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2 journal of political economy
several decades. We show that firms tend to innovate more in clean
ðand less in dirtyÞ technologies when they face higher tax-inclusive fuel
prices. Furthermore, there is path dependence in the type of innova-
tion ðclean/dirtyÞ both from aggregate spillovers and from the firm’s
own innovation history. We simulate the increases in carbon taxes needed
to allow clean technologies to overtake dirty technologies.
I. Introduction
There is a wide scientific consensus that greenhouse gas emissions from
human activities, in particular carbon dioxide ðCO2Þ, are responsible for
the current observed warming of the planet. Automobiles are major con-
tributors to these emissions: according to the International Energy Agency,
in 2009 road transport accounted for 4.88 gigatons of CO2, which repre-
sented 16.5 percent of global CO2 emissions ðtransport as a whole was re-
sponsible for 22.1 percentÞ. In this paper we look at technological innova-
tions in the auto industry and examine whether government intervention
can affect the direction of this innovation. More specifically, we construct
a new panel data set on auto innovations to examine whether firms redi-
rect technical change away from dirty ðpollutingÞ technologies and to-
ward cleaner technologies in response to increases in fuel prices ðour
proxy for a carbon taxÞ in the context of path-dependent innovation. We
associate “dirty” innovation with internal combustion engine patents and
“clean” innovation with electric, hybrid, and hydrogen vehicle patents,
but we discuss carefully issues around this definition and consider various
alternatives.1

Our main data are drawn from the European Patent Office’s ðEPOÞ
World Patent Statistical database ðPATSTATÞ. These data cover close to
the population of all worldwide patents since the mid-1960s. Our out-
come measure focuses on high-value “triadic” patents, which are those
that have been taken out in all three of the world’s major patents offices:
the EPO, the Japan Patent Office ð JPOÞ, and the US Patents and Trade-
e do not consider radical innovations in upstream industries such as biofuels, for in-
e. To explore this is beyond the scope of the current paper, which takes the more pos-
pproach of analyzing the determinants of clean innovation in vehicles.
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carbon taxes, path dependency 3
mark Office ðUSPTOÞ. Our database also reports the name of patent ap-
plicants, which in turn allows us tomatch clean and dirty patents with dis-
tinct patent holders each of whom has her own history of clean versus
dirty patenting. Finally, we know the geographical location of the inven-
tors listed on the patent so we can examine location-based knowledge
spillovers.
We report three important empirical findings. First, higher fuel prices

induce firms to redirect technical change away from dirty innovation
and toward clean innovation. Second, a firm’s propensity to innovate
in clean technologies appears to be stimulated by its own past history
of clean innovations ðand vice versa for dirty technologiesÞ. In other
words, there is path dependence in the direction of technical change:
firms that have innovated a lot in dirty technologies in the past will find
it more profitable to innovate in dirty technologies in the future.2 Our
third finding is that a firm’s direction of innovation is affected by local
knowledge spillovers. We measure this using the geographical location
of its inventors. More specifically, a firm is more likely to innovate in
clean technologies if its inventors are located in countries where other
firms have been undertaking more clean innovations ðand vice versa for
dirty technologiesÞ. This provides an additional channel that reinforces
path dependency.
Our paper relates to several strands in the literature. First, our work is

linked to the literature on climate change, initiated by Nordhaus ð1994Þ.3
We contribute to this literature by focusing on the role of innovation in
mitigating global warming and by looking at how various policies can in-
duce more clean innovation in the auto industry.
We also connect with work on directed technical change, in particular,

Acemoglu ð1998, 2002, 2007Þ, which itself was inspired by early contribu-
tions by Hicks ð1932Þ and Habakkuk ð1962Þ.4 We contribute to this liter-
4 The theoretical literature on directed technical change is well developed. For applica-
tions to climate change, see, e.g., Messner ð1997Þ, Grübler and Messner ð1998Þ, Goulder
and Schneider ð1999Þ, Nordhaus ð2002Þ, van der Zwaan et al. ð2002Þ, Buonanno, Carraro,
and Galeotti ð2003Þ, Smulders and de Nooij ð2003Þ, Sue Wing ð2003Þ, Manne and Richels

2 As shown in Acemoglu et al. ð2012Þ, this path dependency feature when combined
with the environmental externality ðwhereby firms do not factor in the loss in aggregate
productivity or consumer utility induced by environmental degradationÞ will induce a
laissez-faire economy to produce and innovate too much in dirty technologies compared
to the social optimum. This in turn calls for government intervention to “redirect” tech-
nical change.

3 Nordhaus ð1994Þ developed a dynamic Ramsey-based model of climate change ðthe
dynamic integrated climate-economy[DICE]modelÞ, which added equations linking pro-
duction to emissions. Subsequent contributions have notably examined the implications of
risk and discounting for the optimal design of environmental policy. In particular, see Stern
ð2006Þ, Nordhaus ð2007Þ, Weitzman ð2007, 2009Þ, Dasgupta ð2008Þ, Mendelsohn et al. ð2008Þ,
von Below and Persson ð2008Þ, and Yohe, Tol, and Anthoff ð2009Þ. Recently, Golosov et al.
ð2014Þ have extended this literature by solving for the optimal policy in a full dynamic stochas-
tic general equilibrium framework.
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ature by providing empirical evidence on the role of carbon prices in di-
recting technical change. Earlier work by Popp ð2002Þ is closely related
to our paper. This paper uses aggregate US patent data from 1970–94 to
study the effect of energy prices on energy-efficient innovations. Popp
finds a significant impact from both energy prices and past knowledge
stocks on the direction of innovation. However, since he uses aggregate
data, a concern is that his regressions also capture macroeconomic
shocks correlated with both innovation and the energy price.5 The nov-
elty of our approach is that we use international firm-level panel data
and exploit differences in a firm’s exposure to different markets to build
firm-specific fuel prices, which allows us to provide microeconomic evi-
dence of directed technical change. Acemoglu et al. ð2016, in this issueÞ
calibrate a microeconomic model of directed technical change to derive
quantitative estimates of the optimal climate change policy. The focus of
our work is more empirical, but we use our results to perform a related
exercise: we simulate the aggregate evolution of future clean and dirty
knowledge stocks and analyze how this evolution would be affected by
changes in carbon taxes.
Finally, we draw on the extensive literature in industrial organization

that estimates the demand for vehicles ðenergy-efficient and otherwiseÞ
as a function of fuel prices and other factors.6 We go beyond this work by
looking at the rate and direction of innovation.
The paper is organized as follows. Section II develops a simple model

to guide our empirical analysis and Section III presents the econometric
methodology. The data are presented in Section IV with some descrip-
ð2004Þ, Gerlagh ð2008Þ, Gerlagh, Kverndokk, and Rosendahl ð2009Þ, and Gans ð2012Þ. In
contrast, empirical work on directed technical is scarcer; but see Acemoglu and Linn
ð2004Þ for evidence in the pharmaceutical industry, Acemoglu and Finkelstein ð2008Þ in
the health care industry, or, more recently, Hanlon ð2015Þ for historical evidence in the
textile industry.

5 Further evidence of directed technical change in the context of energy saving can be
found in the study by Newell, Jaffe, and Stavins ð1999Þ, who focus on the air conditioning
industry, or by Crabb and Johnson ð2010Þ, who also look at energy-efficient automotive
technology. Haščič et al. ð2009Þ investigate the role of regulations and fuel price on auto-
motive emission control technologies. Hassler, Krussell, andOlovsson ð2012Þ find evidence
for a trend increase in energy-saving technologies following oil price shocks. They measure
the energy-saving bias of technology as a residual, which is attractive as it sidesteps the need
to classify patents into distinct classes. On the other hand, our technology variables are
more directly related to the innovation we want to measure.

6 For example, using around 86 million transactions, Alcott and Wozny ð2014Þ find that
fuel prices reduce the demand for autos, but by less than an equivalent increase in the ve-
hicle price. They argue that this is a behavioral bias causing consumers to undervalue fuel
price changes. Readers are referred to this paper for an extensive review of the literature
on fuel prices and the demand for autos. Busse, Knittel, and Zettelmeyer ð2013Þ use similar
data in a more reduced-form approach but, by contrast, find a much larger impact of fuel
price on auto demand. Although the magnitude of the fuel price effect on demand differs
between studies, it is generally accepted that there is an important effect of fuel prices on
vehicle demand.
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tive statistics. Section V reports the results and discusses their robustness
and some extensions. We perform the simulation exercise in Section VI.
Section VII presents conclusions. Appendix A provides details on the
theoretical model, appendix B on the econometrics model, and appen-
dix C on the data. All appendices are available online.
II. Theoretical Predictions
In this section we develop theoretical predictions that will guide our em-
pirical analysis. Full details are in appendix A. We consider a one-period
model of an economy in which consumers derive utility from an outside
good and from motor vehicle services. To abstract from income effects,
utility is quasi-linear with respect to the outside good C0 ðchosen as the
numeraireÞ.
To consume motor vehicle services, consumers need to buy cars and

fuel ðcall this a “dirty car bundle”Þ or cars and electricity ðcall this a
“clean car bundle”Þ. Utility is then given by

U 5 C0 1
b

b2 1

��E1

0

Y ðj21Þ=j
ci di

�½j=ðj21Þ�½ðε21Þ=ε�

1

�E1

0

Y ðj21Þ=j
di di

�½j=ðj21Þ�½ðε21Þ=ε��½ε=ðε21Þ�½ðb21Þ=b�
;

where the consumption of variety i of clean cars together with the corre-
sponding clean energy ðelectricityÞ is

Yci 5 minðyci; ycieciÞ;

and the consumption of variety i of dirty cars together with the corre-
sponding dirty energy ðfuelÞ is

Ydi 5 minðydi; ydiediÞ:

The term ezi is the amount of energy consumed for variety i of a type z
car, where z 5 c, d, that is, z 5 Clean, Dirty; ε is the elasticity of substitu-
tion between the clean and dirty cars; j is the elasticity of substitution
among varieties within each type of car; and b is the elasticity of con-
sumption of motor vehicle services with respect to its index price ðthis
parameter measures the degree of substitutability between motor vehi-
cle services and the outside goodÞ. Finally, yci ðrespectively, ydiÞ is the en-
ergy efficiency of clean ðrespectively, dirtyÞ cars. We impose the following
parameters restrictions: 1 < ε ≤ j, so that clean cars are more substitut-
able with each other than with dirty cars; and ε > b, that is, the elasticity
of substitution between clean and dirty cars is larger than the price elas-
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ticity for motor vehicle services ðwhich implies that the elasticity of sub-
stitution between clean and dirty cars is larger than that between motor
vehicle services and the outside goodÞ.
Varieties of cars are produced by monopolists. Each monopolist owns

a given number of varieties in clean or dirty cars of mass zero. The mo-
nopoly producer of variety i of a type z car produces Azi cars using one
unit of outside good as an input, and the energy requirement for that
variety is yzi. Therefore, yzi captures energy-augmenting technologies,
while Azi captures technologies that augment the other inputs ðlabor,
for instanceÞ for a car of type z. Prior to production, monopolists can
spend R&D resources to increase the level of their technologies ðwe as-
sume that the cost function is quadratic in the amount of technological
improvementÞ. We refer to increases in Adi as “dirty” innovations: such
an innovation reduces the price of dirty cars and increases the demand
for fossil fuel, generating more emissions. Increases in ydi are “grey” in-
novations; they reduce the amount of emissions per unit of “dirty car
bundles” but they also increase the demand for dirty cars ðthrough a “re-
bound” effectÞ, so that the impact on emissions is ambiguous. Increases
in yci or Aci are clean innovations; they lead to a substitution from dirty
cars consumption to clean cars consumption, leading to a decrease in
emissions.7

