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Abstract: 

This study provides quantitative evidence on the local benefits and costs of wind farm 

developments in England and Wales, focussing on their visual environmental impacts. In 

the tradition of studies in environmental, public and urban economics, housing sales prices 

are used to reveal local preferences for views of wind farm developments. Estimation is 

based on quasi-experimental research designs that compare price changes occurring in 

places where wind farms become visible, with price changes in appropriate comparison 

groups. These groups include places close to wind farms that became visible in the past, or 

where they will become operational in the future and places close to wind farms sites but 

where the turbines are hidden by the terrain. All these comparisons suggest that wind farm 

visibility reduces local house prices, and the implied visual environmental costs are 

substantial. 
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1 Introduction 

Renewable energy technology clearly provides potential global environmental benefits in terms of 

reduced CO2 emissions and slower depletion of natural energy resources. However, like most 

power generation and transmission infrastructure, the plant, access services and transmission 

equipment associated with renewable electricity generation may involve environmental costs. This 

is particularly so in the case of wind turbine developments, where the sites that are optimal in 

terms of energy efficiency are typically in rural, coastal and wilderness locations that offer many 

natural environmental amenities. These natural amenities include the aesthetic appeal of 

landscape, outdoor recreational opportunities and the existence values of wilderness habitats. The 

visual impacts of these ‘wind farms’ may be especially important because they are often on high 

ground with extensive visibility. Although views on their aesthetic appeal are mixed, there is 

evidently considerable dislike for their visual impact on the landscape, with 23% of respondents in 

a poll of 1001 residents in Scotland in 2010 agreeing or strongly agreeing that wind farms “are, or 

would be, ugly and a blot on the landscape” (You Gov 2010). It should be noted, however, that 

only 51% of respondents had actually seen a wind farm in real life. In addition to these potential 

impacts on landscape, residents local to operational wind turbines have reported health effects 

related to visual disturbance and noise (e.g. Bakker et al 2012, Farbouda et al 2013). 

The UK, like other areas in Europe and parts of the US has seen a rapid expansion in the number 

of these wind turbine developments since the mid-1990s. Although these wind farms can offer 

various local community benefits, including shared ownership schemes, community payments 

and the rents to land owners, in the UK, and elsewhere in Europe, wind farm developments have 

faced significant opposition from local residents and other stakeholders with interests in 

environmental preservation. This opposition suggests that the environmental costs may be 

important. The issue is highly controversial, given that opinion polls and other surveys generally 
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indicate majority support of around 70% for green energy, including windfarms, (e.g. results from 

the Eurobarometer survey in European Commission 2006). This contradiction has led to 

accusations of ‘nimbyism’ (not in my backyard-ism), on the assumption that it is the same people 

opposing wind farm developments in practice as supporting them in principle. There is perhaps 

less of a contradiction when it is considered that the development of wind farms in rural locations 

potentially represents a transfer from residents in these communities and users of natural 

amenities (in the form of loss of amenities) to the majority of the population who are urban 

residents (in the form of energy). Other possible explanations for the tension between public 

support and private opposition to wind energy developments are discussed at length in Bell et al 

(2007). 

This paper provides quantitative evidence on the local benefits and costs of wind farm 

developments in England and Wales, focussing on the effects of wind turbine visibility, and the 

implied cost in terms of loss of visual landscape amenities. In the tradition of ‘hedonic’ studies in 

environmental, public and urban economics, housing sales prices are used to reveal local 

preferences for views of wind farms. This is feasible, because wind farms in England and Wales 

are often close to and visible from residential areas in rural, semi-rural and even urban locations, 

so the context provides a large sample of housing sales that are potentially affected (at the time of 

writing, around 1.8% of residential postcodes are within 4 km of operational or proposed wind 

farm developments). The study offers a significant advance over previous studies, which have 

mostly been based on relatively small samples of housing transactions and cross-sectional price 

comparisons. Estimation in this current work is based on quasi experimental, difference-in-

difference based research designs that compare price changes occurring in postcodes where wind 

farms become visible, with postcodes in appropriate comparison groups. These groups include: 

places where wind farms became visible in the past, or where they will become visible in the 
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future and places close to where wind farms became operational but where the turbines are 

hidden by the terrain. The postcode fixed effects design implies that the analysis is based on repeat 

sales of the same, or similar housing units within postcode groups (typically 17 houses grouped 

together). Kuminoff, Parmeter and Pope (2010) provide a discussion of the advantages of quasi-

experimental approaches of this type in the context of hedonic methods for environmental 

valuation. 

The overall finding is that operational wind farm developments reduce prices in locations where 

the turbines are visible, relative to where they are not visible, and that the effects are causal. This 

price reduction is around 5-6% on average for housing with a visible wind farm within 2km, 

falling to under 2% between 2-4km, and to near zero between 8-14km, which is at the limit of likely 

visibility. Evidence from comparisons with places close to wind farms, but where wind farms are 

less visible suggests that the price reductions are associated with turbine visibility. As might be 

expected, large visible wind farms have much bigger impacts that extend over a wider area. 

The remainder of the paper is structured as follows. Section 2 discusses background policy issues 

and the existing literature on wind farm effects. Section 3 outlines the data used for the analysis. 

Section 4 describes the empirical strategy and Section 5 the results. Finally, Section 6 concludes. 

2 Wind farm policy and the literature on their local effects 

In England and Wales, many wind farms are developed, operated and owned by one of a number 

of major energy generation companies, such as RES, Scottish Power, EDF and E.ON, Ecotricity, 

Peel Energy, though some are developed as one-off enterprises. Currently, wind farms are 

potentially attractive businesses for developers and landowners because the electricity they 

generate is eligible for Renewables Obligation Certificates, which are issued by the sector regulator 

(Ofgem) and guarantee a price at premium above the market rate. This premium price is 
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subsidised by a tariff on consumer energy bills. The owners of the land on which a wind farms is 

constructed and operational will charge a rent to the wind farm operator. Media reports suggest 

that this rent could amount to about £40,000 per annum per 3 MW turbine (Vidal 2012). 

The details of the procedures for on-shore wind farm developments in England and Wales have 

evolved over time, but the general arrangement is that applications – in common with applications 

for most other types of development - have to pass through local planning procedures. These 

procedures are administered by a Local Planning Authority, which is generally the administrative 

Local Authority, or a National Park Authority. Very small single wind turbines (below the scale 

covered by the current analysis) can sometimes be constructed at a home, farm or industrial sites 

within the scope of ‘permitted development’ that does not require planning permission.  The 

planning process can take a number of years from the initial environmental scoping stage to 

operation, and involves several stages of planning application, environmental impact assessment, 

community consultation and appeals. 1 Once approved, construction is relatively quick. According 

to public information from the European Wind Energy Association2, a 10 megawatt wind farm (3-4 

turbines) can be constructed in 2 months, and a larger 50 megawatt wind farm in 6 months (the 

average size wind farm in this current study is around 18 Mw). Large wind farms (over 50 Mw) 

need approval by central government. Offshore wind farms are also subject to a different process 

and require approval by a central government body. 

Wind farms have potential local economic benefits of various types. Interesting qualitative and 

descriptive quantitative evidence on the community and local economic development benefits of 

                                                      
1 E.g. Peel Energy http://www.peelenergy.co.uk/ provide indicative project planning timelines for their proposed wind 

farm developments 

2 http://www.ewea.org/wind-energy-basics/faq/ accessed February 2014 

http://www.peelenergy.co.uk/
http://www.ewea.org/wind-energy-basics/faq/
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wind farms in Wales is provided by Munday et al (2011). Potential benefits include the use of 

locally manufactured inputs and local labour, discounted electricity supplies, payments into 

community funds, sponsorship of local events, environmental enhancement projects, and tourism 

facilities. They argue that the local economic development effects have been relatively limited, 

although in many of the communities surveyed (around 21 out of 29 wind farms) payments were 

made to community trusts and organisations, and these contributions can be quite substantial – at 

around £500-£5000 per megawatt per annum. Based on these figures, a mid-range estimate of the 

community funds paid out to affected communities in Wales would be about £21,000 per wind 

farm per year. For the US, Kahn (2013) argues that wind farm counties generate benefits for their 

communities because the revenues to land owners spill over to the community in general, through 

lower property tax rates and improved public expenditures. This direct link between local taxation 

and school resources is more important in the US, than in the UK where schooling is financed 

mainly through central government grants. Using data and fairly descriptive quantitative evidence 

from counties in Texas, he finds some signs of increases in school resources relative to non-wind 

farm counties and lower property tax rates, and no evidence that wind farms have deterred 

higher-educated residents from moving in to the area.  

There is also an extensive literature on attitudes to wind farm developments, the social and health 

aspects, and findings from impact assessments and planning appeals. Most existing evidence on 

preferences is based on surveys of residents’ views, stated preference methods and contingent 

valuation studies and is mixed in its findings. 

There have been several previous attempts to quantify impacts on house prices in the US. Hoen et 

al (2011) apply cross-sectional hedonic analysis, based on 24 wind farms across US states. Their 

study is interesting in that it makes the comparison between price effects at places where turbines 
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are visible compared to places where nearby turbines are non-visible (a technique which is applied 

later in the current paper) but finds no impacts. For the UK, Sims et al (2007, 2008) also conduct a 

cross-sectional hedonic analysis of around 900 property sales, which all postdate construction, near 

three wind farms in Cornwall. Again this study finds no effects. One study with a larger housing 

sample size Lang et al (2014), looks at 10 small-scale wind farms in suburban and urban locations 

in Rhode Island, all but one of which are single-turbine sites. The authors provide difference-in-

difference estimates and repeat sales estimates, based on changes in prices over a 14 year interval. 

