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Abstract

This paper examines the problem of identification and inference on a conditional moment

condition model with missing data, with special focus on the case when the conditioning covariates

are missing. We impose no assumption on the distribution of the missing data and we confront

the missing data problem by using a worst case scenario approach.

We characterize the sharp identified set and argue that this set is usually too complex to

compute or to use for inference. Given this difficulty, we consider the construction of outer iden-

tified sets (i.e. supersets of the identified set) that are easier to compute and can still characterize

the parameter of interest. Two different outer identification strategies are proposed. Both of

these strategies are shown to have non-trivial identifying power and are relatively easy to use

and combine for inferential purposes.

Keywords: Missing Data, Missing Covariate Data, Partial Identification, Outer Identified Sets,

Inference, Confidence Sets.

JEL Classification Codes: C01, C10, C20, C25.

Running head: Regressions with Missing Covariate Data.
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1 Introduction

The problem of missing data is ubiquitous in empirical social science research. When survey data is used

to estimate an econometric model, researchers are often faced with a dataset that has missing observations.

This paper examines the problem of identification and inference in a conditional moment equality model

with missing data, with special focus on the case when the conditioning covariates are missing.

Our econometric model is as follows. We are interested in the true parameter value θ0 that belongs to a

parameter space Θ ⊆ Rdθ and satisfies the following (conditional) moment conditions:

EF [m(X,Y, θ0)|X = x] = 0 ∀x F−a.s. (1.1)

where (Ω,A, F ) denotes the underlying probability space, Y : Ω → Rdy denotes the outcome variables,

X : Ω→ Rdx denotes the conditioning variables or covariates, and m : Rdx × Rdy × Rdθ → Rdm is a known

structural function. Throughout this paper, a variable is a covariate if it is part of the conditioning variables

in Eq. (1.1) and is an outcome variable otherwise. Models characterized by Eq. (1.1) have been studied

extensively in the econometrics literature, as we illustrate towards the end of this section.

We explore identification and inference of θ0 characterized by Eq. (1.1) in the presence of missing data.

In practice, the missing data problem affects both outcomes and covariates. From the perspective of iden-

tification analysis, missing outcome data and missing covariate data are very different problems, and the

former one has been extensively studied in the literature. Therefore, the main text of this paper focuses on

the case when only conditioning covariates are missing. In the appendix of the paper, we extend our results

to allow for arbitrary missing data patterns on both outcome variables and covariates.

We confront the missing data problem by using a worst case scenario approach. This approach allows

us to extract the information about θ0 from the observed data without imposing (untestable) assumptions

on the (unobserved) distribution of missing data. Under a worst case scenario approach to missing data, θ0

is typically partially identified, i.e., the restrictions of the model do not necessarily restrict θ0 to a unique

value, but rather they constrain it to belong to an identified set.

According to our results, the identified set of θ0 in the presence of missing covariate data is an extremely

complex object to characterize and this naturally leads to an even more complicated inferential problem. To

the best of our knowledge, the partial identification literature has not been able to address the problem of

identification and inference of θ0 characterized by Eq. (1.1) in the presence of missing covariate data. This

paper is an attempt to fill this gap in the literature. Given the complications in dealing with the identified

set, we consider several methods to construct supersets of this identified set, referred to as outer identified

sets, which are relatively simple to compute. In particular, all outer identified sets proposed in this paper

take the form of collection of moment inequalities and are thus amenable to inference using the current

techniques in the partial identification literature.

The remainder of this paper is organized as follows. Section 1.1 collects several motivating examples

and Section 1.2 reviews the related literature. Section 2 introduces our econometric model, characterizes

the (sharp) identified set, and explains why it is extremely complex to compute or use for inference. This

complexity justifies the construction of simple outer identified sets to characterize the parameter of interest,

developed in Section 3. Section 4 proposes a methodology to construct confidence sets of these outer identified

sets. Section 5 presents Monte Carlo simulations. Section 6 concludes the paper. The appendix of the paper

collects most of the proofs and intermediate results. Finally, several proofs can be found in the online

supplementary material to this paper (see Aucejo et al. (2015b)).
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1.1 Examples

In order to illustrate the theoretical framework of this paper, we now relate it to econometric models that

are routinely used in empirical applications.

Example 1.1 (Mean regression model). Consider the following econometric model:

Y = f(X, θ0) + ε, (1.2)

where Y : Ω→ R denotes the outcome variable, X : Ω→ Rdx are the conditioning covariates, θ0 ∈ Θ ⊆ Rdθ

is the parameter of interest, f : Rdx ×Rdθ → R is a known regression function for the conditional mean, i.e.,

f(X, θ) = EF [Y |X, θ],

and ε : Ω→ R is a mean independent error term with its mean normalized to zero, i.e.,

EF [ε|X = x] = 0 ∀x F−a.s. (1.3)

This model can be equivalently re-written as in Eq. (1.1) with m(X,Y, θ) ≡ Y − f(X, θ).

For illustration purposes, we give special attention to the linear index regression model, in which f(X, θ) =

G(X ′θ) for a known weakly increasing function G : R→ R. As special cases, this model includes the linear

regression model (i.e. G is the identity function) and limited dependent binary choice models, such as probit

or logit (i.e. G is the standard normal or the logistic CDF, respectively).

The mean regression model in Example 1.1 is arguably one of the most commonly used empirical frame-

works. For example, it constitutes the basis of the related empirical application in Aucejo et al. (2015a),

which we now briefly describe. Prior to the year 1998, the campuses in the University of California system

were allowed to use affirmative action criteria in their admissions procedures. However, starting in 1998, a

ban on affirmative action was mandated with the passage of Proposition 209, also known as the California

Civil Rights Initiative. The objective of Aucejo et al. (2015a) is to estimate the effect of the ban on grad-

uation rates for under-represented minorities. To achieve this goal, we use a random sample of students to

estimate a probit version of Eq. (1.2), given by

Y = G(θ0,0 + θ0,1R+ θ0,2P209 + θ0,3(P209×R) + θ0,4Z) + ε, (1.4)

where Y is a binary indicator of whether the student graduated (or not), R is an indicator of the student’s

minority status, P209 is a binary indicator of whether the student enrolled after the passage of Proposition

209 (or not), and Z is a vector of control variables considered in college admissions decisions, such as measures

of the student’s academic qualifications and family background characteristics (e.g. parental income, etc.).

The main identification problem in the estimation of θ0 in Eq. (1.4) is that the covariate vector has

a significant amount of missing data, both in its discrete components (e.g. race) and in its continuous

components (e.g. parental income). Moreover, the conjectured reasons for the missing observations are

varied and complex, making it implausible that these data are actually “missing at random”.1

Example 1.2 (Quantile regression model). For some α ∈ (0, 1), consider the following econometric model:

qα[Y |X] = f(X, θ0),
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where qα[Y |X] denotes the α-quantile of {Y |X}, Y : Ω → R denotes the outcome variable, X : Ω → Rdx

are the conditioning covariates, f : Rdx × Rdθ → R denotes a known regression function, θ0 ∈ Θ ⊆ Rdθ is

the parameter of interest. This model can be equivalently re-written as in condition (1.1) with m(X,Y, θ) ≡
1[Y − f(X, θ) ≤ 0]− α.

Example 1.2 is the result of considering Example 1.1 but with the zero moment condition in Eq. (1.3)

replaced by the zero quantile condition qα(ε|X = x) = 0 ∀x F−a.s. In this sense, any empirical illustration

that serves as motivation of Example 1.1 could also motivate Example 1.2 as long the modeling objective

shifts from the conditional mean to conditional quantile. For the sake of illustration, consider the empirical

application in Abrevaya (2001), who studies the effect of demographic characteristics (e.g. age, race, etc.) and

maternal behavior during pregnancy (e.g. prenatal care, smoking, etc.) on the quantiles of the birthweight

distribution (among other outcome variables). The paper uses U.S. data from the Natality Data Set and

suffers from significant amounts of missing covariate data. In particular, data from California, Indiana, New

York, and South Dakota were excluded from Abrevaya (2001) as they were missing key covariates such as

smoking behavior of the mother (see Abrevaya (2001, Page 250)).

Example 1.3 (Simultaneous equations model). Consider an econometric model in which two or more out-

come variables are simultaneously determined through a system of equations. For example, consider the

following two equation case:

Y1 = f(Y2, X1, X2, θ0) + ε1,

Y2 = f(Y1, X2, X1, θ0) + ε2,

where Y = (Y1, Y2) : Ω → R2 denotes the outcomes variables, X = (X1, X2) : Ω → Rdx denotes exogenous

covariates, f : R× R2dx × Rdθ → R denotes a known regression function, θ0 ∈ Θ ⊆ Rdθ is the parameter of

interest, and ε = (ε1, ε2) : Ω → R2 denotes mean independent error terms with their means normalized to

zero, i.e., EF [ε|X = x] = 0 ∀x F−a.s.

To illustrate Example 1.3, we can consider the empirical illustration in Lundberg (1988), who analyzes

the labor supply decision of couples in a household using a simultaneous equations model. In this application,

the outcome variables are hours worked by each family member and covariates include market wages and

other family income. Lundberg (1988) estimates the model with data from the Denver Income Maintenance

Experiment, which have a non-trivial amount of missing observations (see, e.g., Lundberg (1988, Table A.1)).

1.2 Literature review

There is a vast literature on identification and inference under missing data. However, the worst case scenario

approach to missing information is relatively recent and intimately related with the development of partial

identification. An excellent summary of this literature can be found in Manski (2003, Chapter 3).

Horowitz and Manski (1998) were the first to consider the identification problem of jointly miss-

ing outcome and covariate variables using worst case scenario analysis. They provide sharp bounds on

EF [g(Y )|X ∈ A] for a known function g and a set A when either Y or X are missing. In general,

EF [g(Y )|X ∈ A] is shown to be partially identified. By generalizing this result, one could use their analysis

to provide sharp bounds for the parameter value θ0 that satisfies EF [m(X,Y, θ0)|X ∈ A] = 0 for any A

when either Y or X are missing. While helpful for our analysis, this generalization does not characterize

the set implied by our conditional moment restriction in Eq. (1.1). This is because Eq. (1.1) implies that
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the true parameter value satisfies the restriction EF [m(X,Y, θ0)|X ∈ A] = 0 simultaneously for all A, rather

than for a single A. In other words, if we were to select any set A and consider parameter values that

satisfy EF [m(X,Y, θ0)|X ∈ A] = 0, we might be losing a large amount of identifying power. In related

work, Horowitz and Manski (2000) examine the case where the outcome variable Y is binary and consider

partial identification of PF [Y = 1|X = x] and PF [Y = 1|X = x]− PF [Y = 1|X = x̃] for any x and x̃ when

both Y and X are allowed to be missing. As in their earlier work, Horowitz and Manski (2000) consider

identification conditional on a pair (x, x̃), while we are interested in a conditional moment restriction that

simultaneously holds for all pairs (x, x̃).

Manski and Tamer (2002) consider the problem of inference on regressions with interval valued covariates.

Since missing data can be considered a special case of interval data, one might hope that their methodology

can be used to analyze our problem. Unfortunately, in our context, the assumptions imposed by Manski and

Tamer (2002) imply that the data are missing at random, which we purposely want to avoid. We now explain

this point using their notation. Let the covariates be (X,V ), where V is subject to missing data and assumed

to belong to [V0, V1], let Z denote a variable that indicates if the covariate V is missing, and let vL and vH

denote the logical lower and upper bounds of V . Missing covariate data implies that V can be either observed

(i.e. Z = 0 and, so, V = V0 = V1) or unobserved (i.e. Z = 1 and, so, V0 = vL < vH = V1). According to

this setup, Z = 0 occurs if and only if V0 = V = V1. On the other hand, their Mean Independence (MI)

assumption implies that:

EF [Y |X = x, V = v] = EF [Y |X = x, V = v, V0 = v0, V1 = v1] ∀(x, v, v0, v1),

By applying this assumption to any (x, v) such that v0 = v1 = v, it follows that:

EF [Y |X = x, V = v] = EF [Y |X = x, V = v, V0 = v, V1 = v]

= EF [Y |X = x, V = v, {V0 = V = V1}]

= EF [Y |X = x, V = v, Z = 0]

and, so, their MI assumption applied to the current setup implies that the data are missing at random.

In related work, Horowitz and Manski (2006) (HM06 hereafter), Horowitz et al. (2003), and Beresteanu

et al. (2011, Section 4) (BMM11 hereafter) consider identification and inference of best linear predictions

(BLPs) under squared loss in the presence of incomplete data, i.e., missing observations and/or interval-

valued measures. We now briefly characterize these papers and discuss how they differ from our contribution.

Under (unconditional) expected square loss, the BLP of {Y |X = x} is equal to x′θ0, where θ0 satisfies:

EF [Xε] = 0, where ε ≡ Y −X ′θ0. (1.5)

If EF [XX ′] is non-singular, Eq. (1.5) implies that θ0 is uniquely identified and given by:

θ0 = EF [XX ′]−1EF [XY ]. (1.6)

As HM06 and Horowitz et al. (2003) point out, the expression on the right hand side of Eq. (1.6) is not

identified under missing covariate data because neither EF [XX ′] nor EF [XY ] is identified. By discretizing

the distribution of the covariates and imposing logical bounds, these papers develop worst case scenario

bounds on θ0. While these sharp bounds are conceptually easy to understand, they can be very computa-

tionally challenging to calculate or estimate. In particular, HM06 (Page 457) suggest that easier-to-compute
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outer bounds might be considered for this class of problems and that “further research is needed to assess

the usefulness of these and other outer bounds in practice”. In response to this challenge, BMM11 use the

support function approach to conduct computationally feasible sharp inference in a broad class of incomplete

data models, including the aforementioned BLP problem when data of {X,Y } are interval valued (or, in our

case, missing).

It is important to stress that the BLP problem with missing data considered by HM06 or BMM11 differs

from the econometric problem of interest in this paper. To see this, consider the mean regression function

model in Eq. (1.2) of Example 1.1 when f(X, θ0) = X ′θ0. While HM06 and BMM11 assume that the residual

in their BLP problem satisfies the unconditional moment restriction in Eq. (1.5), we assume instead that

the residual satisfies the stronger conditional moment restriction in Eq. (1.3). The reason for considering

conditional moment restrictions instead of the unconditional ones is two-fold. On the one hand, as Section 1.1

illustrates, there are numerous empirical applications which are modeled as conditional moment restrictions.

In fact, this is precisely the case in the probit model with missing covariates in Aucejo et al. (2015a) that

motivated this work. Second, unlike its unconditional counterpart, the conditional moment restriction model

with missing conditioning covariate has received less attention in the literature. In particular, neither HM06

nor BMM11 can be used to study the identified set of interest in this paper.2

In the absence of missing data, θ0 is typically (point) identified under either conditional or unconditional

moment restrictions (in both cases, θ0 is as in Eq. (1.6)). In the presence of missing covariate data, however,

the identification of θ0 under conditional or unconditional moment restrictions can produce different answers.

The intuition behind this is simple. The unconditional moment restriction in Eq. (1.5) implies a finite number

of unconditional moment restrictions, which typically lead to a strictly partially identified set for θ0, which

we denote by Θunc
I (F ).3 On the other hand, imposing the conditional moment restriction proposed in this

paper, i.e., Eq. (1.3), implies simultaneously imposing a conditional moment condition of the form:

EF [εg(X)] = 0, (1.7)

for every (measurable) function g, which include the unconditional moment conditions in Eq. (1.5) plus

an infinite number of additional ones. We show in this paper that this can also lead to a strictly partially

identified set for θ0, which we denote by Θcond
I (F ). By the law of iterated expectations, Θcond

I (F ) ⊆ Θunc
I (F )

and, thus, Θunc
I (F ) based on Eq. (1.5) can result in a superset of the identified set for the parameter θ0 that

is of interest to this paper. As we explain in Section 2, the computational complexity of Θcond
I (F ) will force

us to produce inference on a superset of the identified set, which we denote by ΘS(F ). Since the set Θunc
I (F )

and our set ΘS(F ) are different supersets of the identified set Θcond
I (F ), our contribution can be considered

to be complementary to the existing literature.