Themodel is solved in appendix A. We show that for typical parameter
values we can derive some key predictions.
Prediction 1. An increase in the price of the fossil fuel increases

innovation in clean technologies, decreases innovation in dirty tech-
nologies, and has an ambiguous impact on innovation in grey tech-
nologies.
Prediction 2. Firms with an initially higher level of clean technol-

ogies will tend to innovate more in clean technologies. Similarly, those
with higher initial levels of dirty technologies will tend to innovate more
in dirty technologies.
Here, we provide only the intuition for these results. First, on the im-

pact of an increase in fuel price on clean innovations ðprediction 1Þ, a
higher fuel price makes the dirty bundle more expensive; and since
clean and dirty cars are substitutes, this encourages the consumption
of clean cars. Since the market share of clean cars is now larger, the re-
turn to innovation in clean cars is also larger. For dirty cars, a higher fuel
price reduces the market share and therefore profits, discouraging both
dirty and grey innovation. However, it also increases the returns from
grey innovation as saving on fuel reduces the price of a car bundle more
when fuel prices are large. The total impact on grey innovations is there-
7 As an increase in productivity increases income, there would be an additional rebound
effect if cars were a normal good.
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fore ambiguous ðit is more likely to be negative when the price elasticity
of cars is larger and when clean and dirty cars are closer substitutesÞ.8
Second, on path dependence within firms ðprediction 2Þ, a higher level

of dirty technologies implies a larger market share increasing the incen-
tives to innovate in dirty technologies. Against this, however, more dirty
technologies imply that there are lower marginal benefits to making in-
vestments that increase productivity and reduce the prices of a dirty car
bundle further. The net effect is positive when the elasticity of substitu-
tion is sufficiently large ðso that the market size effect is largeÞ. The same
applies to grey and clean technologies.
These predictions are also generated by other models in the literature.

Acemoglu et al. ð2012Þ and Gans ð2012Þ study models in which innova-
tion can augment a clean or a dirty energy technology and show that a
carbontaxðequivalent here to a higher fuel priceÞ increases innovation
in clean energy-augmenting technologies ðto the detriment of dirty energy-
augmenting technologiesÞ provided that the two inputs are substitutes.
This is similar to the trade-off between clean and dirty innovations in our
model. Smulders and de Nooij ð2003Þ and Hassler et al. ð2012Þ consider
models in which innovation can augment either ðfossil fuelÞ energy or
other inputs that are complementary to it. An increase in the price of
energy redirects innovation toward energy-augmenting technology, but
since the total amount of innovation may decrease, the net impact on
energy-augmenting innovation is ambiguous ðthis is similar to what hap-
pens to grey innovations here in our modelÞ.
Our model departs from these models, however, in three main re-

spects. First, we simultaneously consider clean, dirty, and grey technolo-
gies when looking at path dependence. Second, we allow for firm hetero-
geneity. Both aspects are directly relevant to our empirical analysis since
it is based on firm-level data, and we identify the role of path depen-
dence from the difference in innovation efforts by firms with differing
technology levels. Third, we allow for an externality whereby local aggre-
gate knowledge in a given technology exogenously contributes to a
firm’s own knowledge stock. This directly delivers the third prediction,
which we take to the data.
Prediction 3. Firms innovate more in clean technologies when the

aggregate level of clean technologies is higher in neighboring varieties
ðand similarly for dirty technologiesÞ.
8 In app. A, we further show that the impact of an increase in fuel price on innovation is
not the same for all varieties if their productivity levels differ. Indeed, the fuel price in-
crease affects relatively less the varieties that have a high level of grey over dirty technolo-
gies; therefore, these varieties can increase their market share at the expense of other dirty
cars. This has the effect of increasing both dirty and grey innovations. By contrast, both
types of innovations are further reduced for varieties with a low grey over dirty technology
levels ratio.



8 journal of political economy
III. Econometrics

General Approach
Consider the following Poisson specification for the determination of
firm innovation in clean technologies:9

PATC ;it 5 expðbC ;P ln FPit21 1 AC ;it21Þ1 uC ;it ; ð1Þ
where PATC,it is the number of patents applied for in clean technologies
by firm i in year t; AC,it is the firm’s knowledge stock relevant for clean
innovation, which depends on both its own stocks of past clean and dirty
innovation and the aggregate spillovers from other firms ðdiscussed be-
lowÞ; uC,it is an error term; expð�Þ is the exponential operator; and FPit is
fuel price. We lag prices and knowledge stocks to reflect delayed re-
sponse and to mitigate contemporaneous feedback effects.10 In the ro-
bustness section we show that this functional form is reasonable com-
paring it to alternative dynamic representations using other lag structures
and the Popp ð2002Þ approach.
The fuel price has independent variation across time and countries

primarily because of country-specific taxes, and we show the robustness
of our results to using just fuel taxes instead of ðtax-inclusiveÞ fuel prices.
The profile of car sales across countries differs between auto firms. For ex-
ample, General Motors has some “home bias” toward the US market,
whereas Toyota has a home bias toward the Japanese market ði.e., they
sell more in these countries than one would expect from country and
firm observables aloneÞ. Thus, different firms are likely to be differently
exposed to tax changes in different countries, and the fuel price has a
firm-specific component. This firm-specific difference in market shares
across countries could arise because of product differentiation and het-
erogeneous tastes or perhaps because of government policies to promote
domestic firms. To take this heterogeneity into account, we use the firm’s
history of patent filing to assess the relative importance of the various mar-
kets the firm is operating in and construct firm-specific weights on fuel
prices for the corresponding market. Simply put, an unexpected increase
in US fuel taxes will have a more salient impact on car makers with a bigger
market share in the United States than those with a smaller market share.
We discuss this in more detail in Section IV.
9 In our regressions we use an equivalent equation for dirty technologies. We initially
discuss only one of these equations to simplify the notation.

10 In principle, the price should be the firm’s expectation of the future evolution of the
fuel price based on the information set at the time of making the innovation investment
decision. Fuel prices appear to be well approximated by a random walk process ðe.g., An-
derson et al. 2011; Anderson, Kellogg, and Sallee 2013Þ, so given our assumption that de-
cisions are made on t2 1 information, lagged prices should be a sufficient statistic for this
expectation. Note that the Anderson result is only for US data, but it seems more generally
true in other countries ðe.g., Hamilton 2009; Liu et al. 2012Þ.
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We parameterize the firm’s total knowledge stock as

AC ;it 5 bC ;1 ln SPILLC ;it 1 bC ;2 ln SPILLD;it 1 bC ;3 lnKC ;it

1 bC ;4 lnKD;it :
ð2Þ

The firm’s knowledge will likely depend on its own history of innova-
tion, and we denote this as KC,it ðfirm’s own stock of clean innovationÞ and
KD,it ðfirm’s own stock of dirty innovationÞ.11 In addition to building on
their own past innovations, firms will also “stand on the shoulders of gi-
ants,” so we allow their knowledge stock to depend on spillovers from
other firms in both clean ðSPILLC,itÞ and dirty technologies ðSPILLD,itÞ.
We use stocks of economywide patents to construct these country-specific
spillover measures. Drawing on the evidence that knowledge has a geo-
graphically local component ðe.g., Jaffe, Trajtenberg, and Henderson
1993Þ, we use the firm’s distribution of inventors across countries to
weight the country spillover stocks. In other words, if the firm has many
inventors in the United States regardless of whether the headquarters of
the firm is in Tokyo or Detroit, then the knowledge stock in the United
States is given a higher weight ðsee Sec. IVÞ.
There are of course other factors that may influence innovation in ad-

dition to fuel prices and the past history of innovation. These include
government R&D subsidies for clean innovation, regulations over emis-
sions, and the size and income level of the countries a firm is expecting
to sell to ðproxied by GDP and GDP per capitaÞ. We denote these poten-
tially observable variables by the vector wC,it. We also allow for unobserv-
able factors by introducing a firm fixed effect ðhC,iÞ, a full set of time dum-
mies ðTC,tÞ, and an error term ðuC,it, assumed to be uncorrelated with the
right-hand-side variablesÞ. Adding these extra terms and substituting
equation ð2Þ into ð1Þ gives us our main empirical equation for clean in-
novation:

PATC ;it 5 expðbC ;P ln FPit21 1 bC ;1 ln SPILLC ;it21

1 bC ;2 ln SPILLD;it21 1 bC ;3 lnKC ;it21

1 bC ;4 lnKD;it21 1 bC ;wwit 1 TC ;tÞhC ;i 1 uC ;it :

ð3Þ

Symmetrically, we can derive an equation for dirty innovation:

PATD;it 5 expðbD;P ln FPit21 1 bD;1 ln SPILLC ;it21

1 bD;2 ln SPILLD;it21 1 bD;3 lnKC ;it21

1 bD;4 lnKD;it21 1 bD;wwit 1 TD;tÞhD;i 1 uD;it :

ð4Þ
11 We construct stocks using the perpetual inventory method but show robustness to us-
ing patent flows and to considering alternative assumptions over knowledge depreciation
rates. Some firms have zero lagged knowledge stock in some periods, so we also add in
three dummy indicator variables for when lagged clean stock is zero, lagged dirty stock
is zero, or both are zero.
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Section II yielded predictions on the signs of the coefficients in these
two equations. If higher fuel prices induce more clean than dirty inno-
vation, then the marginal effect of the fuel price must be larger on clean
innovation than on dirty innovation: bC,P > bD,P, and we would further ex-
pect that bC,P > 0 and bD,P < 0.12 Next, for there to be path dependence in
the direction of innovation, it should be the case that ðceteris paribusÞ
firms that are exposed to more dirty spillovers become more prone to
conduct dirty innovation in the future: that is, bD,2 > 0 and bD,2 > bC,2. In
the clean innovation equation we have bC,1 > 0 and bC,1 > bD,1. Further-
more, path dependence should involve similar effects working through
a firm’s own accumulated knowledge: bD,4 > 0 and bD,4 > bC,4 ðbC,3 > 0
and bC,3 > bD,3Þ. Also, we would expect that the positive effect of dirty spill-
overs and dirty knowledge stocks on dirty innovation would be larger than
the effects of clean spillovers and clean knowledge stocks: bD,2 > bD,1 and
bD,4 > bD,3. The reverse predictions should all apply for the clean equation:
bC,2 < bC,1 and bC,4 < bC,3.
Dynamic Count Data Models with Fixed Effects
To estimate equations ð3Þ and ð4Þ we use