Their sample has 2670 housing transactions within 1 mile (2.25km) over this period, with 338 sales 

post-dating construction. They report no significant effects on housing prices from the wind farms, 

but these are small wind power developments in an area that is already highly developed rather 

than rural. The results are therefore difficult to generalise to the case of large scale wind farms like 

those in the UK and elsewhere in the US and Europe.3 Even so, the point estimates are in some 

cases large, with the repeat sales analysis suggesting falls of more than 6% within 2 miles after 

announcement of the wind farms, although the estimates are rarely statistically significant. 

Another study from the US, Hoen at al (2013), attempts a difference-in-difference comparison for 

wind farms, but using cross-sectional comparisons between houses at different distances from the 

turbines. This study uses fairly sparse data on 61 wind farms across nine US states. The sample 

contains over 50,000 transactions, but very few transactions in the areas near the wind farms: only 

1198 transactions reported within 1 mile of current or future turbines (p20) and only 300 post-

dating construction. Their cross-sectional difference-in-difference comparison is between places 

beyond and within 3 miles of a wind farm site and the research design does not exploit price 

changes or repeat sales. The conclusions of the paper are that there is ‘no statistical evidence that 

                                                      
3 Their regressions also control for an unspecified number of city-by-quarter fixed effects, which seem likely to absorb 

much of the impact of the wind farms on prices making it difficult to detect any effects even if they exist. 
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home values near turbines were affected’ by wind turbines, which is true in a literal sense. 

However, as in Lang et al (2014), the point estimates indicate some quite sizeable effects; it is the 

fact that the point estimates are imprecise and have big standard errors that makes them 

statistically uninformative. A similar conclusion is reached, for similar reasons, in Vyn and 

Mcullough (2014) who study the impact of turbines in a large windfarm in Canada on 

neighbouring farmland and residential sales. Their dataset includes over 5000 residential sales and 

over 1500 farm sales, and the authors went to considerable trouble to determine turbine visibility. 

Sadly though, only a very small number of sales occur after turbine construction. A total of 18 sales 

occur within 1km and 79 within 5km (their Table 2) after the wind farm was built. Inevitably this 

means the results are not very informative and are very imprecise. As in many previous studies, 

the standard errors are so large and the point estimates vary so much from specification to 

specification, that the authors can only conclude that “while the results indicate a general lack of 

significantly negative effects across the properties examined in this study, this does not preclude 

any negative effects from occurring on individual properties” and note that “a recent appraiser’s 

report on the impacts of Melancthon’s wind turbines … found that the values of five specific 

properties in close proximity to turbines declined by up to 59%.” (Vyn and Mcullough  p.388). 

In contrast, the current study has nearly 38,000 quarterly, postcode-specific housing price 

observations over 12 years, each representing one or more housing transactions within 2km of 

wind farms (about 1.25 miles). Turbines are potentially visible for 36,000 of these. There is 

therefore a much greater chance than in previous work of detecting price effects if these are indeed 

present. 
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3 Data 

Information on wind-farm location (latitude and longitude), characteristics and dates of events 

was provided by RenewableUK, a not for profit renewable energy trade association (formerly 

BWEA). This dataset records dates of operation and other events related to their planning history, 

number of turbines, MW capacity and height of turbines (to tip). The dates in these data relate to 

the current status of the wind farm development, namely application for planning, approval, 

withdrawal or refusal, construction and operation. Unfortunately these public data do not provide 

a complete record of the history for a given site, because the dates of events are updated as the 

planning and construction process progresses. Therefore, for operational sites, the dates of 

commencement of operation are known, but not the date when planning applications were 

submitted, approved or construction began. This limits the scope of investigation of the impact of 

different events in the planning and operation process, other than for cases where there is a final 

event recorded, and this version of the paper makes use of operational wind farms only.  

A GIS digital elevation model (DEM)4 was combined with this wind-farm site and height data to 

generate ‘viewsheds’ on 200m grid. These viewsheds were used to differentiate residential 

postcodes (geographical units with approximately 17 houses) into those from which the wind farm 

is visible, and those from which it is less likely they are visible, using information on the 

underlying topography of the landscape. These viewsheds provide approximate visibility 

indicators, both in terms of the 200m geographical resolution of the view sheds (necessary for 

manageable computation times), and because they are based on wind-farm centroids, not 

individual turbines. This means that in the case of large wind farms, turbines may be visible from 

                                                      
4 GB SRTM Digital Elevation Model 90m, based on the NASA Shuttle Radar Digital Topography Mission and available 

from the EDNIA ShareGeo service http://www.sharegeo.ac.uk/handle/10672/5 
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locations which the procedure classifies as non-visible, given a large wind turbine array can extend 

over 1km or more. However, the median wind farm development in the data contains only 6 

turbines, so the errors introduced by basing visibility on site centroids are likely to small. Note the 

error will in general result in mis-classification of sites from which the turbines are deemed non-

visible, given that if the tip of a turbine at the centroid of the site is visible, it is almost certain that 

at least one turbine is visible. The viewsheds also take no account of intervening buildings, trees 

and other structures, because Digital Surface Models which take account of such features are not 

yet available for the whole of England and Wales. As a further refinement, to eliminate cases 

where visibility was highly ambiguous, I calculated the rate of change of visibility from one 200m 

grid cell to the next, and dropped postcodes in cells in the top decile of this visibility gradient. In 

general, misclassifications in terms of visibility, and measurement error in distance to wind 

turbines will tend to attenuate the coefficients in regression-based estimates. This implies that the 

results that follow may, if anything, under-estimate the effects of wind farm distance and visibility 

on prices. 

Given the focus of this study on the visual impacts of wind farms in rural areas, a number of 

single-turbine wind farms in urban areas and industrial zones were excluded from the analysis 

(around 21 operational turbines are dropped). Land cover estimates were used first to restrict the 

analysis to wind farms outside zones with continuous urban land cover. Some additional turbines 

were eliminated on a case-by-basis where the information available in the wind farm data, and 

reference to web-based maps and information sources, suggested that turbines were on industrial 

sites within or close to major urban areas. The land cover at the wind farm centroid was obtained 

by overlaying the wind farm site data with 25m grid based land cover data (LandCoverMap 2000 

from the Centre for Ecology and Hydrology). Land cover was estimated from the modal land 
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cover type in a 250m grid cell enclosing the wind farm centroid. In cases where no mode exists 

(due to ties), the land cover in the 25 m grid cell enclosing the centroid was used. 

Housing transactions data come from the England and Wales Land Registry ‘price paid’ housing 

transactions data, from January 2000 to the first quarter of 2012. Data going back to 1995 are 

available at the time of writing, but was not yet available at the time the dataset for this analysis 

was created. The ‘price paid’ data include information on sales price, basic property types – 

detached, semi-detached, terraced or flat/maisonette – whether the property is new or second-

hand, and whether it is sold on freehold or leasehold basis. The housing transactions were 

geocoded using the address postcode and aggregated to mean values in postcode-by-quarter cells 

to create an unbalanced panel of postcodes observed at quarterly intervals (with gaps in the series 

for a postcode when there are no transactions in a given quarter). For a small subset of the data, 

floor area and other attributes of property sales can be merged from the Nationwide building 

society transactions data. Demographic characteristics at Output Area (OA) level from the 2001 

Census were merged in based on housing transaction postcodes. These additional characteristics 

are used in some robustness checks which appear later in the empirical results. 

Postcode and wind farm visibility data were linked by first forming a panel of postcodes at 

running quarterly (3 month) intervals over the period January 2000-March 2012. The cumulative 

number of operational turbines within distance bands of 0-1km, 1-2km, 2-4km, 4-8km and 8-14km 

of each postcode was then imputed at quarterly intervals by GIS analysis of the information on site 

and postcode centroids. The 14km limit is set in part to keep the dataset at a manageable size, but 

also because as the distance to the wind farm increases, the number of other potential coincident 

and confounding factors increases, making any attempt to identify wind farm impacts less 

credible. Existing literature based on field work suggests that large turbines are potentially 
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perceptible up to 20km or more in good visibility conditions, but 10-15km is more typical for 

casual observer and details of individual turbines are lost by 8km (University of Newcastle 2002). 

In the next step, the site viewsheds were used to determine whether wind-farm sites are visible or 

not visible from each postcode in each quarter, again using GIS overlay techniques. Additional GIS 

analysis with the Digital Elevation Model provided estimates of the elevation, slope and aspect 

(North, East, South and West in 90 degree intervals) of the terrain at each postcode, plus visibility 

of coastline for use in a robustness check. These are potentially important control variables, 

because places with good views of wind farms may have good views generally, be more exposed 

to wind, or have more favourable aspects, and these factors may have direct effects on housing 

prices.  

Finally, the housing transactions and wind farm visibility data were linked by postcode and 

quarter  to create an end product which is an unbalanced panel of postcode-quarter cells, with 

information on mean housing prices and characteristics, the cumulative number of visible and 

non-visible operational turbines within the distance bands, plus additional variables on terrain and 

demographics. Note, prices in quarter t are linked to the turbine data at t-1, so although the price 

data extends to the first quarter of 2012, only wind farm developments up to the last quarter of 

2011 are utilised. The next section describes the methods that are applied using these data to 

estimate the house price effects of wind farm developments. 

