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Abstract 
Governments are making it a priority to upgrade information and communication technologies (ICT) with the aim to increase 
available internet connection speeds. This paper presents a new strategy to estimate the causal effects of these policies, and 
applies it to the questions of whether and how ICT upgrades affect educational attainment. We draw on a rich collection of 
microdata that allows us to link administrative test score records for the population of English primary and secondary school 
students to the available ICT at their home addresses. To base estimations on exogenous variation in ICT, we notice that the 
boundaries of usually invisible telephone exchange station catchment areas give rise to substantial and essentially randomly 
placed jumps in the available ICT across neighboring residences. Using this design across more than 20,000 boundaries in 
England, we find that even very large changes in available internet speeds have a precisely estimated zero effect on educational 
attainment. Guided by a simple model we then bring to bear additional microdata on student time and internet use to quantify 
the potentially opposing mechanisms underlying the zero reduced form effect. We find that jumps in the available ICT have no 
significant effect on student time spent studying online or offline, or on their productivity. Finally, while faster connections 
appear to increase student consumption of online content, we find that the elasticity of student demand for online content with 
respect to its time cost is negative but bounded by -1. 
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1 Introduction

Governments around the world are currently in the process of committing substantial amounts
of public funds to upgrade information and communication technologies (ICT) with the aim to
increase available internet connection speeds.1 The questions of the extent to which and how
ICT upgrades affect socioeconomic outcomes, and in particular human capital formation, matter
for informing these policy choices as well as for economic theory on the relationship between
falling information and communication costs and economic growth (e.g. Barro 2001; Grossman
and Helpman 1993; Hanushek and Woessmann 2015).

This paper makes three main contributions to our understanding of the effect of ICT improve-
ments on educational outcomes. First, we draw on a new and uniquely rich collection of English
microdata that allows us for the first time to link administrative test score records of the popula-
tion of primary and secondary school students to the available ICT at student home addresses.2

Second, we combine these data with a new empirical strategy for estimating the causal effects of
changes in the available ICT. We notice that capacity constraints at telephone exchange stations
lead to invisible and essentially randomly placed boundaries of station-level catchment areas that
give rise to substantial and discontinuous jumps in the available ICT across space. Third, guided
by a simple theoretical framework we bring to bear additional microdata on student internet and
time use to quantify the channels underlying the estimated reduced form effects. As part of these
estimations, we also provide empirical evidence on the elasticity of demand for online content
with respect to its time cost, which is a key parameter for ICT policy decisions.

At the center of the analysis lies the construction of an extremely rich collection of microdata
that allows us to estimate the causal effect of changes in the available ICT on educational out-
comes, and to quantify the underlying channels. We combine several sources of microdata that we
are able to geo-reference at a very disaggregated spatial scale: i) Administrative test score records
for the population of English primary and secondary school students in national “Key Stage” ex-
ams over the period 2002-2008; ii) telecommunication network data including the position of the
universe (≈ 3900) of English telephone exchange stations, their assignments to each of roughly 1.5
million full postcodes (up to eight characters), and household internet connection speeds; iii) sur-
vey microdata on student time use and internet use over the period 2002-2013; and iv) a rich vector
of geo-referenced control variables including the universe of property transaction values over the
period 2002-2008 and residential proximity to a comprehensive list of local (dis-)amenities.

Using these data, we present a new strategy to exploit a well-known feature of DSL-broadband
technology –that the length of the copper wire that connects residences to the local exchange sta-
tion is a key determinant of the available internet connection speeds.3 One possible strategy in
this context would be to compare the outcomes of students whose residences are located at dif-

1In the US, the FCC launched the National Broadband Plan in 2010 with the objective to make 100Mbit/s connections
available to 100 million citizens by 2020. Cost estimates have ranged between USD 20bn and 250bn. In 2012, the EU
approved EUR 7bn (USD 7.9bn) for increases in internet speeds across member countries. The UK plans to cover 90%
of its population with “superfast” broadband by the end of 2015 at an estimated cost of GBP 3.9bn (USD 6.1bn).

2See discussion of related literature at the end of this section.
3Telephone exchange stations are also referred to as the central office. Online Appendix Figure A.1 provides an

illustration from the UK telecom regulator OfCom.
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ferent distances to connected exchanges. However, neither observed differences in ICT across
households (which include package choices), nor residential distances to the connected exchange
stations are randomly assigned across space. Today’s telephone exchange stations in the UK were
mainly installed before and during the Second World War and while it may seem unlikely that
residents actively sort as a function of usually unknown copper wire distances to the local tele-
phone exchange station, planners targeted central locations that were also close to road junctions
for hosting the switchboard infrastructure. To address a number of endogeneity concerns that arise
due to the non-random placement of the exchange stations, we propose an empirical strategy that
exploits boundary discontinuities across usually unobserved exchange station catchment areas.

We notice that each telephone exchange station has an invisible catchment area of residential
addresses that it serves in its surrounding. The extent and shape of this catchment area is a by-
product of history: Rapid growth in fixed-line telephony during and after the Second World War
in combination with capacity constraints at the exchange switchboards have led to invisible and
essentially randomly placed station-level boundaries. We use the telecom network microdata in
order to construct these catchment areas for each of several thousand telephone exchange stations
in England. As depicted in Figure 1, neighboring residences on different sides of the boundaries
can face substantial differences in the available ICT at their home addresses. This variation stems
from jumps in the copper wire distances between residences and their connected exchange stations
on the slower (longer distances to connected exchange) relative to the faster side (shorter distances
to connected exchange) across a given boundary segment. We exploit this feature in a spatial
regression discontinuity (RD) design in which the distance to the nearest boundary segment is the
running variable. The identifying assumption is that no other characteristics that affect educational
outcomes, except for the available ICT, change discontinuously between neighboring residences
when crossing the invisible boundary.

This empirical strategy has a number of appealing features and wide applicability. First, it
provides a rich empirical setting that allows for the flexible estimation of the effect of interest.
Rather than exploiting a single discontinuity, we can estimate the effect of jumps in the available
ICT on education outcomes across more than 20,000 individual boundary segments in England,
with rich variation in both the intensity of the jump, as well as in the levels of ICT on the slower
side across boundaries.4 Second, the design is explicitly targeted at evaluating the large number
of currently ongoing policy proposals to upgrade already existing ICT, rather than focusing on
zero/one variation in first-time broadband access or penetration rates. Given close to universal
internet access in developed countries, and the vast amounts of public funds currently earmarked
for the purpose of increasing available internet connection speeds, this design adds a useful tool
that can be applied to a variety of policy questions in addition to the effects on education. Third,
because the design exploits cross-sectional variation, it allows us to estimate medium to long-run
effects instead of shorter-term adjustments when using variation in the timing of ICT roll-outs.5

4This also relates to recent work by Angrist and Rokkanen (forthcoming) on the identification of causal effects away
from a single cutoff.

5On a more subtle note, this also allows us to disentangle the effect of ICT on the outcome of interest while holding
constant the economic environment. For example, when using time variation, connecting an area to the internet may
have general equilibrium effects on the returns to skills that could also affect student effort. In contrast, our research
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Finally, the identifying assumption is readily assessable in any one cross-section of data, even when
panel data covering the pre-internet period are not available. We first report how point estimates
are affected by the inclusion of school fixed effects and observable student characteristics.6 We then
also test directly to what extent property values, student characteristics as well as local amenities
vary when moving from the slow side of a boundary segment to the fast side.

Taking this design to the collected microdata, the empirical analysis proceeds in three steps
that exploit different combinations of the data. In the first step, we use the telecom network data
to quantify the causal effect of residential distances to their connected exchange stations on the
available ICT. In the second step, we then combine information on student test scores and their
home addresses with the telecom network database to estimate the causal effect of residential
exchange connection distances on educational outcomes, and combine these estimates with the
estimation in step 1 to quantify the effect of changes in the available ICT on education outcomes. In
the final step, guided by a simple theoretical framework, we use additional geo-referenced survey
microdata on student time use and internet use in combination with the telecom network data to
quantify the mechanisms underlying the estimated reduced form effect in step 2.

In step 1, we find that the average jump in available ICT across invisible exchange station
boundaries is substantial. We estimate that the average difference in residential distances to their
connected exchange station between neighboring residences on different sides of the boundary
is 725 meters, or 65 percent of a standard deviation. This estimate increases to 2,250 meters, or
two standard deviations, when restricting the estimation to the 30 percent of boundary segments
with the largest mean difference in residential connection distances across the boundary. These
discontinuous jumps in copper wire connection lengths translate into substantial differences in the
available ICT across space. We find that the average jump in the time cost of accessing a given
amount of online content rises by 22 percent when moving from the slow side of a boundary seg-
ment to the faster side of the invisible boundary. This effect increases to 47 percent when restricting
attention to the 30 percent of boundary segments with the largest jumps in connection distances.
Furthermore, because broadband technology has been updated to less distance sensitive technolo-
gies such as coaxial or fiber after 2008, and the available UK internet speed data only start in 2012,
we regard these estimates as lower bounds of the effect of connection distances on the available
ICT at student residences during the period that we observe their test scores (2002-2008).

In steps 2 and 3, we guide the estimation of the effect of these jumps in the available ICT on ed-
ucation outcomes by writing down a simple theoretical framework that decomposes the observed
reduced form effect into several distinct channels. At the broadest level, we distinguish between
an effect on student time supply for studying and an effect on student learning productivity per
unit of time spent studying.7 To fix ideas, we refer to the hypothesis that reductions in the time
cost of accessing online content lead to a reduction in student time spent studying as the “Facebook
effect”. On the other hand, we refer to the hypothesis that reductions in the time cost of access-

design tests for the effect of ICT improvements while holding constant the economic environment for students on either
side of the invisible exchange station boundary.

6Because school attendance is not directly linked to residential areas in the UK, boundary segment fixed effects and
school fixed effects are not collinear.