PATz;it 5 expðxitbzÞhz;i 1 uz;it ; ð5Þ
where z ∈ fC, Dg and xit is the vector of regressors. We compare a num-
ber of econometric techniques to account for firm-level fixed effects hzi
in these Poisson models. Our baseline is an econometric model we label
CFX, the control function fixed-effect estimator. It builds on the presam-
ple mean scaling estimator proposed in Blundell, Griffith, and Van Reenen
ð1999Þ ðsee also Blundell, Griffith, and Van Reenen 1995; Blundell, Griffith,
and Windmeijer 2002Þ.
Blundell et al. suggest conditioning on the presample average of the

dependent variable to proxy out the fixed effect. Like the Blundell
et al. ðBGVRÞ estimator, the CFX uses a control function approach to
deal with the fixed effect; but rather than using information from the
presample period in the control function, we simultaneously estimate
the main regression equation and a second equation allowing us to iden-
tify the control function from future data ðsimilar to the idea of taking
orthogonal deviations in the linear panel data literature; see Arellano
2003Þ. The full details on this are provided in appendix B, but in a nut-
shell, we use CFX to deal with a potential concern with the BGVR ap-
proach, namely, that it requires a long presample history of realizations
12 Note that these two stronger second conditions are not necessary for induced ðre-
directedÞ technical change as the absolute sign of the price effects will depend on the elas-
ticity of substitution between cars and other goods.
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of the dependent variable. However, in our data—particularly for clean—
patenting is concentrated toward the end of our sample period. Be-
low, we provide results using both the CFX and BGVR method as well
as two other common approaches. First, we use the Hausman, Hall,
and Griliches ð1984Þ method ðthe count data equivalent to the within-
groups estimatorÞ even though this requires strict exogeneity, which is
inconsistent with models including functions of the lagged dependent
variable as we have in equations ð3Þ and ð4Þ. Second, we implement some
simple linear within-groups models adding an arbitrary constant to the
dependent variable before taking logarithms. We show that all these ap-
proaches deliver similar qualitative results, although the CFX provides
the best overall fit to the data.
IV. Data

Main Data Set
In this section, we briefly present our data ðadditional details can be
found in app. CÞ. Our main data are drawn from the World Patent Sta-
tistical Database ðPATSTATÞmaintained by the EPO.13 Patent documents
are categorized using the International Patent Classification ðIPCÞ and
national classification systems. We extract all the patents relating to clean
and dirty technologies in the automotive industry. Clean is identified by
patents whose technology class is specifically related to electric, hybrid,
and hydrogen vehicles. Our selection of relevant IPC codes for clean
technologies relies heavily on previous work by the OECD ðsee http://
www.oecd.org/environment/innovation; Haščič et al. 2009; Vollebergh
2010Þ.
Clearly, there is a debate as to how clean both electric cars and hydro-

gen cars really are ðGraff Zivin, Kotchen, and Mansur 2014Þ. This will
depend, by and large, on how electricity and hydrogen are being gener-
ated. However, we note that in most plausible long-run scenarios, elec-
tricity will be generated by renewable sources and hydrogen will be gen-
erated using electrolysis. Consequently, electric and hydrogen cars would
be clean. Assessing the speed of such a transition for a full optimal envi-
ronmental policy is beyond the scope of this paper but is an important
topic for future research.
The precise description of the IPC codes used to identify relevant

clean patents can be found in panel A of table 1. Some typical IPC clas-
sification codes included in the clean category are B60L11 ðelectric pro-
pulsion with power supplied within the vehicleÞ and B60K6 ðarrange-
13 PATSTATcan be ordered from the EPO at http://www.epo.org/searching/subscription
/raw/product-14-24.html.



TABLE 1
Definition of IPC Patent Classes for Clean and Dirty Patents

Description IPC Code

A. Clean Patents

Electric vehicles:
Electric propulsion with power supplied within the vehicle B60L 11
Electric devices on electrically propelled vehicles for safety
purposes; monitoring operating variables, e.g., speed,
deceleration, power consumption

B60L 3

Methods, circuits, or devices for controlling the traction–
motor speed of electrically propelled vehicles

B60L 15

Arrangement or mounting of electrical propulsion units B60K 1
Conjoint control of vehicle subunits of different type or
different function/including control of electric propulsion
units, e.g., motors or generators/including control of
energy storage means/for electrical energy, e.g., batteries or
capacitors

B60W 10/08, 24, 26

Hybrid vehicles:
Arrangement or mounting of plural diverse prime movers for
mutual or common propulsion, e.g., hybrid propulsion
systems comprising electric motors and internal combustion
engines

B60K 6

Control systems specially adapted for hybrid vehicles, i.e.,
vehicles having two or more primemovers of more than one
type, e.g., electrical and internal combustion motors,
all used for propulsion of the vehicle

B60W 20

Regenerative braking:
Dynamic electric regenerative braking B60L 7/1
Braking by supplying regenerated power to the primemover
of vehicles comprising engine-driven generators

B60L 7/20

Hydrogen vehicles/fuel cells:
Conjoint control of vehicle subunits of different type or
different function; including control of fuel cells

B60W 10/28

Electric propulsion with power supplied within the vehicle—
using power supplied from primary cells, secondary cells,
or fuel cells

B60L 11/18

Fuel cells; manufacture thereof H01M 8

B. Dirty Patents

Internal combustion engine:
Internal combustion piston engines; combustion engines in
general

F02B

Controlling combustion engines F02D
Cylinders, pistons, or casings for combustion engines;
arrangement of sealings in combusion engines

F02F

Supplying combusion engines with combustible mixtures or
constituents thereof

F02M

Starting of combusion engines F02N
Ignition ðother than compression ignitionÞ for internal
combustion engines

F02P

C. Grey Patents

Fuel efficiency of internal combustion engines:
Fuel injection apparatus F02M39-71
Idling devices for carburetors preventing flow of idling fuel F02M3/02-05
Apparatus for adding secondary air to fuel-air mixture F02M23
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ment or mounting of hybrid propulsion systems comprising electric mo-
tors and internal combustion enginesÞ. US patent 6456041 is an example
of a clean patent from our data set:14 it describes a power supply system
for an electric vehicle. It was first filed by Yamaha Motor in Japan in 1998
and was then filed at the EPO and at the USPTO in 1999. The front page
and technical diagram of the patent are shown in appendix figure A1.
Dirty includes patents with an IPC code that is related to the internal

combustion engine. These can be found in various subcategories of the
F02 group, for example, F02B ðcombustion engines in generalÞ, F02F
ðcylinders, pistons, or casings for combustion enginesÞ, or F02N ðstarting
of combustion enginesÞ. The full list of IPC codes used to identify dirty
patents is in panel B of table 1. Each of these groups includes several
dozen subclasses, and an example of the full list of subclasses for the
F02F group is shown in appendix figure A2. The dirty category typically in-
cludes patents covering the various parts thatmake up an internal combus-
tion engine. For example, EPOpatent 0967381 protects a cylinder head of
an internal combustion engine and USPTO patent 5844336 protects a
starter for an internal combustion engine.
An important feature of the dirty category is that some patents in-

cluded in this group aim at improving the fuel efficiency of internal com-
bustion engines, making the dirty technology less dirty. We refer to these
fuel efficiency patents as “grey” patents. In our baseline results, grey pat-
ents are included in the dirty category, but we also disaggregate the cat-
egory to estimate models separately for grey and “pure dirty” innovations
separately ðas well as splitting up the knowledge stocks along these lines
on the right-hand side of the regressionsÞ. To select IPC codes for grey
technologies, we use recent work at the EPO related to the new climate
change mitigation patent classification ðsee Veefkind et al. 2012Þ. We
complement this with information from interviews with engineers work-
ing in the automobile industry.15 The list of these IPC codes is shown in
TABLE 1 (Continued)

Description IPC Code

Engine-pertinent apparatus for adding nonfuel substances or
small quantities of secondary fuel to combustion-air, main
fuel, or fuel-air mixture

F02M25

Electrical control of supply of combustible mixture or its
constituents

F02D41

Methods of operating engines involving adding nonfuel
substances or antiknock agents to combustion air, fuel,
or fuel-air mixtures of engines, the substances including
nonairborne oxygen

F02B47/06
14 We use the publication numbers in this and the following paten
15 We are especially indebted to Christian Hue de la Colombe for m

ful discussions.
t examples.
any extremely help-
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panel C of table 1. An example of a grey patent is EPO patent 0979940,
which protects a method and device for controlling fuel injection into an
internal combustion engine. Electronic fuel injection technologies con-
stantly monitor and control the amount of fuel burnt in the engine, with
a view to reducing the amount of fuel unnecessarily burnt, thus optimiz-
ing fuel consumption. Appendix figure A3 has the front page and tech-
nical diagram of this patent.
Alongside the grey fuel efficiency innovations, there are many purely

dirty patents, such as EPO patent 0402091, which covers a four-cycle 12-
cylinder engine ðsee app. fig. A4Þ. Fuel consumption is proportional to
the number and the volume of cylinders: the average car sold in Europe
has four cylinders, whereas it has six in the United States. A 12-cylinder en-
gine is much more powerful than a four- or six-cylinder engine, but this
comes at the cost of increased fuel consumption. Twelve-cylinder en-
gines are used by many carmakers for their top-range models, including
AstonMartin, Audi, BMW, andRolls Royce. These cars typically run about
15miles per gallon, while the average new car sold in the United States in
2011 obtains 33.8 miles per gallon.16

To measure innovation, we use a count of patents by application/fil-
ing date. The advantages and limitations of patenting as a measure of in-
novation have been extensively discussed.17 For our purposes, there are
three advantages of using patents. First, they are available at a highly tech-
nologically disaggregated level. We can distinguish innovations in the
auto industry according to specific technologies, whereas R&D investment
cannot be easily disaggregated. Second, R&D is not reported for small and
medium-sized firms in Europe nor for privately listed firms in the United
States ðthey are exempt from the accounting requirement to report R&DÞ.
Third, the auto sector is an innovation-intensive sector, where patents are
perceived as an effectivemeans of protection against imitation, something
that is not true in all sectors ðCohen, Nelson, and Walsh 2000Þ.18 In our
view, these considerations make patents a reasonably good indicator of in-
novative activity in the auto sector.
16 See http://www.fueleconomy.gov for details on car consumption and http://www.bts
.gov/publications/national_transportation_statistics/html/table_04_23.html for US aver-
ages. Note that even though much of dirty innovations are efficiency improving, this has
been historically more than offset by increases in horsepower and size of cars. For example,
between 1980 and 2004 the fuel efficiency of passenger cars increased by only 6.5 percent,
while horsepower increased by 80 percent ðKnittel 2011Þ.

17 See Griliches ð1990Þ and OECD ð2009Þ for overviews. Dating by application is conven-
tional in the empirical innovation literature as it is much more closely timed with when the
R&D was performed than the grant date.

