, which it sees as perfect complements, while
consumers of kind n demand goods n and 1. It is easy to check that:

det



1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
· 0 1 · · ·
· · · · · · ·
0 0 0 · 1 0
0 0 0 1 1


=

{
0 if n is even
2 if n is odd.

So if n is odd, our Unimodularity Theorem tells us equilibrium does not always exist.
Furthermore, the proof of Prop. 4.10 showed how to easily construct an explicit example
of equilibrium failure for any non-unimodular demand type. Here we simply select a
single agent of each kind, each of which values its desired pair at v, so that they are
all indifferent between purchase and no purchase (and hence their facets all intersect) if
every good’s price is v/2.63

If n is even, the columns of this matrix are not linearly independent. However, if we
exclude the ith column, for any i, the remaining n−1 columns are then linearly indepen-
dent, and can trivially be extended to n linearly independent vectors with determinant
1 by adding the column ei. So using Thm. 4.3, equilibrium always exists if n is even,

63So equilibrium fails if aggregate supply is exactly 1 unit of each good (the “middle of the paral-
lelepiped”) since the minimum and maximum aggregate demands are zero, and 2 units of each good,
respectively, at this price. (It is easy to check failure of equilibrium for xi = 1, for all i, by contradiction.
At least one good, w.l.o.g. good 1, would not be part of a pair being allocated together. So good 1
has value 0 to whoever receives it, hence p1 ≤ 0. Therefore p2 ≥ v, since otherwise consumer 1 would
demand both goods 1 and 2. Therefore p3 ≤ 0, since otherwise good 2 would not be demanded, and
consumer 2 therefore buys goods 2 and 3. Therefore p4 ≥ v, etc., so pj ≤ 0 if j is odd. But consumer
n then wishes to buy goods n and 1, which is a contradiction.)
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since the valuations are, trivially, concave.64,65

Proof of Prop. 6.1. (1): by definition, x ∈ Du(p) if pT (x − x′) ≤ u(x) − u(x′) for
all x′ ∈ A, with equality iff x′ ∈ Du(p) also. For any invertible matrix G, we may
re-write pT (x − x′) = pTGG−1(x − x′) = (GTp)T (G−1x − G−1x′). If G is additionally
unimodular, then G−1x and G−1x′ ∈ Zn. If we write y = G−1x and y′ = G−1x′ then
(GTp)T (y − y′) ≤ G∗u(y)−G∗u(y′) holds iff pT (x− x′) ≤ u(x)− u(x′).

(2): since Lu = {p ∈ Rn : |Du(p)| > 1}, this follows from (1).
(3): if F is a facet of Lu, then by (2), GTF = {GTp : p ∈ F} is a facet of LG∗u.

If v is normal to F , then pTv is constant for p ∈ F , so pTGG−1v = (GTp)TG−1v is
constant for GTp ∈ GTF . So G−1v is a demand type vector for G∗u. As G has an
integer inverse, the converse is also true. �

Example A.23. To illustrate Prop. 6.1, consider the example of Fig. 5. Create a new
good, 3, from two units of good 1 plus one unit of good 2, and consider the economy
in which the goods traded are 1 and 3. Note that we can recreate one unit of good 2
by buying one unit of good 3 and selling two units of good 1, and we can convert any
bundle expressed in terms of goods 1 and 2 (as a column vector) to a bundle of goods

1 and 3 by pre-multiplying by

(
1 −2
0 1

)
–this matrix plays the role of G−1.

Observe that the “substitutes” agent of the original economy (who bought either
(1, 0) or (0, 1) at price (30, 20)) corresponds to an agent in the new economy who would
“buy” either (1, 0) or (−2, 1). We can interpret this as an agent with an endowment of
−2 units of good 1 (a contract to sell), and who buys either three units of good 1 or one
unit of good 3. Thus this agent treats goods 1 and 3 as 3:1 substitutes. Similarly, the
“complements” agent of the original economy (who bought neither or both of goods 1
and 2) corresponds to an agent in the new economy with an endowment of −1 unit of
good 1, who buys one unit of either good 1 or good 3 (so is indifferent between bundles
(0, 0) and (−1, 1)) that is, an agent who treats goods 1 and 3 as 1:1 substitutes. So this
is a pure substitutes economy in which equilibrium fails.

Since the demand type of the original economy contained the columns of

(
−1 1

1 1

)
,

which have determinant −2, the demand type in the new economy contains the columns

of

(
−3 −1

1 1

)
, that is,

(
1 −2
0 1

)(
−1 1

1 1

)
, which also have determinant −2.

Proof of Prop. 6.2. Suppose there is always an equilibrium for every finite set of
agents with concave valuations of type G−1D, and any relevant supply.

Let {uj : j ∈ J} be finitely many concave valuations of type D and let x be a
relevant supply bundle. Then, by Prop. 6.1(3) the valuations {G∗uj : j ∈ J} are of
demand type G−1D. It is obvious they are also all concave. By definition of pullback,
y := G−1x is in the convex hull of the domain of their aggregate valuation, i.e. is a

64For example, the aggregate demand of 1 unit of each good is supported by price v/2 for every good,
when there is exactly one consumer of each kind, each of which values its preferred pair at v.

65Sun and Yang (2011) and Teytelboym (2014) have independently used alternative methods to
show these results for a version of this model; the even n case is a special case of the “generalised
gross substitutes and complements” demand type that we discuss in Section 6.2; one can also use the
relationship with matching (see Section 6.6), together with Pycia (2008), to obtain the n = 3 case.
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relevant supply. By assumption, there exists a price p at which the agent with valuation
G∗uj demands yj and

∑k
j=1 yj = y. Define xj := Gyj ∈ Duj(G

−Tp) (see Prop. 6.1(1)).

Then x =
∑k

j=1 xj ∈ DuJ (G−Tp). As G is invertible, the converse is shown similarly. �

Remark A.24. The LIP of a valuation is its associated “tropical hypersurface”; algo-
rithms to calculate this are implemented by “gfan” (see Jensen, 2011), and “polymake”
(see Gawrilow and Joswig, 2000). The primitive normal vectors are found in the process.

There exist polynomial time algorithms to test total unimodularity of a matrix
(Schrijver, 2000, Ch. 20). A set of vectors is unimodular iff a basis change as described
in Footnote 39 yields a totally unimodular matrix, so this allows us to easily check for
unimodularity of a demand type.

Intersection 0-cells can be found using the “a-tint” extension of polymake (Hampe,
2014a). Hampe (2014b) shows these methods provide answers in reasonable time for
n ≤ 10 for harder problems than ours, if |A| is relatively small.

The calculation of the “mixed volumes”, Γnk(A1, A2), in general has high complexity
(see Cox et al., 2005, Section 7.6). However, recent work is developing ever-faster
algorithms (see, e.g., Chen et al., 2014, and Jensen, 2016; the latter uses methods of
tropical geometry). More importantly, Γnk(A1, A2) is trivial to calculate in many cases
that matter most in economics, including if every agent j’s valuation is over all bundles
containing at most dj goods, or if every agent’s valuation has the same domain and this
domain’s volume is easy to calculate (see Fact A.11).

Calculating cell weights requires finding the volumes of lattice polytopes (Defn. 5.6).
This also has high complexity in general (Dyer and Frieze, 1988), but efficient approxi-
mate methods, such as those developed by Dyer et al. (1991), are likely to be applicable
in our context. Finally, the “Quickhull” algorithm (Barber et al., 1996) helps check for
discrete convexity in Step (8).
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