In other work, BMM11 (Section 3) and Galichon and Henry (2011) consider the identification problem in

economic games with possible multiplicity of equilibria. While this setup differs considerably from ours, their

unobserved equilibrium selection rule plays an analogous role to the distribution of missing covariates in our

framework. Galichon and Henry (2011) show that their identified set is characterized by the so-called core of

the generalized likelihood predicted by the model and, consequently, the problem of identification reduces to

checking whether a collection of conditional moment inequalities is satisfied or not for each parameter value.

This collection is relatively easy to handle when the support of the outcome variable is finite and small, but

can be computationally very challenging when the outcome variable takes a large number of values. In terms

of our paper, their method would be hard to implement whenever the support of the missing covariates

has numerous values. Since this last case is relevant in applications, we consider our contribution to be
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complementary to Galichon and Henry (2011).

There are several other papers that can also be related to our identification problem. Horowitz and

Manski (1995) study the problem of corrupted and contaminated data. Lewbel (2002), Mahajan (2006),

and Molinari (2008) study identification of the parameter of interest when there is misclassification error of

a categorical covariate data. Finally, Chesher et al. (2013) and Chesher and Rosen (2014a,b) develop sharp

identification results for instrumental variable models that can be related to our framework.

2 Identification analysis

We now present the identification analysis for models characterized by conditional moment restrictions that

contain missing data. We begin with an assumption that formally characterizes our econometric framework.

Assumption A.1. Let the following conditions hold.

(i) Let (Ω,A, F ) be the probability space of (X,Y,W ), let Y : Ω → SY ⊆ Rdy be the outcome variables,

let X = (X1, X2) : Ω → SX1
× SX2

≡ SX ⊆ Rdx = Rd1+d2 be the covariates, where X1 is always

observed and X2 is subject to missing data, and let W : Ω→ {0, 1} denote the binary random variable

that takes value 1 if X2 is unobserved, and 0 otherwise.

(ii) There is a known function m : Rdx×Rdy×Rdθ → Rdm such that the true parameter value θ0 ∈ Θ ⊆ Rdθ

satisfies Eq. (1.1), i.e., EF [m(X,Y, θ0)|X = x] = 0 ∀x F−a.s.

Assumption A.1 characterizes the structure of the data and its “missingness”. According to Assumption

A.1(i), the covariate vector X has two parts, X1 and X2, and only X2 is subject to missing data. As

mentioned earlier, the appendix extends all of our results to allow for arbitrary missing data patterns on

both X and Y . Assumption A.1(ii) restates the conditional moment restriction in Eq. (1.1).

By definition, the sharp identified set of θ0 is the smallest subset of the parameter space Θ that is

consistent with our assumptions. For a given distribution of the data F , this identified set is denoted by

ΘI(F ) and is characterized by the following result.

Lemma 2.1 (Identified set). Assume Assumption A.1. Then,

ΘI(F ) ≡



θ ∈ Θ s.t. ∃g1 : Rdx → R+ and g2 : Rdy × Rdx → R+ that satisfy:

(i) g1(x) = 0 ∀x 6∈ SX and g2(y, x) = 0 ∀(y, x) 6∈ SY × SX

(ii)
∫
x2
g1(x)dx2 = 1 ∀x1 ∈ Rd1 F−a.s.

(iii)
∫
y
g2(y, x)dy = 1 ∀x ∈ Rdx (F, g1)−a.s.

(iv)
∫
x2
g2(y, x)g1(x)dx2 = dPF ∀(x1, y) ∈ Rd1 × Rdy F−a.s.

(v)


(∫

y
m(x, y, θ)g2(y, x)dy

)
g1(x)dPF [X1 = x1|W = 1]PF [W = 1]+

EF [m(X,Y, θ)|X = x,W = 0]dPF [X = x|W = 0]PF [W = 0] = 0

∀x ∈ Rdx (F, g1)−a.s.





, (2.1)

where dPF denotes the probability distribution function that induces PF .

The presence of missing covariate data implies that the following two distributions are unobserved:

dPF [X2 = x2|X1 = x1,W = 1] and dPF [Y = y|X = x,W = 1]. Nevertheless, the conditional moment

8



restriction in Eq. (1.1) imposes restrictions on these two unknown distributions that are specified in Lemma

2.1, where g1(x) represents dPF [X2 = x2|X1 = x1,W = 1] and g2(x, y) represents dPF [Y = y|X = x,W = 1].

The identified set described by Lemma 2.1 is typically extremely complicated to compute in practice. In

particular, in order to determine whether a specific parameter value belongs to the identified set (or not) we

need to prove (or disprove) the existence of a pair of functions (g1 and g2) that satisfies certain properties.

These functions need to satisfy a possibly large (even uncountable) number of integral restrictions (i.e.

conditions (ii)-(iv) in Eq. (2.1)), which is a challenging mathematical problem. This identified set appears

to be more complex than the traditional moment inequalities and equalities considered by the standard

literature of partially identified econometric models.

To illustrate the complexity in computing the identified set described by Lemma 2.1, consider a special

case of the mean regression model in Example 1.1 with a binary outcome, i.e., Y ∈ {0, 1}, and a univariate

covariate affected by missing data and with finite support, i.e., X = X2 and SX = SX2
= {xj}Nj=1 and

N > 1. In this simplified setting, Lemma 2.1 implies that:

ΘI(F ) =



θ ∈ Θ s.t. ∃γ1, γ2 ∈ RN+ with γ2 ≤ γ1 that satisfy:∑N
j=1 γ1,j = 1,∑N
j=1 γ2,j = PF [Y = 1|W = 1],

(PF [Y = 1|X = xj ,W = 0]− f(xj , θ))PF [X = xj ,W = 0]

+(γ2,j − γ1,jf(xj , θ))PF [W = 1] = 0 ∀j = 1, . . . , N.


, (2.2)

where γ1 and γ2 can be related to functions g1 and g2 in Lemma 2.1.4 As a consequence, in order to check

whether a parameter value belongs to ΘI(F ) (or not), we need to solve a linear system of N + 2 equations

with 2N unknowns subject to non-negativity constraints. This is easy to solve when N = 2. On the other

hand, when N > 2, the system of linear equations becomes under-determined, with a degree of indeterminacy

that grows as N increases.

The preceding example is arguably the simplest econometric model based on conditional moment con-

ditions with missing covariate data. Nevertheless, the computation of the identified set can be complicated

when the support of the missing covariate has a large number of values. Furthermore, this complexity can

be shown to increase substantially as the model structure and/or the missing data patterns become richer.

The complexity of the identification problem motivates us to propose simpler ways of characterizing the

identified set in the class of models characterized by Assumption A.1. To this end, we propose the use

supersets of the identified set or, as they are referred to in the literature, outer identified sets.

Definition 2.1 (Outer Identified set). An outer identified set is a superset of the identified set.

An outer identified set provides a (possibly non-sharp) characterization of the parameter of interest. By

definition, any parameter value that lies outside of the outer identified set also lies outside of the identified

set and, thus, can be eliminated as a candidate for the true parameter value. Of course, if an outer identified

set is a strict superset of the identified set, it must imply some loss of information about the parameter of

interest. Nevertheless, given the challenges described earlier, outer identified sets that are easier to compute

and use for inference can be an attractive option for applied researchers.
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3 Outer Identification analysis

In the next two subsections, we propose outer identification strategies to produce outer identified sets.

3.1 Outer identification analysis using boxes

Our first approach to constructing outer identified sets is to consider the implication of the conditional

moment condition in Eq. (1.1) over a specific class of sets that we refer to as boxes. In particular, let B(x, ν)

denote a dx-dimensional box with “center” at x ∈ Rdx and “length” ν ∈ Rdx++, formally defined as follows:

B(x, ν) ≡ {x̃ ∈ Rdx : {xj − νj < x̃j ≤ xj + νj}dxj=1}. (3.1)

For any arbitrary r ∈ (0,∞], the conditional moment restriction in Eq. (1.1) implies the following

collection of unconditional moment restrictions:

EF [ m(X,Y, θ) 1[X ∈ B(x, ν)] ] = 0 ∀(x, ν) ∈ Rdx × (0, r)dx . (3.2)

In fact, the results in Domı́nguez and Lobato (2004) and Andrews and Shi (2013) imply that the informa-

tional content in the conditional moment restriction in Eq. (1.1) is equivalent to that in the collection of

unconditional moment restrictions in Eq. (3.2). The objective of the subsection is to develop an (outer)

identification region based on Eq. (3.2).

In the presence of missing covariate data, the unconditional moment restrictions in Eq. (3.2) are

not identified for the same reason as in Eq. (1.1), i.e., they depend on the two unknown distributions:

PF [X2|X1,W = 1] and PF [Y |X,W = 1]. The outer identification strategy of this section imposes logical

bounds for the unobserved distribution for each individual member of this collection.

Before we describe the result, it is necessary to introduce additional notation. According to Assumption

A.1, the covariate X has two components; X1 ∈ Rd1 which is always observed, and X2 ∈ Rd2 which is

subject to missing data. Let B1(x1, ν1) and B2(x2, ν2) be the d1 and d2-dimensional sub-boxes that result

from projecting B(x, ν) along the dimensions of these two types of covariates, formally defined as follows:

B1(x1, ν1) ≡ {x̃ ∈ Rd1 : {xj − νj < x̃j ≤ xj + νj}d1j=1},

B2(x2, ν2) ≡ {x̃ ∈ Rd2 : {xj − νj < x̃j ≤ xj + νj}dxj=d1+1}, (3.3)

where x1 ≡ {xj}d1j=1, x2 ≡ {xj}dxj=d1+1, ν1 ≡ {νj}d1j=1, and ν2 ≡ {νj}dxj=d1+1, for any (x, ν) ∈ Rdx × Rdx++.

With this notation in place, we are ready to state our first outer identified set for θ0.

Theorem 3.1. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡ (Y,X1, (1−W )X2,W )
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and let M1(Z, θ, x, ν) ≡ {M1,j(Z, θ, x, ν)}dmj=1 with

M1,j(Z, θ, x, ν) ≡
−

 inf
(ξ2,y)∈{SX2

∩B2(x2,ν2)}×SY
mj((X1, ξ2), y, θ) 1[SX2

∩B2(x2, ν2) 6= ∅, X1 ∈ B1(x1, ν1),W = 1]

+mj(X,Y, θ) 1[X ∈ B(x, ν),W = 0]

 , sup
(ξ2,y)∈{SX2

∩B2(x2,ν2)}×SY
mj((X1, ξ2), y, θ) 1[SX2 ∩B2(x2, ν2) 6= ∅, X1 ∈ B1(x1, ν1),W = 1]

+mj(X,Y, θ) 1[X ∈ B(x, ν),W = 0]




(3.4)

for all (θ, x, ν, j) ∈ Θ×Rdx ×Rdx++×{1, . . . , dm}, and where B, B1, and B2 are defined as in Eqs. (3.1) and

(3.3). Consider the following set:

ΘS1
(F ) ≡

{
θ ∈ Θ : EF [M1(Z, θ, x, ν)] ≥ 0 ∀(x, ν) ∈ Rdx × (0, r)dx

}
. (3.5)

Then, ΘS1
(F ) is an outer identified set, i.e., ΘI(F ) ⊆ ΘS1

(F ).

The outer identified set ΘS1(F ) in Theorem 3.1 is the result of imposing logical bounds on unobserved

terms of each member of the collection of unconditional moment restrictions in Eq. (3.2). These bounds are

logically possible from the point of view of each element of the collection, but may not be from the point of

view of the collection as a whole. In fact, the connection between elements of the collection of unconditional

moment restrictions is the main contributing factor to the complexity of the sharp identified set ΘI(F ). In

contrast, the outer identified set ΘS1
(F ) takes the form of a collection of unconditional moment inequalities,

which makes it amenable to computation and inference.

The computation of ΘS1(F ) requires minimizing and maximizing {mj((X1, ξ2), y, θ)}dmj=1 with respect to

(ξ2, y) ∈ {SX2
∩ B2(x2, ν2)} × SY for all values of (X1, θ) ∈ SX1

× Θ.5 The difficulty of these operations

will depend on the structure of the model under consideration. For example, in the case of a linear index

regression version of Example 1.1, i.e., m(x, y, θ) = y − G(x′θ) with weakly increasing function G(·) and

SX2
= Rd2 , these optimization problems have a closed form solution. In particular, if we set yL ≡ infy∈SY y

and yH ≡ supy∈SY y,

inf
(ξ2,y)∈{SX2

∩B2(x2,ν2)}×SY
m((X1, ξ2), y, θ) =

yL −G
(
X ′1θ1 +

∑d2
j=1 ((x2,j + ν2,j)1[θ2,j > 0] + (x2,j − ν2,j)1[θ2,j < 0]) θ2,j

)
,

sup
(ξ2,y)∈{SX2

∩B2(x2,ν2)}×SY
m((X1, ξ2), y, θ) =

yH −G
(
X ′1θ1 +

∑d2
j=1 ((x2,j − ν2,j)1[θ2,j > 0] + (x2,j + ν2,j)1[θ2,j < 0]) θ2,j

)
.

3.2 Outer identification analysis by integrating out

Our second approach to constructing outer identified sets is to integrate out the covariates suffering from

missing data, thus removing them from the conditioning set. In particular, the conditional moment restriction

in Eq. (1.1) implies the following equation:

EF [m(X,Y, θ0)|X1 = x1] = 0 ∀x F−a.s. (3.6)
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The difference between Eq. (1.1) and Eq. (3.6) lies in the set of covariates each is conditioned on. While

Eq. (1.1) conditions on all the covariates, Eq. (3.6) only conditions on the fully observed covariates. Since

Eq. (3.6) does not suffer from a missing covariate data problem, we can characterize its informational content

by applying a more traditional worst case scenario bounds analysis. As a result, we obtain our second outer

identified set for θ0.

Theorem 3.2. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡ (Y,X1, (1−W )X2,W )

and let M2(Z, θ, x, ν) ≡ {M2,j(Z, θ, x, ν)}dmj=1 with

M2,j(Z, θ, x, ν) ≡
− inf
ξ2∈SX2

mj((X1, ξ2), Y, θ) 1[X1 ∈ B1(x1, ν1),W = 1]−mj(X,Y, θ) 1[X1 ∈ B1(x1, ν1),W = 0],

sup
ξ2∈SX2

mj((X1, ξ2), Y, θ) 1[X1 ∈ B1(x1, ν1),W = 1] +mj(X,Y, θ) 1[X1 ∈ B1(x1, ν1),W = 0]

 (3.7)

for all (θ, x, ν, j) ∈ Θ × Rdx × Rdx++ × {1, . . . , dm} and where B1 is defined as in Eq. (3.3). Consider the

following set:

ΘS2(F ) ≡
{
θ ∈ Θ : EF [M2(Z, θ, x, ν)] ≥ 0, ∀(x, ν) ∈ Rdx × (0, r)dx

}
. (3.8)

Then, ΘS2
(F ) is an outer identified set, i.e., ΘI(F ) ⊆ ΘS2

(F ).

As explained earlier, the outer identified set ΘS2(F ) is entirely based on Eq. (3.6). The reason why

ΘS2(F ) might not be a sharp identified set for θ0 is that, in general, there will be a loss of information in the

process of integrating out covariates with missing data that takes us from Eq. (1.1) to Eq. (3.6). As with

our first outer identified set, the outer identified set ΘS2
(F ) takes the form of a collection of unconditional

moment inequalities, which makes it amenable to computation and inference.

The computation of ΘS2
(F ) requires minimizing and maximizing {mj((X1, ξ2), Y, θ)}dmj=1 with respect to

ξ2 ∈ SX2 for all values of (X1, Y, θ) ∈ SX1 × SY × Θ. Once again, the difficulty of these operations will

depend on the structure of the model under consideration. For example, in the case of a linear index regression

version of Example 1.1, i.e., m(x, y, θ) = y−G(x′θ) with weakly increasing function G(·), these optimization

problems have a closed form solution. In particular, if we set xL2,j ≡ infx2∈SX2
x2,j and xH2,j ≡ supx2∈SX2

x2,j

for all j = 1, . . . , d2,

inf
ξ2∈SX2

m((X1, ξ2), Y, θ) = Y −G
(
X ′1θ1 +

∑d2
j=1

(
xL2,j1[θ2,j > 0] + xH2,j1[θ2,j < 0]

)
θ2,j

)
,

sup
ξ2∈SX2

m((X1, ξ2), Y, θ) = Y −G
(
X ′1θ1 +

∑d2
j=1

(
xH2,j1[θ2,j > 0] + xL2,j1[θ2,j < 0]

)
θ2,j

)
.