18 Cohen et al. ð2000Þ conducted a survey questionnaire administered to 1,478 R&D labs
in the US manufacturing sector. They rank sectors according to how effective patents are
considered as a means of protection against imitation and find that the top three industries
according to this criterion are medical equipment and drugs, special-purpose machinery,
and automobiles.
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Patents do suffer from a number of limitations. They are not the only
way to protect innovations, although a large fraction of the most eco-
nomically significant innovations appear to have been patented ðDernis,
Guellec, and van Pottelsberghe 2001Þ. Another problem is that patent
values are highly heterogeneous, with most patents having a very low
valuation. Finally, the number of patents that are granted for a given in-
novation varies significantly across patent offices with concerns over in-
creasing laxity in recent years particularly in the USPTO ðe.g., Jaffe and
Lerner 2004Þ.
To mitigate these problems, we focus on “triadic” patents as our main

outcome measure,19 which are those patents that have been taken out in
all three of the world’s major patent offices in the United States, Europe,
and Japan ðUSPTO, EPO, and JPOÞ.20 Focusing on triadic patents has a
number of advantages. First, triadic patents provide us with a common
measure of innovation worldwide, which is robust to administrative idi-
osyncrasies of the various patent offices. For example, if the same inven-
tion is covered by one patent in the United States and by two patents in
Japan, all of which are part of the same triadic patent family, we will count
it as one single invention. Second, triadic patents cover only themost valu-
able inventions, which explains why they have been used so extensively to
capture high-quality patents.21 Third, triadic patents typically protect in-
ventions that have a potential worldwide application; thus these patents
are relatively independent of the countries in which they are filed.
Our data set includes 6,419 clean and 18,652 dirty triadic patents.22

Since the EPO was created in 1978, our triadic patent data start only in
that year. The last year of fully comprehensive triadic data is 2005, so this
is our end year.23 Our basic data set consists of all those applicants ðboth
firms and individualsÞ that applied for at least one of these clean or dirty
auto patents. We identify 3,423 distinct patent holders, which breaks
19 To identify triadic patents we use the INPADOC data set in PATSTAT. For details on
the construction of patent families, see Martinez ð2010Þ.

20 Following standard practice we use all patents filed at the EPO, JPO, and USPTO. The
USPTO published ungranted patent applications only after 2001 ðwhen it changed policy
in line with the other major patent officesÞ. For consistency we thus consider only triadic
patents granted by the USPTO both before and after 2001. For the official definition of
triadic patents and how triadic patent families are constructed, see Dernis and Kahn
ð2004Þ and Martinez ð2010Þ.

21 It has been empirically demonstrated that the number of countries in which a patent
is filed is correlated with other indicators of patent value. See, e.g., Grupp ð1996, 1998Þ,
Lanjouw, Pakes, and Putnam ð1998Þ, Dernis et al. ð2001Þ, Harhoff, Scherer, and Vopel
ð2003Þ, Dernis and Khan ð2004Þ, and Guellec and van Pottelsberghe ð2004Þ.

22 In total, the PATSTAT data set includes 213,668 clean and 762,708 dirty patent appli-
cations across all 80 patent offices. Thus by using triadic patents we focus on the high end
of the distribution of patent quality.

23 The number of triadic patents in all technologies ði.e., including patents that are nei-
ther clean nor dirtyÞ starts falling in 2006 because of time lags between application and
grant date at the USPTO.
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down into 2,427 companies and 996 individuals. For every patent holder
we subsequently identify all the patents they filed. We also extract other
pieces of information based on this sample, which we use to construct
weights for prices and spillovers. For example, we identify all the other
patents filed by holders of at least one clean or dirty triadic patent, which
represents a total of 1,505,719 patent applications.
Tax-Inclusive Fuel Prices
To estimate the impact of a carbon tax on innovation in clean and dirty
technologies, we use information on country-level fuel prices ðFPctÞ and fuel
taxes. Data on tax-inclusive fuel prices are available from the International
Energy Agency ðIEAÞ for 25 major countries from 1978 onward.24 We con-
struct a time-varying country-level fuel price defined as the average of diesel
and gasoline prices.25 The average fuel price across countries for our regres-
sion sample period 1986–2005 is shown in panel a of figure 1. Although this
source of variation will be absorbed by the time dummies in our econo-
metric specifications, it gives a sense of the overall evolution of prices. Fuel
prices fell from the mid to late 1980s and then rose, peaking just before
the dot-com bust of 2000–2001. Prices then fell before recovering after
2003. Average fuel taxes have followed a broadly similar pattern, falling
in the late 1980s, rising throughout the 1990s, and falling back in the
2000s ðpanel b of fig. 1Þ. What is more striking, however, is the high var-
iability across countries of changes in the fuel price over time, much of
it being driven by cross-country differences in tax policies ðsee fig. 2Þ. Fig-
ure 3 illustrates this by showing the evolution of fuel price by country rel-
ative to the United States normalized in 1995.
Fuel prices are available only at the country-year level, whereas our de-

pendent variable has firm-level variation that we would like to exploit. A
related issue is that the auto market is global, and government policies
abroad might be at least as important for a firm’s innovation decisions
24 The IEA reports some incomplete data for an additional 13 countries. We explore the
robustness of our main results to the precise range of countries considered. We find that
our results emerge even if we restrict ourselves to only the 10 largest economies.

25 Diesel and gasoline are differentially taxed in many countries, which could provide an
interesting additional source of variation. However, this would also require distinguishing
innovations between these categories. This is not easily possible as internal combustion en-
gine patent classes do not explicitly separate between diesel and other types of engines. Our
interviews with engineers working in the automobile industry revealed that patent class
F02B1 ðengines characterized by fuel-air mixture compressionÞ corresponds in practice
mostly to gasoline engines, while patent class F02B3 ðengines characterized by air compres-
sion and subsequent fuel additionÞ mostly corresponds to diesel engines. However, these
are only two subclasses out of over 200 used in the paper to classify dirty patents. Conse-
quently, we would not be able to classify the majority of patents into diesel or gasoline en-
gines, in particular because many engine parts, such as pistons and cylinders ðsee, e.g.,
F02B55, internal combustion aspects of rotary pistonsÞ, are used indifferently in both types
of engines.



FIG. 1.—Average fuel price ðpanel aÞ and fuel tax ðpanel bÞ, 1986–2005, for all countries
available in the IEA database. The fuel price ðrespectively, taxÞ is the average between the
diesel and gasoline price ðrespectively, taxÞ. There are 25 countries underlying the graph in
panel a and 24 in panel b ðtaxes are missing for South KoreaÞ. Both prices and taxes are in
2005 US dollar purchasing power parity ðPPPÞ. Source: IEA.



FIG. 2.—Country-specific changes over time. These graphs show the average annual
price of fuel and the tax on fuel for each country available in the IEA database. The fuel
price ðrespectively, taxÞ is the average between the diesel and gasoline price ðrespectively,
taxÞ. Prices and taxes are in 2005 US dollar PPP. Source: IEA.
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as policies in the country where the company’s headquarters are located.
We allow fuel prices to have a different effect across firms by noting that
some geographical markets matter more than others for reasons that are
idiosyncratic to an auto firm. First, auto manufacturers have different
styles of vehicles reflecting their heterogeneous capabilities and brand-
ing that are differentially popular depending on local tastes ðe.g., Berry,
Levinsohn, and Pakes 1995; Goldberg 1995; Verboven 1999Þ. Second,
there is typically some home bias toward “national champion” auto man-
ufacturers in government policies and national tastes. For example, the
2008 auto bailouts in Detroit where paid for by US taxpayers, whereas
the bailout of Peugeot has been shouldered by the French. The upshot
of this is that auto firms display heterogeneous current and expected
market shares across nations, and their R&D decisions will be more in-
fluenced by prices and policies in some countries than in others.
To operationalize this idea, we construct a fuel price variable for each

firm as a weighted average of fuel prices across countries based on a proxy
of where the firm expects its futuremarket to be.Our price index for firm
i at time t is defined as

ln FPit 5o
c

w FP
ic0 ln FPct ; ð6Þ
FIG. 3.—Residuals from a regression of country-level lnðfuel pricesÞ on country and year
dummies. This illustrates the variation that is driving the identification of price effects in
our main regressions. The standard deviation of the residuals is 0.107.
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where FPct is the tax-inclusive fuel price in country c discussed above and
wFP

ic0 is a firm-specific weight ðthis is time invariant and uses information
only prior to the regression sample periodÞ. The weight is determined
by the importance of county c as a market outlet for firm i, so we define
wFP

ic0 as the fraction of firm i’s patents taken out in country c. The rationale
for doing this is that a firm will seek intellectual property protection in
jurisdictions where it believes it will need to sell in the future ðeven if it
licenses the technology, the value of a license will depend on whether
it has obtained intellectual property protection in relevant marketsÞ.
For every patent applied for, we know that the patenting firm has paid
the cost of legal protection in a discrete number of countries. For exam-
ple, a firmmay choose to enforce its rights in all EU countries or in only a
subset of EU countries, say Germany and the United Kingdom. Similarly,
the firm may decide to apply for patent protection in the United States
but not in smaller markets. Assuming that the country distribution of a
firm’s patent portfolio is a good indicator of the firm’s expectation of
where its markets will be in the future, we can use this distribution to con-
struct a firm-specific fuel price, FPit, whose value is computed as the
weightedmean of the lnðfuel pricesÞ in the relevantmarkets, with weights
wFP

ic0 equal to the shares of the corresponding countries in the firm’s pat-
ent portfolio. For example, if a firm had filed 30 patents, 20 in theUnited
States and 10 in Germany, the price changes in the United States would
get a weight of two-thirds and the German price changes a weight of one-
third. In addition, to account for the greater importance of larger coun-
tries, we further weight by each country’s average GDP.
We calculate the weights using the patent portfolio of each company

averaged over the 1965–85 “presample” period, whereas we run regres-
sions over the period 1986–2005. This is to make sure that the weights
are weakly exogenous as patent location could be influenced by shocks
to innovation.We choose 1985 as the cutoff to ensure that there is enough
presample time to construct the weights. We perform robustness tests
using different presample periods to check that nothing is driven by the
precise year of cutoff ðe.g., use 1965–90 as the presample period and esti-
mate the regressions from 1991 onwardÞ.
Why do we not use an alternative weighting scheme that simply re-

flects where firms currently sell their products ðe.g., as in Bloom, Schan-
kerman, and Van Reenen 2013Þ? First, we believe that the information
on where firms choose to take patent protection is a potentially better
measure because it reflects their expectations of where their future mar-
kets will be. Second, there is a data constraint: although sales distribu-
tions by geographic area are available for larger firms, they are not avail-
able for smaller firms—and there are many patents from these smaller
firms. We show our weights compared to sales weights for some of the
largest car firms in appendix table A1: Toyota, Volkswagen, Ford, Honda,
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and Peugeot. The correlation is generally high, suggesting that the
weights we choose do a reasonable job at reflecting market shares.26
The Firm’s Own Lagged Patent Stocks and Spillovers
Firm patent stocks are calculated in a straightforward manner using the
patent flows ðPATz,itÞ described above. Following Cockburn and Griliches
ð1988Þ and Peri ð2005Þ, the patent stock is calculated using the perpetual
inventory method:

Kz;it 5 PATz;it 1 ð12 dÞKz;it21; ð7Þ

where z ∈ fC, Dg. We take d, the depreciation of R&D capital, to be 20 per-
cent, as is often assumed in the literature, but we check the robustness
of our results to other plausible values.
To construct aggregate spillovers for a firm, we use information on the

geographical location of the various inventors in that firm. Patent statis-
tics allow us to locate an inventor geographically regardless of nationality
of the firm’s headquarters or the location of the office where the patent
was filed ðe.g., the patents of Toyota’s scientists working in US research
labs are part of this US spillover poolÞ. Implicit in our approach is the
view that the geographical location of an inventor is likely to be a key de-
terminant of knowledge spillovers rather than the jurisdiction over which
the patent is taken out ðwhich matters more as a signal of where the mar-
ket for sales is likely to beÞ. Many papers have documented the impor-
tance of the geographical component of knowledge spillovers in patents
and other indicators ðe.g., Henderson, Jaffe, and Trajtenberg 1993, 2005;
Griffith, Lee, and Van Reenen 2011Þ.
To construct a firm-specific spillover pool, we use an empirical strategy

analogous to that for the fuel price. The spillover weight wS
ic0 is the share

of all firm i’s inventors ði.e., where the inventor workedÞ in country c be-
tween 1965 and 1985. This weight is distinct from wP

ic0 in equation ð6Þ as it
is based on the location of inventors who are more likely to benefit from
research conducted locally. Importantly, the distribution of the patent
portfolio across countries and the distribution of inventors vary consid-
erably across firms. This is illustrated for the United States in appendix
figure A5.
The spillover for firm i is