7These channels are very general and have been discussed before. See for example a related model in Beltran et al.
(2010) on the effect of home computers on educational outcomes.
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ing online content lead to an increase in learning productivity as the “MOOC effect”.8 Naturally,
both the effect on study time supply and on learning productivity could in principle also go in the
opposite direction.9

The main results can be summarized as follows. We find that even substantial changes in the
available internet connection speeds have a precisely estimated zero effect on educational attain-
ment, and that the estimates are causally identified: house prices, student socioeconomic charac-
teristics and access to local (dis-)amenities are flat across the boundaries.We further explore the
extent to which this average effect may mask significant heterogeneity, and find that the result
holds for all age, gender, ethnic and socioeconomic groups in the student population, for all years
in the estimation sample 2002-2008, for different subjects (English, Mathematics, Science), across
different treatment intensities, and across different initial levels of the available ICT. Using the ad-
ditional information on student internet and time use to quantify the channels underlying the zero
reduced form effect, we find that jumps in the available ICT have no significant effect on student
time spent studying online or offline, or on the productivity of time spent studying. Finally, while
ICT improvements appear to at least weakly increase student consumption of online content, we
find that the elasticity of student demand for online content with respect to its time cost is negative
but bounded by -1.

The empirical strategy of this paper is related to a growing empirical literature on the socioe-
conomic consequences of the internet.10 Bhuller et al. (2013) and Akerman et al. (forthcoming)
exploit the timing of the roll-out of broadband internet across Norwegian municipalities to esti-
mate the effect on sex crime and skilled-to-unskilled wages and productivity respectively. Cam-
pante et al. (2013) exploit time variation from the broadband roll-out across Italian municipalities
to estimate the effect on political participation, and Bellou (2015) exploits time variation in inter-
net penetration across US states to estimate the effect on marriage rates. Forman et al. (2012) use
US county-level measures of infrastructure costs, industry mix, or characteristics of nearby loca-
tions as instruments for internet investment to estimate the effect on local wages. Bauernschuster
et al. (2014) use the fact that some regions in Eastern Germany use telephony networks that are
not compatible with DSL-broadband to estimate the effect on social capital. Most closely related
to our empirical strategy is Falck et al. (2014) who exploit municipality-level variation in distances
to telephone exchange stations for a sample of German municipalities that do not host a telephone
exchange station within their own boundary to estimate the effect on political participation.11

8So called massive open online courses (MOOC) have grown rapidly and increasingly target primary and high
school students. Prominent examples are EdX and the Khan Academy. One of the earliest platforms for educational
videos was YouTube, with thousands of channels for homework support. Recent work on MOOCs in economics in-
cludes Deming et al. (2015) and Hoxby (2014).

9For study supply, websites such as Lumosity.com provide online learning tools/games that could make studying
more attractive. For productivity, online distractions could in principle also decrease learning per time spent studying.

10Our analysis is also related to existing work in the education literature using RD designs, as for example Angrist
and Lavy (1999), Black (1999), Clark (2009) and Gibbons et al. (2013).

11In concurrent and independent work on the effect of ICT on house prices Ahlfeldt et al. (2015) also use information
on exchange catchment areas and mention the expression boundary discontinuity. In contrast to the spatial RD design
that we propose here, their approach does not exploit discontinuous jumps in exchange connection distances across
boundaries. Instead, they exploit variation in the timing of broadband upgrades. To see this very clearly, notice that
they condition on cross-sectional variation in residential distances to the connected exchanges in all specifications. The
remaining variation stems from differences in the timing of technology upgrades across exchanges and/or households.
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Relative to existing work, this paper presents a research design with a number of appealing
features as already noted above: It provides a rich empirical setting with tens of thousands of
boundaries even in a relatively small country setting such as England; rather than focusing on
zero/one variation in broadband access, it is explicitly targeted at the evaluation of currently on-
going policy proposals to provide faster internet connections in a setting with close to universal
broadband access; it exploits cross-sectional variation that can be applied to estimate medium to
long-run effects; and the identifying assumption is readily assessable in any one cross-section of
data, even when panel data covering the pre-internet period are not available.

Thematically, the paper relates to an existing literature on the effects of home computer use on
education outcomes.12 This literature has found some mixed results. On one hand, Fairlie (2005)
and Beltran et al. (2010) for the US, Schmitt and Wadsworth (2006) for the UK, and Fiorini (2010)
for Australia have documented positive associations between home computers and educational
outcomes. On the other hand, Fuchs and Wossmann (2004) who use data from 31 countries, and
Vigdor et al. (2014) who exploit student panel data in North Carolina, find evidence for negative
effects.13 In addition to effects of home computers, Vigdor et al. (2014) also find negative associa-
tions between expansions in broadband availability at the ZIP code level and student maths and
reading test scores in middle grades as well as reported computer use for homework. One differ-
ence of this study is that we trace the available ICT at a much finer geographical scale: the average
ZIP code in North Carolina contains more than 10,000 people, whereas postcode units in England
are equivalent to a single building in cities or segements of the same street in less urban areas and
capture on average about 15 households. This level of detail allows us to exploit discontinuous
changes in the available ICT across neighboring residences in a spatial RD design.

In this literature we relate most closely to a number of recent studies that examine the effects
of home computer use on education outcomes using randomized controlled trials (RCTs) or quasi-
experimental variation. Malamud and Pop-Eleches (2011) find negative effects on school grades
but positive effects on computer skills and on a separate measure of cognitive ability. To estimate
these effects, they exploit a regression discontinuity from a voucher policy that subsidized com-
puters for low-income households in Romania. Fairlie and London (2012) find modestly positive
effects on education outcomes from an RCT that provided free computers to lower-income college
students in California. More recently, Fairlie and Robinson (2013) present evidence from a similar
RCT that randomly assigned home computers to more than one thousand secondary school stu-
dents in California who did not previously have access to PCs, and find no evidence for effects on
test scores or homework time.

This paper aims to shed light on a related but different question of policy interest. Motivated
by the recent wave of government proposals to invest in ICT upgrades for providing ever faster
broadband internet, our analysis investigates the likely effect of such policies on education out-
comes. Furthermore, by empirically linking administrative test score records to the available ICT
at student home addresses, we are able to estimate the effect of ICT improvements on education

12Another recent literature examines effects of ICT in schools (e.g. Angrist and Lavy 2002; Barrow et al. 2009; Gools-
bee and Guryan 2006; Machin et al. 2007; Falck et al. 2015). In contrast, our results abstract from school-level factors by
including school fixed effects in our main specifications.

13See Bulman and Fairlie (forthcoming) for a comprehensive review of this literature.
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outcomes in the population of primary and secondary school students, rather than restricting at-
tention to students without prior access to ICT. This is an important empirical feature as it allows
us to estimate nationally representative effects and to explore the heterogeneity of these effects
along multiple dimensions.

The remainder of the paper proceeds as follows. Section 2 describes the background and data.
Section 3 presents the theoretical framework that guides the empirical analysis. Section 4 presents
the empirical strategy, and Section 5 the estimation results. Section 6 presents additional results to
quantify the underlying channels. Section 7 concludes.

2 Background and Data

This section provides a brief description of the background and the main datasets used in the
empirical analysis. Table 1 presents descriptive statistics for each of the estimation samples.

2.1 Administrative Student Records and the English Education Context

The English education curriculum is organized around five Key Stages (KS) at ages seven,
eleven, fourteen, sixteen and eighteen, corresponding to the grades –“academic years” in England–
two, six, nine, eleven and thirteen. Generally, students transfer from primary to secondary school
after completing grade six, where they stay at least until the end of compulsory education in grade
eleven. Towards the end of each of these Key Stages students are assessed in national exams that
are either administered by their teachers (KS1), or through externally marked tests (KS2, KS3, KS4
and KS5).14 There is no grade skipping or repeating and compulsory education ends at age sixteen
with the fourth Key Stage, which is also called “GCSE”. Until and including KS3 at age fourteen,
students have very limited options in choosing subjects or specializing according to interest or
ability. Consequently, students are tested in the three main compulsory subjects English, Mathe-
matics and Science in the national and externally assessed KS2 and KS3 tests. After KS3 students
are able to specialize and choose among a large number of possible subjects.

We obtain access to the administrative datasets covering the population of English students
which allow us to observe education outcomes for Key Stages 1-4 alongside their residential ad-
dresses. To match the student information to the telecom network data that we describe below, we
first extract the full (up to eight characters) residential postcode for each registered student in a
given year from the National Pupil Database (NPD). Full postcodes in England on average include
about 15 households and can be thought of as identifying a single building in cities or identifying a
segment of a street in less urban areas. In the second step, we use the unique student identifiers to
link this information to individual test score results, which are also provided as part of the NPD.15

As described in the next paragraphs, our main estimation sample are observations from post-
codes within 1 km distance of an exchange station boundary segment.16 This covers slightly more

14External KS3 tests were abolished in 2009.
15The Department for Education formerly distinguished between the NPD and the Pupil Level Annual School Cen-

sus (PLASC), which is now treated as part of the NPD. Note that no information is available on private schools, which
enroll about seven percent of the English student population.

16Distance is defined as the minimum Euclidean (straight line) distance between the centroid of a full postcode and
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than 7 million test score observations for over 4.5 million students living in over 450,000 postcodes
in England over the period 2002-2008. These students attend over 20,000 primary and secondary
schools. Following the education literature, we percentilize the national test scores by Key Stage
exam, subject and cohort in order to make them comparable to (national) GPAs in the US. These
subject-percentiles are then added into a total score, which we percentilize to obtain an average
total score ranging from 1 to 100. In addition to test scores, the administrative data give us access
to a series of observable student characteristics, such as gender, age, ethnicity (eight groups), and
whether the student is eligible for a free school meal. Table 1 provides descriptive statistics of the
student estimation sample in the second panel.

2.2 Telecom Network Data

The roll-out of broadband technology in the UK started in the major urban centers at the end
of the 1990s and proceeded rapidly. By the start of our estimation period in the year 2002, more
than 90% of English households had access to broadband enabled telephone exchange stations. A
salient feature of DSL-broadband technology is that the available connection speed depends on the
distance of the copper wire connection between the router in the residence and the local telephone
exchange station.17

As a new strategy for exploiting this technological feature empirically, we obtain information
about the location of all English telephone exchange stations (roughly 3,900), and link the exchange
station identifiers to telecom network records that provide us with information on each English
postcode’s assignment (in total, there are slightly more than 1.46 million English postcodes) to
one of the 3,900 exchange stations.18 This geo-referenced dataset allows us to construct exchange
station-level catchment areas and their usually unobserved exact boundaries using a geographical
information system (GIS).19 The main estimation sample consists of more than 580,000 individual
postcodes that are within 1 kilometer (km)of an exchange catchment area boundary. The left panel
of Figure 1 provides a map of these catchment areas in England, and Table 1 shows descriptive
statistics using the linked postcode-exchange station geographical dataset.