3.3 Summary of outer identification strategies

Sections 3.1 and 3.2 characterize two outer identification strategies for θ0 under Assumption A.1. It is easy

to verify that these outer identification strategies are different and thus provide different restrictions to the

parameter of interest. To verify this, consider the linear index regression problem, i.e., m(x, y, θ) = y−G(x′θ)

with weakly increasing function G(·). In this case, if the outcome variable Y has bounded support and the

missing covariate X2 has unbounded support, then the first outer identified set is informative while the second

one is not (i.e. ΘS1
(F ) ⊂ Θ = ΘS2

(F )). On the other hand, if the outcome variable Y has unbounded support

and the missing covariate X2 has bounded support, then the previous result is reversed, with the second

outer identified set being informative and the first one being uninformative (i.e. ΘS2
(F ) ⊂ Θ = ΘS1

(F )).
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Both of these outer identified sets take the form of collection of unconditional moment inequalities. As a

result, one can easily combine both collections to generate a sharper (i.e. more informative) outer identified

set, also defined by a collection of unconditional moment inequalities. This is the content of the next result.

Theorem 3.3. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡ (Y,X1, (1−W )X2,W )

and

M(Z, θ, x, ν) = [M1(Z, θ, x, ν)′,M2(Z, θ, x, ν)′]′ (3.9)

for all (θ, x, ν) ∈ Θ × Rdx × (0, r]dx , where M1 and M2 are defined as in Eqs. (3.4) and (3.7), respectively.

Consider the following set:

ΘS(F ) ≡
{
θ ∈ Θ : EF [M(Z, θ, x, ν)] ≥ 0 ∀(x, ν) ∈ Rdx × (0, r)dx

}
. (3.10)

Then, ΘS(F ) is an outer identified set, i.e., ΘI(F ) ⊆ ΘS(F ).

The outer identified set ΘS(F ) is given by a collection of unconditional moment restrictions that represents

both identification strategies. In the remainder of the paper, we use this outer identified set to conduct

econometric inference.6

4 Inference

The objective of this section is to construct a confidence set, denoted CSn, that covers the true parameter

value θ0 with an asymptotic confidence size of (1 − α) (or more). Given our results in previous sections, it

is important to choose an inferential method that allows the parameter of interest to be partially identified.

Following Theorem 3.3, our outer identified set is characterized by an uncountable collection of p-

dimensional unconditional moment inequalities with p ≡ 4dm. To the best of our knowledge, our framework

does not exactly coincide with the typical econometric model used in the partially identified literature. On

the one hand, we have an uncountable number of unconditional moment inequalities, which is not allowed

in the standard framework for unconditional moment inequalities.7 On the other hand, our framework with

unconditional moment conditions is not directly captured by any of the existing inference methods for con-

ditional moment inequalities. In any case, our outer identification analysis closely resembles the ideas of

Andrews and Shi (2013) (hereafter, referred to as AS13), who also translate conditional moment inequalities

into unconditional ones. For this reason, we find it natural to implement inference by adapting the General-

ized Moment Selection (GMS, henceforth) method developed by AS13. Although less natural in our setting,

one could also have implemented inference by adapting the results from other references in the conditional

moment inequality literature, which include Kim (2008), Ponomareva (2010), Armstrong (2012, 2014), Arm-

strong and Chan (2012), Chetverikov (2012), and Chernozhukov et al. (2013), among others. It is relevant

to point out that, to the best of our knowledge, there are no inferential procedures that can be applied to

the complex structure of the sharp identified set in Lemma 2.1. In other words, the possibility of conducting

inference along the lines of any of these references is a consequence of the simplification introduced by our

outer identification strategies.

In order to conduct inference, we assume to observe an i.i.d. sample of observations of {Zi}ni=1 with

Z ≡ (Y,X1, (1−W )X2,W ) distributed according to F . Following the GMS procedure in AS13, we propose

to construct a confidence set for θ0 by hypothesis test inversion, that is, by collecting all parameter values
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that are not rejected in a hypothesis test with H0 : θ0 = θ vs. H1 : θ0 6= θ. In particular, we propose:

CSn ≡ {θ ∈ Θ : Tn(θ) ≤ ĉn(θ, 1− α)},

where Tn(θ) is the Cramér-von Mises test statistic and ĉn(θ, 1−α) is the GMS critical value for aforementioned

hypothesis test. In the remainder of this section, we specify the components of CSn and we discuss its main

asymptotic properties. For reasons of brevity, several details of this section are deferred to Appendix A.2.

4.1 Definition of the test statistic Tn(θ)

Given the i.i.d. sample of data {Zi}ni=1 and for any parameter θ ∈ Θ, the Cramér-von Mises test statistic is

defined as follows:

Tn(θ) ≡
∫
S
( √

n Mn(θ, x, ν), Σn(θ, x, ν)
)
dµ(x, ν), (4.1)

where (x, ν) ∈ Rdx × Rdx+ , Mn(θ, x, ν) denotes the sample mean of {M(Zi, θ, x, ν)}ni=1, Σn(θ, x, ν) denote a

slight modification of the sample variance of {M(Zi, θ, x, ν)}ni=1 (see Eq. (4.2)), and S and µ are a function

and a probability measure chosen by the researcher according to assumptions in Appendix A.2.2.

According to Theorem 3.3, ΘS(F ) is composed of parameter values θ ∈ Θ that satisfy a collection of p

moment inequalities. Our test statistic replaces these population moment inequalities with their properly

scaled sample analogue,
√
n Mn(θ, x, ν), weights them according to their sample variance, evaluates their

value according to the criterion function S, and aggregates them across values of (x, ν) according to the

probability measure µ. In the language of the criterion function approach developed by Chernozhukov et al.

(2007), Tn(θ) is the sample analogue of the criterion function, which indicates whether θ belongs to the outer

identified set ΘS(F ) or not. This statement is formalized in Theorem A.3 in Appendix A.2.3.

We proceed by specifying each of the components of the test function Tn(θ). For any θ ∈ Θ and

(x, ν) ∈ Rdx× (0, r)dx , the sample mean, the sample variance, and its modified version are defined as follows:

Mn(θ, x, ν) ≡ n−1
n∑
i=1

M(Zi, θ, x, ν),

Σ̂n(θ, x, ν) ≡ n−1
∑n

i=1

[
M(Zi, θ, x, ν)−Mn(θ, x, ν)

] [
M(Zi, θ, x, ν)−Mn(θ, x, ν)

]′
,

Σn(θ, x, ν) ≡ Σ̂n(θ, x, ν) + λ Dn(θ), (4.2)

where λ is an arbitrarily small positive constant8 and Dn(θ) a positive definite diagonal matrix defined in

Eq. (A.5) in Appendix A.2.1. The role of the modification is to ensure that we use a measure of sample

variance that is positive definite in a scale invariant fashion.

4.2 Definition of the GMS critical value ĉn(θ, 1− α)

The GMS critical value ĉn(θ, 1−α) is an approximation to the (1−α)-quantile of the asymptotic distribution

of Tn(θ) under H0 : θ0 = θ. According to AS13 (Section 4.1), this asymptotic distribution is:

T (h) ≡
∫
S ( vh2(x, ν) + h1(x, ν) , h2(x, ν) + λ Ip×p ) dµ(x, ν), (4.3)

where h ≡ (h1, h2), h1 indicates the amount of slackness of the moment inequalities, h2 is the limiting

variance-covariance kernel, and vh2
is a mean zero Rp-valued Gaussian process with covariance kernel h2(·, ·).
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To define the GMS approximation to the distribution in Eq. (4.3), it is first necessary to define certain

auxiliary expressions. For every θ ∈ Θ and (x, ν), (x̃, ν̃) ∈ Rdx × (0, r)dx , define:

ĥ2,n(θ, (x, ν), (x̃, ν̃)) ≡ D−1/2
n (θ) Σ̂n(θ, (x, ν), (x̃, ν̃)) D−1/2

n (θ),

ĥ2,n(θ, x, ν) ≡ ĥ2,n(θ, (x, ν), (x, ν)),

xn(θ, x, ν) ≡ κ−1
n

√
n D̂−1/2

n (θ) Mn(θ, x, ν),

ϕn(θ, x, ν) ≡ {Bn × 1 [xn,j(θ, x, ν) > 1]}pj=1 , (4.4)

where {κn}n≥1 and {Bn}n≥1 are sequences chosen by the researcher according to the restrictions in Appendix

A.2.2. We briefly describe each of these expressions. First, ĥ2,n(θ, (x, ν), (x̃, ν̃)) and ĥ2,n(θ, x, ν) are the

standardized versions of the sample variance-covariance kernel and sample variance kernel, respectively.

Second, xn(θ, x, ν) is a sample measure of the slackness of the moment inequalities and ϕn(θ, x, ν) is an

increasing function of this measure that is used in the construction of GMS quantiles. With these definitions

in place, the GMS critical value is defined as follows:

ĉn(θ, 1− α) ≡ η + c(ϕn(θ, ·), ĥ2,n(θ, ·, ·), 1− α+ η),

where η is an arbitrarily small positive constant9 and c(ϕn(θ, ·), ĥ2,n(θ, ·, ·), 1 − α + η) is the (conditional)

(1− α+ η)-quantile of the following random variable:∫
S ( vĥ2,n

(x, ν) + ϕn(θ, x, ν) , ĥ2,n(θ, x, ν) + λ Ip×p ) dµ(x, ν), (4.5)

and vĥ2,n
is a mean zero Rp-valued Gaussian process with covariance kernel ĥ2,n(θ, ·, ·). The intuition behind

the GMS approximation can be understood by comparing Eqs. (4.3) and (4.5). First, the sample analogue

variance-covariance kernel ĥ2,n(θ, ·, ·) estimates the limiting covariance kernel h2. Second, the empirical

slackness measure ϕn(θ, ·) approximates the limiting slackness in the moment inequalities h1.

There are several details regarding the computation of the GMS quantiles from Eq. (4.5). First, the

Gaussian process vĥ2,n
requires simulation and there are various methods that can be used to implement this.

Second, Eqs. (4.1) and (4.5) require integration with respect to the measure µ. All of these approximations

can be conducted with arbitrary accuracy by methods described in detail in AS13 (Section 3.5). For the

sake of convenience, we include a brief description of these approximation methods in Appendix A.2.4.

4.3 Properties of the GMS confidence sets

The formal results in AS13 suggest that GMS confidence sets provide excellent asymptotic properties. While

these results do not immediately apply to our outer identified framework, it is not hard to adapt their

arguments in order to establish analogous results. For the sake of completeness, this section announces

some of these results and their proofs can be found in the online supplementary material (see Aucejo et al.

(2015b)).

In order to discuss formal coverage properties, it is necessary to introduce some basic notation regarding

the parameter space. As it is customary in the literature of moment inequality models, one can consider the

parameters of the model to be (θ, F ), where θ is the finite dimensional parameter of interest and F is the

distribution of the data. In order to produce asymptotic results, we restrict these parameters to a baseline

parameter space, denoted by F and formally defined in Definition A.1 in Appendix A.2.1. It is worthwhile
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to point out that the baseline parameter space F includes both parameter values (θ, F ) for which θ satisfies

the moment inequalities of our outer identified set (i.e. θ ∈ ΘS(F )) and parameter values (θ̃, F̃ ) for which

θ̃ does not satisfy the moment inequalities of our outer identified set (i.e. θ̃ 6∈ ΘS(F̃ )). In order to establish

coverage results, we further restrict the baseline parameter space F to a relevant null parameter space,

denoted by F̄0, which imposes the moment inequalities of our outer identified set (among other technical

conditions). In other words, F̄0 ⊂ F and, by definition, F̄0 is only composed of parameter values (θ, F ) such

that θ ∈ ΘS(F ). The formal definition of the parameter space F̄0 is deferred to Definition A.3 in Appendix

A.2.1.

We are now ready to introduce our main asymptotic coverage result, which establishes that the GMS

confidence set covers each parameter θ in ΘS(F ) with a limiting probability of (1− α) or more.

Theorem 4.1. Assume Assumptions A.2, A.5-A.6 and let F̄0 be as in Definition A.3. Then,

lim inf
n→∞

inf
(θ,F )∈F̄0

PF [θ ∈ CSn] ≥ (1− α). (4.6)

There are a couple of relevant aspects in this result that are worth pointing out. First, recall that

(θ, F ) ∈ F̄0 implies θ ∈ ΘS(F ) and so the coverage of all (θ, F ) ∈ F̄0 implies the coverage of all θ ∈ ΘS(F )

for the relevant collection of distributions F . Second, notice that Eq. (4.6) computes limits as n → ∞
after considering the infimum of (θ, F ) ∈ F̄0. In this sense, the asymptotic coverage result holds uniformly

over a relevant subset of the parameters (θ, F ) ∈ F̄0. According to the literature on partially identified

moment inequality models, obtaining uniformly valid asymptotic results is the only way to guarantee that

the asymptotic analysis provides an accurate approximation to finite sample results. The reason for this is

that the limiting distribution of the test statistic is discontinuous in the slackness of the moment inequalities,

while the finite sample distribution of this statistic does not exhibit these discontinuities. In consequence,

asymptotic results obtained for any fixed distribution (i.e. pointwise asymptotics) can be grossly misleading,

and possibly produce confidence sets that undercover (even asymptotically).10

Our next result describes the asymptotic power properties of the GMS confidence set, which shows that

the GMS confidence set excludes any fixed θ outside of ΘS(F ) with probability approaching one.11

Theorem 4.2. Assume Assumptions A.2-A.6, and let (θ, F ) ∈ F such that θ 6∈ ΘS(F ). Then,

lim
n→∞

PF [θ 6∈ CSn] = 1.

By repeating arguments in AS13, it is also possible to show that inference based on GMS confidence

sets have non-trivial power against a set of relevant n−1/2-local alternatives, and strictly higher power than

inference based on alternative methods, such as plug-in asymptotics or subsampling. These results are

omitted from the paper for reasons of brevity.

Given the structure of our outer identified set, adapting the GMS inference method developed by AS13

to our problem was the most natural choice. However, as we explained earlier, the recent literature offers

several other methods to implement inference for conditional moment inequality models and it is important

to understand how the GMS inference method compares to the rest of the literature. In this respect,

the literature offers many interesting discussions and we now briefly summarize some of the main ideas.

Chernozhukov et al. (2013, page 672) explain that their method and that of AS13 differ in the detection

rate of n−1/2-local alternatives depending on whether these take the form of a constant deviation from

the null hypothesis on a set of positive Lebesgue measure (the so-called flat alternative), or not. On the

one hand, the GMS inference method will have non-trivial power against these flat alternatives, while the
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inference method in Chernozhukov et al. (2013) will not. On the other hand, the inference method in

Chernozhukov et al. (2013) presents near optimal detection rates of non-flat alternatives, while the GMS

inference method presents sub-optimal rates. Both flat and non-flat alternatives are relevant in applications

and so both contributions should be considered complementary. More recently, Armstrong (2012, 2014),

Chetverikov (2012), and Armstrong and Chan (2012) propose new inference methods based on optimally

weighted Kolmogorov-Smirnov (KS) type statistics. While AS13 also considers KS statistics, their method

implicitly impose restrictions on the choice of weights due to technical reasons (See Armstrong (2012) for a

comprehensive analysis of the power properties of the AS13). By using novel arguments, these new references

show that using an optimal weighted KS statistics can lead to significant power improvements.

We conclude the section by considering the effect of misspecification on inference. By definition, any

outer identified set is non-empty if the model is correctly specified, while it may or may not be empty if the

model is incorrectly specified. By applying Theorem 4.1, we conclude that a correctly specified model will

produce a non-empty confidence set with a limiting probability of (1− α) or more. However, a misspecified

model with an empty outer identified set can generate an empty confidence set. These ideas can be used

as a basis of model specification in partially identified moment inequality models as in Andrews and Soares

(2010, section 5) and Bugni et al. (2015).