SPILLz;it 5o
c

wS
ic0SPILLz;ct ; ð8Þ
26 One exception is that VW appears to have a much higher patent share in Germany ðits
home countryÞ than its sales would suggest.
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where SPILLz,ct is the spillover pool in country c at time t. This is defined
as

SPILLz;ct 5o
j≠i

wS
jc0Kz;jt : ð9Þ

The spillover pool of a country is the sum of all other firms’ patent stocks
with a weight that depends on how many inventors the other firm has in
that country.27

As noted above, a common problem with patent data is that the value
of patents is highly heterogeneous. We mitigate this problem by condi-
tioning on triadic patents, which screen out the very low-value patents.
But we also perform two other checks. First, we weight patents by the
number of future citations. Second, we use “biadic” patents filed at the
EPO and at the USPTO, following Cockburn and Henderson ð1994Þ, who
argued that patents were important if they had been applied in at least
two of the three major economic regions. Our results are robust to these
two variants.
Descriptive Statistics
Figure 4 shows that aggregate triadic clean and dirty patents have been
rising over time. Dirty patents increased steadily between 1978 and 1988,
fell temporarily, and then rose again between 1992 and 2000, but they
have been decreasing during the last 5 years of our data set. The number
of clean patents was low for a decade until 1992, then began rising par-
ticularly after 1995 ðat an average annual growth rate of 23 percentÞ,
peaking at 724 in 2002 alone, before falling back slightly. Consequently,
while the number of clean patents represented only 10 percent of the
number of dirty patents filed annually during the 1980s, they repre-
sented 60 percent by 2005. Descriptive statistics for our data set used in
the regressions are shown in table 2. In any given year, the average num-
ber of dirty patents per firm is 0.23 and the average number of clean pat-
ents is 0.08. Appendix C discusses more descriptive statistics showing
more of the cross-country distribution of patent filing and citation pat-
terns that are consistent with spillovers being much stronger within the
two categories ðclean or dirtyÞ than between them.
27 An alternative approach would be to define the country-level spillover as

SPILLz;ct 5o
j

Kz;jct ;

where Kz;jct 5 PATz;jct 1 ð12 dÞKz;jct21 and PATz,jct is the number of patents filed by inventors
of company j located in country c at year t. Empirically, these two methods give very similar
results.
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We look at the top 10 patentors in clean technologies ðtable A4Þ and
dirty technologies ðtable A5Þ between 1978 and 2005. Japanese and Ger-
man companies predominate, although most top companies’ portfolios
include both clean and dirty ðthe only exception is Samsung SDI, a bat-
tery specialistÞ. Recall that this is based on triadic patents, and US com-
TABLE 2
Descriptive Statistics

Mean
Standard
Deviation Minimum Maximum

Clean patents ðPATC,itÞ .081 1.231 0 125
Dirty patents ðPATD,itÞ .227 3.424 0 355
Fuel price ðln FPÞ 2.276 .251 21.053 .438
Government R&D subsidies ðln R&DÞ 3.885 1.447 0 5.725
Emission regulations index 1.573 1.334 0 5
Clean spillover ðln SPILLCÞ 3.774 1.258 29.864 7.071
Dirty spillover ðln SPILLDÞ 5.401 .991 25.509 7.677
Own stock clean innovation ðln KCÞ 2.174 .790 26.718 5.740
Own stock dirty innovation ðln KDÞ 2.910 1.618 27.593 6.958
Note.—These are the values from our regression sample of 68,240 observations across
3,412 firms between 1986 and 2005. Emission regulations for maximum level of tailpipe
emissions for pollutants for new automobiles are coded between 0 and 5 following Dechez-
leprêtre et al. ð2012Þ. Government R&D subsidies on clean transportation is from the IEA.
See app. B for exact definitions.
FIG. 4.—Number of annual clean and dirty triadic patents, 1978–2005, filed worldwide.
Source: Authors’ calculations based on the PATSTAT database.
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panies tend to file disproportionately more patents in the United States
than in Europe and Japan. Tables A6–A9 report top clean and dirty pat-
entors at the EPO and at the USPTO separately. General Motors is the
third-largest patentor of clean technologies at the USPTO, whereas it is
not even in the top 10 at the EPO.28
V. Results

Main Results
Our main results are shown in table 3. Columns 1–3 use the number of
clean patents ða flowÞ in a firm as the dependent variable and columns 4–
TABLE 3
Regressions of Clean and Dirty Patents

Dependent Variable:

Clean Patents

Dependent Variable:

Dirty Patents

ð1Þ ð2Þ ð3Þ ð4Þ ð5Þ ð6Þ
Fuel price ðln FP Þ .970*** .962** .843** 2.565*** 2.553*** 2.551***

ð.374Þ ð.379Þ ð.366Þ ð.146Þ ð.205Þ ð.194Þ
R&D subsidies ðln R&DÞ 2.005 2.006 2.006 2.005

ð.025Þ ð.024Þ ð.021Þ ð.020Þ
Emission regulation 2.008 .04

ð.149Þ ð.120Þ
Clean spillover
ðln SPILLCÞ .268*** .301*** .266*** 2.093* 2.078 2.089

ð.076Þ ð.087Þ ð.088Þ ð.048Þ ð.067Þ ð.063Þ
Dirty spillover
ðln SPILLDÞ 2.168** 2.207** 2.165* .151** .132 .138*

ð.085Þ ð.098Þ ð.098Þ ð.064Þ ð.082Þ ð.077Þ
Own stock clean ðln KCÞ .306*** .320*** .293*** 2.002 2.004 .021

ð.026Þ ð.027Þ ð.025Þ ð.022Þ ð.022Þ ð.020Þ
Own stock dirty ðln KDÞ .139*** .135*** .138*** .557*** .549*** .539***

ð.017Þ ð.017Þ ð.017Þ ð.031Þ ð.022Þ ð.017Þ
Observations 68,240 68,240 68,240 68,240 68,240 68,240
Firms 3,412 3,412 3,412 3,412 3,412 3,412
28 While it is clear that
dirty automotive patenting
innovations is 0.023, and i
top 10 patent holders in cl
the corresponding figure
there are a number of big comp
, the Herfindahl index for pate
t is 0.038 for dirty innovations, im
ean account for 35.6 percent of p
is 46.6 percent for dirty.
anies activ
nting over
plying low
atents over
e in both
1978–2005
concentra
1978–200
Note.—Standard errors are clustered at the firm level. Estimation is by the CFXmethod.
All regressions include controls for GDP per capita, year dummies, fixed effects, and three
dummies for no clean knowledge, no dirty knowledge, and no dirty or clean knowledge ðin
the previous yearÞ. Fuel price is the tax-fuel price faced. R&D subsidies are public R&D ex-
penditures in energy-efficient transportation. Emissions regulations aremaximum levels of
tailpipe emissions for pollutants from new automobiles.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
clean and
for clean
tion. The
5, whereas
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6 use the flow of dirty patents. All estimates include firm fixed effects
using the CFX approach ðdescribed in Sec. III and in more detail in
app. BÞ, year dummies, and GDP per capita. Column 1 shows that the co-
efficient on the ðtax-inclusiveÞ fuel price is positive and significant. The
elasticity of 0.97 implies that a 10 percent higher fuel price is associated
with about 10 percent more clean patents. The coefficients on spillovers
and lagged patent stocks take signs consistent with the path dependency
hypothesis. Firms that are more exposed to larger stocks of clean innova-
tion by other firms ðclean spillovers, SPILLC,it21Þ are significantly more
likely to produce clean patents, whereas those benefitingmore from dirty
spillovers ðSPILLD,it21Þ are significantly less likely to innovate in clean tech-
nologies. An increase in the lagged clean spillover stock by 10 percent is
associated with an increase in a firm’s clean innovation by 2.7 percent. By
contrast, an increase in the exposure to dirty spillovers by 10 percent re-
duces clean innovation by 1.7 percent.
In addition to path dependency at the economy level through spill-

overs, there is also path dependency at the firm level. Column 1 of table 3
suggests that firms that have innovated in clean technologies in the past
ðKC,it21Þ are much more likely to continue to innovate in clean technol-
ogies in the future, with a significant elasticity of 0.306. Interestingly, a
firm’s own history of dirty innovation ðKD,it21Þ is also associated withmore
clean innovation with an elasticity of 0.139. This coefficient is, however,
much smaller than the corresponding coefficient on past dirty innova-
tion stocks in the dirty innovation equation ðcol. 4Þ, which is four times
as large ð0.557Þ. In other words, firms with a history of dirty innovation
are more likely to innovate in the future in either clean or dirty ðcom-
pared to those with little innovationÞ, but this effect is much stronger
for dirty innovations than for clean innovations, leading to path depen-
dence. Moreover, note that in column 1 the coefficient on a firm’s past
dirty innovation stock on future clean innovation ð0.139Þ is much smaller
than the effect of past clean innovations on future clean innovation
ð0.306Þ.29
Columns 2 and 3 of table 3 include a measure of R&D subsidies for

clean technologies and a control for emission regulations. R&D subsi-
dies are from the IEA’s Energy Technology Research Database, and the
emissions regulations index is from Dechezleprêtre, Perkins, and Neu-
mayer ð2012Þ with details in appendix C. In contrast to the proxy for car-
bon taxes ðfuel pricesÞ, neither of these additional policy variables is sta-
tistically significant, and the coefficients on the other variables do not
change much. The absence of an R&D subsidy effect is surprising, and
we explain below why when discussing table 4.
29 This effect is not predicted by the theory but could result, for instance, from cross-
technology knowledge spillovers.
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Columns 4–6 of table 3 repeat the specification in the first three col-
umns but use dirty patents as the dependent variable instead of clean
patents. The coefficient on fuel prices is negative and significant in all
columns. In column 4 a 10 percent increase in fuel prices is associated
with about a 6 percent decrease in dirty innovation. The estimates on
spillovers and knowledge stocks are symmetric to those in the clean equa-
tion. Exposure to dirty spillovers fosters future dirty innovation, whereas
clean spillovers reduce dirty patenting. The coefficients suggest that a
firm’s own history of dirty patenting has a positive association with future
dirty patenting but that there is no association between the firm’s past
clean patenting and its future dirty patents.
In summary, table 3 offers considerable support for our model. First,