The location of telephone exchange stations was determined during the roll-out of the English
land line telephony network which mainly occurred before and during the Second World War. Im-
portantly, distance to the local exchange station did not affect the quality of traditional telephone
services. However, while we believe it to be unlikely that households in the past or present ac-
tively sort on the basis of distances to the connected exchange station, there are several reasons to
believe that exchange station location is far from random and may be correlated with other local
neighborhood characteristics that do matter for household sorting. For example, telephone ex-
change stations appear to have been placed at central locations that were also close to major road
junctions for hosting the exchange switchboard infrastructure. To address a series of endogeneity

the nearest boundary segment. As will become apparent from the non-parametric estimation results of the boundary
discontinuity effect, none of the presented findings are sensitive to increasing or decreasing this 1 km sample threshold.

17Online Appendix Figure A.1 provides an illustration.
18We are grateful to the technology consulting firm Point Topic Ltd. for providing us access to their proprietary

databases.
19We use exact vector (polygon) data from the Ordnance Survey.
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concerns that arise in the context of this “passive sorting”, we notice that capacity constraints for
any given exchange station coupled with the rapid growth of land line telephony subscriptions
after the Second World War have given rise to an empirical setting in which the invisible bound-
aries of exchange station-level catchment areas are essentially randomly drawn on a map. The
right panel of Figure 1 provides an example of the boundary placements from one of the author’s
residential areas in London. Within the catchment areas we can also see the fine geographical res-
olution of the English postcodes, which contain about 15 households on average and are often as
small as a single building.

In addition to the linked postcode-exchange station telecom network data, we also obtain mi-
crodata on the available internet speed from the UK’s telecommunication regulator (OfCom) across
roughly 1.3 million English postcodes during the years 2012 and 2013. This is important as it allows
us to not just rely on the theoretical or laboratory-tested relationship between copper wire lengths
and the available internet speed depicted in Online Appendix Figure A.1. This dataset provides
us with the average, maximum, and minimum speed recorded across individual households that
we can geo-locate at the level of their full residential postcode. We use this information to link
the speed microdata to the telecom network GIS database discussed above in order to estimate
the relationship between residential exchange distances and available internet speed in England.
One important caveat of these microdata on internet speed is that they significantly postdate our
student test score observations between 2002-2008. In particular, broadband internet infrastruc-
ture in the UK was updated to less distance sensitive technologies after 2008 such as coaxial or
fiber, so that we regard our estimates of the effect of crossing a catchment area boundary from the
slow to the fast side on the available internet connection speed as a lower bound (for the test score
estimation period). Table 1 provides additional descriptive statistics about this dataset.

2.3 Survey Microdata on Student Time Use and Internet Use

To further investigate the channels that underlie the reduced form effect of variation in the
available ICT at student home addresses on educational outcomes, we obtain access to the restricted-
use version of the microdata of the British Household Panel Survey (BHPS) covering the years
2002-2010 and its successor, the Understanding Society (US) Survey covering the years 2011 to
2013.20 We complement these data with the restricted-use versions of the first and second waves
of the Longitudinal Study of Young People in England (LSYPE) covering the years 2004 and 2005.

The confidential data columns in these datasets allow us to link the survey microdata on stu-
dent time use and internet use to the residential postcode that the surveyed household resides in.
Each round of the BHPS data covers around 15,000 geo-referenced households, with an increase in
the number of surveyed households in the US successor surveys to around 25,000 in each round.
The LSYPE is a separate panel survey that includes about 14,000 students in each round. In the first
wave, the sampled students of the LSYPE were age 14 in 2004, and one year older in the second
wave in 2005. As for the other datasets, we define our main estimation samples as observations
within residential postcodes that are within a 1 km distance from an exchange station catchment
area boundary.

20We use the answers from the Youth Questionnaire (children aged 11-15) which is available in both surveys.
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Taken together, the youth surveys that are included in the BHPS and the US in combination
with the survey data from the LSYPE provide us with geo-referenced information on student time
spent on homework broken up into whether this is online or offline, as well as time spent using
computers or the internet more generally, and coincide with our test score estimation sample. De-
scriptive statistics for the BHPS, US and LSYPE estimation samples from these datasets are shown
in Table 1. English students during this period on average spent about 9 hours per week using
the internet for email and online social media and about 5.5 hours per week for doing homework.
And more than three quarters of students report using online resources for doing their homework.

2.4 Data on House Prices and Access to Local (Dis-)Amenities

We use transaction-level data on property sales in England over the estimation period 2002-
2008. The data are administrative records from the English Land Registry and report the universe
of property transactions during the estimation period. We use the reported property address in-
formation in order to link these property transaction values to individual residential postcodes.
The estimations are based on several millions of individual property transactions that occurred
in England over the period 2002-2008. In addition to property values, we also observe property
characteristics, including the type of property (e.g. 2 bedroom house versus studio), whether it is
a new building, and the ownership type (lease or free hold).

We complement the house price microdata with a number of direct measures for local amenities
and dis-amenities. Even though our empirical analysis is based on a spatial discontinuity design
that compares only very proximate outcomes, it could still be the case that catchment area bound-
aries coincide with physical barriers such as roads or rivers, and that either the slower or the faster
side of the boundaries have a higher likelihood to host a given type of local (dis-)amenity–the
combination of which could lead to bias in the boundary effect. Using a geographical information
system (GIS) with detailed attribute data from the UK Ordnance Survey, the commercial real es-
tate company CBRE and the English Department for Education, we compute Euclidean distances
between each English postcode and the following features: nearest school (primary or secondary),
nearest road (class A, B and motorways) and nearest supermarket. As for the other datasets, we
define our main estimation samples as observations within residential postcodes that are within a
1 km distance from an exchange station catchment area boundary. Descriptive statistics in kilome-
ters for these variables are shown in the lower panel of Table 1.

3 Theoretical Framework

This section presents a simple model to guide the empirical estimation. We analyze the ef-
fect of changes in the per-unit time cost of accessing online information and communication on
learning outcomes through the lens of a basic knowledge production function. Improvements in
the available ICT can affect learning outcomes through two mechanisms: either through chang-
ing the productivity of a given amount of time spent studying, or by affecting the supply of time
spent studying relative to other student activities. In any given period, a student i’s knowledge
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production function is given by:

Hi = AiLα
i (1)

where Hi is educational achievement, Ai is a student-specific learning productivity shifter, Li is
the student supply of time spent studying, and α > 0 is the elasticity of learning achievement with
respect to time spent studying. In the following, we let both the productivity shifter Ai and the
student study time supply Li be functions of student-specific characteristics (λA

i and λL
i ), neigh-

borhood characteristics (φA
n and φL

n ), school characteristics (µA
s and µL

s ), and a residual term (εA
ins

and εL
ins).

We introduce the available ICT as the inverse of the per-unit time cost (ci) of accessing online
content: 1

ci
. We allow this inverse cost to affect both student productivity and the supply of time

spent studying:

Ains =
(

1
ci

)δ
λA

i φA
n µA

s eεA
ins

Lins =
(

1
ci

)η
λL

i φL
n µL

s eεL
ins

(2)

where δ is the elasticity of learning productivity with respect to available internet connection
speed 1

ci
, and η is the elasticity of study time supply with respect to 1

ci
. The first elasticity captures

the potential effect of changes in the time cost of accessing online content on the learning pro-
ductivity for a given amount of time spent studying. The second elasticity captures the potential
effect of student time allocation between studying and other activities. Analogous to a basic labor
supply equation, η can capture both a relative price effect whereby changes in 1

ci
affect the relative

attractiveness of studying compared to other activities online or offline, as well as an endowment
effect whereby changes in 1

ci
affect study time supply by endowing the student with more or less

online content for a given amount of time spent studying.
Substituting (2) into (1) and taking logs we get the following estimation equation:

lnHins = βln
(

1
ci

)
+ φn + µs + λi + εins (3)

where β = (δ + αη), φn = lnφA
n + αlnφL

n , µs = lnµA
s + αlnµL

s , λi = lnλA
i + αlnλL

i and εins =

εA
ins + αεL

ins.
This basic theoretical setting gives rise to several interesting hypotheses for empirical estima-

tion. To fix ideas, we refer to the hypothesis that η < 0 as the “Facebook effect”. That is, lower
information and communication costs decrease effective study time supply by either making other
online or offline activities relatively more attractive (positive relative price effect) and/or by letting
students access a fixed amount of learning content in less time (endowment effect). For learning
productivity, we refer to the hypothesis that δ > 0 as the “MOOC effect”.21 That is, lower in-

21So called massive open online courses (MOOC) provide educational video streaming. They have grown rapidly
and increasingly target primary and high school students in addition to post-secondary education. One of the earliest
platforms for educational videos was YouTube which features thousands of educational channels for homework sup-
port. Even before the take-over by Google in 2006, YouTube had over 100 million daily video views in the UK and over
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formation and communication costs increase the productivity of a given amount of study time for
educational achievement. Of course, both the effect on study supply and learning productivity can
in principle also go in the opposite direction. Websites such as Lumosity.com offer online learning
and brain-training games that could increase the perceived attractiveness of learning relative to
other activities (negative relative price effect) to an extent that outweighs the endowment effect
(η > 0). For productivity, online distractions could in principle also decrease learning per unit of
time spent studying (δ < 0).

The empirical analysis in Section 5 (steps 1 and 2 below) combines the administrative microdata
on English student test score results with the exchange station boundary discontinuity design to
estimate the reduced form causal effect of discontinuous jumps in the available ICT on education
outcomes: β = δ + αη. The empirical analysis in Section 6 (step 3 below) then brings to bear
additional microdata on student time use and internet use to further disentangle and quantify the
underlying mechanisms.