4 Estimation strategy 

The research design involves fixed-effects, regression-based difference-in-difference methods. In 

all cases, the research strategy is to compare the average change in housing prices in areas where 

and when wind farms become operational and visible, with the average change in housing prices 

in some comparison group. 
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4.1 Comparing the effects of new wind farms with existing and future wind farms 

The simplest approach is to compare the price changes occurring around the time a wind farm 

becomes visible and operational, with the price changes occurring in comparable areas where 

wind farms are already visible and operational or where they will become so in the future. The 

idea is that postcodes close to existing or future wind farm locations and where these wind farms 

are or will be visible, provide a suitable counterfactual for places where new wind farms are 

becoming operational and visible in the current period. These postcodes close to and with views of 

new, existing and future wind farms are likely to be similar to each other in respect of: a) being 

physically suitable for wind farm developments; b) being viable for development in terms of the 

planning and construction process; and c) having topography that means that turbines are likely to 

be visible. 

To implement this approach, I estimate the following regression specification, on the sample of 

postcodes which had visible turbines within a given distance radius at the beginning of the study 

period (2000), or will have visible turbines within these radii or bands by the end of it (2011)5: 

 1ln ( , , ) ,  
     it k k it it it

k

price visible j dist k operational x f i t   (1)   

Here itprice is the mean housing transaction price in postcode i in quarter t. The variable capturing 

exposure to wind-farm developments is 1( , , )k itvisible j dist k operational   . This is a dummy (1-0) 

                                                      
5 More precisely, a postcode is included in the sample for estimating (1) if it has a visible wind turbine development 

within the specified distance band before January 2000 or if turbines become visible over the course of the study period 

from 2000 to 2011. In this sample of postcodes the treatment indicator equals 1 for at least one quarter over the sample 

period. A postcode that has, for example, a visible, operational wind farm within 4km opening in the last quarter of 2004 

will be included in the sample, but will have 1( ,0 , )itvisible dist k operational   = 0 in all quarters up to t 

corresponding to the first quarter of 2005, and   1( ,0 , )itvisible dist k operational = 1 in all quarters thereafter. 

Postcodes with at least one visible, operational turbine from the beginning of the study period are included in the 

sample, but have the indicator 1( ,0 , )itvisible dist k operational    = 1 throughout. 
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treatment variable, indicating that postcode i has at least one visible-operational turbine between jk 

and k km distance in the previous quarter. Vector itx  is an optional set of control variables, 

including housing characteristics. The function  ,f i t  represents a set of general geographical 

and time effects which will be controlled for using postcode fixed effects plus interactions between 

geographical and time dummies, as described in more detail below. The coefficient of interest k  

is the average effect on housing prices of wind farm turbines visible within distance band jk-k . The 

sign of k  is ambiguous a priori, since it depends on the net effects of preferences for views of 

wind farms, the impact of noise or visual disturbance – at least for properties very close to the 

turbines – and other potential local gains or losses, such as spillovers from land owner rents, 

shares in profits, community grants, or employment related to turbine maintenance and services. 

This wind farm visibility indicator for a given postcode 1( , , )k itvisible j dist k operational    is an 

interaction between an indicator that turbines are potentially visible from the postcode (visiblei), an 

indicator that these turbines are within a given distance band of the postcode (jk <disti<k), and a 

‘post-policy’ indicator which indicates that the turbines have been built and have become 

operational (operationalit-1). 6  This date of operation is taken as the date around which the wind 

farms impact on prices because my data contain no information on the date when the wind farm 

development was announced or when construction started or finished. 

Two versions of the distance specifications in (1) are used in the empirical work. I start with the 

simplest specifications in which the regressions are estimated for different values of k (1km, 2km, 

4km, 8km, 14km) and  jk = 0, i.e k  estimates the effects of visible wind farms within a radius k. 

                                                      
6 Note, it is not necessary to explicitly control for the separate components (visible, jk <dist<k and operational) because these 

are subsumed through the specification of geographical and time fixed effects  ,f i t  described below. 
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The estimation sample is restricted to postcodes with potentially visible turbines within distance k. 

In the second case, a series of distance band indicators is used (0 < distance ≤ 1km, 1km < distance ≤ 

2km, 2km < distance ≤ 4km, 4km < distance ≤ 8km and 8km < distance ≤ 14km) in a single 

regression, and the sample is restricted to postcodes with visible turbines within the maximum 

14km. The distance thresholds are chosen somewhat arbitrarily in order to give reasonably 

detailed delineation of the distance decay close to wind farm sites, while allowing for potential 

impacts up towards the limits of visibility. 

Crucially, specification (1) must allow for unobserved components which vary over time and 

space  ,f i t  which are potentially correlated with the wind farm visibility indicator. This 

correlation with the geographical effects occurs because wind farms are not randomly assigned 

across space and postcodes close to wind farms and where turbines are visible may not be 

comparable to postcodes further away in terms of the other amenities that affect housing process. 

The correlation with the time effects occurs because the number of wind farms is growing over 

time, so there is obviously a spurious correlation between any general trends in prices over time 

and the indicator of wind farm visibility. 

It is therefore essential to control in a quite general way for geographical fixed effects and time 

trends that are related to wind farm proximity and visibility. This is done firstly through the 

restriction to postcodes that have, or will have, visible wind farm developments close by. 

Secondly, postcode fixed effects are eliminated using the within-groups transformation (i.e. 

differences in the variables from postcode-specific means) and common time effects eliminated by 

including quarter-specific dummies (i.e. for the 48 quarters spanned by the data). Furthermore, in 

the distance-band version of the specification, separate sets of year dummies for each distance 

band, jk <dist<k, are included control for differences in the price trends in these different distance 
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bands (i.e. interactions between  jk <dist<k dummies and year dummies). Additional time varying 

geographical effects are captured by interactions between year dummies, and dummies for 

categories of postcode elevation (0-25m, 26-50m, 51-100, >100m), slope (0-0.5%, 0.51-1%, 1.01-1.5%, 

1.51-2.5%, >2.5%), and aspect (315-45 degrees, 46-135 degrees, 136-225 degrees, 226-316 degrees). 

These terrain variables are potentially important, because wind farm visibility depends on the 

elevation, slope and direction of the land at the postcode location. Some supplementary 

specifications include region-by-year dummies to control for general spatial trends, where regions 

are defined by splitting the sample into north, south east and west geographical quadrants. 

Since the specification controls for postcode fixed effects, the estimation method exploits changes 

in average prices between the post-operation and pre-operation periods and k  is estimated from 

postcodes that have housing transaction observations before and after a wind farm becomes 

operational. However, postcodes that have sales only before, or only after wind farm operations, 

including wind farms visible at the start of the study period in 2000, form part of the control group 

and contribute to estimation of the time trends and other parameters that are common across 

postcodes. The estimates of k  from the within-postcode fixed effects estimator should be 

interpreted as the average price change between the pre- and post-operation periods, given the 

time spanned by the housing sales data (not necessarily the step change in price occurring at the 

time of operation, nor the full long run price effect from the period prior to planning 

announcement to the post-operation period). Given the data and setting, the within-groups 

estimator which compares the post-operation average price with the pre-operation average price 

over the whole sample period, is preferable to a specification using differences between two time 

periods. This is because: a) there is unlikely to be a step-change in prices coincident with wind 

farm operation, both because price changes evolve slowly, and because there may be pre-operation 

price changes after announcement; and b) the panel is sparse and unbalanced, with missing 
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periods where there are no price transactions in a given postcode, so working with differences 

over specific time intervals within postcodes would result in a large reduction in sample size (e.g. 

a 4 quarter difference can only be observed in postcodes where there happen to be sales observed 4 

quarters apart). 

4.2 Comparing the effects of visible and non-visible turbines 

It is well known that difference-in-difference based research designs suffer from the problem of 

pre-existing differences in trends between the ‘treatment’ and ‘control’ groups. In the method 

described above, this problem is mitigated by using wind-farm locations as both treatment and 

control groups. Postcodes with existing visible-operational turbines, and postcodes with 

potentially visible turbines that become visible-operational in the future, provide information on 

the counterfactual price changes for postcodes in which turbines have just become visible-

operational.  However, this method may not completely take care of more subtle short run 

differential trends in the affected postcodes, e.g. if wind farms are intentionally or coincidentally 

targeted to particular places during periods in which these places have falling or rising prices 

relative to places that saw wind farm developments in the past, or will see them in the future. In 

addition, if the aim is to interpret k  as the visibility impact of wind farms, estimates from (1) will 

be biased by any price effects arising through other channels such as local benefits, or costs due to 

noise. 

To obtain cleaner estimates of the impacts of wind farm visibility, I augment specification (1) with 

additional treatment indicators, for postcodes close to wind-farms, but where the turbines are 

likely to be hidden from view by the landscape topography. This approach provides a powerful 

test of the robustness of the main findings on visibility, because the postcodes with non-visible-

operational turbines within a given radius of the turbines are in the same geographical areas as the 
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postcodes with visible turbines. These two visible and non-visible groups are thus likely to be 

closely comparable on unobserved dimensions, and subject to similar unobserved price trends 

arising through other causal channels. One concern might be that topographic features that 

obscure a wind farm from view from a property also reduce the noise level, meaning that 

comparisons between the visible and non-visible groups also capture differences in noise levels. In 

practice this is very unlikely. The predicted combined noise level from a wind farm with a ten 

turbine array, with each turbine emitting a typical 100dbA, falls to around 40dbA by 1km, which is 

below the background noise level in an average home. 7 At 2km the noise level is around 34dBA. 