higher fuel prices significantly encourage clean innovation and signifi-
cantly discourage dirty innovation. Second, there is path dependency
in the direction of technical change: countries and firms that have a his-
tory of relatively more clean ðrespectively, dirtyÞ innovation are more
likely to innovate in clean ðrespectively, dirtyÞ technologies in the future.
Grey Innovations
As noted above, our dirty category includes innovations relating to im-
provements in the energy efficiency of internal combustion engines.
We labeled these “grey” innovations and consider disaggregating the dirty
category into these grey and purely dirty innovations. As noted in Sec-
tion II, the effect of fuel prices is more ambiguous in this middle grey cat-
egory. On the one hand, there are incentives to substitute research away
from purely dirty into grey innovation when the fuel price rises. On the
other hand, there is also an incentive to switch away from the internal
combustion engines completely ðincluding greyÞ toward alternative clean
vehicles.
Table 4 presents the results and shows that, as expected, the coeffi-

cient on the fuel price for grey innovation in column 2 ð0.282Þ lies be-
tween the coefficients on clean ðpositive at 0.848 in col. 1Þ and purely dirty
ðvery negative at 20.832 in col. 3Þ. This is consistent with fuel prices hav-
ing a positive effect on energy-efficient innovation, although smaller and
insignificant when compared to the effect of fuel prices on purely clean
innovations. Another interesting feature of the results is that the coeffi-
cient on R&D subsidies is positive and significant in the grey innovation
equation whereas it continues to be insignificant in the clean and purely
dirty equations. This is consistent with the fact that the majority of these
government subsidies are for energy efficiency ðsee app. CÞ rather than
for more radical clean technologies.
Since we have also disaggregated the spillover stocks and the firm’s

own past innovation stocks into the three categories, now we have six var-
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iables reflecting path dependency on the right-hand side of the regres-
sion. The coefficients on these variables take a broadly sensible pattern,
but precision has fallen as there is likely to be some collinearity issues
with a large number of highly correlated variables.
Given how demanding this specification is, we find the overall results

from table 4 encouraging and consistent with the theory.
Magnitude of the Fuel Price Effect on Innovation
In quantitative terms, how do our estimates compare to others in the lit-
erature? Popp ð2002Þ reports short-run energy price elasticities for the
impact of prices on the aggregate number of clean patents as a share
TABLE 4
Disaggregating Dirty Patents into Fuel Efficiency ðGreyÞ and Purely Dirty

Dependent Variable

Clean Patents
ð1Þ

Grey Patents
ð2Þ

Purely Dirty
Patents
ð3Þ

Fuel price .848* .282 2.832***
ð.461Þ ð.398Þ ð.214Þ

R&D subsidies .031 .081** 2.02
ð.047Þ ð.034Þ ð.030Þ

Clean spillover .333** 2.171* 2.014
ð.165Þ ð.098Þ ð.094Þ

Grey spillover .215 .173 .235**
ð.228Þ ð.112Þ ð.102Þ

Purely dirty spillover 2.509 .045 2.208
ð.377Þ ð.136Þ ð.161Þ

Own stock clean .379*** 2.005 .047
ð.090Þ ð.035Þ ð.035Þ

Own stock grey .185* .418*** 2.141***
ð.106Þ ð.035Þ ð.025Þ

Own stock purely dirty 2.011 .192*** .544***
ð.066Þ ð.038Þ ð.026Þ

Observations 68,240 68,240 68,240
Firms 3,412 3,412 3,412
Note.—Standard errors are clustered at the firm level. Estimation is by the CFXmethod.
This table disaggregates the dirty patents into those that are “grey” ðrelated to fuel
efficiencyÞ and those that are not ð“purely dirty”Þ. We construct all spillovers and own past
stocks on the basis of this disaggregation and include on the right-hand side ðhence two ex-
tra terms compared to table 3Þ. We estimate two dirty equations: one in which grey inno-
vations are the dependent variable ðin col. 2Þ and one for the purely dirty ðin col. 3Þ. All
regressions include controls for GDP per capita, year dummies, fixed effects, and four dum-
mies for no own innovations in ðiÞ clean, ðiiÞ grey, ðiiiÞ dirty, and ðivÞ no clean, grey, or purely
dirty in the previous year. Fuel price is the tax-inclusive fuel price faced. R&D subsidies are
public R&D expenditures in energy-efficient transportation.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
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of all patents ðwe look at long-run price effects in Sec. VI belowÞ. We can
compute this elasticity ðEC,PÞ from our regression model as30

EC ;P 5 bC ;Pð12 SCÞ2 bD;PSD;

where SC and SD are the share of clean and dirty patenting in economy-
wide patents ði.e., clean, dirty, and all othersÞ and bC,P and bD,P are coef-
ficients on lnðpriceÞ from our clean and dirty innovation equations, re-
spectively. Compared to all patents in the economy, innovation in the
car industry is rather small. In our sample period, only 0.9 percent of
all patents are clean auto patents and 2.5 percent are dirty auto patents.
Hence, since SC ≈ 0 and SD ≈ 0, bC,P provides a good approximation of
the elasticity. For example, using the estimates in table 3, column 1, the
elasticity would be 0.970 under our approximation and 0.981 using the
exact formula above.
Popp ð2002Þ looks at clean innovation in power generation technolo-

gies, whereas we are focused on innovation in the auto sector. Crabb and
Johnson ð2010Þ implement the same specification as Popp, but on the
US auto sector, finding an elasticity of around 0.4 ðcompared to Popp’s
0.06 for all power generation technologies clean innovationsÞ. Both
Popp and Crabb and Johnson include what we have dubbed grey inno-
vation in their definition of clean. Thus to derive a comparable elasticity,
we report a weighted average of the price coefficient for clean ðbC,PÞ and
the price coefficient for grey ðbG,PÞ derived from our estimates reported in
table 4, where we split the dirty category into “grey” and “purely nongrey
dirty.” The elasticity becomes ðagain abstracting away from the small effect
on aggregate innovationÞ

EC1G ;P ≈bC ;P
PATC

PATC 1 PATG

1 bD;P

PATG

PATC 1 PATG

;

where PATC and PATG are the aggregate number of clean ðour defini-
tionÞ and grey innovations at a particular point in time. As can be seen
30 The elasticity EC,P 5 ∂ ln SC/∂ ln FP, where SC 5 PATC=ðPATC 1 PATD 1 PATOÞ and to-
tal patentsPATZ 5oi expðxitbZ ÞhZi for Z ∈ fC, D, Og and where O represents “other,” i.e.,
nonclean or dirty patents. Consequently,

EC ;P 5

∂PATC

∂ ln FP
PATC

2

∂PATC

∂ ln FP
1

∂PATD

∂ ln FP
1

∂PATO

∂ ln FP
PATC 1 PATD 1 PATO

5
ðPATC 1 PATOÞbC ;P 2 PATDbG ;P

PATC 1 PATD 1 PATO

5 bC ;P ð12 SC Þ2 bD;P SD :
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from figure 5, this elasticity ranges from 0.4 to 0.6 and so is similar in
magnitude to Crabb and Johnson’s estimates. The increase over time oc-
curs because the share of purely clean innovation relative to grey inno-
vations has been increasing over time.
Alternative Econometric Specifications
Table 5 considers the alternative econometric approaches for dynamic
count data models with firm fixed effects discussed in Section III. First,
we follow Hausman et al. ð1984Þ in column 1 for clean patents and col-
umn 3 for dirty patents. The signs of coefficients are generally the same
as in our baseline model of table 3, but the marginal effect of fuel price is
much greater in absolute magnitude for dirty innovation and smaller
ðand insignificantÞ for clean. Indeed, themagnitude of the estimated elas-
ticity for dirty patents seems unreasonably large ð22.496Þ. We suspect that
the assumption of strict exogeneity underlying theHausman et al. ðHHGÞ
method is problematic in our context, as we have a highly dynamic spec-
ification. Columns 2 and 4 implement the Blundell et al. ð1995, 1999Þ es-
timator. The pattern of the spillover effects and dynamics remains sim-
ilar to those of the baseline regression, and we still obtain a positive and
FIG. 5.—Aggregate price elasticities ðclean plus grey shareÞ with respect to lnðfuel priceÞ
over time implied by our firm-level estimates. The detailed methodology is explained in
the text.
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significant effect of fuel prices on clean innovation and a negative and sig-
nificant effect on dirty innovation. The fuel price coefficients are compa-
rable to those in the baseline case.31

The final two columns of table 5 uses relative patenting lnð1 1
PATC,itÞ 2 lnð1 1 PATD,itÞ as the dependent variable in an ordinary least
squares regression with firm dummies ði.e., the linear within-groups es-
timatorÞ. Column 5 shows that there is a significant and positive effect
of fuel prices on relative innovation. Column 6 shows that this result is
TABLE 5
Alternative Econometric Models

Dependent

Variable:

Clean Patents

Dependent

Variable:

Dirty Patents

Difference

between Clean

and Dirty: lnð1 1
PATC,itÞ 2 lnð1 1
PATD,itÞ: Quasi
Linear within

Groups

HHG
ð1Þ

BGVR
ð2Þ

HHG
ð3Þ

BGVR
ð4Þ ð5Þ ð6Þ

Fuel price .189 .671** 22.496*** 2.617*** .142** .154**
ð1.148Þ ð.330Þ ð.913Þ ð.196Þ ð.062Þ ð.064Þ

Clean spillover .478** .293*** .389* 2.134** 2.008 2.011
ð.233Þ ð.077Þ ð.221Þ ð.055Þ ð.007Þ ð.008Þ

Dirty spillover 2.437 2.277*** .243 .201*** 2.015 .022
ð.489Þ ð.084Þ ð.293Þ ð.065Þ ð.014Þ ð.014Þ

Own stock clean .426*** .883*** .045 2.004 .048*** .049***
ð.052Þ ð.032Þ ð.037Þ ð.021Þ ð.007Þ ð.007Þ

Own stock dirty .132 .091*** .649*** 1.067*** 2.014*** 2.014***
ð.086Þ ð.030Þ ð.042Þ ð.021Þ ð.004Þ ð.004Þ

Country � year effects No No No No No Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Observations 22,420 68,240 42,300 68,240 68,240 68,240
Firms 1,121 3,412 2,115 3,412 3,412 3,412
31 However, notice th
clean patenting and di
CFX and the HHG spe
controlling for all the fi
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s for the effects of clea
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Note.—Standard errors are clustered at the firm level. Regressions are the same speci-
fications as in table 3, i.e., col. 3 for clean and col. 6 for dirty. Fuel price is the tax-inclusive
fuel price faced by the firm. The dependent variable is the flow of clean patents in cols. 1
and 2, the flow of dirty patents in cols. 3 and 4, and the log-ratio of clean to dirty patents in
cols. 5 and 6. Different columns control for fixed effects in different ways: HHG is the
Hausman et al. ð1984Þmethod, BGVR is the Blundell et al. ð1999Þmethod, and last two col-
umns are simply within groups ði.e., adding a dummy variable for every firmÞ.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
e stocks on
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robust to including a full set of country by year fixed effects to absorb
any potential country-specific time-varying policy variables.32

Could the results somehow be driven by firms that were not patenting
prior to 1986? Table 6 repeats the baseline regressions for our three count
data models ðBGVR, HHG, and CFXÞ restricting the sample to firms with
at least one patent before 1986. This leads to only small changes in the co-
efficients and no change in the overall qualitative patterns.
Electricity Prices
Most clean car technologies depend on electricity.33 We can therefore hy-
pothesize that electricity prices have the opposite effect from fossil fuel
TABLE 6
Regressions for Sample of Firms with at Least One Presample

Clean or Dirty Patent

Dependent Variable:

Clean Patents

Dependent Variable:

Dirty Patents

CFX
ð1Þ

HHG
ð2Þ

BGVR
ð3Þ

CFX
ð4Þ

HHG
ð5Þ

BGVR
ð6Þ

Fuel price .713** 2.297 .946** 2.435*** 22.196*** 2.498***
ð.299Þ ð1.091Þ ð.322Þ ð.139Þ ð.738Þ ð.181Þ

Clean spillover .263*** .452* .313*** 2.048 .358 2.124**
ð.067Þ ð.247Þ ð.077Þ ð.039Þ ð.230Þ ð.058Þ

Dirty spillover 2.178** 2.223 2.277*** .083** .395 .196***
ð.072Þ ð.473Þ ð.086Þ ð.051Þ ð.280Þ ð.069Þ

Own stock clean .322*** .403*** .836*** .008 .126*** .003
ð.027Þ ð.060Þ ð.038Þ ð.019Þ ð.037Þ ð.021Þ

Own stock dirty .148*** .130 .090*** .522*** .468*** 1.041***
ð.017Þ ð.089Þ ð.033Þ ð.014Þ ð.046Þ ð.022Þ

Observations 25,400 7,900 25,400 25,400 13,340 25,400
Firms 1,270 395 1,270 1,270 667 1,270
32 The country here
such as fuel price were
tionally infeasible to in
data models.