4 Empirical Strategy

In the empirical analysis the objective is to estimate the effect of exogenous variation in the
available ICT (ln

(
1
ci

)
) on a number of different outcomes including student test score perfor-

mances in national exams. Our empirical analysis proceeds in three main steps that exploit dif-
ferent combinations of the microdata. In step 1 we estimate the causal effect of student home dis-
tances to connected telephone exchange stations on the available ICT at the students’ residences.
In step 2 we then estimate the causal effect of residential distances to exchange stations on student
test score performances, and use these estimates in combination with those from step 1 to quan-
tify the effect of changes in available internet speed on educational outcomes (the β = δ + αη in
Section 3 above).22 In the final step 3, we use the theoretical framework of the previous section
in combination with additional geo-referenced survey microdata on student time use and internet
use to quantify the potentially opposing mechanisms underlying the reduced form effects in step
2.

The identifying assumption to estimate causal effects in specification (3) is that, conditional
on disaggregated neighborhood and school fixed effects, variation in ln

(
1
ci

)
is orthogonal to the

error term. That is, variation in available residential ICT is uncorrelated with unobserved student
characteristics or locational factors that also affect test scores. To this end, we propose an empirical
strategy that is based on comparing student outcomes across exchange station catchment area
boundaries. We estimate variations of the following two specifications:

65,000 daily uploads according to press articles at the time.
22This is analogous to a two-stage instrumental variable estimation where the first step represents the first stage and

the second step the reduced form, which are then used to quantify the second stage. We approach the estimation in
separate steps to use the universe of available information for each of them, as they are of interest in their own right.
Having said this, the results are virtually identical when restricting the first-stage estimation and the reduced form to a
sample of over-lapping postcodes, which is not surprising as our second stage uses the universe of postcodes containing
student residences. For sample comparisons also see Table 1. Finally, note that we refer to “reduced form effects” in the
text implying a model-based definition (i.e. β is a combination of structural parameters) rather than the econometric
definition (where step 2 is the reduced form of the IV estimation).
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yipnskt = βFastSidep +
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∑
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(
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)
(4)

+γXit + φn + µs + κkt + εipnskt

yipnskt =
10
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(
βslow

b I
(
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))
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∑
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(
β
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b FastSidep ∗ I

(
DistBoundaryp = b

))
(5)

+γXit + φn + µs + κkt + εipnskt

where i indexes students, p the full postcode where the student lives, n neighborhoods, s
schools, k Key Stage exam types, and t test score years. The estimation sample are roughly 580
thousand residential postcodes that are within 1 km of an exchange station boundary as discussed
in the data section.

We define neighborhoods as a group of residential postcodes that are nearest to the same
boundary segment. To ensure that we define neighborhoods at a disaggregated spatial resolu-
tion that extends on both sides of a given boundary segment, we partition each exchange station
boundary outline into individual segments by overlaying a randomly placed “cookie cutter” grid
of 1x1 km squares covering the land area of England in order to split and define individual bound-
ary segments (i.e. the maximum length is the square’s diagonal ≈ 1.4 km). This definition of
local neighborhoods leads to the inclusion of roughly 20,000 boundary segment fixed effects, φn,
pertaining to approximately 3,900 exchange station catchment areas.23 Xit are observable student
socioeconomic controls that we obtain from the administrative school records: age, gender, free
school meal eligibility, and student ethnicity.24 In some of our specifications discussed below, we
also include school fixed effects µs, which is feasible because residential location is not determin-
istically linked to school attendance in England. Finally, year-by-Key Stage fixed effects κkt allow
for any potential differences in testing or annual shocks. To address potential autocorrelation in
the error term, εipnskt, across residences within the same local neighborhood, we cluster standard
errors at the level of individual boundary segments.

Turning to the explanatory variable of interest, the first row of specification (4) represents a
fourth-order polynomial function on either side of the boundary with respect to the running vari-
able of the discontinuity design: residential distances to the nearest exchange station boundary
segment. We define the fast and slow sides of each individual boundary segment in terms of the
difference in the mean of residential distances to their connected exchange station on either side
of the same boundary segment.25 The causal effect of the boundary discontinuity on an outcome

23Our estimation sample are boundary segments with nearest postcodes assigned on both sides (from two different
exchange station catchment areas). Some boundary segments along the coast have nearest residences assigned from
only one exchange station catchment area, and 0.38 percent of boundary segments had nearest residences assigned
from more than two exchange station catchment areas. We exclude these latter two cases.

24Since there is no skipping or repeating, the effect of age is already controlled for by the test type-by-year fixed
effects (κkt).

25To define this consistently for each boundary segment as well as over time, we use the universe of residential
postcodes to define the slow and fast sides for each boundary segment.
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variable of interest, yipnskt, is thus estimated using only the discontinuous jump in levels that oc-
curs when crossing a given boundary segment from the slower side to the faster side, captured by
βFastSidep, after conditioning on the flexible functional form with respect to boundary distance
on either side in addition to neighborhood fixed effects, school fixed effects and a rich set of so-
cioeconomic student controls. As discussed in Section 2, the variation that this design exploits are
discontinuous jumps in the length of the copper wire that connect residences on either side of the
invisible boundary to their assigned telephone exchange stations. The identifying assumption is
that other factors that affect student test score performances vary smoothly across the boundary,
which can in principle be tested on observables as we discuss below.

To empirically assess how well the fourth-order polynomial functional form captures the re-
lationship between exchange station distances and the outcomes of interest, the richness of the
collected data also allows us to estimate a less parametric specification. The first row of specifi-
cation (5) replaces the two fourth-order polynomials with 19 100-meter distance bins, where the
reference category (the 20th bin) are residential postcodes within 900-1,000 meter distance from the
boundary segment that are located on the fast side (i.e. these are the residences with the shortest
distances to their connected exchange on the faster side). I is an indicator function that takes the
value of one if a student’s residential postcode p is within a b distance bin from the boundary, of
which there are 10 on each side of the boundary in total. In specification (5), we label the b′s to
be increasing in distance to the boundary on either side. Overlaying the point estimates of this
less parametric specification onto the estimation results of specification (4) allows us to assess to
what extent the polynomial functional forms capture the actual relationship between boundary
distances and various outcomes of interest that we consider in the following sections.

In addition to fitting flexible functional forms, the empirical design in specifications (4) and (5)
offers three key advantages. The first is that we can exploit variation in ICT in the cross-section
of students, which allows us to estimate medium to long-run effects rather than shorter-term ad-
justments. Second, we can provide direct empirical evidence on the validity of the identifying
assumption: We report how point estimates are affected by the inclusion of a rich set of additional
observable control covariates, such as school fixed effects and student socioeconomic characteris-
tics (that is before and after including Xit above). Furthermore, we can test to what extent property
values as well as local amenities vary when moving from the slow side of a boundary segment to
the fast side. Third, we can estimate the effect of changes in available connection speeds on ed-
ucational outcomes across a wide range of treatment intensities/doses, as well as across different
initial positions in the distribution of available ICT (different levels of ICT on the slower side). That
is, rather than exploiting one single discontinuity, the exchange station boundary design allows us
to estimate the effect of ICT on education across more than 20,000 individual boundary segments,
with rich variation in both the intensity of the jump in available ICT as well as initial positions in
the ICT distribution on the slow side of different segments.
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5 Estimation

This section combines the microdata described in Section 2 with the empirical strategy out-
lined in Section 4 to estimate the reduced form causal effect of ICT improvements for educational
attainment (β = δ + αη) that we derived in Section 3.

5.1 The Boundary Effect on Connection Distances and Available ICT

This subsection uses the telecom network data to estimate the size and statistical significance of
discontinuous jumps in the available ICT across exchange station catchment boundaries (step 1).
The two key pieces of information that we exploit in these estimations are data on the assignment
of each of the roughly 1.5 million residential postcodes in England to one of several thousand tele-
phone exchange stations in combination with additional microdata on realized internet connection
speeds across residential postcodes.

To estimate the average effect of crossing an exchange station boundary on the residential dis-
tance to the connected exchange switchboard, we estimate the following specification:

DistExchangepn = βFastSidep +
4

∑
τ=1

(
βslow

τ DistBoundaryτ
p + β

f ast
τ FastSidep ∗ DistBoundaryτ

p

)
(6)

+φn + εpn

where p indexes individual residential postcodes and n indexes neighborhoods defined as
boundary segments within 1x1 km squares as described above. DistExchangepn is the distance
in meters between residential postcode centroids and their connected telephone exchange station.
Alternatively, we replace the outcome variable of interest by ln

(
Speedpnt

)
, which is the logarithm

of the average realized connection speed in residential postcode p located in neighborhood n and
year t, and include year fixed effects in addition to the neighborhood fixed effects in specification
(6). As discussed above, we also estimate these two specifications after replacing the polynomial
functional forms with the less parametric version in specification (5) in order to assess the fit of the
functional forms in specification (6) on either side of the boundary.

Figure 2 and Table 2 report the estimation results of the effect of boundary discontinuities on
residential connection distances. The the left hand side (to the left of the vertical line and with
negative distances on the x-axis) in each of the graphs refers to the slower side of a given exchange
boundary segment, i.e. the side with higher mean residential distances to the connected exchange
station. Each graph depicts estimation results from two separate specifications: The plotted func-
tional forms present results after estimating the fourth-order polynomials conditional on neigh-
borhood (boundary segment) fixed effects. The shaded area depicts 95% confidence intervals. The
black bars on the other hand depict the 95% confidence intervals for the less parametric specifi-
cation (replacing the polynomials with 100m distance bins). For display in the graphs, these bin
coefficients have been centered at the mean distance to the boundary within each 100m bin on the
x-axis. Both sets of estimates are depicted as partial predictions while holding covariates constant
at their sample means, which also implies that the 20th reference bin is not at zero in these graphs.
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The confidence intervals are based on standard errors that are clustered at the level of boundary
segments.

Several findings emerge. The fourth-order polynomials appear to capture the functional form
of exchange distances with respect to boundary distances on either side of the boundary extremely
well: The less parametric point estimates on the 20 100m location bins trace out the smooth polyno-
mial function almost exactly. The average jump in residential distances to the connected exchange
is substantial: 725m, or 65 percent of a standard deviation in connection distances according to
the descriptive statistics in Table 1. Restricting attention to the 30 percent of the 20,000 English
boundary segments that are characterized by the largest jumps in mean residential connection dis-
tances, this average effect increases from 725m to close to 2,250m, or two standard deviations. In
conclusion, the boundary discontinuity design appears to provide substantial and discontinuous
variation in residential distances to the connected telephone exchange stations, as well as a wide
range of different treatment intensities across the more than 20,000 boundary segments.

