Developing a model of understanding in physics education: how do students develop coherent conceptual structures?

Richard Brock
Faculty of Education
University of Cambridge
rb423@cam.ac.uk

Understanding and knowing about causes in the data

Understanding causality is seen as important for developing scientific understanding (Perrings & Grotzer, 2000). Difficulties in understanding arise for students when they erroneously attribute causality. For example, Ben conceptualises energy as the prime cause of other physical concepts:

102: P So I’ll just do this to say really this is entering on everything is energy
103: I Yep.
104: P I think that is probably the most fundamental
105: J More than force?
106: P Yes it is the sense if you didn’t have you could have energy but no forces but if you do no force then I mean if you had no energy then if we call something force that force wouldn’t be able to make anything accelerate it wouldn’t have any impact on the universe

Understanding and appropriate classification in the data

Students encounter difficulties when knowledge has been given incorrect properties when compared to accepted understandings (Chi, 2013). For example, Amy attempts to find a resultant of velocity and a force, objects that belong to different ontological categories:

200: P Down that way [pointing diagonal line] so when the ball is here say [top of box] the weight is acting down so it has then also acted which way direction is this travelling in this particular diagram?
201: I Let’s say it’s going that way and up there and then
200: P OK so it’s that then it’s velocity would be that direction [horizontal line to right] so the resultant is towards that [diagonal down towards centre]

The study design: capturing understanding?

Five students were interviewed for 30 minutes, once a week, for twenty-two weeks

The following tools were used:

- Unstructured concept maps (Nicoll, 2001)
- Concept inventories (E.g., Hestenes, Wells & Swackhamer, 1992)
- Interviews about events (White & Gunstone, 1989)
- The interviews were analysed via open coding (Strauss & Corbin, 1998)

The microgenetic method: slicing cognition thinly

The microgenetic method involves applying a sampling rate that is high compared to the rate of change of the phenomenon being studied (Seigler & Crowley, 1991). This method raises a number of questions regarding how reports of cognition may be divided.

What is an appropriate sampling rate at which to observe understanding?

How ‘thiny’ may reports of cognition be divided?

How may ‘noise’ and ‘signal’ be distinguished in reports of cognition?

Can understanding be routine?

Searle’s (1980) Chinese Room Paradox asks you to image a person in a locked room is fed questions in Chinese, the room contains a rule book that describes what actions to carry out on the symbols to create a response in Chinese characters. Can understanding be merely following rules?

Understanding, rote learning or insight?

A metal disc with a hole in the centre is heated uniformly. Does the hole: a) expand b) contract c) remain the same size?

The mistaken conflict between rote and meaningful learning

There may be a spectrum of learning:

- Rote learning results
- Meaningful learning leads to conceptual integration (Ausubel, 2000)

Some physics educators feel rote learning has become the norm, and high achievement in assessments may not reflect understanding (Redish, 2000). One student claimed the current system ‘doesn’t reward good learning so much as it rewards regurgitation, and good memory’ (Danielak, Gupta & Elby, 2010, p.3).

Rote learning is portrayed as damaging:

- ‘To us, rote learning and the conformity it engenders may be likened in some respects to a form of intellectual slavery’ (Mintzes, Wanderee & Novak 1998, pxi).

Rote learning has become the norm, and high achievement in assessments may not reflect understanding (Redish, 2000). One engineering student claimed ‘the current education system... doesn’t reward good learning so much as it rewards regurgitation, and good memory’ (Danielak, Gupta & Elby, 2010, p.3).

Versus

- Other researchers argue rote learning is necessary for meaningful learning (Willingham, 2009).

- Students’ knowledge acquisition, it is claimed, has been hindered by ‘progressive’ teaching methods (Hirsch, 2001).

- In the U.K., the former Secretary of State for education has affirmed ‘the critical importance of knowledge acquisition’ (Gove, 2003).

This debate is not between mutually exclusive positions: Understanding without knowledge is impossible but knowledge without understanding is impotent.

Meaningful learning

Understanding, rote learning or insight?

A bird is placed in a sealed container which is in turn placed on a set of scales. The bird is initially at rest on the floor of the box and then takes flight. What happens to the reading on the scales?

a) it increases b) it remains the same c) it decreases.