33 Hydrogen for hyd
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Note.—Standard errors are clustered at the firm level. This is a subsample of the data in
table 3 in which we condition on firms having at least one patent in the presample period.
All regressions include controls for GDP per capita, fixed effects, year dummies, and three
dummies for no clean knowledge, no dirty knowledge, and no dirty or clean knowledge ðin
the previous yearÞ. Fuel price is the tax-inclusive fuel price faced by the firm. HHG is the
Hausman et al. ð1984Þmethod, BGVR is the Blundell et al. ð1999Þmethod, and CFX is the
control function fixed-effect method.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
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prices on the direction of technical change. In table 7 we find that, as
expected, electricity prices have a negative effect on clean innovation
ðcol. 1Þ and a positive effect on dirty innovation ðcol. 4Þ, although the co-
efficients are less precisely determined than those on the fuel price. Look-
ing simultaneously at fuel and electricity prices can also be seen as a fur-
ther robustness check for our main results. One concern might be that
our results on fossil fuels are driven by unobserved factors such as a gen-
eral concern for climate change or other climate-related regulation that
we do not control for. However, for most such unobserved factors we
would expect that they have a similar effect on both fossil fuel and elec-
tricity prices, whereas the coefficients take opposite signs in the regres-
sions. Columns 2 and 4 use the relative fuel to electricity price as the co-
efficients in columns 1 and 3 are opposite and have a similar magnitude.
The coefficients on the relative price look very similar to our baseline
estimates.
Other Extensions and Robustness Tests
Oil prices are broadly global, somost of the country-specific variation over
time in fuel prices comes from differential taxation. Consequently, table 8
TABLE 7
Controlling for Electricity Prices

Dependent Variable:

Clean Patents

Dependent Variable:

Dirty Patents

ð1Þ ð2Þ ð3Þ ð4Þ
Fuel price 1.261*** 2.642***

.361 .249
Electricity price 2.996* .402

ð.594Þ ð.478Þ
Fuel price/electricity price 1.122*** 2.885***

ð.390Þ ð.241Þ
Clean spillover .242*** .224*** 2.070 2.061

ð.074Þ ð.074Þ ð.044Þ ð.043Þ
Dirty spillover 2.146** 2.116 .104* .107*

ð.074Þ ð.079Þ ð.055Þ ð.056Þ
Own stock clean .371*** .353*** .026 .033*

ð.032Þ ð.029Þ ð.021Þ ð.020Þ
Own stock dirty .126*** .138*** .533*** .528***

ð.018Þ ð.018Þ ð.013Þ ð.013Þ
Observations 68,240 68,240 68,240 68,240
Firms 3,412 3,412 3,412 3,412
Note.—Standard errors are clustered at the firm level. Estimation is by the CFX ðcontrol
function fixed-effectÞ method described in Sec. III. All regressions include controls for
GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
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substitutes fuel taxes for fuel prices showing again a similar pattern of re-
sults. One difference is that the point estimates of the fuel tax response
are smaller in absolute terms for both types of innovation. This is to be ex-
pected as demand is driven by the final price the consumer pays rather
than the fuel tax itself.
Choosing 1986 as the first year for the regression sample is somewhat

arbitrary, so we experimented with changing the cutoff year to check ro-
bustness. For example, we used 1990 instead and ran the regressions for
1991–2005 using data from 1965–90 to construct the weights. The results
in table 9 are quite comparable to our baseline, although standard errors
are a little larger as we would expect from using a smaller sample for the
regressions.
Table 10 reports alternative dynamic specifications for fuel prices. Col-

umns 1–5 are for clean innovation and use fuel prices dated in the cur-
rent year in column 1, lagged 1 year in our baseline of column 2, lagged
2 years in column 3, and lagged 3 years in column 4. In column 5 we con-
struct a geometrically weighted average of past fuel price levels as pro-
posed by Popp ð2002Þ.34 We repeat these specifications in columns 6–
TABLE 8
Regressions with Fuel Taxes Instead of Fuel Price

Dependent Variable:

Clean Patents

Dependent Variable:

Dirty Patents

CFX
ð1Þ

HHG
ð2Þ

BGVR
ð3Þ

CFX
ð4Þ

HHG
ð5Þ

BGVR
ð6Þ

Fuel tax .400** 2.969 .227 2.229*** 22.643*** 2.301***
ð.167Þ ð.901Þ ð.203Þ ð.069Þ ð.850Þ ð.091Þ

Clean spillover .284*** .442* .286*** 2.085* .394 2.142***
ð.075Þ ð.228Þ ð.077Þ ð.047Þ ð.257Þ ð.049Þ

Dirty spillover 2.193** 2.433 2.275*** .141** .093 .204***
ð.084Þ ð.487Þ ð.077Þ ð.061Þ ð.288Þ ð.063Þ

Own stock clean .327*** .430*** .884*** 2.008 .051 2.005
ð.027Þ ð.052Þ ð.032Þ ð.021Þ ð.036Þ ð.021Þ

Own stock dirty .134*** .126 .091*** .546*** .645*** 1.071***
ð.017Þ ð.087Þ ð.029Þ ð.028Þ ð.041Þ ð.022Þ

Observations 68,240 22,420 68,240 68,240 42,300 68,240
Firms 3,412 1,121 3,412 3,412 2,115 3,412
34 Popp ð2002Þ uses
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for GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year. HHG is the Hausman
et al. ð1984Þ method, BGVR is the Blundell et al. ð1999Þ method, and CFX is the control
function fixed-effect method.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
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10 but use dirty patents instead. With all these approaches we find price
coefficients that are very similar to our earlier estimates, with a positive
elasticity of clean patents with respect to fuel price of around unity and a
negative elasticity of dirty patents of around 20.6.35

We conducted many other robustness tests. First, our outcome vari-
able is triadic patents, those filed at all three main patent offices in the
world ðUSPTO, EPO, and JPOÞ. A concern is that this screens out too
many of the lower-value patents. To address this, we ran our regressions
using biadic rather than triadic patents; that is, we included all patents
in the construction of the innovation and knowledge stock variables that
are filed at the EPO and the USPTO but not necessarily the JPO. Ta-
ble A10 shows that the results are robust to this experiment. Second, we
TABLE 9
Alternative Sample Period: Presample Period for Weights from 1990

and Before, Regressions Run on Data from 1991–2005

Dependent Variable:

Clean Patents

Dependent Variable:

Dirty Patents

CFX
ð1Þ

HHG
ð2Þ

BGVR
ð3Þ

CFX
ð4Þ

HHG
ð5Þ

BGVR
ð6Þ

Fuel price .806** 2.891 2.013 2.235 23.153*** 2.514*
ð.341Þ ð1.306Þ ð.307Þ ð.233Þ ð.933Þ ð.274Þ

Clean spillover .177** .756* .372*** 2.05 .714* 2.074
ð.077Þ ð.407Þ ð.105Þ ð.066Þ ð.391Þ ð.073Þ

Dirty spillover 2.106 2.571 2.367*** .136* .037 .141*
ð.084Þ ð.584Þ ð.133Þ ð.075Þ ð.339Þ ð.073Þ

Own stock clean .349*** .271*** .921*** .009 .063 .016
ð.023Þ ð.060Þ ð.031Þ ð.032Þ ð.046Þ ð.023Þ

Own stock dirty .136*** .138 .129*** .519*** .492*** 1.139***
ð.018Þ ð.093Þ ð.041Þ ð.053Þ ð.054Þ ð.033Þ

Observations 50,820 15,105 50,820 50,820 23,985 50,820
Firms 3,388 1,007 3,388 3,388 1,599 3,388
captures the speed at
tween the predicted an
justment factor of l 5
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Note.—Standard errors are clustered at the firm level. All regressions include controls
for GDP per capita, year dummies, and three dummies for no clean knowledge, no dirty
knowledge, and no dirty or clean knowledge in the previous year. Fuel price is the tax-
inclusive fuel price faced by the firm ðusing presample patent portfolios as weightsÞ. HHG
is the Hausman et al. ð1984Þmethod, BGVR is the Blundell et al. ð1999Þmethod, and CFX
is the control function fixed-effect method.
* Significant at 10 percent.
** Significant at 5 percent.
*** Significant at 1 percent.
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constructed thepatent stockvariables—including the spillover variables—
using citation-weighted counts from all worldwide patents ðtable A11Þ.
This led to qualitatively similar results; for example, the fuel price re-
sponse is larger for clean patents than for dirty patents.36 Third, we exper-
imented with a wide range of other country-specific variables and report
that the results are robust to these additional covariates. For example, in
table A12 we included total GDP in addition to GDP per capita. The co-
efficient on GDP is insignificant, and the basic pattern of our results is ro-
bust to this extra control. Fourth, we were concerned that the results
could be driven by high price volatility in the smaller countries in our
data, so we reconstructed the weights for the fuel price on the basis of
subsamples of the largest countries in GDP terms. Table A13 shows that
the results are robust when just using the larger countries in our sample.
Fifth, as discussed in Section IV.B, it may be that it is not correct to classify
hybrid cars as clean innovation, so we experimented with dropping them
from our definition of clean technologies. The results are robust to this
change ðtable A14Þ.37 Finally, we wanted to make sure that our results
were not driven by firms that rarely patent, so we dropped the least inno-
vative firms, which collectively accounted for only 5 percent of aggregate
patents. The results were robust to this test.
VI. Simulation Results
To obtain a better sense of the aggregate magnitude of the results, we
report a number of counterfactual experiments. We explore the implica-
tions of our econometric models for the evolution of future clean and
dirty knowledge stocks and how this is affected by an increase in the fuel
price ðgenerated, e.g., by an international carbon taxÞ.We recursively com-
pute values of expected patenting under different policy scenarios, use
those to update the knowledge stock variables ðincluding the spillover
variablesÞ, and feed these into the next iteration. Hence, if we split the
right-hand-side variables xit into variables that are functions of the lagged
knowledge stock ðkitÞ and other variables such as the fuel price ðpitÞ, we
can write xit 5 [kit, pit] and a particular iterationT periods after year t as
defined by
36 If anything, the results are generally stronger with elasticities that are larger in mag-
nitude.