5 Monte Carlo simulations

In this section, we illustrate our results using Monte Carlo simulations based on the probit linear regression

model in Example 1.1. In this setup, the researcher correctly assumes that the true value of the parameter

θ0 = (θ0,1, θ0,2) ∈ Θ ≡ [−2, 2]2 satisfies the conditional moment condition:

EF [Y |X = (x1, x2)] = Φ(x1θ1 + x2θ2), (5.1)

where Y ∈ SY = {0, 1} is a binary outcome random variable, X = (X1, X2) are the covariates with

X1 ∈ SX1
= [0, 1] that is always observed, and X2 ∈ SX2

= {0, 1} that is subject to missing data. As in the

main text, W is a binary variable that indicates whether X2 is missing. In order to conduct inference, the

researcher observes an i.i.d. sample of {(Y,X1, (1−W )X2,W )}ni=1.

We next discuss aspects of the simulations that are unknown to the researcher. The covariates X1 and

X2 independently distributed with X1 ∼ U [0, 1] and X2 ∼ Be(0.5). The data are missing according to:

PF [W = 1|X = (x1, x2)] = π(x2) for x2 ∈ {0, 1}. (5.2)

Notice that Eq. (5.2) allows the conditional probability of missing data to be constant (i.e. π(0) = π(1)) or

not (i.e. π(0) 6= π(1)). Finally, in all of our simulations, the data that are not missing are also distributed

according to a probit regression model with parameter value θ̃0 = (θ̃0,1, θ̃0,2), i.e.,

EF [Y |X = (x1, x2),W = 0] = Φ(x1θ̃1 + x2θ̃2), (5.3)

Notice that Eq. (5.3) allows data to be missing at random (i.e. θ0 = θ̃0) or not (i.e. θ0 6= θ̃0). Finally, we

notice that while the researcher correctly assumes Eq. (5.1), he is unaware that Eqs. (5.2) and (5.3) hold.

We consider five Monte Carlo designs that differ in the value of the population parameters. These

parameter values are specified in Table 1 and are chosen to illustrate cases with and without missing at

random and with and without a constant probability of missing data.
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Design θ0,1 θ0,2 θ̃0,1 θ̃0,2 π(0) π(1) Missing at random Missing probability
Design 1 0.5 1 0.5 1 0.15 0.15 yes constant
Design 2 0.5 0.5 0.5 0.5 0.15 0.15 yes constant
Design 3 0.5 1 0.5 1 0.25 0.15 yes not constant
Design 4 0.5 1 0.75 1 0.15 0.15 no constant
Design 5 0.5 1 0.75 1 0.25 0.15 no not constant

Table 1: Parameter values for Eqs. (5.1), (5.2), and (5.3) used in our simulations. In this framework, data are
missing at random if and only if θ0 = θ̃0, and the missing probability is constant if and only if π(0) = π(1).

The Monte Carlo setup we consider in our simulations is admittedly simple but is very useful to illustrate

the value of our outer identification strategies. Since the outcome is binary and the missing data can only

take two possible values, we are in a situation where the identified set is simple enough to be computed

analytically (i.e. N = 2 in Eq. (2.2)). For each design, we compute the sharp identified set ΘI(F ), the outer

identified set 1, ΘS,1(F ) (Theorem 3.1), the outer identified set 2, ΘS,2(F ) (Theorem 3.2), and the proposed

outer identified set, ΘS(F ) = ΘS,1(F ) ∩ ΘS,2(F ) (Theorem 3.3). We arbitrarily choose r̄ = 0.5 to compute

our outer identified sets. By looking individually at outer identified sets 1 and 2, we can understand the

identifying power of each outer identification strategy. By comparing the proposed outer identified sets and

the sharp identified set, we can quantify the loss of information involved in our outer identification strategies.

We also use the Monte Carlo simulations to implement our inference method. For this purpose, we

simulate 2, 000 datasets, each with a sample size of n = 500 and, for each of these samples, we construct

confidence sets with confidence size (1 − α) = 90% using two inference methods. First, we construct the

GMS confidence set for the outer identified set ΘS(F ) proposed in Section 4. According to our theoretical

results, this confidence set should cover the true parameter value with a limiting probability of (1 − α) or

more (Theorem 4.1) and should cover any fixed parameter value outside of the outer identified set with

a probability that converges to zero (Theorem 4.2). Second, we construct a confidence set using only the

fully observed data under the implicit assumption that the data are missing at random. By using standard

arguments, this second inference method can be shown to cover the parameter value θ̃0 with a limiting

probability of (1−α) and should cover any other fixed parameter value with a probability that converges to

zero. In cases in which the data are missing at random (i.e. θ0 = θ̃0 as in designs 1-3) the second confidence

set is expected to be size correct and have optimal power properties. On the other hand, in cases in which

data are not missing at random (i.e. θ0 6= θ̃0 as in designs 4-5) the second confidence set is expected to suffer

from undercoverage problems.

In order to illustrate our coverage properties, we choose 12 specific parameter values that are purposely

chosen in the interior, boundary, and exterior of the outer identified set ΘS(F ). First, we consider the true

parameter value θinterior ≡ θ0, which is always located in the interior of ΘS(F ). Second, we consider the

parameter value θboundary that is on the boundary of the outer identified set located directly to the east of

the true parameter value, i.e.,

θboundary ≡ (θ0,1 + C, θ0,2), (5.4)

where the constant C > 0 is chosen so that θboundary lies exactly in the boundary of the ΘS(F ). Next, we

consider a list of 10 additional parameter values {θexterior,v}10
v=1 chosen according to the following rule:

θexterior,v ≡ (θ0,1 + C + v/
√
n, θ0,2) for v ∈ {1, . . . , 10},

where C > 0 is as in Eq. (5.4). Since θboundary lies exactly in the boundary of ΘS(F ), {θexterior,v}10
v=1 lie in
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the exterior of ΘS(F ) and at a distance to this set that increases with the index v = 1, . . . , 10.

We conclude by describing the parameters used to implement the GMS method, which is explained in full

detail in Appendix A.2.4. We construct GMS confidence sets with a function S given by the modified method

of moments (see Eq. (A.6) in Appendix A.2.2) and, following AS13, we specify the measure µ to be uniform

distribution using the information regarding the support of the covariates, i.e., µ(x, ν) =
∏2
j=1 µ1,j(x1,j) ×

µ2(νL,j)×µ2(νH,j), where µ1,1 is equal to U(0, 1), µ1,2 is equal to Be(0.5), and {µ2(νL,j), µ2(νH,j)}j=1,2 are

all equal to U(0, r̄) with r̄ = 0.5. Every integral is approximated by Monte Carlo integration with sn = 1, 000.

Following AS13, we choose κn = (0.3 ln(n))1/2, Bn = (0.4 ln(n)/ ln ln(n))1/2, and η = 10−6. Finally, GMS

quantiles are computed by simulation using τreps = 1, 000 repetitions.

5.1 Design 1

Figure 5.1 describes the identification analysis in Design 1. It shows the true parameter value θ0, the

identified set, the two outer identified sets, and their intersection. The outer identified set 1 is a relatively

large region of the parameter space while the outer identified set 2 is relatively smaller. Neither of these sets

is a subset of the other and, consequently, there is an informative gain in considering their intersection. In

fact, the size of the intersection of the outer identified sets is slightly larger that the size of the identified set.

In other words, in the current setup, the combination of our outer identification strategies captures most of

the information that is available in the data.

Figure 5.1: Identification analysis in Design 1. The white asterisk is θ0, the blue region is ΘI(F ), the yellow
region is ΘS(F ) ∩ΘI(F )c, the red region is ΘS1(F ) ∩ΘS(F )c, and the green region is ΘS2(F ) ∩ΘS(F )c.

Figure 5.2 shows coverage probabilities that result from our GMS confidence set and from inference using

a probit model based only on fully observed data. As expected, the GMS inference on our outer identified

set covers θ0 and θ1 (labeled −1 and 0) with probability exceeding (1 − α), and all remaining points are

covered less frequently, with coverage frequency decreasing monotonically as we move further away from the

outer identified set. Inference based on fully observed data covers θ0 (labeled −1) with (limiting) probability

(1 − α), and all other points are covered less frequently, with coverage dropping monotonically as we move
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further to the right. Since data are missing at random in Design 1, it is no surprise that inference based on

fully observed data is significantly more powerful than inference based on our outer identified set.

Figure 5.2: Empirical coverage frequency with (1−α) = 90% for several parameter types in Design 1. Solid
line represents coverage with our GMS confidence set and dashed line represents coverage using a probit
model based only on fully observed data. Parameter types are as follows: “-1” refers to θinterior = θ0, “0”
refers to θboundary, and “1-10” refer to {θexterior,v}10

v=1.

5.2 Design 2

Figure 5.3 presents the identification analysis using the parameters in Monte Carlo Design 2. Notice that

the first two designs share the fact that the data are missing at random and the probability of missing data

is constant. Nevertheless, the results of the identification analysis in these two simulations are very different.

In Design 2, the outer identified set 2 is a strict subset of the outer identified set 1 and, as a consequence,

the intersection of the outer identified sets coincides with the outer identified set 2. As in Design 1, the

intersection of outer identified sets is slightly larger than the sharp identified set and, therefore, captures

most of the information that is available in the data. Figure 5.4 presents the inferential results for Design 2.

The coverage probabilities are qualitatively and quantitatively similar to Design 1.

5.3 Design 3

Figures 5.5 and 5.6 repeat the analysis using the parameters in Design 3. The purpose of this simulation

is to explore the effect of having a larger and non-constant probability of missing data (i.e. π(0) 6= π(1)).

Increasing the percentage of missing data enlarges the outer identified sets, leading to a larger intersection

of outer identified sets. Nevertheless, the combination of our outer identification strategies is still reasonably

close to the sharp identified set. Inferential results are similar to those in previous designs, both qualitatively

and quantitatively.
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Figure 5.3: Identification analysis in Design 2. The white asterisk is θ0, the blue region is ΘI(F ), the yellow
region is ΘS(F ) ∩ΘI(F )c, the red region is ΘS1

(F ) ∩ΘS(F )c, and the green region is ΘS2
(F ) ∩ΘS(F )c.

Figure 5.4: Empirical coverage frequency with (1−α) = 90% for several parameter types in Design 2. Solid
line represents coverage with our GMS confidence set and dashed line represents coverage using a probit
model based only on fully observed data. Parameter types are as follows: “-1” refers to θinterior = θ0, “0”
refers to θboundary, and “1-10” refer to {θexterior,v}10

v=1.
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Figure 5.5: Identification analysis in Design 3. The white asterisk is θ0, the blue region is ΘI(F ), the yellow
region is ΘS(F ) ∩ΘI(F )c, the red region is ΘS1

(F ) ∩ΘS(F )c, and the green region is ΘS2
(F ) ∩ΘS(F )c.

Figure 5.6: Empirical coverage frequency with (1−α) = 90% for several parameter types in Design 3. Solid
line represents coverage with our GMS confidence set and dashed line represents coverage using a probit
model based only on fully observed data. Parameter types are as follows: “-1” refers to θinterior = θ0, “0”
refers to θboundary, and “1-10” refer to {θexterior,v}10

v=1.
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5.4 Design 4

Figures 5.7 and 5.8 repeat the analysis with the parameters in Design 4. As opposed to previous simulations,

the data in this design are not missing at random (i.e. θ0 6= θ̃0). As with all previous designs, the GMS

inference on our outer identified set covers θ0 and θ1 (i.e. parameters types −1 and 0, respectively) with

probability exceeding (1−α), and all remaining points are covered less frequently, with coverage decreasing

monotonically as we move further away from the outer identified set. Unlike previous designs, inference based

only on fully observed data suffers from an undercoverage problem. In particular, the empirical coverage of

the true parameter value θ0 is 50%, which is significantly below the desired coverage level of (1−α) = 90%.

As explained earlier, this undercoverage is an expected consequence of the fact that data are not missing

at random. Inference based only on fully observed data can be shown to cover θ̃0 = (0.75, 1) instead of the

true parameter value θ0 = (0.5, 1), which also explains why the coverage increases as we consider parameter

values located to the east of θ0 and located in the exterior of the outer identified set.

Figure 5.7: Identification analysis in Design 4. The white asterisk is θ0, the blue region is ΘI(F ), the yellow
region is ΘS(F ) ∩ΘI(F )c, the red region is ΘS1(F ) ∩ΘS(F )c, and the green region is ΘS2(F ) ∩ΘS(F )c.

5.5 Design 5

Figures 5.9 and 5.10 repeat the analysis using the parameters in Design 5. The purpose of this simulation

is to explore the combined effect of having probability of missing data that is not constant and data that

are not missing at random. The identification analysis produces qualitative results that are similar to a

combination of Designs 3 and 4. The data in this design are not missing at random, which causes an

expected undercoverage problem for inference based only on fully observed data.
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Figure 5.8: Empirical coverage frequency with (1−α) = 90% for several parameter types in Design 4. Solid
line represents coverage with our GMS confidence set and dashed line represents coverage using a probit
model based only on fully observed data. Parameter types are as follows: “-1” refers to θinterior = θ0, “0”
refers to θboundary, and “1-10” refer to {θexterior,v}10

v=1.

Figure 5.9: Identification analysis in Design 5. The white asterisk is θ0, the blue region is ΘI(F ), the yellow
region is ΘS(F ) ∩ΘI(F )c, the red region is ΘS1

(F ) ∩ΘS(F )c, and the green region is ΘS2
(F ) ∩ΘS(F )c.
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Figure 5.10: Empirical coverage frequency with (1−α) = 90% for several parameter types in Design 5. Solid
line represents coverage with our GMS confidence set and dashed line represents coverage using a probit
model based only on fully observed data. Parameter types are as follows: “-1” refers to θinterior = θ0, “0”
refers to θboundary, and “1-10” refer to {θexterior,v}10

v=1.

6 Conclusions

This paper examines the problem of identification and inference on an econometric model with missing data,

with special focus on the case when covariates are missing. Our econometric model is characterized by

conditional moment conditions, which are routinely used in econometric applications. In order to address

the missing data problem, we adopt a worst case scenario approach, which extracts the information from the

observed data without imposing (untestable) assumptions on the (unobserved) distribution of missing data.

We show that having unobserved covariate observations implies that, in general, the parameter of interest

is partially identified. We characterize the sharp identified set and show that it is usually prohibitively

complex to compute or use for inference (at least with currently available methods). For this reason, we

consider the construction of outer identified sets (i.e. supersets of the identified set) that are relatively easier

to compute and use for inference.

We provide two different strategies to construct outer identified sets. The first strategy is based on using

the conditional moment condition to derive a collection of unconditional moment conditions within boxes.

The second strategy is based on integrating out the missing covariates in the conditional moment condition.

We argue that these two outer identified sets contain non-trivial identifying power. Furthermore, we show

that the two strategies provide different identifying power which can be easily combined to create a sharper

outer identified set. The resulting outer identified set is relatively easy to compute and, most importantly,

amenable to inference using recent developments in the literature on inference in partially identified models.

25



A Appendix

This appendix uses the following abbreviations. We use “RHS” and “LHS” to denote “right hand side” and

“left hand side”, respectively. We also use “s.t.” to abbreviate “such that”. Furthermore, for any population

parameter A, we let I(A) denote the (sharp) identified set of A. Finally, we use G ≡ Rdx × (0, r)dx .

A.1 Appendix to Sections 2 and 3

Results in this section are developed under the following generalization of Assumption A.1.

Assumption B.1. Let the following conditions hold.

(i) Let (Ω,A, F ) be the probability space of (X,Y,WX ,WY ), let Y : Ω → SY ⊆ Rdy be the outcome

variables, let X : Ω→ SX ⊆ Rdx be the covariates, and let WX : Ω→ {0, . . . , 2dx − 1} and WY : Ω→
{0, . . . , 2dy − 1} denote the missing data patterns of X and Y , respectively.12 Any of the coordinates

of X or Y may be subject to missing data.

(ii) There is a known function m : Rdx×Rdy×Rdθ → Rdm such that the true parameter value θ0 ∈ Θ ⊆ Rdθ

satisfies Eq. (1.1), i.e., EF [m(X,Y, θ0)|X = x] = 0 ∀x F−a.s.

Assumption B.2. The outcome random variable Y has no missing data.

We briefly comment on these assumptions. Assumption B.1 generalizes Assumption A.1 by allowing any

arbitrary missing data pattern for outcome variables and covariates. Assumption B.2 is used only in order

to simplify the statement and the proof of Lemma A.1.