In Figure 3, we replace residential connection distances with log average realized internet con-
nection speeds on the left hand side of specification (6). As suggested by the technological relation-
ship in Online Appendix Figure A.1, the jump in connection distances translates into substantial
variation in the available internet connection speeds on different sides of the boundary. The av-
erage jump in connection speed is 22 percent across all boundary segments. When restricting the
estimation to the 30 percent of boundary segments with the highest mean differences in connection
distances across the boundary, this average jump increases to 47 percent. These effects suggest that
a household on the slower side of an invisible catchment area boundary incurs 20 or 50 percent
more time in order to access the same amount of online content as a neighboring household on the
faster side of the boundary. In more practical terms, OfCom –the UK telecom regulator– reports
that in 2008 (the end of our student test score data below) more than one quarter of English internet
connections still delivered actually observed maximum speeds below 1.8 Mbit/s, which would be
significantly below common requirements for many online activities including video streaming.26

At such levels, the documented jumps in the available ICT across exchange boundaries give rise to
significant variation in the time cost of accessing online content. Related to this, and as discussed
in the data section, we note that these estimates of the effect on connection speeds are likely to be
lower bounds for the estimation period of our test score analysis. The reason is that the available
speed data cover a period (2012-2013) with less distance sensitive broadband technology compared
to what was in place during our estimation period 2002-2008 in what follows.

5.2 The Boundary Effect on Student Test Scores

After estimating the boundary effect on jumps in residential connection distances and the avail-
able ICT, we proceed to our second step and estimate the effect of exchange station boundaries on
student educational attainment:

26See OfCom Broadband Report 2008. Video streaming requires stable speeds of around 3 Mbit/s.
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where i indexes students, p postcodes, n neighborhoods as defined above, s schools, k Key
Stage exam types, and t test score years. As described in Section 2, TestScoreipnskt is the student’s
national test score percentile in Key-Stage exams. We report results both for a baseline specifica-
tion that includes neighborhood fixed effects (φn) and test type-by-year fixed effects (κkt), as well
as after additionally including controls for student socio-economic characteristics (Xit) and school
fixed effects (µs) in what we refer to as the full specification in the figures. The observable stu-
dent characteristics from the administrative records are age and dummies for gender, free school
meal eligibility and eight different groups of ethnic background.27 Once again, we also estimate
specification (7) after replacing the polynomial functions with the less parametric specification in
(5) to estimate the effect across 100m distance bins. In addition, we also estimate specification (7)
both for all English boundary segments as well as after restricting attention to the 30 percent of
boundary segments with the highest mean differences in residential connections distances within
1 km on both sides.

Figure 4 and Table 2 report the results of these eight estimations. Several findings emerge. First,
the effect of variation in available ICT on test scores is a precisely estimated zero effect.28 Second,
this result holds both before and after including additional student controls and school fixed ef-
fects in the full specification. Third, even for substantial variation in available internet connection
speeds, the effect is a precisely estimated zero as depicted in the lower panels of Figure 4. Fourth,
the estimated level and curvature of the distance relationships on either sides of the boundary in
the full sample are interesting in their own right. Test scores within 1 km of a given boundary
segment are on average statistically significantly lower on the slow (left) side compared to the fast
side of the boundary when estimated in terms of simple unconditional mean differences. Fur-
thermore, even within a given exchange catchment area on one side of the boundary, test scores
(even within 1 km) are significantly correlated with available internet connection speeds. In the
full sample (upper panel) test scores are rising as we move away from the boundary on both sides,
whereas for the subsample of boundaries with the largest jumps in ICT costs test scores appear
to be increasing when moving closer to the boundary on the slow side. The presented boundary
discontinuity design reveals that these correlations are driven by granular unobserved locational
factors and household sorting that are correlated with distances to the connected exchange sta-
tions both across catchment areas as well as within. As depicted in Figure 4, the fact that even
substantial discontinuous jumps in available ICT at the boundary do not affect test scores leads to
this conclusion in a clear and transparent way.

27Since there is no skipping or repeating, the effect of age is already controlled for by the test type-by-year fixed
effects (κkt).

28In reference to footnote 22, note that the precisely estimated zero point estimate for the reduced form of a two-stage
IV estimation also implies that the 2nd stage estimate is a zero.
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5.3 Heterogeneity of the Test Score Effect

We use the richness of the empirical setting to further explore to what extent the estimated
average effect may mask significant heterogeneity across gender and socioeconomic groups of
students, class subjects, over time, and with respect to different initial positions in the available
ICT (i.e. different levels on the slow side). To this end, we estimate specification (7) separately
across two student gender groups, four age groups (7, 10, 14, and 16 years of age), two income
groups (eligibility for free school meals), two ethnic groups (White and Non-White), for each two-
year period during estimation sample 2002-2008, three subjects (English, Mathematics, Science),
as well as across three groups of mean residential connection distances on the slow side of each
segment. One of the strengths of the exchange station boundary discontinuity design is that it
allows us to explore the effect of interest across a range of different initial positions of the available
ICT on the slower side of the boundary. This is in contrast to typical RD designs that focus on one
local effect. In our setting, this allows us to explore potential non-linearities due to, for example,
speed thresholds for certain activities such as video streaming.

We estimate these specifications and report the results across the different specifications in
exactly the same way as we do for the average effect reported in Figure 4. As reported in Figures
A.2-A.6 in the Online Appendix, we find that the estimated zero average effect that we report
above holds in each of these 20 sub-samples of the database.

5.4 Robustness

To further assess the validity of the identification strategy we run the following specifications:
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where as before p indexes full residential postcodes and n indexes neighborhoods defined as in-
dividual boundary segments as described above. In specification (8) t indexes individual quarters
(e.g. 1st quarter of 2005) during which property transactions j took place over the estimation period
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2002-2008. ln (PropValue)jpnt are the universe of log property transaction values from England’s
Land Registry reported for a property j, and Xjt is a vector of property characteristics including
the type of property (e.g. 2 bedroom house versus studio), whether it is a new building, and the
ownership type (lease or free hold). Next, in specification (9) t indexes years in which exam type k
was taken by student i. StudentCharipnkt is either free school meal eligibility or ethnic background
(White or Other) of student i. Finally, in equation (10) ln (DistAmen)pn is log distance from the
centroid of postcode p to the nearest supermarket, major road, or primary or secondary school. As
noted at the end of Section 2, even though the research design is based on comparisons between
only very nearby outcomes, it could still be the case that catchment area boundaries coincide with
physical barriers (such as roads or rivers), and that either the slower or the faster side have a higher
likelihood to host a given type of local (dis-)amenity –the combination of which could lead to bias
in the boundary effect. Specification (10) is aimed to assess such concerns.

As before, we alternatively estimate specifications (8)-(10) after replacing the polynomial func-
tions with the 100m distance bins in order to assess the fit of the imposed flexible functional forms.
We also once again estimate each specification both for all English boundary segments as well as
after restricting attention to the 30 percent of boundary segments with the highest mean differences
in residential connections distances within 1 km on both sides.

Specifications (8)-(10) thus provide estimation results on six additional outcome variables.
These additional estimations are aimed at testing for statistically significant jumps when moving
from the slow side of a given boundary segment to the faster side for the following outcomes: log
house prices, student propensities to be eligible for free school meals or to have a non-white ethnic
background, and log residential distances to supermarkets, major roads, and schools. The identi-
fication strategy outlined in Section 4 requires all of these observable locational characteristics to
vary smoothly across the invisible exchange station boundaries.

Figure 5 reports the estimation results across four specifications for the boundary effect on
house prices, and Tables 2 and 3 report estimation results for all specifications (8)-(10). In the
interest of space, we report the figures for the five additional outcomes in specifications (9) and
(10) in the Online Appendix Figures A.7-A.11.

House prices, student socio-economic characteristics as well as local amenities remain virtually
flat across exchange station boundaries.29 Thanks to the richness of the collected data, these results
are precisely estimated. The zero effects are also confirmed in each of the six cases after restricting
attention to the boundary segments with the largest observed variation in connection distances
and realized internet speeds.30 These additional estimation results provide reassurance for the
identification strategy outlined in Section 4.

29Note that our precisely estimated zero effect on property values depicted in Figure 5 is at odds with the positive
effect of speed on house prices that Ahlfeldt et al. (2015) report. In addition to using a different identification strategy
(they use variation in the timing of technology upgrades across exchanges and/or households), another difference is
that we use data on the universe of property transactions in England over the period 2002-08, whereas Ahlfeldt et al.
(2015) use information from one financial institution that finances roughly 10 percent of mortgage-based transactions.

30Notice that there is a very tiny but statistically significant jump in the propensity for free school meal eligibility
depicted in the left panel of Online Appendix Figure A.8 and reported in Table 2. This becomes a statistical zero once
we control for other student characteristics and/or school fixed effects. And as we document in Figure 4 and Table 2,
the test score effect remains a precisely estimated zero both before and after conditioning on student observables.
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Finally, as above for the test score results, the figures also depict interesting correlations with
respect to exchange station distances. For example, within a given catchment area we see a sta-
tistically significant increase in access to local schools or supermarkets as exchange connection
distances become smaller, and we see that free school meal eligibility or the propensity for non-
white ethnic backgrounds is significantly higher when taking simple averages on the side with
higher connection distances compared to the side with shorter connection distances. Once again,
these correlations indicate endogeneity concerns when projecting test scores or other outcomes on
residential distances due to unobserved locational characteristics and household sorting at a very
granular spatial scale, and they corroborate the usefulness of the boundary discontinuity design.