37 We also reran table 4 reclassifying all hybrids as grey innovations. The resulting point
estimate on price in the clean equation is somewhat lower ð0.565 instead of 0.848Þ and loses
significance. However, the coefficient on price in the grey equation drops even more, so
that the gap in elasticities between clean and grey gaps becomes slightly larger. We attribute
these changes to the somewhat reduced power of this specification and conclude that hy-
brid technologies are not the main drivers of the clean advantage in our main specifica-
tions.
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dPATz;it1T 5 expðkit1T21bkz 1 pCF
i;t1TbpzÞhz;i ;

ki;t1T 5 f ðki;t1T21; dPATC ;it1T ; dPATD;it1T Þ;
ð10Þ

where dPATC ;it1T and dPATD;it1T are vectors of predicted patent flows
for firms in the sample and pCF

it1T are potentially counterfactual values
of the policy and other control variables. Our empirical results have im-
plied that there is path dependence in the type of innovation pursued,
through both internal firm-level knowledge stock effects and external
countrywide spillovers. In this section we explore how important this path
dependence is in quantitative terms by studying the evolution of both
clean and dirty knowledge stock implied by our fitted models into the fu-
ture.Wedo this for every firm in thedata set and then aggregate across the
world economy in each period.
More specifically, we are looking for conditions under which the clean

knowledge stock for the aggregate economy exceeds the dirty knowledge stock. In
line with Acemoglu et al. ð2012Þ, this would be a requirement for clean
technologies to be able to compete with dirty ones, even without policy
intervention. Our projections should be considered as a rough explora-
tion into the importance of carbon taxes and path dependency rather
than precise forecasts of future innovation.38

We focus on the period up to 2030 with 2020 as a focal point. This is
somewhat arbitrary but is in line with scenarios of the IEA,39 suggesting
that globally fossil fuel use must peak by 2020 to avoid highly risky cli-
mate change. It is also consistent with the European Commission’s 2020
targets.40

We first check the within-sample performance of the model by imple-
menting simulation runs providing recursively generated knowledge stocks
over the regression sample period ð1986–2005Þ in appendix figure A6.41

Clean and dirty patent stocks are reported on the y -axis. Comparing pre-
dicted aggregate patents to the actual values suggests that our preferred
CFX model does a reasonably good job at tracking the aggregate changes
in clean and dirty patenting ðpanel aÞ. The alternative BGVR and HHG es-
timates are not too bad but domuch less well in later years ðpanels b and cÞ.
38 Technically, the tipping point at which the market starts innovating more in clean
technologies than in dirty technologies without policy intervention occurs when the clean
technology is more productive than the dirty technology. Our stock of knowledge vari-
ables, respectively, on clean and dirty innovation are natural proxies for measuring the rel-
ative productivity of clean vs. dirty technologies.

39 See http://blogs.ft.com/energy-source/2009/11/10/fossil-fuel-use-must-peak-by
-2020-warns-iea/#axzz1tQmZyLoy.

40 See http://ec.europa.eu/news/economy/100303_en.htm.
41 For the simulations we restrict the sample to the firms for which we have presample

information. In this way we do not have to make further assumptions as to how changes
in the spillover and policy variables would affect firms for which these variables are essen-
tially missing.
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Figure 6 reports simulations based on the regressions from table 6,
columns 1 and 4, for years through to 2030. In panel a we report the
baseline case keeping fuel prices ðand time dummiesÞ at their 2005 val-
ues.42 The regressions imply a strong enough path dependency for the
gap between dirty and clean knowledge stocks to remain far apart for
a considerable period of time. Clean innovation catches up with dirty in-
novation only well after 2030. This catch-up occurs because of delayed
reaction to fuel price hikes leading up to 2005 andGDPper capita growth,
which tends to relatively favor clean innovation.
To what extent can carbon taxes speed up this convergence process?

We examine the effects of a permanent worldwide increase in fuel prices
in 2006 ðandfixed at this level thereafterÞof 10percent, 20percent, 30per-
cent, 40 percent, and 50 percent in panels b–f, respectively. In panel b
we see that the gap between clean and dirty becomes smaller with a fuel
price increase of 10 percent both because there is more clean innovation
and because there is less dirty innovation. However, parity is achieved be-
tween clean and dirty only after 2030. It would take an increase of 40 per-
cent in fuel prices in order to achieve parity in 2020 according to ourmodel
ðpanel eÞ. This is a pretty large increase, comparable with the increase that
took place in the 1990s in figure 1.
One criticism of the simulation is that we would expect such a large

increase in the fuel prices to have a negative effect on GDP per capita
because of deadweight costs of taxation, adjustment costs, and so on.
This, in turn, could slow down the growth of clean innovation ðe.g., Gans
2012Þ. To obtain some insight into the magnitude of these effects, fig-
ure 7 considers the 40 percent fuel tax hike scenario coupled with a neg-
ative effect on GDP per capita growth. Panel a reproduces the baseline
case in which there is no effect on GDP ðas in fig. 6, panel eÞ. Panel b con-
siders a fall in the growth rate by 0.25 percentage point ðe.g., from 1.5 per-
cent to 1.25 percent per yearÞ. This postpones the crossover year because
income growth has a stronger positive effect on clean innovation than
dirty innovation in our estimates. But the effect is rather small, moving
the crossover year from 2020 to 2022, only 2 years. Larger tax-driven falls
in GDP per capita growth postpone things further, but it would take a full
1 percentage point a year fall in the growth rate to postpone the crossover
year beyond 2030.We view it as very unlikely that fuel taxes would knock a
percentage point off annual growth for 15 years or more, and this also ig-
nores the damaging effects of global warming itself on economic growth
over themedium run. We therefore take some comfort from figure 7 that
incorporating output effects would not dramatically change the conclu-
sions from figure 6.
42 We assume that per capita GDP grows at 1.5 percent per year but report alternative
assumptions in fig. 7.
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FIG. 7.—Simulations over time of the effect of a 40 percent increase in fuel prices allow-
ing for a negative effect of the carbon tax on GDP per capita growth. a, Baseline case, no
effect of carbon tax on GDP per capita growth. b, Tax reduces GDP per capita growth by
0.25 percentage points. c, Tax reduces GDP per capita growth by 0.50 percentage points.
d, Tax reduces GDP per capita growth by 0.75 percentage points. e, Tax reduces GDP per
capita growth by 1.0 percentage points. These graphs show the simulated evolution of
the aggregate clean and dirty knowledge stocks between 2005 and 2030 after a fuel price
increase of 40 percent using the model in table 6, columns 1 and 4. We consider a negative
effect on per capita GDP growth of the carbon tax of between zero as in the baseline case
ðpanel a replicates panel e of fig. 5Þ and 1 percentage point ðin panel eÞ.
42



FIG. 7 ðContinued Þ
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In figure 8 we explore the importance of path dependence for the
simulations. First, we repeat the baseline specifications allowing for all
dynamic adjustments in the cases of no fuel price change ðpanel aÞ
and of a 40 percent increase ðpanel bÞ. In panels c and d we repeat this
exercise while fixing all innovation stock variables—that is, both spill-
overs and own knowledge stocks—at their 2005 levels. As a consequence,
both clean and dirty innovation and thus the growth rate of knowledge
stocks reduce markedly as firms no longer benefit from standing on the
shoulders of either their own or others’ past innovation success. Also
note that in panel c, where we keep prices fixed, the gap between clean
and dirty is now narrower than in the equivalent panel a. Despite this,
the 40 percent increase in fuel prices in panel d is much less effective
than in panel b, where the dynamic effects from knowledge stocks are
switched on. This illustrates that path dependency is a double-edged
sword as pointed out by Acemoglu et al. ð2012Þ. In the absence of effec-
tive policies, it creates a kind of lock-in for dirty innovation. But if effec-
tive policies are introduced such as a carbon tax or R&D subsidy, path
dependency can help reinforce the growth of clean innovation as the
economy accumulates clean knowledgemore rapidly. Hence, if we switch
off the two path dependency channels, innovation trends become less
responsive to tax policy.
FIG. 7 ðContinued Þ
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VII. Conclusion
In this paper we have combined several patent data sets to analyze di-
rected technical change in the auto sector, which is a key industry of con-
cern for climate change. We use patenting data from 3,412 firms and in-
dividuals between 1965 and 2005 across 80 patent offices. We exploit the
fact that tax-inclusive fuel prices ðour proxy for a carbon taxÞ evolve dif-
ferentially over time across countries in our data set and that firms are
differentially exposed to these price changes because of their heteroge-
neous market positions in different geographic markets. Consistent with
our theoretical predictions, we find that clean innovation is stimulated
by increases in the fuel prices whereas dirty innovation is depressed.
Our second key result is that there is strong evidence for “path depen-

dency” in the sense that firms more exposed to clean innovation from
other firms are more likely to direct their research energies to clean in-
novation in the future ða directed knowledge spillover effectÞ. Similarly,
firms with a history of dirty innovation in the past are more likely to fo-
cus on dirty innovation in the future. The fact that such path dependency
holds for clean ðas well as dirtyÞ innovation highlights the desirability
of acting sooner to shift incentives for climate change innovation. Since
the stock of dirty innovation is greater than that of clean, the path depen-
dency effect will tend to lock economies into high carbon emissions, even
after the introduction of a mild carbon tax or R&D subsidies for clean
technologies. So this may make the case for stronger action now, which
could be relaxed in the future as the economy’s stock of knowledge shifts
inmore of a clean direction. Increases to carbon prices can bring about a
change in direction. For example, our baseline results suggest that an
increase of 40 percent of fuel prices with respect to the 2005 fuel price
will allow clean innovation stocks to overtake dirty stocks after 15 years.
Our analysis could be extended in several directions. First, we could

analyze output effects beyond the macro adjustments in the simulations
of table 6 to examine the firm-level effects. This would require a large ex-
tension in terms of using data on sales, however. Second, we could use our
framework to simulate other policies, such as country-specific changes
in carbon taxes ðor R&D subsidiesÞ, to see how this would affect the inno-
vation profiles in specific countries rather than just globally. Third, the
same basic approach could be taken to look at sectors other than automo-
biles such as the energy sector as in Acemoglu et al. ð2016Þ. Finally, we
could use microdata to estimate the relative efficiency of R&D invest-
ments in clean versus dirty innovation and also the elasticity of substitu-
tion between the two types of production technologies. As argued in
Acemoglu et al. ð2012Þ, these parameters play as important a role as the
discount rate in characterizing the optimal environmental policy. We ac-
knowledge that a limitation of our analysis is that we assume that non–
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combustion engine cars are needed for radically reducing carbon emis-
sions in transport. It may be that innovation in grey technologies will be
sufficient, althoughwe view this as unlikely. To close themodel, onewould
further need tomeasure the emissions impact of each type of innovations
ðclean, grey, or purely dirtyÞ and include a simultaneous analysis of emis-
sions in electricity production. All these and other extensions of our anal-
ysis in this paper are left for future research.
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