According to Assumption B.1(i), WX : Ω→ {0, . . . , 2dx − 1} and WY : Ω→ {0, . . . , 2dy − 1} denote the

missing data patterns of X and Y , respectively. We now explain these variables further. Since X has dx

dimensions and each of them are allowed to be individually missing or not, there are 2dx possible missing

covariate data patterns. The variable WX : Ω → {0, . . . , 2dx − 1} indicates which one of these patterns

occur, where WX = 0 indicates that all of the covariates are observed and WX = 2dx − 1 indicates that

all of the covariates are unobserved. Notice that this is a special case of the main text in which there

are only two missing data patterns, which gives rise to WX = W ∈ {0, 1}. For every w = 0, . . . , 2dx − 1,

let X1,w : Ω → SX1,w be the sub-vector of X that is observed and let X2,w : Ω → SX2,w be the sub-

vector of X that is unobserved. In a similar fashion, Y has dy dimensions and each of them are allowed

to be individually missing or not, there are 2dy possible missing outcome data patterns. The variable

WY : Ω → {0, . . . , 2dy − 1} indicates which one of these patterns occur, where WY = 0 indicates that all

of the outcome variables are observed and WY = 2dy − 1 indicates that all of the outcome variables are

unobserved. For every w = 0, . . . , 2dy − 1, let Y1,w : Ω→ SY1,w be the sub-vector of Y that is observed and

let Y2,w : Ω→ SY2,w be the sub-vector of Y that is unobserved.

A.1.1 Proofs for results in Section 2

For the sake of simplicity, we characterize the identified set with arbitrary missing covariate data patterns

but fully observed outcomes.13
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Lemma A.1. Assume Assumptions B.1-B.2. Then, ΘI(F ) is given by:

θ ∈ Θ s.t. ∀w = 1, . . . , 2dx − 1,

∃g1,w : Rdx → R+ and g2,w : Rdy × Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x 6∈ SX,w and g2,w(y, x) = 0 ∀(y, x) 6∈ SY × SX,w

(ii)
∫
g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx1,w PF−a.s.

(iii)
∫
g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF , g1,w)−a.s.

(iv)

{ ∫
g2,w(y, x)g1,w(x)dx2,wdyPF [WX = w] = dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx1,w × Rdy PF−a.s.

}

(v)


EF [m(x, Y, θ)|X = x,WX = 0]dPF [X = x|WX = 0]PF [WX = 0] +∑2dy−2
w=1 (

∫
m(x, y, θ)g2,w(y, x)dy)g1,w(x)dPF [X1,w = x1,w|WX = w]PF [WX = w] +

(
∫
m(x, y, θ)g2,2dx−1(y, x)dy)g1,2dx−1(x)PF [WX = 2dx − 1] = 0 ∀x ∈ Rdx (F, g1)−a.s.





,

where dPF denotes the probability distribution function that induces PF .

Proof. By definition, ΘI(F ) is composed of θ ∈ Θ for which the observed distributions and the restrictions

on the parameter space do not contradict EF [m(Y, x, θ)|X = x] = 0 ∀x F−a.s.

Step 1. For every w = 1, . . . , 2dx − 1, we derive:

I

(
dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx ,
dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy

)
.

Fix w ∈ {1, . . . , 2dx − 2} arbitrarily. Conditional on WX = w, the object of interest is not identified

because the distribution of {X2,w|X1,w = x1,w,WX = w} is not observed. In order to obtain any expression

that is identified, the dependence on the unobserved variable needs to be integrated out.

Define the set of functions Ψ(w) as follows:

g1,w : Rdx → R+ and g2,w : Rdy × Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x 6∈ SX,w and g2,w(y, x) = 0 ∀(y, x) 6∈ SY × SX,w

(ii)
∫
g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx1,w PF−a.s.

(iii)
∫
g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF , g1,w)−a.s.

(iv)

{
(
∫
g2,w(y, x)g1,w(x)dx2,wdy)PF [WX = w] = dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx1,w × Rdy PF−a.s.

}


We now show that:

I

(
dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx

dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy

)
= Ψ(w). (A.1)

We first show that the identified set in the identified set on LHS of Eq. (A.1) is included in Ψ(w).

Consider a vector (ḡ1,w, ḡ2,w) that belongs to the identified set. Since these are distributions, they need to

be non-negative functions and integrate to one. Furthermore, they also need to have zero density outside
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the support. Moreover, when we combine these distributions and integrate out X2,w they must be able to

generate {dPF [Y = y|X1,w = x1,w,WX = w] : (x, y) ∈ Rdx × R}, whenever PF [WX = w] > 0. Hence,

(ḡ1,w, ḡ2,w) ∈ Ψ(w).

We now show the reverse inclusion. Consider (ḡ1,w, ḡ2,w) ∈ Ψ(w). In order to show that (ḡ1,w, ḡ2,w)

belongs to the identified set in the LHS of Eq. (A.1), we need to argue that the properties in Ψ(w) exhaust

all the necessary properties for the vector of distributions.

First, since ḡ1,w and ḡ2,w play the role of {dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx} and

{dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy}, respectively, they need to satisfy all of the known

restrictions regarding the support of (X,Y ). This is guaranteed by condition (i).

Second, ḡ1,w needs to be a non-negative function that integrates to one with respect to x2,w to satisfy

the (individual) necessary restrictions to be {dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx}. Similarly,

ḡ2,w needs to be non-negative function that integrates to one with respect to y to satisfies all the (individual)

necessary restrictions to be {dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy}. These are guaranteed by

conditions (ii) and (iii), respectively.

Third, if PF [WX = w] > 0, then there are restrictions that need to be satisfied by combination of these

functions. First, if ḡ1,w plays the role of {dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx}, then the

restrictions on ḡ2,w that need to be satisfied for X2,w = x2,w may be allowed to be violated on a negligible

set, which explains that the restrictions on ḡ2 need to be satisfied ḡ1,w − a.s. Second, if ḡ1 plays the role of

{dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx} and ḡ2 plays the role of {dPF [Y = y|WX = w,X = x] :

(x, y) ∈ Rdx × Rdy}, then the combination of these two can be used to integrate out the unobserved vector

X2,w and generate objects identified in the data. In particular, for any (x1,w, y) ∈ Rdx1,w ×Rdy , the integral

of {ḡ2(y, x)ḡ1,w(x) : x2,w ∈ Rdx2,w} produces dPF [Y = y|X1,w = x1,w,WX = w]. If PF [WX = w] = 0,

dPF [Y = y|X1,w = x1,w,WX = w] is not properly defined and the condition becomes vacuous. This is

guaranteed by condition (iv).

Finally, since we are constructing probability distributions of all identified objects and these completely

characterize the behavior of the random variables, this implies we have exhausted all available information.

Step 2. Derive an expression for EF [m(x, Y, θ)|X = x] in terms of primitive probability distributions.

This step follows the structure of Manski (2003, Section 3.4). Fix x ∈ Rdx arbitrarily and consider the

following argument. By the law of iterated expectations:

EF [m(x, Y, θ)|X = x] =

2dx−1∑
w=0

E[m(x, Y, θ)|X = x,WX = w]PF [WX = w|X = x].

For every w = 0, . . . , 2dx − 1, Bayes’ theorem implies that:

PF [WX = w|X = x] =
dPF [X = x|WX = w]PF [WX = w]∑2dx−1
ζ=0 dPF [X = x|WX = ζ]PF [WX = ζ]

.

By replacing this on the previous equation and expanding the expressions:

EF [m(x, Y, θ)|X = x] =

∑2dx−1
w=0 E[m(x, Y, θ)|X = x,WX = w]dPF [X = x|WX = w]PF [WX = w]∑2dx−1

ζ=0 dPF [X = x|WX = ζ]PF [WX = ζ]
=
N(x)

D(x)
,
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where N(x) and D(x) are given by:

N(x) ≡



EF [m(x, Y, θ)|X = x,WX = 0]dPF [X = x|WX = 0]PF [WX = 0]+{
(
∫
y∈Rm(x, y, θ)dPF [Y = y|WX = 2dx − 1, X = x]dy)×

dPF [X = x|WX = 2dx − 1]PF [WX = 2dx − 1]

}
+∑2dx−2

w=1 [
∫
y∈Rdy m(x, y, θ)dP [Y = y|WX = w,X = x]dy×

dPF [X2,w = x2,w|WX = w,X1,w = x1,w]dPF [X1,w = x1,w|WX = w]PF [WX = w]]


,

D(x) ≡


dPF [X = x|WX = 0]PF [WX = 0]+∑2dx−2
w=1 dPF (X2,w = x2,w|WX = w,X1,w = x1,w)dPF [X1,w = x1,w|WX = w]PF [WX = w]

+dPF (X2,w = x2,w|WX = 2dx − 1)PF [WX = 2dx − 1]

 .

Notice that the expressions for N(x) and D(x) are identified except for dPF [X = x|WX = 2dx − 1],

dPF [Y = y|WX = w,X = x], and dPF [X2,w = x2,w|WX = w,X1,w = x1,w], with w = 1, . . . , 2dx − 2.

Step 3. Fix θ ∈ Θ arbitrarily and derive I({EF [m(x, Y, θ)|X = x] : x ∈ Rdx}).
Step 1 derives the identified set for a vector of distribution functions conditional on WX = w for w =

1, . . . , 2dx − 1. Given that the events {WX = w} and {WX = w̃} are disjoint for w 6= w̃, the identified set

for the joint vector of functions for w = 1, . . . , 2dx − 1 is the product of the sets derived in step 1, i.e.,

I

{ dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx

dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy

}
w=1,...,2dx−1


=

∏
w=1,...,2dx−1

I

(
dPF [X2,w = x2,w|WX = w,X1,w = x1,w] : x ∈ Rdx

dPF [Y = y|WX = w,X = x] : (x, y) ∈ Rdx × Rdy

)
.

When we combine this with step 2, it follows that:

I({EF (m(x, Y, θ)|X = x) : x ∈ Rdx}) =

f : Rdx → Rdm s.t. ∀w = 1, . . . , 2dx − 1, ∃g1,w : Rdx → R+ and g2,w : Rdy × Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x 6∈ SX,w, g2,w(y, x) = 0 ∀(y, x) 6∈ SY × SX,w

(ii)
∫
g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx1,w PF−a.s.

(iii)
∫
g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF , g1,w)−a.s.

(iv)

{ ∫
g2,w(y, x)g1,w(x)dx2,wdyPF [WX = w] = dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx1,w × Rdy PF−a.s.

}
(v) f(x) = N(x, g1, g2)/D(x, g1, g2) (F, g1)−a.s.



,

where N(x, g1, g2) and D(x, g1, g2) are similar to N(x) and D(x) in step 2, except that the unidentified
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expressions are replaced by the functions {g1,w}2
dx−1
w=1 and {g2,w}2

dx−1
w=1 , i.e.,

N(x, g1, g2) ≡


EF [m(x, Y, θ)|X = x,WX = 0]dPF [X = x|WX = 0]PF [WX = 0] +

(
∫
y∈Rm(x, y, θ)g2,2dx−1(y, x)dy)g1,2dx−1(x)PF [WX = 2dx − 1] +∑2dx−2
w=1 (

∫
y∈Rdy m(x, y, θ)g2,w(y, x)dy) g1,w(x)dPF [X1,w = x1,w|WX = w]PF [WX = w]

 ,

D(x, g1, g2) ≡


dPF [X = x|WX = 0]PF [WX = 0] +∑2dx−2
w=1 g1,w(x)dPF [X1,w = x1,w|WX = w]PF [WX = w]

+g1,2dx−1(x)PF [WX = 2dx − 1]

 .

Step 4. Conclude the proof.

By definition, θ ∈ ΘI(F ) if and only if the zero function belongs to I({EF (m(x, Y, θ)|X = x) : x ∈ Rdx}).
The characterization in the statement follows from imposing the existence of the zero function in the definition

of I({EF (m(x, Y, θ)|X = x) : x ∈ Rdx}).

Proof of Lemma 2.1. This result is a special case of Lemma A.1.

A.1.2 Proofs for results in Section 3

Recall that WX = w for w = 0, . . . , 2dx − 1 determines the missing data pattern of the covariates. For any

(x, ν) ∈ G and any w = 0, . . . , 2dx − 1, let B1(x1,w, ν1,w) and B2(x2,w, ν2,w) denote the projection of the

dx-dimensional set B(x, ν) onto the space of the observed covariates X1,w and unobserved covariates X2,w,

respectively. With some abuse of notation, we define:

B1,w(x1,w, ν1,w) ≡ {x1,w ∈ Rd1,w s.t. ∃x2,w ∈ Rd2,w with (x1,w, x2,w) ∈ B(x, ν)},

B2,w(x2,w, ν2,w) ≡ {x2,w ∈ Rd2,w s.t. ∃x1,w ∈ Rd1,w with (x1,w, x2,w) ∈ B(x, ν)}, (A.2)

where the abuse of notation occurs in the reshuffling of coordinates in the expression “(x1,w, x2,w)”. We note

that these definitions imply that B(x, ν) ≡ B1,w(x1,w, ν1,w)×B2,w(x2,w, ν2,w).

Theorem A.1. Assume Assumption B.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡ (
∑2dy−1
w̃=0 1[WY =

w̃]Y1,w̃,
∑2dy−1
w=0 1[WX = w]X1,w,WX ,WY ) and let M1(Z, θ, x, ν) = {M1,j(Z, θ, x, ν)}dmj=1 with

M1,j(Z, θ, x, ν) ≡

−



∑2dy−1
w̃=0

∑2dx−1
w=1 inf

(ξ2,w,y)∈{SX2,w
∩B2,w(x2,w,ν2,w)}×SY,w̃

mj((X1,w, ξ2,w), y, θ)

×1[SX2,w
∩B2,w(x2,w, ν2,w) 6= ∅, X1,w ∈ B1,w(x1,w, ν1,w),WX = w,WY = w̃]

+
∑2dy−1
w̃=1 inf

y2,w̃∈SY2,w̃
mj(X, (Y1,w̃, y2,w̃), θ)× 1[X ∈ B(x, ν),WX = 0,WY = w̃]

+mj(X,Y, θ)× 1[X ∈ B(x, ν),WX = 0,WY = 0]


,



∑2dy−1
w̃=0

∑2dx−1
w=1 sup

(ξ2,w,y)∈{SX2,w
∩B2,w(x2,w,ν2,w)}×SY,w̃

mj((X1,w, ξ2,w), y, θ)

×1[SX2,w
∩B2,w(x2,w, ν2,w) 6= ∅, X1,w ∈ B1,w(x1,w, ν1,w),WX = w,WY = w̃]

+
∑2dy−1
w̃=1 sup

y2,w̃∈SY2,w̃
mj(X, (Y1,w̃, y2,w̃), θ)× 1[X ∈ B(x, ν),WX = 0,WY = w̃]

+mj(X,Y, θ)× 1[X ∈ B(x, ν),WX = 0,WY = 0]





,
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for all (θ, (x, ν)) ∈ Θ × G and where B(·) is defined as in Eq. (3.1) and B1,w(·), and B2,w(·) are defined as

in Eq. (A.2). Consider the following set:

ΘS1
(F ) ≡

{
θ ∈ Θ : EF [M1(Z, θ, x, ν)] ≥ 0 ∀(x, ν) ∈ Rdx × (0, r)dx

}
.

Then, ΘI(F ) ⊆ ΘS1
(F ), i.e., ΘS1

(F ) is an outer identified set.

Proof. Consider any arbitrary (θ, (x, ν)) ∈ ΘI(F ) × G. By definition, this implies that EF [m(X,Y, θ)|X =

x] = 0 PF−a.s. and, thus, by multiplying this expression by 1(X ∈ B(x, ν)) and integrating with respect to

the density of X, we deduce that EF [m(X,Y, θ)1(X ∈ B(x, ν))] = 0, or, equivalently,

EF


∑2dy−1
w̃=0

∑2dx−1
w=1 m((X1,w, X2,w̃), Y, θ)

×1[X2,w ∈ B2,w(x2,w, ν2,w), X1,w ∈ B1,w(x1,w, ν1,w),WX = w,WY = w̃]

+
∑2dy−1
w̃=1 m(X,Y, θ)× 1[X ∈ B(x, ν),WX = 0,WY = w̃]

+m(X,Y, θ)× 1[X ∈ B(x, ν),WX = 0,WY = 0]

 = 0.