Moreover, much of the nuisance noise from wind farms is low frequency, and low frequency 

sound in particular is not attenuated by large topographic features due to refraction. At distances 

beyond 1km, comparisons between groups with visible and non-visible turbines are very unlikely 

to pick up noise-related effects. 

The structure of the regression specifications for these visible-non-visible comparisons is identical 

to (1) but the sample now includes the sample of postcodes with potentially visible-operational 

turbines plus the sample of postcodes which are close to the same set of turbines, but where these 

are non-visible. Accordingly, specification (2) uses a treatment indicator that is an interaction of an 

indicator that there are no visible wind farms (non-visible) at the postcode, that the postcode is 

within a given radius or distance band (  kj dist k )and the indicator that the turbines are 

operational (operational): 

                                                      
7 Calculations based on the National Physical Laboratory wind turbine noise model 

http://resource.npl.co.uk/acoustics/techguides/wtnm/ 
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In this setup, the estimated parameters k are estimates of the effects on house prices of proximity 

to operational turbines, when there is no impact from the turbines being visible in the 

neighbourhood. These sign of these effects is theoretically ambiguous, for reasons discussed above 

for visible operational turbine, because there are potential community benefits and potential costs. 

If there are local community benefits, then the visibility parameters k  will be underestimates of 

the costs associated with wind farm visibility, because these impacts are already partly 

compensated by these other benefits (as in the classic wage-price-amenity trade off in the Roback 

model of compensating wage and land price disparities in Roback 1982). However, the difference-

in-difference-in-difference estimate of k k   provides a cleaner estimate of the specific impact of 

wind farm visibility – i.e. the increase in the gap between house prices in places where wind farm 

sites are visible and where they are not visible, once the turbines are built. This estimate thus 

provides an explicit estimate of willingness to pay through housing expenditure to avoid views of 

wind turbines and estimate of the monetary value of the visual dis-amenity associated with them. 

In these specifications with visible and non-visible indicators, the set of geographical-by-time 

effects is extended to include separate quarterly trends for postcodes with visible and non-visible 

turbines (i.e. interactions between 0 dist K  , non-visible and quarter dummies, and interactions 

between 0 dist K  , visible and quarter dummies, where K is the maximum radius included in 

the particular specification). As before the specification also includes separate sets of year 

dummies for each distance band (i.e. interactions between  jk <dist<k dummies and year dummies) 
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interactions of year dummies with elevation, slope and aspect indicators and control variables for 

property characteristics. 

A number of other robustness checks are carried out to assess sensitivity to local price trends, 

changing composition of housing sales, and assumptions about the clustering of standard errors. 

These are described where they arise in the Results section below. 

4.3 Specifications for effects by wind farm size 

The set up described above is based around a treatment effect design with a simple 1-0 indicator of 

turbine visibility and operation, and thus implicitly estimates the effect of wind farms of average 

size. Clearly, the impacts are likely to differ by wind farm size (number of turbines) and there are 

likely to be interactions of size with distance, especially if visibility turns out to be an important 

influence on prices. I therefore estimate final specifications that look at the interactions between 

wind farm size and distance, using a similar set up to (1), but with separate indicators for the 

number of turbines visible and operational at each distance and the number of turbines. 

5 Results 

5.1 Descriptive figures and statistics 

Figure 1 shows the historical development of non-urban wind turbines in England and Wales from 

the mid-1990s to 2011. By the end of 2011, these turbines could provide up to 3200mw of 

generating capacity, which, in principle, amounts to sufficient power for about 1.8 million homes 

(or around 7.7% of the 23.4 million households in England and Wales)8. Figure 2 illustrates the 

                                                      
8 This figure is estimated from DECC 2013a and DECC 2013b as follows. Total UK electricity output from onshore and 

offshore wind was 15.5TWh in 2011 (DECC 2013a Table 6.4) from 6500MW total capacity. Scaling down to the capacity of 

3200MW in England and Wales, suggests an output of 7.6 TWh from wind farms in England and Wales. Average UK 

domestic household electricity consumption is 4.2x10-6TWh, based on total domestic electricity consumption of 

111.6TWh (DECC2013b, Table 5.1.2), and a figure of 26.4 million households in the UK (2011 Census). Therefore, wind 

farms in England and Wales could power approximately 7.6/4.2x10-6 = 1.8 million households. 
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evolution of the spatial distribution of these turbine sites between 2000 and 2011. These sites have, 

over the whole period, been predominantly in coastal and upland areas. These are often on the 

peripheries of areas that are valued for their natural beauty, although wind farms have not been 

permitted in National Parks. Examples are the Cornwall peninsula in the south west, Wales in the 

west, the Pennines in northern England, and around the coast Cumbria (the Lake District) in north 

west England. There are also concentrations around Sunderland in the north east, and 

Lincolnshire, Norfolk and the Wash in the east. In general, density has increased in these regions, 

rather than the distribution spreading across regions, although new wind farms have appeared in 

eastern central England in recent years. There are very few sites in the south and east of England. 

Some basic summary statistics for the operational, non-urban wind farms in the dataset are shown 

in Table 1. There are 148 wind farms recorded in operation in England and Wales over this period 

(after eliminating some single-turbine urban and industrial sites).   The mean operational wind 

farm has 11 turbines (6 median) with a capacity of 18.6 MW, but the distribution is highly skewed, 

with a maximum number of turbines of 103 and capacity of 150MW. These largest wind farms are 

off-shore. The average height to the tip of the turbine blades of just over 90m, though the tallest 

turbines (mainly offshore) reach to 150m. The distribution of wind farms across land cover types is 

given in the table notes and shows that most wind farms are in farmland locations, followed by 

mountain and moorland locations. Offshore sites are also included in the analysis, where these are 

potentially visible from residential areas on shore. Urban and most industrial locations (except 

where these impact on rural areas) are excluded from the analysis.  

Table 2 summarises the main postcode-by-quarter aggregated panel data set, with information on 

property prices and characteristics, and the distribution of visible and non-visible operational 

turbines. The top panel with the housing summary statistics relates to the sample of postcodes 
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with operational turbines within 14km in 2000, or appearing within 14km at some time over the 

sample period up to the end of 2011. Price dataset is merged to the wind farm dataset with a one-

quarter lag, so the price series runs from the first quarter of 2000 to the first quarter of 2012. 

Changing the lag to 6 months made essentially no difference to the regression results presented 

below. To show the spatial structure of the data, the second panel shows the number of postcodes 

in the data at different wind farm distances, categorised according to whether the wind farms are 

visible (based on the modelled view-shed). Note that many postcodes have both visible and non-

visible turbines over the whole period. The third panel provides information on how many of the 

postcodes that will have visible turbines, have sales in both pre and post operation periods. This 

panel also shows the mean time interval between sales in the pre and post periods. There are 1125 

postcodes with visible turbines within 1km, though only 468 of these have repeat sales in pre and 

post periods. Wind farms are visible from nearly all these postcodes. As we move further out, the 

number of postcodes increases to over 220000 and the proportion from which turbines become 

visible decreases to around 56% within 14km band. At greater distances it becomes more likely 

that views from the postcode neighbourhood are obscured by intervening terrain. The mean 

interval between sales in the pre and post operation periods is stable over all distances at around 

23 quarters (5.75 years), implying that the regression estimates that follow will represent the 

average price change occurring over this time interval. Overall there around 7.75 repeat 

observations for each postcode (=1710293/220669 from the numbers in the table). The median 

number of transactions (not reported in the table) per postcode-quarter cell is 1 with a median of 1 

and a 99th percentile of 5. 

The methods described in 4.2 proposed comparing the price effects in postcodes with visible-

operational turbines to the price effects in postcodes with non-visible operational turbines. To 

illustrate the basis for this approach, Figure 3 shows the viewshed for a wind farm in north east 
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England. This is the Haswell Moor wind farm in County Durham, which has 5 turbines, a total 

capacity of 10MW and the height to the tip of the turbines is 110m. This is a fairly typical wind 

farm development in the sample. The dark shaded areas are residential postcodes and the light 

grey shading indicates the land where at least the tips of the turbine blades are visible (technically, 

these are computed as the land surface that is visible to an observer at the tip of the turbine). 

Results presented in the next section compare prices changes occurring with the start of wind farm 

operation in these postcodes where the turbines are visible, with those occurring where they are 

not-visible. 

5.2 Baseline regression results on visibility and robustness tests 

Table 3 reports the coefficients from a baseline set of postcode fixed-effects regressions of prices on 

wind farm proximity and visibility indicators discussed in Sections 4.1 and 4.2, using separate 

regressions for different radii, from 1 to 14km. For each radius, the first two columns restrict the 

sample to postcodes which have or will have an operational wind farm within the specified 

distance following the approach of Section 4.1. Identification comes purely from comparing the 

change in mean postcode-quarter specific prices between the periods before and after the wind 

farm operation, with the changes occurring in postcodes that have already got visible-operational 

wind farms or which will do so in the future. For radii above 1km, the third column at each radius 

extends the sample to include postcodes which have or will have non-visible operational wind 

farms within the specified distance following the approach of Section 4.2 (this is infeasible at 1km 

since almost all postcodes have wind farms visible). The regression in the first column of each set 

has no control variables other than quarterly dummy variables. Other columns control for the 

property characteristics and the array of geographical trends described in the methods section. 

