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e This study proposes a nonlinear generalisation of
factor models based on artificial neural networks
for forecasting financial time series with many
predictors. This model would be able to capture
both non-linearity and non-normality of a high-
dimensional dataset.

e Specification (architecture) of the neural network
factor model is determined on the basis of statis-
tical inference and special emphasis is given to
data-driven specification.

e Linear factor models can be represented as a spe-
cial case of this neural network factor model.lt
means that, if there is no non-linearity between

< variables, it will work like a linear model.

Construction oF ENNTI

Based on the universal approximation theorem, a single
hidden layer feedforward network can approximate ar-
bitrary well any continuous function of n real variables.
To show that the neural network models can be seen as
a generalization of linear models, we allowed for di-
rect connections from the input variables to the output
layer and we assumed that the output transfer function
{do(.)} is linear, then the model becomes
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Studies in time series widely used the conventional
feedforward neural network trained with the back-
propagation algorithm, however, the backpropagation
is not an efficient algorithm and it converges slowly.
Therfore, Levenberg-Marquardt algorithm and its op-
timized version with LASSO are implemented in this
study which are fast and have stable convergence.
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RESULTS R

Out-of-sample forecast evaluation results based on dif-
ferent criteria (RMSE, Hit-Rate and Theil) showed that
the proposed neural network factor model (NNFM)
significantly outperformed linear factor model and
Random-Walk approach.

\_

NONLINEAR FORECASTING WITH MANY PREDICTORS

BY NEURAL NETWORK FACTOR MODELS

ALI HABIBNIA
DEPARTMENT OF STATISTICS, LONDON SCHOOL OF ECONOMICS

CONTRIBUTION & FORMULATION

Forecasting with factor models are a two-step process: G(e) ()
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the variable of interest by using common factors. — De-meping
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one of the X Figure 1: The standard auto-associative neural network archi-
. g : tecture for nonlinear PCA (combination of two feed-forward NNs)
Common factors and the idiosyncratic component can
be forecast simultaneously or separately. e Second extension is a nonlinear factor augmented
\_ forecasting equation based on a feed-forward neu-

ral network model which can be built in a similar

fashion as a statistical model.
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Financial returns present special features and share the

following stylised facts: comovements, non-linearity, . o
non-gausianity (skewness and heavy tails) and lever- o where z;; is the value of the ith input node. ¢x(.),

age effect, which makes the modelling of this variable ¢;(.) and J , h are agtivat.ion functi.ons (commonly
hard. used function is a sigmoidal function)and number

\_ of nodes (neurons) used at the hidden layers.

The first extension proposes a NLPCA (neural network
principal component analysis) as an alternative for fac-
tor estimation, which allows the factors to have a non-
linear relationship to the input variables. NLPCA non-
linearly generalizes the classical PCA method by a non-
linear mapping from data to factors. Both neural net-
work parameters and unobservable factors (f) can be op-
timised simultaneously to minimise the reconstruction
error e:

e=X— X, MSE = E(|X(f) — X|?)

_ weights
Inputs
Xp
activation
functon
X @ net mfput
net.
. ;) (p 0,
activation

transfer
function

threshold

Figure 2: Artificial Neuron configuration
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Figure 4: Daily return observations of the 419 companies in
S&P500 index

\ \ Flgure 3: Nonlinear PCA can describe the inherent structure of the data by a curved subspace.
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