For each w = 1, . . . , 2dx − 1, the value of X2,w is unobserved. In addition, even if the value of Y is observed,

the value of Y conditional on the event of {X2,w ∈ B2,w(x2,w, ν2,w)} is also unobserved. Finally, for each

w̃−1, the value of Y2,w̃ is unobserved. By imposing logical lower and upper bounds on the unknown variables

for each of the dm coordinates, the desired result follows.

Proof of Theorem 3.1. This result is a special case of Theorem A.1. The only difference occurs in the

definition of Z, which we now explain. Let Z be as defined in Theorem A.1. In this case, WY = 0 and

W = WX ∈ {0, 1}, leading to Y1,0 = Y , Y2,0 = ∅, X1,0 = X, X2,0 = ∅, X1,1 = X1, and X2,1 = X2, and

so Z ≡ ((Y, (X1, X2),W = 0,WY = 1), (Y,X1,W = 1,WY = 1)). To complete the proof, notice that the

information in Z can be equivalently re-expressed by (Y,X1, (1−W )X2,W ), leading to the definition of Z

in the statement of Theorem 3.1.

Theorem A.2. Assume Assumption B.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡ (
∑2dy−1
w̃=0 1[WY =

w̃]Y1,w̃,
∑2dy−1
w=0 1[WX = w]X1,w,WX ,WY ). There are two possible cases.

1. No covariates that are always observed. Then set M2(Z, θ) = {M2,j(Z, θ)}dmj=1 with

M2,j(Z, θ) ≡


∑2dy−1
w̃=1

∑2dx−1
w=1 sup

(x2,w,y2,w̃)∈SX2,w
×SY2,w̃

mj((X1,w, x2,w), (Y1,w̃, y2,w̃), θ)1[WX = w,WY = w̃]

+
∑2dx−1
w=1 sup

x2,w∈SX2,w

mj((X1,w, x2,w), Y, θ)1[WX = w,WY = 0]

 ,

−


∑2dy−1
w̃=1

∑2dx−1
w=1 inf

(x2,w,y2,w̃)∈SX2,w
×SY2,w̃

mj((X1,w, x2,w), (Y1,w̃, y2,w̃), θ)1[WX = w,WY = w̃]

+
∑2dx−1
w=1 inf

x2,w∈SX2,w

mj((X1,w, x2,w), Y, θ)1[WX = w,WY = 0]




.

Consider the following set:

ΘS2
(F ) ≡ {θ ∈ Θ : EF [M2(Z, θ)] ≥ 0} .
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Then, ΘI(F ) ⊆ ΘS2
(F ), i.e., ΘS2

(F ) is an outer identified set.

2. Some covariates that are always observed. Denote the sub-vector of the covariates that are always

observed by XAO, denote its support by SXAO ∈ RdAO . The remaining covariates that are not always

observed are denoted by XNAO ∈ RdNAO and, with a slight abuse of notation, these can take the role

of X in the previous case, i.e., set M2(Z, θ, xAO, νAO) = {M2,j(Z, θ, x
AO, νAO)}dmj=1 with

M2,j(Z, θ, x
AO, νAO) ≡


∑2dy−1
w̃=1

∑2dNAO−1
w=1

 sup
(xNAO2,w ,y2,w̃)∈S

XNAO2,w
×SY2,w̃

mj((X
AO, XNAO

1,w , xNAO2,w ), (Y1,w̃, y2,w̃), θ)

×1[WXNAO = w,WY = w̃]


+
∑2dNAO−1
w=1 sup

xNAO2,w ∈S
XNAO2,w

mj((X
AO, XNAO

1,w , xNAO2,w ), Y, θ)1[WXNAO = w,WY = 0]

 ,

−


∑2dy−1
w̃=1

∑2dNAO−1
w=1

 inf
(xNAO2,w ,y2,w̃)∈S

XNAO2,w
×SY2,w̃

mj((X
AO, XNAO

1,w , xNAO2,w ), (Y1,w̃, y2,w̃), θ)

×1[WXNAO = w,WY = w̃]


+
∑2dNAO−1
w=1 inf

xNAO2,w ∈S
XNAO2,w

mj((X
AO, XNAO

1,w , xNAO2,w ), Y, θ)1[WXNAO = w,WY = 0]




× 1(XAO ∈ B(xAO, νAO)).

Consider the following set:

ΘS2(F ) ≡
{
θ ∈ Θ : EF [M2(Z, θ, xAO, νAO)] ≥ 0 ∀(xAO, νAO) ∈ RdAO × (0, r)dAO

}
.

Then, ΘI(F ) ⊆ ΘS2
(F ), i.e., ΘS2

(F ) is an outer identified set.

Proof. We only cover the proof of part 1. The proof for part 2 follows exactly from the same arguments as

part 1, except that (a) inside the expectations, there is an extra 1[XAO ∈ B(xAO, νAO)] term, and (b) the

proof should be repeated for every (xAO, νAO) ∈ RdAO × (0, r)dAO .

Fix θ ∈ ΘI(F ) arbitrarily. By definition, this implies that EF [m(X,Y, θ)|X = x] = 0 PF−a.s. and, thus,

EF [m(X,Y, θ)] = 0. Next, consider the following argument. The law of iterated expectations implies that:

EF [m(X,Y, θ)] =

2dy−1∑
w̃=0

2dx−1∑
w=0

{ ∫
x∈SX EF [m(x, (Y1,w̃, Y2,w̃), θ)|X = x,WX = w,WY = w̃]×
dPF [X = x|WX = w,WY = w̃]PF [WX = w,WY = w̃]

}
.

The RHS is the sum of several terms. The expression is not identified because {dPF [X = x|WX = w,Wy =

w̃] : x ∈ Rdx} and {dPF [Y2,w̃|X = x,WX = w,Wy = w̃] : (y2,w̃, x) ∈ Rdy2,w̃ × Rdx} are not identified for

w > 0 and w̃ > 0, respectively. By imposing logical lower and upper bounds on the unknown variables for

each of the dm coordinates, the desired result follows.

Proof of Theorem 3.2. This result is a special case of Theorem A.2. Notice that X1 in Theorem 3.2 takes the

role of XAO in Theorem A.2 as they are always observed. The only other difference occurs in the definition

of Z, which can be explained by repeating the argument used in the proof of Theorem 3.1.
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A.2 Appendix to Section 4

This section provides the details regarding the properties of our confidence sets. We first introduce relevant

definitions, follow with our assumptions, and conclude by establishing formal results.

A.2.1 Definitions

Our moment inequality model described in Theorem 3.3 has parameters (θ, F ), where θ ∈ Θ denotes a generic

value for the parameter of interest and F denotes the distribution of the data. We now define the random

variable M(Z, θ) that is an envelope for the collection of random variables {M(Z, θ, x, ν) : (x, ν) ∈ G} (see,

e.g., Pollard (1990, Page 19)). By definition, for any (θ, F ) with Z ∼ F , the envelope M(Z, θ) satisfies:

|M(Z, θ, x, ν)| ≤M(Z, θ) ∀(x, ν) ∈ G. (A.3)

In the context of Assumption A.1, the natural envelope is as follows:

M(Z, θ) ≡




sup

(ξ2,y)∈SX2
×SY
|mj((X1, ξ2), y, θ)| 1[W = 1] + |mj(X,Y, θ)| 1[W = 0],

sup
(ξ2,y)∈SX2

×SY
|mj((X1, ξ2), y, θ)| 1[W = 1] + |mj(X,Y, θ)| 1[W = 0]


dm

j=1

,


sup

ξ2∈SX2

|mj((X1, ξ2), Y, θ)| 1[W = 1] + |mj(X,Y, θ)| 1[W = 0],

sup
ξ2∈SX2

|mj((X1, ξ2), Y, θ)| 1[W = 1] + |mj(X,Y, θ)| 1[W = 0],


dm

j=1


.

Under the more involved setup described in Assumption B.1, one could define an analogous envelope function.

This is available from the authors upon request.

For any (x, ν), (x̃, ν̃) ∈ G, we define the following population objects:

DF (θ) ≡ Diag(V arF (M(Z, θ))),

ΣF (θ, (x, ν), (x̃, ν̃)) ≡ CovF [ M(Z, θ, x, ν) , M(Z, θ, x̃, ν̃) ],

h1,n,F (θ, x, ν) ≡
√
n D

−1/2
F (θ) EF [M(Z, θ, x, ν)],

h2,F (θ, (x, ν), (x̃, ν̃)) ≡ D
−1/2
F (θ)× ΣF (θ, (x, ν), (x̃, ν̃))×D−1/2

F (θ),

H2 ≡ {h2,F (θ, ·, ·) : (θ, F ) ∈ F}. (A.4)

The diagonal matrix DF (θ) is used to standardize the random variable M(Z, θ, x, ν) in a scale-invariant and

uniform (in (x, ν)) way at the population level. h1,n,F (θ, x, ν) and h2,F (θ, (x, ν), (x̃, ν̃)) are standardized

version of the slackness in the moment inequalities
√
nEF [M(Z, θ, x, ν)] and the variance-covariance kernel

ΣF (θ, (x, ν), (x̃, ν̃)), respectively. Finally, H2 is the parameter space for the standardized variance-covariance

kernels. This is a space of p× p-matrix-valued covariance kernels on G × G, which we metrize with the sup-

norm, i.e., for h2,F (θ, ·, ·), ȟ2,F̌ (θ, ·, ·) ∈ H2,

d(h2,F (θ, ·, ·), h2,F̃ (θ̃, ·, ·)) ≡ sup
(x,ν),(x̃,ν̃)∈G

||h2,F (θ, (x, ν), (x̃, ν̃))− h2,F̌ (θ̌, (x, ν), (x̃, ν̃))||.

Furthermore, for an i.i.d. sample {Zi}ni=1 distributed according to F , we define the following sample
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objects associated to {M(Zi, θ)}ni=1:

Mn(θ) ≡ n−1
∑n

i=1
M(Zi, θ),

Σ̂n(θ) ≡ n−1
∑n

i=1

[
M(Zi, θ)−Mn(θ)

] [
M(Zi, θ)−Mn(θ)

]′
,

Dn(θ) ≡ Diag(Σ̂n(θ)). (A.5)

By definition, Mn(θ) and Σ̂n(θ) are the sample mean and sample covariance of {M(Zi, θ)}ni=1. The diagonal

matrix Dn(θ) is the sample analogue of DF (θ).

Finally, we define the following “mixed” (i.e. part sample and part population) objects:

vn,F (θ, x, ν) ≡ n−1/2
∑n

i=1
D
−1/2
F (θ) (M(Zi, θ, x, ν)− EF [M(Z, θ, x, ν)]),

ĥ2,n,F (θ, (x, ν), (x̃, ν̃)) ≡ D
−1/2
F (θ)× Σ̂n(θ, (x, ν), (x̃, ν̃))×D−1/2

F (θ).

Notice that vn,F (θ, x, ν) and ĥ2,n,F (θ, (x, ν), (x̃, ν̃)) are the standardized empirical process and variance

covariance kernel, where the standardization is conducted using the population variance DF (θ) in Eq. (A.4).

We now define several relevant parameter spaces for (θ, F ). The first parameter space is the baseline

parameter space. The second parameter space is the null parameter space and is the subset of the baseline

parameter space in which the moment inequalities of our outer identified set are satisfied. The third param-

eter space is a subset of the null parameter space where the variance-covariance kernel is restricted to an

arbitrary compact set. This last parameter space is related to the parameter space in AS13, Theorems 1

and 2, and is used to establish the uniform coverage result in Theorem 4.1.14

Definition A.1 (Baseline parameter space). The baseline parameter space, denoted by F , is the collection

of parameter values (θ, F ) that satisfy the following conditions:

(i) θ ∈ Θ,

(ii) {Zi}ni=1 are i.i.d. distributed according to F ,

(iii) σ2
F,j(Z, θ) ≡ V arF [Mj(Z, θ)] ∈ (0,∞), for j = 1, . . . , p,

(iv) EF |Mj(Z, θ)/σF,j(Z, θ)|2+δ ≤ K for j = 1, . . . , p,

for some constants δ,K ∈ (0,∞), where M(Z, θ) satisfies Eq. (A.3).

Definition A.2 (Null parameter space). The null parameter space, denoted by F0, is the collection of

parameter values (θ, F ) that satisfy conditions (i)-(iv) in Definition A.1 plus the following one:

(v) EF [M(Z, θ, x, ν)] ≥ 0 ∀(x, ν) ∈ G or, equivalently, θ ∈ ΘS(F ).

In words, the null parameter space F0 is the subset of parameters in the baseline parameter space F that

satisfies the moment inequalities of our outer identified set.

Definition A.3 (Restricted null parameter space). Let H̄2 denote an arbitrary compact subset of H2

(metrized with the sup-norm). The restricted null parameter space, denoted by F̄0, is defined as follows:

F̄0 ≡ {(θ, F ) ∈ F0 : h2,F (θ, ·, ·) ∈ H̄2}.

We conclude this section by defining sequences of parameters that are relevant for our asymptotic analysis.
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Definition A.4. For any h2 ∈ H̄2, SubSeq(h2) is the set of sequences {(θn, Fn)}n≥1 for which:

sup
(x,ν),(x̃,ν̃)∈G

||h2,Fn(θn, (x, ν), (x̃, ν̃))− h2((x, ν), (x̃, ν̃))|| → 0.

A.2.2 Assumptions

Our results require the following assumptions which are directly related to those in AS13.

Assumption A.2. Let W denote the set of p× p positive definite matrices and let Rp[+∞] denote p copies

of R[+∞] ≡ R ∪ {+∞}. For every (y,Σ) ∈ Rp[+∞] ×W, the function S used in Eq. (4.1) satisfies:

(a) S(Dy,DΣD) = S(y,Σ) ∀D ∈ ∆, where ∆ denotes the space of positive definite diagonal p× p matrices,

(b) S(y,Σ) is non-increasing in each element of y,

(c) S(y,Σ) ≥ 0,

(d) S is uniformly continuous in the sense that supµ∈Rp+ |S(ỹ + µ, Σ̃)− S(y + µ,Σ)| → 0 as (ỹ, Σ̃)→ (y,Σ),

(e) S(y,Σ) ≤ S(y,Σ + Σ1) for any p× p positive semi-definite matrix Σ1,

(f) S(y,Σ) > 0 if and only if yj < 0 for some j = 1, . . . , p,

(g) For some χ > 0, S(ay,Σ) = aχS(y,Σ) for any scalar a > 0.

Assumption A.3. The probability measure µ used in Eq. (4.1) has full support on G.

Assumption A.4. For every θ ∈ Θ and (x̄, ν̄) ∈ G, limB(x,ν)↓B(x̄,ν̄)EF [M(Z, θ, x, ν)] = EF [M(Z, θ, x̄, ν̄)],

where the convergence B(x, ν) ↓ B(x̄, ν̄) occurs in the Hausdorff distance, i.e., supa∈B(x,ν) infb∈B(x̄,ν̄) ||a −
b|| → 0.

Assumption A.5. For any s = 1, . . . , p, the triangular array of processes {{M(Zi, θ, x, ν) : (x, ν) ∈
G}ni=1}n≥1 is manageable with respect to the envelopes {{M(Zi, θ)}ni=1}n≥1 in the sense of Pollard (1990,

Definition 7.9).

Assumption A.6. {κn}n≥1 and {Bn}n≥1 are non-decreasing sequences of positive constants such that

n→∞ implies that: (a) κn →∞, (b) Bn/κn → 0, (c) Bn →∞, and (d)
√
n/κn →∞.

We now briefly explain each of these assumptions. Assumption A.2 combines Assumptions S1-S4 in

AS13, who propose several candidates for S that satisfy all of these necessary conditions. For convenience,

we describe two of these candidates that are already tailored to the setup of this paper. The first example

is the modified method of moments (MMM) test function:

S1(y,Σ) =

p∑
j=1

[yj/Σ[j,j]]
2
−, (A.6)

where [z]− ≡ |z| × 1(z < 0). The second example is the quasi-likelihood ratio (QLR) test function:

S2(y,Σ) = inf
t∈Rp+,∞

(y − t)′Σ−1(y − t).
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The measure µ is analogous to the weight function Q in AS13 and so Assumption A.3 corresponds to

their Assumption Q.15 By this assumption, any subset of G with positive Lebesgue measure will be assigned

a positive probability. There are many possible candidates for this measure. For example, we could consider

the following product measure:

µ(x, ν) =

dx∏
j=1

µ1(xj)× µ2(νj),

where µ1 is any continuous distribution with full support on R (e.g. standard normal N(0, 1)) and µ2 is any

continuous distribution with support on (0, r).