Standard errors are clustered at Census Output Area level (10 or so postcodes) to allow for serial 
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correlation in the errors over time and spatial correlation in the price changes across neighbouring 

postcodes.  

The key finding from this table is that prices in postcodes where wind farms are close and visible 

are reduced quite substantially over the period in which a wind farm becomes operational. The 

price impact is around 6.5% within 1km, falling to 5.5-6% within 2km, 2.5-3% within 4km. Beyond 

4 km the effect falls below 1% and becomes statistically insignificant, at least once control variables 

are included. Generally, controlling for property characteristics and the array of terrain-by year 

dummies makes little difference to the results, suggesting that unobserved price trends or changes 

in the types of housing being sold do not affect the results substantively. 

Columns 5, 8, 11 and 14 include indicators of proximate non-visible wind farms, and tell us more 

about the specific visibility impacts of wind farms, as distinct from other costs and benefits 

associated with their operation. The point estimates within the 2km band are similar to those for 

visible-operational turbines, but statistically insignificant, given that the small share of postcodes 

with non-visible wind farms within 2km (5% from Table 2). In part, the coefficient on non-visible 

wind farms within 2km may be picking up impacts on the few sales much closer to wind farms, 

where turbines are not visible but noise may be an issue (the estimates later on in Table 6 present 

the impacts in distance bands to address this issue). Further out, a more interesting pattern 

emerges. Within 4km (where wind farms are hidden for 18% of postcodes) there is no effect on 

prices from non-visible operational turbines, while visible wind farms reduce prices by 2.4%. This 

comparison suggests that the negative effects from visible-operational turbines are specifically 

attributable to visibility. Within 8km, there are signs of some up-lift of around 1.6% for prices in 

postcodes where wind farms become operational, but are hidden, and the effect of visible turbines 

falls to zero. Given there was no detectable effect from non-visible wind farms within 4km, the up-
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lift in prices is evidently within the 4-8km band (as shown in subsequent results). There are a 

number of possible interpretations of this price premium. Firstly there could be spurious effects 

due to non-random placement of wind farms although it seems unlikely that this this would show 

up specifically for non-visible wind farms at this radius. Secondly, there may be benefits to home 

owners within the 8km radius, offset by other costs at closer distances. Lastly, prices may be 

increased by displacement of demand from neighbouring areas where the turbines are visible. 

These displacement price effects are theoretically possible if buyers in these rural housing markets 

are relatively constrained in their choices (e.g. by family, jobs, search costs, other local amenities) 

and willing to pay more for housing in these localities without wind farm visibility rather than 

seek alternative housing in completely different non-wind farm locations. It is not possible to 

distinguish between these second and third hypotheses, but either way, the results for non-visible 

wind farms are reassuring in showing that the negative impacts from visible wind farms do not 

arise from a spurious association between price trends and the timing and location of wind farm 

development. Again, overall within the 14km, the regressions indicate no positive or negative 

effects associated with the timing of wind farm operations in the general local area. 

All this evidence suggests that the estimated price reductions in postcodes where wind farms are 

visible are causally attributable to wind farm visibility.  Later results will provide more detail on 

the pattern of distance decay of the wind farm price effects, and present some more formal 

difference-in-difference-in-difference estimates of the visibility impacts. 

One concern could be that the price effects by distance and visibility status are the result of general 

spatial price trends, generated by other factors such as housing supply or opportunities in the 

labour market. Although the patterns in Table 3 are consistent with what we might expect 

theoretically from a causal effect of wind farms on prices, it is potentially possible that windfarms 
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just happen to always be opening in regions where prices are falling, relative to regions where 

windfarms already exist, and falling more in places close to new windfarms than in places further 

away. Since the sample is restricted to sales close to windfarms, and does not include any sales in 

the wider region beyond 14km from wind farms sites, there are limits to how flexibly the 

specifications can control for very general regional trends. However, Appendix Table 8 

demonstrates that the patterns are similar after controlling for regional price trends, which are 

defined by splitting the sample (sales <14km from a windfarm) into four north, south, east and 

west quadrants and interacting quadrant indicators with year dummies. In this specification, 

comparison is being made between sales around wind farms opening in one location, and 

windfarms that exist or will exist in the same quadrant of England and Wales.  

Table 4 and Table 5 present further assessments of the credibility of the findings by checking for 

spurious price trends and changes in the types of housing being sold as the wind farms become 

operational. The results shown are for the sample within the 4km radius, but the general picture is 

the same when the exercise is repeated at other distances. Table 4 presents a series of ‘balancing’ 

tests in which the dependent variable in the regressions of Table 3, column 8, is replaced by 

housing characteristics, and the housing characteristics are excluded from the set of regressors. The 

aim here is to see if there are within-postcode changes in the composition of the sample that 

coincide with the start of wind farm operations. Columns 1-6 use the few characteristics that are 

available in the Land Registry data set as the dependent variables. In column 7 the dependent 

variable in postcode quarter i,t is the cumulative sum of sales in postcode i up to period t and the 

regression provides a test for changes in the rate of transactions between the before and after 

operation periods.  In the remaining columns, the dependent variables are postcode-by-year mean 

characteristics taken from an auxiliary dataset of transactions from the Nationwide building 

society and merged to the dataset. This dataset has far more information on housing 
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characteristics, but is only a sub-set of transactions, and hence postcodes, in the Land Registry 

data, therefore the sample size is much reduced. Looking across Table 4 it is evident that there are 

no statistically significant changes in the composition of housing transactions associated with wind 

farm operation, and there is no systematic pattern in the point estimates that would suggest that 

the price changes in Table 3 could be related to the sale of lower quality houses. 

Table 5 carries out further robustness tests on the 4km sample, firstly adding in the Nationwide 

data set characteristics as control variables (column 2), and replacing the Land Registry prices with 

prices from the Nationwide (column 3). The coefficient estimates from the Nationwide sample are 

slightly larger than those from the Land Registry, although not by much relative to the standard 

errors, and changing the source of the price information does not make any difference. Column 4 

adds in additional demographic characteristics from the 2001 Census (proportion not qualified, 

proportion tertiary qualified, proportion born in UK, proportion white ethnicity, proportion 

employed, proportion in social rented accommodation) interacted with linear time trend, but again 

this has no bearing on the results. 

Column 5 shows a specification which controls for region-specific quarterly price index, based on 

prices in the ten standard regions of England and Wales. As noted above, it is not feasible to do 

this simply by including region-by-quarter dummies, because there are too few wind farms 

becoming operational in any region-quarter period. Instead, the region-quarter price indices are 

estimated a first stage postcode-fixed effects regression of log prices on region-quarter dummies in 

the full Land Registry price paid dataset9. The estimated region-quarter effects are then used as 

controls in the second stage estimation. Again this has no impact on the key result, even though 

                                                      
9 The sample is restricted to postcodes beyond the 14km wind-farm distance limit, otherwise the estimated price index 

would be mechanically endogenous in the price regressions based on the wind farm sample. 
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the region-quarter effects are strongly correlated with the prices close to the wind farms (the 

coefficient on the region-quarter effects is 1.059, with a standard error of 0.030). 

Column 6 does something similar, but controlling for predicted pre-operational and post-

operational linear price trends in the area defined by the set of postcodes that share the same 

nearest operational wind farm within 4km. Again it is not practical to simply include nearest-

wind-farm specific trend variables, since the price changes in response to wind-farm operation are 

not sharp enough to successfully identify these separately from wind-farm specific price trends 

over the whole period. Instead, similarly to the region-quarter trends, the pre-operation and post-

operation wind farm price trends are estimated in a first stage regression of prices wind farm-

specific time trends using observations for the pre-operation or post-operation period only. The 

first stage regression predictions of the wind farms specific price trends from the pre-operation 

period are then extrapolated over the whole sample period and included as controls in the second 

stage regression. Controlling for pre and post operation price trends in this way yields a slightly 

bigger coefficient on visible wind farms, suggesting that the baseline estimates in Table 3 are, if 

anything, conservative. This is consistent with post-announcement, pre operation downward price 

trends, which will reduce the pre-post operation average price difference and attenuate the basic 

within-groups fixed effects estimates of Table 3. 

Column 8 and 9 also test for robustness to other regional price drivers. Column 8 controls for 

differences in new housing supply across space. Highly geographically detailed data on housing 

supply is not available in England or Wales, but Column 8 uses the best information available and 

controls the number of housing construction starts (in logs) in each of the ten standard Regions in 

England and Wales in each year. Column 9 includes labour market variables, namely mean wages 
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and jobs per capita at the Local Authority, County or Region level (there are 348 Local Authorities, 

and 42 Counties in England and Wales).10 

Many windfarms are close to the coastline of England and Wales, so there is an outside chance that 

the results could be influenced by coastline visibility, given that coastline visibility is presumably a 

desirable amenity. To check this, Column 9 controls for trends associated with coastal views. A 

coastal view-shed was constructed for places within 14km of the coastline, and sales categorised in 

quintiles of coast line visibility. The specification in Column 9 includes and interaction of top 

quintile coastline visibility with year dummies. Evidently, differences in coast views do not 

explain the estimated effects of wind farms on prices, although the unreported coefficients on the 

coast-view-by-year dummies indicate differential trends in coastal locations. 