6 Channels

Guided by the theoretical framework in Section 3, this section (step 3) brings to bear additional
geo-referenced survey microdata on student time use and internet use to further investigate the
potentially opposing mechanisms underlying the estimated reduced form effect. To disentangle
the different components of the reduced form effect β = δ + αη in equation (3), we estimate the
following specification with a number of different student outcomes on the left hand side:
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4

∑
τ=1

(
βslow

τ DistBoundaryτ
p + β

f ast
τ FastSidep ∗ DistBoundaryτ

p

)
(11)

+γXit + φn + κt + εipnt

where as before i indexes students, p indexes individual residential postcodes, n indexes neigh-
borhoods and t indexes rounds of survey data and Xit is a vector of basic student characteristics
(second-order polynomial for age and a gender dummy). Again, we estimate these specifications
both before and after replacing the polynomial functions with the less parametric specifications
discussed in Section 4. TimeUseipnt in specification (11) is one of several measures for either stu-
dent internet use or study time supply. For internet use, this is measured either as the reported
number of days per week that a student in the British Household Panel Survey (BHPS) or in the
Understanding Society survey (US) uses the internet, or as the reported number of hours per day
spent using email and online social media from the US survey. For study time, we use one of
four different measures. The first is the number of weekdays doing homework in the Longitudi-
nal Study of Young People in England (LSYPE) survey. The second is the number of hours spent
doing homework per weekday in the US survey.31 The third is the propensity of using internet
resources for homework from the LSYPE survey. And the fourth is the number of hours spent
doing homework using a computer also from the LSYPE survey.32

31We compute this variable by combining answers to the following two separate survey questions: “During an
average week in term time, on how many evenings do you do any homework? Please just think about Monday to
Friday evenings during term time.”; and “When you do homework on a week-day evening during term time, how
many hours do you usually spend doing your homework?”

32We compute this variable by combining answers from the following two questions: “Days a week the young person
usually uses home computer for school work, during term time”; and “Number of hours the young person uses home
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How do these additional empirical moments on student time use and internet use relate to the
theoretical framework that we presented in Section 3? The reduced form effect β = δ + αη that
we estimate in Section 5 can be decomposed into the sum of two potentially opposing effects. The
first is the effect of lower time costs in accessing online content on the the learning productivity
per unit of time spent studying, which is captured by the elasticity δ. The second is the effect of
reducing the time cost of online content consumption on the supply of student time spent study-
ing, which is captured by the elasticity η. In the theory section, we refer to the hypothesis that
δ > 0 as the “MOOC effect”. That is, lower information and communication costs increase the
productivity of a given amount of study time for educational achievement. In turn, we refer to the
hypothesis that η < 0 as the “Facebook effect”. That is, lower information and communication
costs decrease effective study time supply by either making other online or offline activities rela-
tively more attractive (positive relative price effect) or by letting students access a fixed amount of
learning content in less time (endowment effect). Conversely, we also discussed that both the effect
on learning productivity and on study supply could in principle also go in the opposite direction.

The additional specifications summarized in (11) allow us to empirically test for the sign, size
and statistical significance of η (the effect on study time supply). Furthermore, the combination of
η with our previous estimates of the effect on student test scores (the β) allow us to infer the sign
and significance of δ (the effect on educational attainment holding constant study times). Finally,
by additionally observing student responses in their time spent on the internet, we can learn about
the underlying changes in the consumption of online content and the elasticity of student demand
for online content with respect to its time cost.

6.1 Estimation Results

Before estimating the specifications in (11), we re-run specification (6) from Section 5 on the
sample of residential postcodes for which we have student survey microdata in order to verify
that the treatment in the available ICT is present in the same way as reported above in these esti-
mations. Appendix Figure A.12 presents the estimation results which document that the boundary
treatment jumps for surveyed students in these samples are of similar magnitude compared to the
population data presented in Figure 2. As before, crossing the average boundary is associated with
approximately 65 percent of a standard deviation reduction in distance to the connected exchange,
which corresponds to sizable changes in the available ICT as shown using the telecom network
data in Section 5.

Despite this significant variation in available ICT, Figure 6 and Table 3 present estimation re-
sults that suggest a quite precisely estimated zero effect on student time spent on the internet.33

Figures 7 and 8 then move attention to the effect on student time spent studying and time spent
studying using online resources. Once again the estimation results, which we also report again in
Table 3, suggest quite precisely estimated zero effects both on total student time spent studying as
well as on student time spent studying using online resources.

computer for school work, on a day when use computer for school work during term time”.
33Because we are using survey microdata in these estimations, it is naturally the case that the results reported in this

section are not quite as precisely estimated as the previous results for which we are able to use student population data
for England.
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These results provide a number of additional insights. First, we find that exogenous changes in
the available ICT do not significantly affect student supply of study time online or offline, or their
learning productivity per time spent studying. In other words, the empirical analysis does not
provide evidence in favor of the Facebook effect or in favor of the MOOC effect of ICT upgrades on
student educational outcomes. Given that this is the first empirical study to relate administrative
test score performances to large and exogenous variation in the available ICT in the cross-section
of a student population, we believe these results serve to inform currently ongoing policy debates
on ICT infrastructure investments that are targeted at providing ever faster broadband internet
connections.

Second, the presented results are also informative about the elasticity of student consumption
of online information and communication with respect to the per-unit (e.g. megabytes) time cost
of online consumption, which is a key parameter for ICT policy decisions for which we currently
are not aware of existing empirical estimates. In particular, our findings suggest that the elasticity
of student demand for online content is negative, but bounded by -1. The empirical moments
underlying this conclusion are that i) there are large and significant jumps in the available ICT
across catchment area boundaries as documented in Section 5, and ii) these jumps do not appear
to lead to significant increases (or reductions) in the time students spend on the internet. These
results suggest that exogenous upgrades in the available ICT at student residences are at least
weakly increasing their consumption of online content.34 However, in absence of a significant
effect on internet time use, the maximum increase in the consumption of online content can only
be proportional to the decrease in the time cost of accessing that content, which effectively bounds
the elasticity of demand for online consumption with respect to its time cost to lie between 0 and
-1.

7 Conclusion

This paper combines a rich collection of microdata with a new empirical strategy to contribute
to our understanding of the effect of ICT improvements on educational attainment. The research
design is explicitly targeted at evaluating the large number of currently ongoing policy proposals
to upgrade existing broadband technology with the aim to increase available internet speeds. To
base the estimations on exogenous variation in ICT, we notice that capacity constraints at individ-
ual telephone exchange stations give rise to invisible and essentially randomly placed boundaries
of exchange station catchment areas that in turn give rise to large and discontinuous jumps in the
available ICT across space. Because the spatial RD design exploits cross-sectional variation in ICT
across thousands of boundary segments, it can be applied to estimate medium to long-run effects,
and to flexibly explore the heterogeneity of these effects along multiple dimensions. We then ap-
ply this methodology to a new collection of English microdata that allows us to link administrative
records on educational achievement for the population of primary and secondary school students
to the available ICT at their home addresses.

34The ideal data to precisely estimate this parameter would be geo-referenced microdata on the amount of megabytes
downloaded or uploaded, which we could combine with the exchange boundary RD design. We are unaware that such
data have been made available for research in the English context or elsewhere.
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The analysis presents a number of new results. We find that even substantial increases in the
available internet connection speed have a precisely estimated zero effect on educational attain-
ment, and that these effects are causally identified: house prices, student socio-economic charac-
teristics and local amenities remain virtually flat across the boundaries. We explore to what extent
this average effect may mask significant heterogeneity, and find that the precisely estimated zero
effect holds for all age, gender, ethnic and socioeconomic groups in the student population, for all
years in the estimation sample 2002-2008, for different subjects (English, Mathematics, Science),
across different treatment intensities, and across different initial levels of the available ICT.

Guided by a simple theoretical framework, we then further explore to what extent the zero
reduced form effect may be driven by the interplay of opposing effects on students’ learning pro-
ductivity as opposed to student supply of time spent studying. We find that exogenous variation
in the available ICT has no significant effect on student time spent studying online or offline, or
on the productivity of time spent studying. The results also suggest that student consumption of
online content is at least weakly increasing with better available ICT, but that the elasticity of stu-
dent demand for online consumption with respect to its time cost is bounded at -1 in our empirical
setting.

The paper serves to inform currently ongoing policy debates on ICT in two ways. The first is
that the analysis provides policy makers with nationally representative empirical estimates for an
important outcome of interest (education) that has featured prominently in recent debates about
the so-called “digital divide” (Norris, 2001). Second, the empirical strategy that we present in this
paper provides a useful tool that can be applied to study a number of additional policy-relevant
questions on the effects of ICT upgrades, and in a variety of different empirical contexts.
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8 Figures and Tables

Figures

Figure 1: Two Maps of Exchange Station Catchment Area Boundaries in England
Figure 1.1: Exchange Station Catchment Areas Figure 1.2: Zoom Into North London

Notes: Both figures are based on the UK telecom network data. In the figure on the right, the areas delimited by thick black lines indicate exchange station catchment area
boundaries, while the areas delimited by the thinner gray lines indicate individual postcodes in North London. The black points indicate the locations of the exchange
stations. Descriptive statistics on the postcode and boundary estimation samples are reported in Table 1.

25



Figure 2: The Boundary Effect on Residential Distances to the Connected Exchange Station

Figure 2.1: Full Specification - All Boundaries Figure 2.2: Full Specification - Top 30% Boundary Jumps
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure 3: The Boundary Effect on Observed Internet Connection Speed

Figure 3.1: Full Specification - All Boundaries Figure 3.2: Full Specification - Top 30% Boundary Jumps
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure 4: The Boundary Effect on Educational Attainment

Figure 4.1: Baseline Specification - All Boundaries Figure 4.2: Full Specification - All Boundaries
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Figure 4.3: Baseline Specification - Top 30% Boundary Jumps Figure 4.4: Full Specification - Top 30% Boundary Jumps
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-order poly-
nomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals. The black
bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the graphs,
these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial predictions
while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments. Descriptive
statistics on the estimation samples are reported in Table 1.
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Figure 5: The Boundary Effect on Property Values

Figure 5.1: Full Specification - All Boundaries Figure 5.2: Full Specification - Top 30% Boundary Jumps
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure 6: The Boundary Effect on Student Time Spent Online

Figure 6.1: Days Per Week Using the Internet Figure 6.2: Weekly Hours Spent on Email and Online Social Media
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 6. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure 7: The Boundary Effect on Student Time Spent Studying

Figure 7.1: Weekly Hours Spent on Homework Figure 7.2: Number of Weekdays Doing Homework
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 6. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure 8: The Boundary Effect on Student Time Spent Studying Online

Figure 8.1: Propensity Using Online Resources for Homework Figure 8.2: Weekly Hours Doing Homework Using
Computer
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 6. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Tables

Table 1: Descriptive Statistics

Data Set Variable
Number of 

Observations
Mean

Standard 

Deviation
Min Max

Distance to Connected Exchange Station 581,594 1,637 1,152 0 240,266

Distance to Nearest Boundary Segment 581,594 415.3 276.9 0.000274 1,000

Fast Side Dummy 581,594 0.614 0.487 0 1

Number of Exchange Stations 3,920 . . . .