Assumption A.4 is a smoothness assumption on the moment conditions that define our partially identified

model. Recall from Eqs. (3.4) and (3.7) that EF [M(Z, θ, x, ν)] is the result of integrating a function on a

box B(x, ν), whose center is x and whose width is determined by ν. Assumption A.4 requires that this the

expectation changes continuously as we infinitesimally increase the size of the box B(x, ν). This assumption

can be considered mild because it applies to an expectation, which is a smoothing operator. For example, it

is satisfied in Example 1.1 provided that G is continuous.

Assumption A.5 is analogous to Assumption M(c) in AS13. This assumption provides a sufficient condi-

tion to obtain a functional version of the law of large numbers and the central limit theorem, which are the

key to our inferential results.

Finally, Assumption A.6 specifies thresholding sequences that need to be chosen by the researcher in

order to implement the GMS approximation. These sequences are typical in GMS type of inference (see,

e.g., Andrews and Soares (2010) and Bugni (2010), among others). While Assumption A.6 restricts these

sequences in terms of rates of convergence, they provide little guidance on how to choose them in practice

for a given sample size. Based on experience drawn from their Monte Carlo simulation, AS13 (Page 643)

recommend using κn ≡ (0.3 ln(n))1/2 and Bn ≡ (0.4 ln(n)/ ln ln(n))1/2, which we use in our own simulations.

A.2.3 Results on identification

Our next result has the objective of providing a formal justification for our definition of the test function

Tn in Eq. (4.1). Our confidence set is an example of the criterion function approach to inference in partially

identified models developed by Chernozhukov et al. (2007).

A central population object in this approach is the so-called criterion function, denoted by TF (θ) : Θ→
R+ with the defining property that it takes value of zero if and only if θ ∈ ΘS(F ). The following result

proposes a particular function and verifies that it is a criterion function for the current problem.

Theorem A.3. Assume Assumptions A.2-A.4. For any (θ, F ) ∈ F , define the following function:

TF (θ) ≡
∫
S(EF [M(Z, θ, x, ν)], V arF [M(Z, θ, x, ν)] + λDF (θ))dµ(x, ν),

where DF (θ) is as in Eq. (A.4). Then, TF (θ) is a population criterion function for ΘS(F ), i.e., TF (θ) ≥ 0

and TF (θ) = 0 if and only if θ ∈ ΘS(F ).

Proof. TF (θ) ≥ 0 for θ ∈ Θ follows directly from Assumptions A.2(c) and A.3. First, consider θ ∈ ΘS(F ).

By definition in Theorem 3.3, θ ∈ ΘS(F ) implies EF [M(Z, θ, x, ν)] ≥ 0 for all (x, ν) ∈ G. Then, Assumptions

A.2(c,f) and A.3 imply that TF (θ) = 0.

For the remainder of the proof, consider θ 6∈ ΘS(F ). By definition in Theorem 3.3, θ 6∈ ΘS(F ) implies

EF [Mj(Z, θ, x̄, ν̄)] < 0 for some (j, (x̄, ν̄)) ∈ {1, . . . , p} × G. Let ε ≡ |EF [Mj(Z, θ, x̄, ν̄)]|/2.
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For any δ > 0, define the set A(δ) ≡ {(x, ν) ∈ [x̄ − ν̄δ, x̄ + ν̄δ] × [ν̄(1 + 2δ), ν̄(1 + 3δ)]}. We now

verify that A(δ) has several properties. First, the fact that min{ν̄s}dxs=1δ > 0 implies that A(δ) has a

positive Lebesgue measure. Second, (x, ν) ∈ A(δ) implies that x − ν ∈ [x̄ − ν̄ − 4ν̄δ, x̄ − ν̄ − ν̄δ] and

x+ ν ∈ [x̄+ ν̄ + ν̄δ, x̄+ ν̄ + 4ν̄δ] and these, combined with min{ν̄s}dxs=1δ > 0, imply that B(x̄, ν̄) ⊆ B(x, ν).

Third, ||(x, ν) − (x̄, ν̄)|| ≤ 3 max{ν̄s}dxs=1δ and this implies that B(x, ν) ↓ B(x̄, ν̄) (in Hausdorff distance) as

δ ↓ 0. By ε ≡ |EF [Mj(Z, θ, x̄, ν̄)]|/2 and Assumption A.4, it follows that ∃δ̄1 > 0 s.t. EF [Mj(Z, θ, x, ν)] ≤ −ε
for all δ ∈ (0, δ̄1). Finally, the fact that max{ν̄s}dxs=1 < r implies that ∃δ̄2 > 0 s.t. max{ν̄s}dxs=1(1 + 3δ) < r

and so A(δ) ⊆ G for all δ ∈ (0, δ̄2). For the rest of the proof, define A ≡ A(δ̄) for δ̄ ≡ min{δ̄1, δ̄2} > 0.

We now show that ∃η̄ > 0 s.t.

S( EF [M(Z, θ, x, ν)] , V arF [M(Z, θ, x, ν)] + λ DF (θ) ) ≥ η̄ ∀(x, ν) ∈ A. (A.7)

By Assumption A.2(e) and the fact that V arF [M(Z, θ, x, ν)] is positive semi-definite, it suffices to show

that ∃η̄ > 0 s.t. S(EF [M(Z, θ, x, ν)], λDF (θ)) ≥ η̄ ∀(x, ν) ∈ A. Suppose that this is not true, i.e.,

suppose that ∃{(xs, νs)}s≥1 with (xs, νs) ∈ A ∀s ∈ N s.t. lims→∞ S(EF [M(Z, θ, xs, νs)], λDF (θ)) =

0. By the compactness of A, {(xs, νs)}s≥1 has a convergent subsequence in A with a limit point

(x∗, ν∗) ∈ A s.t. S(EF [M(Z, θ, x∗, ν∗)], λDF (θ)) = 0, which is a contradiction to Assumption A.2(f) and

EF [Mj(Z, θ, x
∗, ν∗)] ≤ −ε.

To conclude the proof, consider the following argument:

TF (θ) ≥
∫
A

S( EF [M(Z, θ, x, ν)], V arF [M(Z, θ, x, ν)] + λDF (θ) )dµ(x, ν) ≥ ηµ(A) > 0,

where the first inequality holds by Assumptions A.2(c) and A.3, the second inequality holds by Eq. (A.7),

and the strict inequality holds by Assumption A.3.

A.2.4 Computation of GMS confidence sets

This paper considers confidence sets of the form:

CSn = {θ ∈ Θ : Tn(θ) ≤ ĉn(θ, 1− α)}.

In practice, both the test statistic Tn(θ) and the GMS critical value ĉn(θ, 1 − α) require integration with

respect to the probability measure µ. Furthermore, cn(θ, 1− α) also requires computation of quantiles of a

certain Gaussian process. The objective of this section is to describe how to implement these approximations.

First of all, integrals with respect to probability measure µ can be approximated with arbitrary accuracy

by Monte Carlo simulation, i.e., we draw an arbitrarily large sample:

{(xu, νu)}snu=1 is i.i.d. and distributed according to µ(x, ν), (A.8)

and approximate the integral with a sample average. The quality of the approximation to these integrals is

controlled by the number of random draws used, denoted by sn and assumed to satisfy sn →∞ as n→∞.

Following AS13 (Sections 3.5 and 4.2), we only draw the sample according to Eq. (A.8) once and use it to

approximate integrals in both Tn(θ) and cn(θ, 1− α) for all θ ∈ Θ.

Approximating the test function Tn(θ) in Eq. (4.1) is a matter of replacing the integral with a sample
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average. In particular, we use:

Tn,sn(θ) ≡ 1

sn

sn∑
u=1

S(n1/2Mn(θ, xu, νu),Σn(θ, xu, νu)),

where {(xu, νu)}snu=1 is the i.i.d. sample in Eq. (A.8), and Mn(θ, x, ν) and Σn(θ, x, ν) are as in Eq. (4.2).

Approximating the GMS critical value is slightly more involved. We provide two algorithms that can be

used to approximate ĉn(θ, 1− α), referred to as asymptotic approximation and bootstrap. Both algorithms

approximate integrals by Monte Carlo integration but differ in the method used to approximate the Gaussian

process. In both of these algorithms, the quality of the approximation is controlled by the number of

repetitions involved, denoted by τreps and assumed to satisfy τreps →∞ as n→∞.

Approximation of ĉn(θ, 1− α) by simulation.

1. Draw an i.i.d. sample {{ζτ,i}ni=1}
τreps
τ=1 where ζτ,i ∼ N(0, 1).

2. For each τ = 1, . . . , τreps and u = 1, . . . , sn, define

vτ (θ, xu, νu) ≡ n−1/2
n∑
i=1

ζτ,i ×D−1/2
n (θ)(M(Zi, θ, xu, νu)−Mn(θ, xu, νu)).

where Σ̂n(θ) and Dn(θ) are as in Eq. (A.5), and {(xu, νu)}snu=1 is the i.i.d. sample in Eq. (A.8).

3. For each τ = 1, . . . , τreps, compute the sample T sn,τ (θ) as follows:

T sn,τ (θ) = s−1
n

sn∑
u=1

S(vτ (θ, xu, νu) + ϕn(θ, xu, νu), ĥ2,n(θ, xu, νu) + λIp×p),

where ĥ2,n and ϕn are as in Eq. (4.4).

4. ĉn(θ, 1− α) is approximated by η plus the empirical (1− α+ η)-quantile of {T sn,τ (θ)}τrepsτ=1 .

Approximation of ĉn(θ, 1− α) by the bootstrap.

1. Draw an i.i.d. sample {{Z∗τ,i}ni=1}
τreps
τ=1 where Z∗τ,i is a bootstrap draw from the empirical distribution

of {Zi}ni=1.

2. For each τ = 1, . . . , τreps and u = 1, . . . , sn, define

v∗τ (θ, xu, νu) ≡ n−1/2
n∑
i=1

D̂−1/2
n (θ)(M(Z∗τ,i, θ, xu, νu)−Mn(θ, xu, νu)).

where Σ̂n(θ) and Dn(θ) are as in Eq. (A.5), and {(xu, νu)}snu=1 is the i.i.d. sample in Eq. (A.8).

3. For each τ = 1, . . . , τreps, compute the sample T sn,τ (θ) as follows:

T sn,τ (θ) = s−1
n

sn∑
u=1

S(vτ (θ, xu, νu) + ϕn(θ, xu, νu), ĥ2,n(θ, xu, νu) + λIp×p),

where ĥ2,n and ϕn are as in Eq. (4.4).
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4. ĉn(θ, 1− α) is approximated by η plus the empirical (1− α+ η)-quantile of {T sn,τ (θ)}τrepsτ=1 .

Notes

1See Arcidiacono et al. (2012) for more evidence and claims about the non-reporting in these data.

2By the arguments in Domı́nguez and Lobato (2004), the methods described in HM06 or BMM11 would

address our identification problem if one could apply their methodology to a model with an infinite number

of unconditional moment inequalities. Unfortunately, neither of these methods are computationally feasible

in this situation. In the case of HM06, see the discussion in Horowitz et al. (2003). In the case of BMM11,

an infinite number of moment inequalities implies that the number of terms in the objective function of their

optimization problem becomes computationally unmanageable.

3As previously explained, neither HM06 nor BMM11 allow for an infinite number of unconditional moment

inequalities.

4To be specific, Eq. (2.2) is equivalent to Eq. (2.1) with g1 and g2 defined as follows. If x = xj for some

j = 1, . . . , N , g1(x) ≡ γ1,j , g2(1, x) ≡ γ2,j/γ1,j , and g2(0, x) ≡ 1 − γ2,j . For any other x or any y 6∈ {0, 1},
g1(x) = g2(y, x) = 0.

5If the set SX2 ∩ B2(x2, ν2) is empty, then two things occur. First, the associated inf and sup are equal

to ∞ and −∞, respectively. Second, the indicator function multiplying these expressions equals zero. Here

and throughout the paper, we define ∞× 0 ≡ 0. Consequently, SX2
∩ B2(x2, ν2) being empty implies that

the associated expression in Eq. (3.4) equals zero.

6As explained in the introduction, our results can be generalized to allow for arbitrary missing data

patters on both outcomes and covariates. The corresponding outer identified set can be deduced directly

from Theorem 3.3 if we replace M1 and M2 defined as in Eqs. (3.4) and (3.7) with the corresponding functions

defined in Theorems A.1 and A.2, respectively.

7These are developed and discussed in Andrews et al. (2004), Imbens and Manski (2004), Galichon

and Henry (2006, 2013), Chernozhukov et al. (2007), Beresteanu and Molinari (2008), Romano and Shaikh

(2008, 2010), Rosen (2008), Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010),

Bugni (2010, 2015), Canay (2010), Andrews and Jia-Barwick (2012), Bontemps et al. (2012), and Pakes

et al. (2014). In fact, these references could be applied to our problem without loss of information if the

conditioning covariate had finite support.

8This positive constant controls the amount of modification introduced in the computation of the sample

variance of {M(Zi, θ, x, ν)}ni=1. Following AS13 (Page 644), we implement our results with λ = 5%.

9This is a universal uniformity factor used to circumvent problems that arise due to the presence of the

infinite-dimensional nuisance parameter associated to the slackness of the moment conditions. Following

AS13 (Page 644), we implement our results with η = 10−6.

10See Imbens and Manski (2004), Andrews and Guggenberger (2009), Andrews and Soares (2010), and

AS13 (Section 5.1).
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11Since ΘS(F ) is a superset of the sharp identified set ΘI(F ), there could be parameter values that belong

to ΘS(F ) and lie outside of ΘI(F ). Even though these parameter values cannot (logically) correspond to the

true parameter value, our inference method (based on outer identification) will not have any (non-trivial)

power against them, even asymptotically.

12See explanation below on how the missing data patterns of X and Y translate into the value of WX and

WY , respectively.

13The analogous result for missing outcome data is not conceptually hard but it is cumbersome to express.

It is available from the authors upon request.

14As explained in AS13, this restriction is not particularly problematic in practice, as the potential uni-

formity problems arise because the limiting distribution of the test statistic is discontinuous in the slackness

of the moment inequalities and not its variance-covariance kernel.

15To be precise, our measure µ corresponds exactly to their measure Q∗.
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S1 Results on inference

Proof of Theorem 4.1. The proof of this result follows closely the arguments in AS13 (Theorem 2(a)). Notice

that Assumption A.2 implies their Assumptions S1-S2, Assumption A.5 implies the manageability of the

stochastic processes implied by their Assumption M, and Assumption A.6 implies their Assumption GMS1.

Suppose that Eq. (4.6) does not hold. In this case, we can find a subsequence {an}n≥1 of {n}n≥1 and

a sequence {(θan , Fan) ∈ F̄0}n≥1 s.t. PFan
(θan 6∈ CSan) > α ∀n ∈ N. By the compactness implicit in

the definition of F̄0, we can find a further subsequence {bn}n≥1 of {an}n≥1 s.t. {(θbn , Fbn) ∈ F̄0}n≥1 ∈
SubSeq(h2) for some limiting variance-covariance kernel h2, where SubSeq(h2) is as in Definition A.4. By

this and Assumption A.5, Lemmas S2.1-S2.2 imply that:(
vbn,Fbn

(θbn , ·)
ĥ2,bn,Fbn

(θbn , ·)

)
d→

(
vh2

(·)
h2(·)

)

as stochastic processes indexed by (x, ν) ∈ G. This and Assumptions A.2 and A.6 allow us to establish AS13

(Lemmas A2-A5). In turn, these can be used to contradict PFbn
(θbn 6∈ CSbn) > α ∀n ∈ N, thus concluding

the proof.

Proof of Theorem 4.2. The proof of this result follows closely the arguments in AS13 (Theorem 3), with the

exception of certain steps. For the sake of completeness, we sketch the main steps of the proof and point

out the differences with the one in AS13.