Overall, there is no evidence from Table 4 and Table 5 that the finding of negative impacts from 

wind farms on prices arises from omitted variables or unobserved price trends. 

More detail on distance-decay of the wind farm price effects and the differences in the effects of 

visible and non-visible wind farms within the 14km limit is provided in Table 6. In this 

specification, estimation is from postcodes with transactions within 14km of a site, and treatment 

indicators for the different distance bands are included in a single regression. The coefficients 

indicate the effects at each distance band within this 14km radius. The estimation includes 

postcodes with or without wind farm visibility. The results are broadly in line with the alternative 

presentation in Table 3, but there are some subtle differences. These differences arise because the 

coefficients on the housing control variables, quarter dummies and terrain-by-year trends are 

estimated from the full 14km radius sample. This specification also constrains postcodes within 

                                                      
10 In the vast majority of cases Local Authority variables are used, but these are not always published for 

Local Authorities due to small sample sizes, in which case higher level geography is used. 
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each wind-farm distance band to be on the same general price trend in the absence of any effects 

due to wind farm operation and visibility (through distance-band-by-year interations). At the same 

time the specification allows for differences in general price trends between postcodes with 

potential wind farm visibility and those without for the whole 14km radius circle (through 

visibility-by-quarter interactions). 

Looking at Table 6, the price effect for visible turbines within 1km, and at 1-2km is around 5.5-6%. 

This falls quite sharply in the 2-4km distance band, to just under 2%. Beyond this there are price 

effects from visible turbines right out as far as 14km, although these are small at around 0.5-1%. 

The results in the next section show that these effects at greater distances are associated with the 

largest wind farms only. In contrast, the coefficients on non-visible turbines are generally positive, 

but small and non-significant except in the 4-8km band. Note that the coefficients on non-visible 

turbines look comparable in magnitude but opposite in sign to the effects of visible turbines in the 

4-8km band, which might suggest some aggregate net gains in terms of total housing values. 

However, it should be borne in mind that only 35% of postcodes within 8km of a wind farm do not 

have views of the wind farms, so a much smaller share of transactions see price gains rather than 

price losses. The impacts of wind farms 8-14km away, where the wind farms are not visible, is, as 

expected, zero and insignificant. 

Potential theoretical reasons for these positive effects associated with proximity to turbines where 

the turbines are hidden were discussed in relation to Table 3. A corollary is that the coefficients on 

the wind farm visibility indicators, while showing the house price changes, underestimate the 

value of the visual dis-amenity of wind farms. As discussed in Section 4.2 a difference-in-

difference-in-difference estimate based on the difference between the coefficients on visible 

turbines and non-visible turbines at each distance band provides a cleaner estimate of the 
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willingness to pay to avoid views of wind farms. These estimates are shown in the bottom panel of 

Table 6. These are calculated from the coefficients and the variance-covariance matrix of the 

coefficients in Table 6. Given the small positive coefficients associated with non-visible wind 

farms, the basic price effects estimated from the visible-operational treatment dummies under-

estimate the marginal willingness to pay to avoid the visual dis-amenity and the difference-in-

difference-in-difference estimates are slightly larger in magnitude. Within 2km, the visual impact 

of wind farms is has an implied cost of around 8.5% of housing prices, between 2km and 8km the 

figure falls to around 3.5%, whilst beyond 8km there is virtually no impact (just under 0.7%). 

5.3 Further results on wind farm size. 

The results so far have looked simply at turbine development as a binary treatment effect, and 

have ignored the scale of the wind farm. Table 7 provides a more comprehensive analysis that 

investigates whether there is a greater cost associated with larger developments with more 

turbines, and over what distance. The setup is basically the same as in Table 6, but with 

interactions between dummies for wind farm size and distance. Again, the lower panel of the table 

reports difference-in-difference-in-difference estimates of the price differentials associated with 

visibility for each distance band and wind farm size group. Figure 4 illustrates the patterns in 

Table 7 by plotting the coefficients against the mid points of the distance bands. The results are in 

line with what would be expected if the price impacts are related to the dis-amenity of wind farm 

visibility. Bigger wind farms have a bigger impact on prices at all distances. A wind farm with 20+ 

turbines within 2km reduces prices by some 12% on average, and the implied effect of the visual 

dis-amenity is around 15%. Note though that there is a relatively small number of transactions 

within 2km of the centroid of a 20+ turbine wind farm (988) and given the geographical spread of 

the turbine array, this price effect could also relate to noise and visual flicker problems. However, 

even at 8-14km there is a 4.5% reduction in prices associated with large visible operational wind 
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farms, and the willingness to pay to avoid visibility is 6.5%. Even at 8km there is some negative 

impact of the large wind farms, and all of this is attributable to visibility. Medium size wind farms 

above average size also have strong effects throughout the distance range up to 8km, but no effect 

after that. The effect of smaller wind farms with less than 1-10 turbines is, as might be expected, 

concentrated in the first 2km where there is a 5% reduction in prices. This falls to just over 1.5% at 

4km and becomes zero and insignificant beyond that, although there is an implied visibility cost in 

the 4-8km range due to the lift in prices of houses in the 4-8km range where turbines are not 

visible. All in all, the results in Table 7 and their visualisation in Figure 4 are entirely consistent 

with theoretical reasoning about the potential visual impacts of wind farms, and the differences 

across wind farm size and distance band provide reassurance that the effects are genuinely causal 

and not spurious. 

One concern in any spatial estimation design with multiple interventions on grouped observation 

(wind farm developments affecting groups of neighbouring houses in this case) is the estimation of 

the standard errors (Moulton 1990, Conley and Taber 2011). All specifications so far allowed for 

serial and spatial correlation (and heteroscedasticity) in unobservable factors within neighbouring 

groups of postcodes defined by Census Output Areas, using clustered standard errors at this level. 

These standard errors may be biased by more general spatial autocorrelation in the unobservables, 

between Census Output Area groups. Tests on the regression residuals fail to find evidence of this 

spatial autocorrelation. Moran’s I statistics based on the residuals have values of less than 0.001 (on 

a theoretical range of -1/+1), and the p-value for the test of the null of no spatial autocorrelation is 

0.5 or higher. 11 Nevertheless, some alternative standard errors allowing for more general spatial 

                                                      
11 Moran’s I statistics are estimates of Cov(m(x), x)/(Var(x)) where m(x) is an average of x over neighbouring observations 

and neighbours are defined by spatial weights. Tests were performed using inverse distance weights, and average of 

observations within 4km. 
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autocorrelation are shown for the final specification in Appendix Table A1. Standard errors using 

the double clustering method of Thompson (2011), allowing for serial correlation within postcodes, 

and cross sectional correlation within quarters, are similar to those obtained from clustering at 

Census OA level. Standard errors with clustering on Census Wards yields larger standard errors 

and lower levels of significance, although the pattern remains the same, with statistically 

significant coefficients for small wind farms up to 4km, and statistically significant impacts from 

large wind farms throughout the distance range. Standard errors clustered on nearest wind farm 

groups (not reported) yield similar results to the ward-based clustered standard errors. 

6 Conclusions 

The analysis in this paper provided estimates of the effects of wind farm visibility on housing 

prices in England and Wales. The fairly crowded geographical setting, with numerous wind farms 

developed within sight of residential property, provides a unique opportunity to examine the 

visual impacts of wind farms through hedonic property value methods. The analysis used a micro-

aggregated postcode-by-quarter panel of housing transactions spanning 12 years, and estimated 

difference-in-difference effects using a quasi-experimental, postcode fixed effects methodology. 

Comparisons were made between house price changes occurring in postcodes where nearby wind 

farms become operational and visible, with the price changes occurring where nearby wind farms 

become operational but are hidden from view. All the results point in the same direction. Wind 

farms reduce house prices in postcodes where the turbines are visible, and reduce prices relative to 

postcodes close to wind farms where the wind farms are not visible. Averaging over wind farms of 

all sizes, this price reduction is around 5-6% within 2km, falling to less than 2% between 2 and 

4km, and less than 1% by 14km which is at the limit of likely visibility. As might be expected, small 

wind farms have no impact beyond 4km, whereas the largest wind farms (20+ turbines) reduce 

prices by 12% within 2km, and reduce prices by small amounts right out to 14k (by around 1.5%). 
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There are small (~2%) increases in neighbouring prices where the wind farms are not visible, 

although these are only statistically significant in the 4-8km band. This price uplift may indicate 

some local benefits from wind farms, for example due to spillovers from rents to landowners from 

wind farm operation, or from community grants. However these price increases could also be 

explained by displacement of demand by those seeking housing in these areas towards places 

where the wind farms are hidden. These offsetting price effects in neighbouring places where wind 

farms are visible and where they are not may explain, in part, why previous studies that focus only 

on distance to wind farms fail to find significant effects. 

These headline findings are comparable to the effects of coal power plants in the US found in 

Davis (2011) who finds up to 7% reduction within 2 miles (3.2 km). Of course, it takes many 

geographically dispersed wind farms to generate the same power as a single coal (or nuclear) 

plant, so the aggregate effects of wind farms and the number of households affected by their visual 

impact is likely to be considerably larger. The results are also in line with existing literature that 

suggests that other tall power infrastructure has negative impacts on prices (e.g. high voltage 

power lines, Sims and Dent 2005). The point estimates are comparable to the repeat sales estimates 

of the effects of wind farms in in Lang et al (2014) for Rhode Island, although their estimates are 

not statistically significant.  