Number of Boundary Segments 20,248 . . . .

Test Score Percentile 7,021,667 48.05 28.52 1 100

Year 7,021,667 2,005 1.990 2,002 2,008

Male 7,021,667 0.504 0.500 0 1

Free School Meal 7,021,667 0.177 0.382 0 1

Ethnic Background White British 7,021,667 0.741 0.438 0 1

Distance to Connected Exchange Station 7,021,667 1,622 944.9 0 62,599

Distance to Nearest Boundary Segment 7,021,667 419.8 272.2 0.000620 1,000.0

Fast Side Dummy 7,021,667 0.607 0.488 0 1

Number of Exchange Stations 3,883 . . . .

Number of Boundary Segments 19,472 . . . .

Average Internet Speed 178,027 6.179 3.771 0.200 15

Log Average Internet Speed 178,027 1.607 0.698 -1.609 2.708

Year 178,027 2,012 0.499 2,012 2,013

Distance to Connected Exchange Station 178,027 1,960 1,283 0 80,033

Distance to Nearest Boundary Segment 178,027 436.4 277.6 0.0389 1,000.0

Fast Side Dummy 178,027 0.619 0.486 0 1

Number of Exchange Stations 3,800 . . . .

Number of Boundary Segments 15,997 . . . .

Property Value (British Pound) 3,559,352 191,463 186,276 5,250 19.750.000

Log Property Value 3,559,352 11.93 0.662 8.566 16.80

Year 3,559,352 2,005 1.915 2,002 2,008

Apartment Dummy (as opposed to houses) 3,559,352 0.238 0.426 0 1

Newly Built Dummy 3,559,352 0.0937 0.291 0 1

Leasehold Dummy (as opposed to freehold) 3,559,352 1.299 0.458 1 2

Distance to Connected Exchange Station 3,559,352 1,535 927.4 0 61,828

Distance to Nearest Boundary Segment 3,559,352 411.5 275.1 0.000620 1,000

Fast Side Dummy 3,559,352 0.618 0.486 0 1

Number of Exchange Stations 3,815 . . . .

Number of Boundary Segments 18,308 . . . .

Distance to the Nearest Supermarket 581,594 904.5 1,115 0 18,787

Distance to the Nearest Major Road 581,594 375.6 461.2 0 8,707

Distance to the Nearest Primary or Secondary School 581,594 520.8 531.9 0 8,624

Distance to Connected Exchange Station 581,594 1,637 1,152 0 240,266

Distance to Nearest Boundary Segment 581,594 415.3 276.9 0.000274 1,000

Fast Side Dummy 581,594 0.614 0.487 0 1

Number of Exchange Stations 3,920 . . . .

Number of Boundary Segments 20,248 . . . .

Days per Week Using the Internet 5,046 4.668 2.496 0 7

Weekly Hours Email and Social Media 5,308 8.777 9.791 0 48

Weekly Homework Hours 3,135 5.319 5.332 0 52

Distance to Connected Exchange Station 10,066 1.569 924.3 0 12,331

Distance to Nearest Boundary Segment 10,066 413.99 273.9 0 999.8

Fast Side Dummy 10,066 0.608 0.488 0 1

Number of Exchange Stations 984 . . . .

Number of Boundary Segments 1,999 . . . .

Number of weekdays doing homework 11,020 2.937 1.348 0 5

Use online resources for homework 10,345 0.760 0.427 0 1

Weekly homework hours using ICT 10,345 3.280 3.657 0 60

Distance to Connected Exchange Station 10,345 1,558 910.2 0 7,669

Distance to Nearest Boundary Segment 10,345 403 267.5 0 999.5

Fast Side Dummy 10,345 0.601 0.490 0 1

Number of Exchange Stations 966 . . . .

Number of Boundary Segments 2,709 . . . .

G
eo

-r
ef

er
en

ce
d

 

S
u

rv
ey

 D
at

a 
fr

o
m

 t
h

e 

L
S

Y
P

E
 2

0
0

4
-0

5

T
el

ec
o

m
 

N
et

w
o

rk
 D

at
a

A
d

m
in

is
tr

at
iv

e 
T

es
t 

S
co

re
 

R
ec

o
rd

s 
2

0
0

2
-0

8

In
te

rn
et

 S
p

ee
d

 D
at

a 

2
0

1
2

-1
3

U
K

 L
an

d
 R

eg
is

tr
y

 R
ec

o
rd

s 
o

f 

P
ro

p
er

ty
 T

ra
n

sa
ct

io
n

s 
2

0
0

2
-0

8

G
IS

 D
at

a 
o

n
 L

o
ca

l 
 

A
m

en
it

ie
s

G
eo

-r
ef

er
en

ce
d

 

S
u

rv
ey

 D
at

a 
fr

o
m

 t
h

e 

B
H

P
S

/U
S

 2
0

0
2

-1
3

Notes: The reported statistics refer to our estimation samples that are based on all observations within 1 km of an
exchange station boundary segment in England.
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Table 2: Point Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dependent Variable
Exchange 
Distance 
(meters)

Exchange 
Distance 
(meters)

Log Speed Log Speed Test Score 
Percentile

Test Score 
Percentile

Log Property 
Value

Log Property 
Value

FSME 
Dummy

FSME 
Dummy

White 
Dummy

White 
Dummy

Estimation Sample Full Top 30% 
Jumps Full Top 30% 

Jumps Full Top 30% 
Jumps Full Top 30% 

Jumps Full Top 30% 
Jumps Full Top 30% 

Jumps

Fast Side Dummy (Jump) -725.2*** -2,252*** 0.224*** 0.465*** 0.196 0.349 -0.000255 0.0100 -0.00896** 0.000846 0.00359 0.0105
(19.75) (96.04) (0.0178) (0.0425) (0.181) (0.432) (0.00652) (0.0116) (0.00389) (0.00949) (0.00365) (0.00777)

Boundary Dist X Slow Side Dummy -1.549*** -5.622*** -0.000246 -0.00201*** 0.00423** 0.00204 0.000110 0.000259* -0.000146*** 3.14e-05 0.000142*** 0.000165*
(0.224) (1.223) (0.000163) (0.000411) (0.00205) (0.00543) (7.40e-05) (0.000156) (4.50e-05) (0.000113) (4.23e-05) (8.84e-05)

Boundary Dist^2 X Slow Side Dummy 0.00277*** 0.0191*** 1.99e-06*** 7.98e-06*** -1.53e-05* -1.60e-05 -4.81e-07 -1.19e-06* 6.54e-07*** -1.00e-08 -6.04e-07*** -6.90e-07*
(0.000827) (0.00456) (6.79e-07) (1.68e-06) (8.89e-06) (2.39e-05) (3.16e-07) (6.74e-07) (1.90e-07) (4.72e-07) (1.71e-07) (3.57e-07)

Boundary Dist^3 X Slow Side Dummy -3.85e-06*** -2.67e-05*** -2.53e-09** -1.05e-08*** 2.15e-08 2.54e-08 7.57e-10 1.77e-09* -1.02e-09*** -6.02e-11 8.64e-10*** 9.09e-10*
(1.17e-06) (6.46e-06) (1.05e-09) (2.59e-09) (1.41e-08) (3.82e-08) (4.97e-10) (1.06e-09) (2.97e-10) (7.37e-10) (2.63e-10) (5.51e-10)

Boundary Dist^4 X Slow Side Dummy 1.81e-09*** 1.23e-08*** 0** 0*** -0 -0 -0 -0 0*** 0 -0*** -0
(5.52e-10) (3.07e-09) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Boundary Dist X Fast Side Dummy -0.965*** -0.615*** 0.000653*** 0.000978*** 0.00315* 0.00218 0.000142** 0.000231* -3.57e-05 -5.47e-05 0.000120*** -2.13e-05
(0.0643) (0.194) (0.000128) (0.000232) (0.00184) (0.00425) (6.57e-05) (0.000120) (3.83e-05) (7.90e-05) (3.33e-05) (6.57e-05)

Boundary Dist^2 X Fast Side Dummy 5.34e-05 -0.000866 -8.07e-07 -2.44e-06*** -1.03e-05 -7.43e-06 -4.98e-07* -9.59e-07** 3.15e-08 1.73e-07 -3.92e-07*** 1.67e-07
(0.000250) (0.000711) (5.00e-07) (8.64e-07) (7.51e-06) (1.67e-05) (2.61e-07) (4.72e-07) (1.55e-07) (3.10e-07) (1.32e-07) (2.53e-07)

Boundary Dist^3 X Fast Side Dummy 3.09e-07 1.81e-06* 1.20e-09 3.53e-09*** 1.72e-08 1.01e-08 7.17e-10* 1.32e-09* -0 -2.63e-10 4.99e-10** -2.87e-10
(3.76e-07) (1.01e-06) (7.35e-10) (1.24e-09) (1.14e-08) (2.46e-08) (3.92e-10) (6.99e-10) (2.33e-10) (4.57e-10) (1.99e-10) (3.72e-10)

Boundary Dist^4 X Fast Side Dummy -1.89e-10 -9.45e-10* -0* -0*** -0* -0 -0* -0* 0 0 -0** 0
(1.88e-10) (4.90e-10) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Boundary Segment FX            
Key Stage-by-Year FX            
School FX            
Controls (X-vectors in specs)            
Quarter FX            
Observations 581,594 128,994 178,027 53,077 7,021,667 1,512,011 3,559,352 750,618 7,021,667 1,512,011 7,021,667 1,512,011
R-squared 0.786 0.705 0.819 0.838 0.272 0.266 0.749 0.741 0.138 0.125 0.389 0.314
Number of Boundary Segment Clusters 20,248 6,074 15,997 4,848 19,472 5,832 18,308 5,338 19,472 5,832 19,472 5,832

Notes: The table depicts the estimation results for the full specifications using the fourth-order polynomial functional form. See Sections 4-6 for discussion. The zero
estimates are due to rounding limits when saving the point estimates. * 10%, ** 5%, *** 1% significance levels.
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Table 3: Point Estimates (continued)