The paper presents a number of robustness tests, but even so the findings should be interpreted 

with some caution. The information on wind farm location and visibility is limited by lack of data 

on the precise location of individual turbines, so the classification of postcodes in terms of visibility 

is subject to measurement error. This is most likely to result in some attenuation of the estimated 

effects. Steps were taken to minimise this problem by eliminating postcodes where visibility is 

ambiguous. More importantly, there is no historical information on the timing of events leading up 
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to wind farm operation (announcement, approval, construction etc.) so the price effects reported 

here relate to the average difference between the post-operation and pre-operation periods for the 

periods spanned by the data  (a gap of just under 6 years). However, the wind farm development 

cycle can last a number of years, and price changes evolve fairly slowly over time in response to 

events. Again the most likely consequence of this is that the results underestimate the full impact 

between the pre-announcement and post-construction phase. It should also be noted that the 

estimates of turbine visibility, may pick up some effects from turbine noise – especially close to 

large windfarms, if terrain that hides the windfarms also attenuates the noise. However, noise 

levels at the distances beyond 1km at which the visible/non-visible comparisons are made are 

likely to be very low. 

Well established theories (Rosen 1974) suggest that we can interpret price differentials emerging 

between places where wind farms are visible and comparable places where they are not, as 

household marginal willingness to pay to avoid the dis-amenity associated with wind farm 

visibility (though Kuminoff and Pope, 2014, has recently highlighted some potential pitfalls in 

interpreting difference-in-difference estimates in this way). If we take the figures in the current 

paper seriously as estimates of the mean willingness to pay to avoid wind farms in communities 

exposed to their development, the implied costs are quite substantial. For example, a household 

would be willing to pay around £600 per year to avoid having a wind farm of small-average size 

visible within 2km, around £1000 to avoid a large wind farm visible at that distance and around 

£125 per year to avoid having a large wind farm visible in the 8-14km range.12 The implied 

amounts required per wind farm to compensate households for their loss of visual amenities is 

                                                      
12 These figures is based on an average house price of £145,000 (in 2010), a the visible-non-visible price differentials from 

Table 7 and a 5% interest rate. 
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therefore fairly large: about £14 million on average to compensate households within 4km.13 The 

corresponding values for large wind farms will be much higher than this, as their impact is larger 

and spreads out over much greater distances. 

These per-household figures are somewhat higher than the highest estimates from the stated 

preference literature, although there are no directly comparable figures. The figures cited in Bassi, 

Bowen and Fankhauser (2012) are typically much less than £100 per year, though this is per 

individual, so household willingness to pay could be higher.  

The findings of the paper are relevant on a number of policy levels. The estimates provide 

potential inputs into cost-benefit analyses related to the siting of wind turbines, and the net 

benefits of wind power relative to other forms of low carbon energy. It should be noted, however, 

that the price effects reflect the valuation of home buyers in locations where wind farms are 

visible, so may not represent the mean valuation of wind farm visibility in the general population. 

The estimates could also inform policy on compensation for home owners for the loss of value in 

their homes arising from views of new wind farms. Interestingly, the evident increase in value of 

for houses where local wind farms are out of site suggests some scope, at least in theory, for these 

‘winners’ to compensate the ‘losers’ in places where the turbines are visible e.g. through adjusting 

council taxes or introducing property value taxes. 
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Table 1: Operational windfarm summary data, 1992-2011 England and Wales 

 

Mean s.d. Min Max 

148 wind farms     

Turbines mean 11.2 15.4 1 103 

Turbines median 6 

   MW capacity 18.6 39.2 .22 300 

Height to tip 90.9 29.2 42 150 

Landcover of non-urban/industrial wind farms: Offshore 14; Forest 8; Farmland 82; Moorland and mountain 

39; Coastal 5. 

 

Table 2: Main estimation sample summary data, 2000-2011 England and Wales 

 

Mean s.d. Obs 

Sales in postcodes operational turbine at some time 2000-2011 within 14km    

Log price 11.56 0.674 1710293 

New build 0.041 0.192 1710293 

Detached house 0.250 0.423 1710293 

Semi-detached house 0.070 0.249 1710293 

Terraced house 0.320 0.452 1710293 

Flat/Maisonette 0.361 0.469 1710293 

Freehold 0.849 0.351 1710293 

    

Postcodes within 1km of wind farm, 2000-2011   1142 

 Where visible   1125 

Postcodes within 2km of wind farm, 2000-2011   5350 

 Where visible   5062 

Postcodes within 4km of wind farm, 2000-2011   20838 

 Where visible   17031 

Postcodes within 8km of wind farm, 2000-2011   81820 

 Where visible   52980 

Postcodes within 14km of wind farm, 2000-2011   220669 

 Where visible   123892 

    

Time between post-pre sales in same postcode (quarters)    

 Visible within 1km 23.335 5.016 468 

 Visible within 2km 23.379 6.189 2004 

 Visible within 4km 23.297 6.170 7348 

 Visible within 8km 23.047 6.150 24408 

 Visible within 14km 23.148 6.131 59852 
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Table 3: Postcode fixed effects estimates; samples with operational wind farm within k km, during 2000-2011 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

Radius <1km <1km <2km <2km <2km <4km <4km <4km <8km <8km <8km <14km <14km <14km 

Control vars. No Yes No Yes Yes No Yes Yes No Yes Yes No Yes Yes 

               

Visible-  -0.0632*** -0.0666** -0.0628*** -0.0554*** -0.0558*** -0.0300*** -0.0267*** -0.0244*** -0.0144*** -0.0046 -0.0035 -0.0048* -0.0018 -0.0027 

operational: (0.0171) (0.0221) (0.0095) (0.0095) (0.0095) (0.0057) (0.0055) (0.0054) (0.0032) (0.0029) (0.0029) (0.0019) (0.0018) (0.0017) 

Non-visible-     -0.0611   -0.0018   0.0165***   -0.0024 

operational:     (0.0609)   (0.0125)   (0.0041)   (0.0020) 

               

Obs 8,052 8,052 36,298 36,298 37,998 125,619 125,619 150,907 417,108 417,107 621,395 984,294 984,292 1,710,293 

R-squared 0.8141 0.8459 0.8284 0.8580 0.8601 0.8377 0.8626 0.8642 0.8487 0.8719 0.8736 0.8461 0.8706 0.8718 

Robust standard errors in parentheses, clustered at Census OA  *** p<0.001, ** p<0.01, * p<0.05 

Data in postcode-quarter cells, 2000-2011. Dependent variable is postcode-quarter-mean log prices. 

Visible-operational is the treatment indicator (visible, 0<distance<k, operational) described in Section 4, indicating that a postcode has an operational windfarm visible within 

the specified radius k. 

Non-visible operational is the treatment indicator (non-visible, 0<distance<k, operational) described in Section 4, indicating that a postcode has an operational windfarm 

within the specified radius k, but this is not likely to be visible. 

Sample restricted to postcodes with visible-operational turbines within distance k at some time over the study period in columns 1,2,3,4,6,7,9,10,12,13.  

Sample restricted to postcodes with visible-operational or non-visible-operational turbines within distance k at some time over the study period in columns 

1,2,3,4,6,7,9,10,12,13.  

Control variables in columns 1,2,3,4,6,7,9,10,12,13 are postcode slope-by-year, elevation-by-year, aspect by-year dummies, proportions of sales of detached, semi-detached, 

terraced, flat/maisonette. 

Control variables in columns 5,8,11,14 are postcode slope-by-year, elevation-by-year, aspect by-year dummies, proportions of sales of detached, semi-detached, terraced, 

flat/maisonette, plus dummy groups for distance-band-by-year, and visible/non-visible-by-quarter trends. 

All regressions control for quarter dummies. 
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Table 4: Balancing tests for various housing characteristics. 4km radius 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (11) 

 New Detached Semi Terraced Flat Leasehold Yrly. Sales Floor area Beds Baths 

                    

Visible-  -0.0036 0.0011 -0.0001 -0.0071 0.0061 0.0039 0.0050 -0.1267 -0.0636 0.0509 

operational: (0.0059) (0.0038) (0.0016) (0.0044) (0.0038) (0.0021) (0.0074) (2.0573) (0.0464) (0.0450) 

Non-visible- -0.0043 -0.0128 -0.0043 0.0099 0.0072 -0.0080 0.0005 0.4270 0.0193 -0.0705 

operational: (0.0069) (0.0078) (0.0038) (0.0094) (0.0090) (0.0052) (0.0157) (4.9602) (0.1198) (0.1018) 

 

      

 

  

 

Number of observations 150,907 150,907 150,907 150,907 150,907 150,907 150,907 17,931 17,931 17,931 

           

 

         

 

 (11) (12) (13) (14) (15) (16) (17) (18) (19)  

 No CH No Gar Detached Semi Terraced PB Flat Conv Fl Other Age  

                    

Visible-  -0.0105 -0.0178 -0.0287 0.0207 -0.0004 0.0108 0.0014 -0.0038 -0.5586  

operational: (0.0154) (0.0304) (0.0235) (0.0282) (0.0242) (0.0150) (0.0092) (0.0051) (1.7077)  

Non-visible- -0.0838 0.0212 0.0324 -0.0575 -0.0330 0.0423 0.0109 0.0048 -0.2947  

operational: (0.0612) (0.0780) (0.0943) (0.1090) (0.0733) (0.0364) (0.0203) (0.0060) (4.6216)  

           

Number of observations 17,212 17,931 17,931 17,931 17,931 17,931 17,931 17,931 17,931  

           

Specifications as in Table 3, column 8, but with property type control variables excluded. 

Columns 8-19 based on sub-sample with transactions from Nationwide sales database. 

Table reports coefficients, standard errors (clustered on OA) and sample size 
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Table 5: Robustness to additional control variables and trends. 4km radius 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

 

Baseline 

estimate 

from  Table 3 

Sub-sample 

with 

additional 

Nationwide 

property Xs 

Nationwide 

prices and Xs 

Census 

output area 

Xs x trends 

Control for 

regional 

price index 

from full 

dataset 

Windfarm 

specific pre 

and post 

trends 

Control for 

regional 

house 

construction 

starts 

Control for 

Local 

Authority 

wages and 

jobs per 

capita 

Control for 

coast view-

by-year 

dummies 

  

   

     

               

Visible-  -0.0244*** -0.0452** -0.0419*** -0.0260*** -0.0206*** -0.0326*** -0.0232*** -0.0194*** -0.0263*** 

operational: (0.0054) (0.0146) (0.0120) (0.0054) (0.0048) -0.0054 (0.0054) (0.0053) (0.0054) 

Non-visible- -0.0018 0.0220 0.0298 -0.0123 0.0049 -0.0016 0.0105 0.0170 0.0119 

operational: (0.0125) (0.0608) (0.0356) (0.0133) (0.0114) -0.0122 (0.0120) (0.0120) (0.0122) 

 

 

  

      

Observations 150,907 17,212 17,212 136,031 150,907 150,907 150,907 150,907 150,907 

          

Robust standard errors in parentheses, clustered at Census OA  *** p<0.001, ** p<0.01, * p<0.05 

Column 2 controls for floor size, number of bedrooms, bathrooms, central heating type, garage type, and detailed property type for postcodes represented in 

Nationwide data. Column 3 similar, using price reported in Nationwide data. Column 3 adds linear trends interacted with census 2001 variables at output area 

(OA) level (OA land area, proportion with no qualifications, proportion with tertiary qualifications, proportion born UK, proportion white ethnicity, proportion 

employed, proportion in social rented housing). 

Column 5 controls for piecewise constant quarterly price index estimated from transactions beyond 14km from any operational windfarm. 

Column 6 controls for nearest operational windfarm linear time trends  estimated from pre-operational and post-operational periods. 

Column 7 includes control for region-by-year private housing construction starts from Department of of Communities and Local Government housing statistics 

Column 8 includes control for Local Authority-by-year wages and job density from Annual Survey of Hours and Earnings and Office for National Statistics job 

density data (from www.nomisweb.co.uk) 

Column 9 includes coast-view by year dummies, where coast-view is an indicator that property is within 14km of the coastline and the coastline visibility is in 

the top 20% based on the number of coast outline vertices from which the property is visible. 

Specifications otherwise as Table 3, column 8, 

http://www.nomisweb.co.uk/
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Table 6: Postcode fixed effects estimates; distance bands; sample with operational wind farm 

within 14km, during 2000-2011 

 (1) (3) (3) (4) (5) 

 <1km 1-2km 2-4km 4-8km 8-14km 

      

Turbines visible -0.0539*** -0.0578*** -0.0193*** -0.0104*** -0.0050** 

 (0.0164) (0.0092) (0.0052) (0.0028) (0.0019) 

No turbines visible - 0.0268 0.0152 0.0223*** 0.0018 

  (0.0498) (0.0105) (0.0040) (0.0021) 

      

Difference-in-difference-in-difference estimates relative to non-visible 

 - -0.0847† -0.0345** -0.0327*** -0.0068* 

  0.0501 0.0106 0.0046 0.0027 

      

Notes as for Table 3, column 8, but with additional wind farm distance indicator 

Observations 1710293, R-squared 0.8719 

Robust standard errors in parentheses, clustered at Census OA  *** p<0.001, ** p<0.01, * p<0.05, † p<0.10 
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Table 7: Effects by windfarm size and distance bands 

 (1) (2) (3) (4) 

 <2km 2-4km 4-8km 8-14km 

 

No turbines visible 0.0276 0.0154 0.0217*** 0.0015 

 (0.0498) (0.0105) (0.0040) (0.0021) 

1-10 turbines visible -0.0556*** -0.0165** -0.0032 -0.0023 

 (0.0084) (0.0053) (0.0030) (0.0021) 

11-20 turbines visible -0.0512** -0.0213* -0.0371*** -0.0013 

 (0.0187) (0.0091) (0.0055) (0.0035) 

20+ turbines visible -0.1199*** -0.0530** -0.0466*** -0.0162*** 

 (0.0277) (0.0169) (0.0059) (0.0029) 

     

Obs. 1,710,293. R-squared 0.8719 

     

 (5) (6) (7) (8) 

 <2km 2-4km 4-8km 8-14km 

Difference-in-difference-in-difference estimates relative to non-visible 

1-10 turbines visible -0.0832† -0.0319** -0.0249*** 0.0038 

 0.0501 0.0107 0.0048 0.0029 

11-20 turbines visible -0.0789 -0.0368** -0.0588*** 0.0027 

 0.0527 0.0128 0.0066 0.0039 

20+ turbines visible -0.1475** -0.0685** -0.0684*** -0.0177*** 

 0.0560 0.0192 0.0069 0.0035 

     

Notes as for Table 3, column 8, but with additional turbine size indicators 

Robust standard errors in parentheses, clustered at Census OA  *** p<0.001, ** p<0.01, * p<0.05, † p<0.10 
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Figure 1: Development of wind turbines in England and Wales, 1993-2011 

 

Figure includes onshore and offshore wind farms which are closer than 16km to postcodes with housing 

transactions 
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Figure 2: Development of wind turbine sites in England and Wales 

2000: 30 sites 2003: +20 sites 

  
2007: +33 sites 2011: +65 sites 
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Figure 3: Example viewshed. Haswell Moor wind farm in north east England 
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Figure 4: Comparison by visibility: Postcode fixed effects estimates; distance bands; controls 

include distance-band-by-year effects and visibility-by-quarter effects. 
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7 Appendix 

Table 8: Postcode fixed effects estimates; samples with operational wind farm within k km, during 

2000-2011; additional controls for region-by-year effects 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Radius <1km <2km <2km <4km <4km <8km <8km <14km <14km 

Control vars. Yes Yes Yes Yes Yes Yes Yes Yes Yes 

          

Visible-  -0.0663*** -0.0438*** -0.0455*** -0.0306*** -0.0301*** -0.0105*** -0.0089*** -0.0117*** -0.0105*** 

operational: (0.0183) (0.0088) (0.0088) (0.0049) (0.0048) (0.0026) (0.0026) (0.0016) (0.0016) 

Non-visible-   -0.0696  -0.0110  0.0057  -0.0074*** 

operational:   (0.0595)  (0.0122)  (0.0040)  (0.0019) 

          

Sample Visible Visible All Visible All Visible All Visible All 

Obs 8,052 36,298 37,998 125,619 150,907 417,107 621,395 984,292 1,710,293 

R-squared 0.8505 0.8615 0.8632 0.8660 0.8666 0.8753 0.8756 0.8735 0.8742 

Notes as in Table 3 

Additional controls for regional trends: north, south, east and west quadrant-by year dummies 



- 51 - 

 

 

Table 9: Alternative standard errors: windfarm size and distance bands 

 (1) (2) (3) (4) 

 <2km 2-4km 4-8km 8-14km 

 

No turbines visible 0.0272 0.0153 0.0215* 0.0013 

 (0.0498) (0.0105) (0.0040) (0.0021) 

 [0.0486] [0.0121] [0.0058] [0.0035] 

 {0.0539} {0.0159} {0.0084} {0.0046} 

1-10 turbines visible -0.0557** -0.0168† -0.0032 -0.0022 

 (0.0084) (0.0053) (0.0030) (0.0021) 

 [0.0084] [0.0053] [0.0047] [0.0033] 

 {0.017} {0.0101} {0.0069} {0.0052} 

11-20 turbines visible -0.0517† -0.0217 -0.0373** -0.0013 

 (0.0187) (0.0091) (0.0055) (0.0035) 

 [0.0253] [0.0102] [0.0083] [0.0052] 

 {0.0269} {0.0141} {0.0127} {0.0073} 

20+ turbines visible -0.1207*** -0.0531† -0.0467*** -0.0161* 

 (0.0275) (0.0169) (0.0059) (0.0029) 

 [0.0287] [0.0140] [0.0073] [0.0036] 

 {0.0201} {0.0290} {0.0115} {0.0067} 

Obs. 1,710,293. R-squared 0.8718 

     

Notes as for Table 3, column 8, but with additional turbine size indicators 

Robust standard errors in parentheses, clustered at Census OA  (.), double clustering at postcode and quarter 

following Thompson 2011 [.], ward {.} 

Significance indicated for most conservative ward-clustered standard errors *** p<0.001, ** p<0.01, * p<0.05, † 

p>0.10 

 


	Gibbons_Gone with wind_2015_cover
	Gibbons_Gone with wind_2015_author
	Cover
	Final Submission