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Dependent Variable
Supermarket 

Distance 
(meters)

Supermarket 
Distance 
(meters)

Road 
Distance 
(meters)

Road 
Distance 
(meters)

School 
Distance 
(meters)

School 
Distance 
(meters)

Days per 
Week Online

Weekly 
Hours Social 

Media

Weekly 
Homework 

Hours

Number of 
Weekdays 

Doing 
Homework

Propensity of 
Online 

Resources for 
H'work

Weekly 
Study Hours

using ICT

Estimation Sample Full Top 30% 
Jumps Full Top 30% 

Jumps Full Top 30% 
Jumps Full Full Full Full Full Full

Fast Side Dummy (Jump) 2.420 13.94 -1.669 -7.895 -1.506 2.779 0.173 0.204 -0.224 0.0774 0.348 0.0132
(3.549) (9.603) (2.950) (7.701) (2.906) (8.003) (0.783) (2.741) (2.198) (0.164) (0.573) (0.0679)

Boundary Dist X Slow Side Dummy 0.0819 0.100 0.132*** 0.130 0.0345 0.0581 0.00876 0.0331 -0.0101 0.00168 0.00934 0.000915
(0.0549) (0.156) (0.0443) (0.125) (0.0449) (0.128) (0.00951) (0.0376) (0.0220) (0.00189) (0.00626) (0.000688)

Boundary Dist^2 X Slow Side Dummy -0.000565** -0.000696 -0.000144 0.000229 -0.000198 -0.000329 -2.41e-05 -8.97e-05 2.21e-06 -2.24e-06 -4.65e-05* -3.04e-06
(0.000248) (0.000740) (0.000197) (0.000577) (0.000203) (0.000605) (4.05e-05) (0.000167) (0.000106) (8.49e-06) (2.57e-05) (2.92e-06)

Boundary Dist^3 X Slow Side Dummy 6.64e-07 8.40e-07 -8.63e-08 -6.64e-07 -3.29e-09 3.45e-07 2.20e-08 4.01e-08 3.73e-08 -1.17e-09 7.97e-08** 3.65e-09
(4.07e-07) (1.26e-06) (3.19e-07) (9.53e-07) (3.30e-07) (1.03e-06) (6.27e-08) (2.64e-07) (1.80e-07) (1.39e-08) (3.90e-08) (4.57e-09)

Boundary Dist^4 X Slow Side Dummy -3.27e-10 -3.56e-10 8.33e-11 3.16e-10 7.14e-11 -1.74e-10 -0 0 -0 0 -0** -0
(2.16e-10) (6.90e-10) (1.67e-10) (5.07e-10) (1.74e-10) (5.56e-10) (0) (1.36e-10) (9.58e-11) (0) (0) (0)

Boundary Dist X Fast Side Dummy 0.00659 0.0172 0.100*** 0.141* 0.0771** 0.104 0.00876 0.0383 -0.00864 0.000472 0.00166 0.000854
(0.0451) (0.101) (0.0355) (0.0816) (0.0376) (0.0822) (0.00951) (0.0306) (0.0215) (0.00163) (0.00477) (0.000619)

Boundary Dist^2 X Fast Side Dummy -0.000279 -0.000388 -0.000303** -0.000412 -0.000520*** -0.000878*** -2.63e-05 -0.000155 2.84e-06 -7.56e-07 -7.20e-06 -4.10e-06
(0.000190) (0.000406) (0.000148) (0.000324) (0.000157) (0.000332) (2.99e-05) (0.000134) (9.94e-05) (6.80e-06) (1.96e-05) (2.51e-06)

Boundary Dist^3 X Fast Side Dummy 2.01e-07 2.98e-07 2.87e-07 4.44e-07 5.95e-07** 1.12e-06** 2.83e-08 1.98e-07 1.28e-08 5.99e-11 1.40e-08 6.71e-09*
(2.97e-07) (6.10e-07) (2.28e-07) (4.79e-07) (2.43e-07) (4.98e-07) (4.63e-08) (2.09e-07) (1.62e-07) (1.06e-08) (2.99e-08) (3.81e-09)

Boundary Dist^4 X Fast Side Dummy -9.25e-11 -8.13e-11 -1.20e-10 -1.98e-10 -2.71e-10** -5.01e-10** -0 -7.72e-11 -0 0 -0 -0*
(1.51e-10) (3.03e-10) (1.15e-10) (2.34e-10) (1.23e-10) (2.46e-10) (0) (1.06e-10) (8.57e-11) (0) (0) (0)

Boundary Segment FX            
Survey Round FX            
Controls (X-vectors in specs)            
Observations 581,594 128,994 581,594 128,994 581,594 128,994 5,046 5,308 3,135 11,020 10,345 10,345
R-squared 0.950 0.960 0.828 0.858 0.862 0.881 0.494 0.455 0.524 0.437 0.358 0.373
Number of Boundary Segment Clusters 20,248 6,074 20,248 6,074 20,248 6,074 1,720 1,597 1,372 2,772 2,709 2,709

Notes: The table depicts the estimation results for the full specifications using the fourth-order polynomial functional form. See Sections 4-6 for discussion. The zero
estimates are due to rounding limits when saving the point estimates. * 10%, ** 5%, *** 1% significance levels.
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9 Online Appendix

Figure A.1: Technological Relationship between Exchange Distance and Internet Speed

Notes: The Source is England’s Telecommunication Regulation Authority OfCom.
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Exploring the Heterogeneity of the Effect of ICT on Test Scores

Figure A.2: Heterogeneity across Gender, Ethnic Background and Free School Meal Eligibility
Full Specification - By Gender Full Specification - By White/Non-White Ethnic Background
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Full Specification - By Free School Meal Eligibility
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from four separate specifications: The plotted functional forms present results after estimating fourth-order polyno-
mials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5, and by each group. Within each graph, the groups with the higher
average test scores present estimates for (1) females, (2) Whites and (3) students not eligible for free school meals. The shaded area depicts 95% confidence intervals. The
black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the
graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.3: Heterogeneity across Age Groups

Full Specification - Age 7 Full Specification - Age 10
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Full Specification - Age 14 Full Specification - Age 16
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-order poly-
nomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals. The black
bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the graphs,
these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial predictions
while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments. Descriptive
statistics on the estimation samples are reported in Table 1.
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Figure A.4: Heterogeneity across Subjects

Full Specification - English Full Specification - Mathematics
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Full Specification - Science
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-order polyno-
mials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals. The black bars
in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the graphs, these
bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial predictions while
holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
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Figure A.5: Heterogeneity across Initial Levels of Available ICT

Full Specification - Slow Available ICT on Slow Side Full Specification - Medium Available ICT on Slow Side
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Full Specification - Fast Available ICT on Slow Side
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-order poly-
nomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals. The black
bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the graphs,
these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial predictions
while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments. Descriptive
statistics on the estimation samples are reported in Table 1.
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Figure A.6: Heterogeneity over Time

Full Specification - Years 2002 and 2003 Full Specification - Years 2004 and 2005
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Full Specification - Years 2006 and 2007 Full Specification - Year 2008
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Notes: The left hand side in all graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the connected
exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-order poly-
nomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals. The black
bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in the graphs,
these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial predictions
while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments. Descriptive
statistics on the estimation samples are reported in Table 1.
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Additional Robustness Results

Figure A.7: The Boundary Effect on the Propensity of White British Ethnicity
Full Specification - All Boundaries Full Specification - Top 30% Boundary Jumps
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.8: The Boundary Effect on the Propensity of Free School Meal Eligibility
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.9: The Boundary Effect on Local Amenities - Distance to Nearest Supermarket
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.10: The Boundary Effect on Local Amenities - Distance to Nearest Major Road
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Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.11: The Boundary Effect on Local Amenities - Distance to Nearest School

Full Specification - All Boundaries Full Specification - Top 30% Boundary Jumps
4
2

0
4
6

0
5
0

0
5
4

0
5
8

0
6
2
0

6
6
0

D
is

ta
n
ce

 (
m

e
te

rs
) 

to
 N

e
a
re

st
 S

ch
o
o

l

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
Residential Distance (meters) to Exchange Boundary

4
2

0
4
6

0
5
0

0
5
4

0
5

8
0

6
2

0
6
6

0
D

is
ta

n
ce

 (
m

e
te

rs
) 

to
 N

e
a
re

st
 S

ch
o
o

l

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
Residential Distance (meters) to Exchange Boundary

Notes: The left hand side in both graphs refers to the slower side of a given exchange boundary segment, i.e. the side with higher mean residential distances to the
connected exchange station. Each figure depicts estimation results from two separate specifications: The plotted functional forms present results after estimating fourth-
order polynomials conditional on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95% confidence intervals.
The black bars in both graphs depict the 95% confidence intervals for the less parametric specification (replacing the polynomials with 100m distance bins). For display in
the graphs, these bin coefficients have been centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as partial
predictions while holding covariates constant at their sample means. Confidence intervals are based on standard errors that are clustered at the level of boundary segments.
Descriptive statistics on the estimation samples are reported in Table 1.
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Figure A.12: The Boundary Effect in the Survey Microdata Samples

10
00

15
00

20
00

25
00

Re
sid

en
tia

l D
ist

an
ce

 (m
ete

rs)
 to

 C
on

ne
cte

d 
Ex

ch
an

ge

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
Residential Distance (meters) to Exchange Boundary

Notes: The left hand side in the graph refers to the slower side of a given exchange boundary segment, i.e. the side with
higher mean residential distances to the connected exchange station. The figure depicts estimation results from two sep-
arate specifications: The plotted functional forms present results after estimating fourth-order polynomials conditional
on boundary segment fixed effects and additional covariates as discussed in Section 5. The shaded area depicts 95%
confidence intervals. The black bars in both graphs depict the 95% confidence intervals for the less parametric specifi-
cation (replacing the polynomials with 100m distance bins). For display in the graphs, these bin coefficients have been
centered at the mean distance to the boundary within each 100m bin on the x-axis. Both sets of estimates are depicted as
partial predictions while holding covariates constant at their sample means. Confidence intervals are based on standard
errors that are clustered at the level of boundary segments. Descriptive statistics on the estimation samples are reported
in Table 1.
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