Consider the following derivation:

PF (θ ∈ CSn) = PF (Tn(θ) ≤ c(ϕn(θ, ·), ĥ2,n(θ, ·), 1− α+ η) + η)

≤ PF (Tn(θ) ≤ c(0, ĥ2,n(θ, ·), 1− α+ η) + η)

= PF (n−χ/2Tn(θ) ≤ n−χ/2(c(0, ĥ2,n(θ, ·), 1− α+ η) + η)),

where the first line holds by definition of ĉn(θ, 1 − α), the second line holds by definition of ϕn(θ, ·) and

c(·, ĥ2,n(θ, ·), 1−α+η), combined with Assumptions A.2(b) and A.6, which imply that ϕn(θ, ·) ≥ 0, and in the

last line χ is as in Assumption A.2(g). The proof is completed by showing that (a) PF (n−χ/2Tn(θ) ≥ C)→ 1

for some C > 0 and (b) c(0, ĥ2,n(θ, ·), 1−α+η) = Op(1), which imply that n−χ/2(c(0, ĥ2,n(θ, ·), 1−α+η)+η) =

op(1). The proof of (b) is identical to the proof in AS13 (which requires our Assumptions A.2 and A.5). On

the other hand, our proof of (a) is slightly different, and so we devote the remainder of this proof to develop

this argument.

By definition, θ 6∈ ΘS(F ) implies that ∃j ≤ p s.t. EF [Mj(Z, θ, x, ν)] < 0 for some (x, ν) ∈ G. Under

Assumptions A.2(c,e,f) and A.4, we can use the arguments in the proof of Theorem A.3 to define a set A ⊂ G
with positive Lebesgue measure s.t. EF [Mj(Z, θ, x, ν)] ≤ −ε ∀(x, ν) ∈ A. As a consequence,

S(EF [M(Z, θ, x, ν)], V arF [M(Z, θ, x, ν)] + λDF (θ)) ≥ η ∀(x, ν) ∈ A

for some δ > 0. By Assumptions A.2(a) and A.3, this implies that:∫
(x,ν)∈A

S(D
−1/2
F (θ)EF [M(Z, θ, x, ν)], h2,F (θ, x, ν) + λIp×p)dµ(x, ν) ≥ ηµ(A) > 0. (S1.1)
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To complete the proof, consider the following derivation:

n−χ/2Tn(θ) = n−χ/2
∫

(x,ν)∈G
S(vn,F (θ, x, ν) + h1,n,F (θ, x, ν), ĥ2,n,F (θ, x, ν) + λIp×p)dµ(x, ν)

=

∫
(x,ν)∈G

S(n−1/2vn,F (θ, x, ν) +D
−1/2
F (θ)EF [M(Z, θ, x, ν)], ĥ2,n,F (θ, x, ν) + λIp×p)dµ(x, ν)

≥
∫

(x,ν)∈A
S(n−1/2vn,F (θ, x, ν) +D

−1/2
F (θ)EF [M(Z, θ, x, ν)], ĥ2,n,F (θ, x, ν) + λIp×p)dµ(g)

p→
∫

(x,ν)∈A
S(D

−1/2
F (θ)EF [M(Z, θ, x, ν)], h2,F (θ, x, ν) + λIp×p)dµ(x, ν) ≥ ηµ(A) > 0, (S1.2)

where the first line holds by definition of Tn(θ), the second line holds by Assumption A.2(g) and by definition

of h1,n,F (θ, x, ν), the third line holds by A ⊂ G and Assumption A.2(c), the convergence in the fourth line

holds by the same argument described in the next paragraph, and the last expression is positive by Eq.

(S1.1). By Eq. (S1.2), PF (n−χ/2Tn(θ) ≥ ηµ(A)/2) → 1 for some ηµ(A)/2 > 0, which implies the desired

result.

To conclude the proof, it suffices to justify the convergence in the fourth line of Eq. (S1.2). For a fixed

parameter (θ, F ) ∈ F , Lemmas S2.1-S2.2 (see Section S2 in this supplement) imply that:(
vn,F (θ, ·)
ĥ2,n,F (θ, ·)

)
d→

(
vh2,F

(θ, ·)
h2,F (θ, ·)

)

as stochastic processes indexed by (x, ν) ∈ G. In turn, this implies that:

sup
(x,ν)∈G

∥∥∥∥∥
(
n−1/2vn,F (θ, x, ν)

ĥ2,n,F (θ, x, ν)

)
−

(
0

h2,F (θ, x, ν)

)∥∥∥∥∥ p→ 0.

The convergence in the fourth line of Eq. (S1.2) is a result of this, the almost sure representation theorem,

the bounded convergence theorem, and Assumption A.2(d).

S2 Auxiliary results

Lemma S2.1. Assume Assumption A.5 and that {(θkn , Fkn) ∈ F̄0}n≥1 ∈ SubSeq(h2) for an arbitrary

subsequence {kn}n≥1 of {n}n≥1. Then,

vkn,Fkn
(θkn , ·)

d→ vh2(·),

as stochastic processes indexed by (x, ν) ∈ G, where vh2
is a Rp-valued Gaussian process with zero mean and

variance-covariance kernel h2(·, ·) on G × G.

Proof. This result follows from AS13 (Lemmas A1(a) and E3). We describe the main ideas behind these

arguments for the sake of completeness. Throughout this proof, we replace the subsequence {kn}n≥1 by the

original sequence {n}n≥1 in order to simplify the notation.

Suppose that {(θn, Fn) ∈ F̄0}n≥1 ∈ SubSeq(h2). By Pollard (1990, Theorem 10.2), the desired result is

a consequence of the following conditions:
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(1) (G, ρ) is a totally bounded pseudo-metric space, where ρ is the following pseudo-metric:

ρ2((x, ν), (x̃, ν̃)) ≡ lim
n→∞

(Trace(V arFn [D
−1/2
Fn

(θn)(M(Z, θn, x, ν)−M(Z, θn, x̃, ν̃)]),

(2) The finite dimensional convergence holds, i.e., ∀(a, L) ∈ Rp/0 × N and ∀{(xs, νs)}Ls=1 ⊂ G,

{a′vn,Fn
(θn, xs, νs)}Ls=1 converges in distribution to an L-dimensional Gaussian distribution with zero

mean and variance covariance matrix with (s1, s2) component given by a′h2((xs1 , νs1), (xs2 , νs2))a.

(3) {vn,Fn(θn, x, ν) : (x, ν) ∈ G}n≥1 is stochastically equicontinuous with respect to ρ.

To prove these conditions, AS13 use the Crámer-Wold device. In particular, AS13 (Lemma A1(a)) shows

that these conditions hold if, for all a ∈ Rp/0, the following three conditions hold:

(a) (G, ρa) is a totally bounded pseudo-metric space, where ρa is the following pseudo-metric:

ρ2
a((x, ν), (x̃, ν̃)) ≡ lim

n→∞
V arFn [D

−1/2
Fn

(θn)a′(M(Z, θn, x, ν)−M(Z, θn, x̃, ν̃)], (S2.1)

(b) The finite dimensional convergence holds, i.e., ∀L and ∀{(xs, νs)}Ls=1 ⊂ G, {a′vn,Fn(θn, xs, νs)}Ls=1 con-

verges in distribution to an L-dimensional Gaussian distribution with zero mean and variance covariance

matrix with (s1, s2) component given by a′h2((xs1 , νs1), (xs2 , νs2))a. This convergence uniquely deter-

mines a Gaussian distribution va concentrated on the space of uniformly ρa(·)-continuous bounded

functionals on G, Uρa(G),

(c) a′vn,Fn(θn, ·)
d→ va.

To prove conditions (a)-(c), we rely on AS13 (Lemma E3), which extends Pollard (1990, Theorem 10.6,

page 53) to triangular array stochastic processes. Fix a ∈ Rp/0 and (x, ν), (x̃, ν̃) ∈ G arbitrarily and define:

fa,n,i(ω, x, ν) ≡ n−1/2a′D
−1/2
Fn

(θn)(Mn(Zi, θn, x, ν)− EFn [Mn(Zi, θn, x, ν)]),

ρ2
n,a((x, ν), (x̃, ν̃)) ≡ n EFn [fa,n,i(ω, x, ν)− fa,n,i(ω, x̃, ν̃)]2. (S2.2)

By definition, notice that a′vn,Fn
(θn, x, ν) =

∑n
i=1 fa,n,i(ω, x, ν). AS13 (Lemma E3) show that conditions

(a)-(c) hold provided that, ∀a ∈ Rp/0, the following results hold:

(i) {fa,n,i(ω, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to some envelopes {Fa,n,i(ω)}ni=1,

(ii) limn→∞EFn [fa,n,i(ω, x, ν)fa,n,i(ω, x̃, ν̃)] = a′h2((x, ν), (x̃, ν̃))a for all (x, ν), (x̃, ν̃) ∈ G,

(iii) lim supn→∞
∑n
i=1EFn

[F 2
a,n,i] <∞,

(iv) limn→∞
∑n
i=1EFn

[F 2
a,n,i1[Fa,n,i > ε]] = 0 for all ε > 0,

(v) The pseudo-metric ρa in Eq. (S2.1) satisfies ρa((x, ν), (x̃, ν̃)) ≡ limn→∞ ρn,a((x, ν), (x̃, ν̃)) for all

(x, ν), (x̃, ν̃) ∈ G and, for all deterministic sequences {(xn, νn) ∈ G}n≥1 and {(x̃n, ν̃n) ∈ G}n≥1,

ρa((xn, νn), (x̃n, ν̃n))→ 0 implies that ρn,a((xn, νn), (x̃n, ν̃n))→ 0,

The verification of these conditions is similar to that in AS13.
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Condition (i). By Assumption A.5, {a′M(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to the

envelopes {a′M(Zi, θ)}ni=1. By the definitions in Eq. (S2.2) and AS13 (Lemma E1), it then follows that

{fa,n,i(ω, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to envelopes {Fa,n,i(ω)}ni=1 defined as follows:

Fa,n,i(ω) ≡ n−1/2a′D
−1/2
Fn

(θn)(Mn(Zi, θn) + EFn
[Mn(Zi, θn)]).

Condition (ii)-(v). While the definitions of our stochastic processes and envelopes are slightly different

from those in AS13, one can still complete this proof by using similar arguments to those in AS13 (Lemma

E3).

Lemma S2.2. Assume Assumption A.5 and that {(θkn , Fkn) ∈ F̄0}n≥1 ∈ SubSeq(h2) for an arbitrary

subsequence {kn}n≥1 of {n}n≥1. Then,

sup
(xn,νn),(x̃n,ν̃n)∈G

||ĥ2,kn,Fkn
(θkn , (xn, νn), (x̃n, ν̃n))− h2((xn, νn), (x̃n, ν̃n))|| p→ 0.

Proof. This result follows from AS13 (Lemmas A1(b)). We describe the main ideas behind these arguments

for the sake of completeness. Throughout this proof, we replace the subsequence {kn}n≥1 by the original

sequence {n}n≥1 in order to simplify the notation.

Consider the following derivation:

sup
(x,ν),(x̃,ν̃)∈G

||ĥ2,n,Fn
((x, ν), (x̃, ν̃))− h2((x, ν), (x̃, ν̃))|| ≤{

sup(x,ν),(x̃,ν̃)∈G ||ĥ2,n,Fn
((x, ν), (x̃, ν̃))− h2,Fn

((x, ν), (x̃, ν̃))||
+ sup(x,ν),(x̃,ν̃)∈G ||h2,Fn

((x, ν), (x̃, ν̃))− h2((x, ν), (x̃, ν̃))||

}
.

The RHS is a sum of two terms. By {(θn, Fn) ∈ F̄0}n≥1 ∈ SubSeq(h2), the second term converges to zero.

Hence, it suffices to show that the first term is op(1).

For any s1, s2 = 1, . . . , p, the (s1, s2)-component of ĥ2,n,Fn
((x, ν), (x̃, ν̃)) is given by:

ĥ2,n,Fn
((x, ν), (x̃, ν̃))(s1,s2)

= n−1σ−1
s1 (θn)σ−1

s2 (θn)

n∑
i=1

(Ms1(Zi, θn, x, ν)− M̄n,s1(θn, x, ν))(Ms2(Zi, θn, x̃, ν̃)− M̄n,s2(θn, x̃, ν̃))

= n−1
n∑
i=1

fmmn,i,s1,s2(ω, (x, ν), (x̃, ν̃))−

(
n−1

n∑
i=1

fmn,i,s1(ω, x, ν)

)(
n−1

n∑
i=1

fmn,i,s2(ω, x̃, ν̃)

)
.

where we have relied on the i.i.d. assumption implicit in (θn, Fn) ∈ F̄0 and the following definitions:

fmn,i,s(ω, x, ν) ≡ Ms(Zi, θn, x, ν)− EFn [Ms(Zi, θn, x, ν)],

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) ≡ fmn,i,s(ω, x, ν)× fmn,i,š(ω, x̃, ν̃).

Notice that, by definition, EFn
[fmn,i,s(ω, x, ν)] = EFn

[fmn,i,š(ω, x̃, ν̃)] = 0 and EFn
[fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))] =

5



h2,Fn
((x, ν), (x̃, ν̃))(s,š). Based on this argument, the desired result follows from proving that ∀s, š = 1, . . . , p,

sup
(x,ν)∈G

∥∥∥∥∥n−1
n∑
i=1

fmn,i,s(ω, x, ν)− EFn [fmn,i,s(ω, x, ν)]

∥∥∥∥∥ p→ 0,

sup
(x,ν),(x̃,ν̃)∈G

∥∥∥∥∥n−1
n∑
i=1

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))− EFn
[fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))]

∥∥∥∥∥ p→ 0.

To complete this task we rely on AS13 (Lemma E2), which extends Pollard (1990, Theorem 8.2) to triangular

array stochastic processes. This result requires that, for arbitrary s, š = 1, . . . , p, we verify certain conditions

on the following triangular array of processes:

(i) {{fmn,i,s(ω, x, ν) : (x, ν) ∈ G}ni=1}n≥1,

(ii) {{fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) : (x, ν), (x̃, ν̃) ∈ G}ni=1}n≥1.

Conditions for (i). By Assumption A.5, {M(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to

the envelopes {M(Zi, θ)}ni=1. From this, it follows that {Ms(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with

respect to the envelopes {Ms(Zi, θ)}ni=1. By AS13 (Lemma E1), it then follows that {fmn,i,s(ω, x, ν) : (x, ν) ∈
G}ni=1 is manageable with respect to envelopes {Fn,i,s(ω)}ni=1 defined as follows:

Fn,i,s(ω) ≡ σ−1
s (θn)(Ms(Zi, θn) + EFn

[Ms(Zi, θn)]). (S2.3)

To complete the argument, it suffices to show that n−1
∑n
i=1EFn [F 1+η

n,i,s] ≤ Ǩ for some Ǩ < ∞, η > 0, and

all n ∈ N. For this purpose, consider the following derivation for η = 1 + δ with δ > 0 as in Definition A.1:

EFn
[F 2+δ
n,i,s] = EFn

[(σ−1
s (θn)(Ms(Zi, θn) + EFn

[Ms(Zi, θn)]))2+δ] ≤ 22+δEFn
[|σ−1

s (θn)Ms(Zi, θn)|2+δ],

where the equality holds by Eq. (S2.3), the inequality holds by the convexity of x2+δ. The de-

sired result then follows immediately from (θn, Fn) ∈ F̄0, as this implies that F 2+δ
n,i,s is i.i.d. and that

EFn
[|σ−1

j (θn)Mn,j(Z, θn)|2+δ] < K for all j = 1, . . . , p and n ∈ N.

Conditions for (ii). By our previous verification, {fmn,i,s(ω, (x, ν)) : (x, ν) ∈ G}ni=1 is manageable

with respect to envelopes {Fn,i,s(ω)}ni=1 with Fn,i,s(ω) as in Eq. (S2.3) for s = 1, . . . , p. From this,

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) ≡ fmn,i,s(ω, x, ν)fmn,i,š(ω, x̃, ν̃), and the arguments in the proof of AS13 (Lemma A1(b)),

it then follows that {fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) : (x, ν), (x̃, ν̃) ∈ G}ni=1 is manageable with respect to envelopes

{Fn,i,s,š(ω)}ni=1 defined by:

Fn,i,s,š(ω) ≡ σ−1
s (θn)σ−1

š (θn)(Ms(Zi, θn) + EFn
[Ms(Zi, θn)])(Mš(Zi, θn) + EFn

[Mš(Zi, θn)]). (S2.4)

To complete the argument, it suffices to show that n−1
∑n
i=1EFn

[F
2+δ/2
n,i,s,š ] ≤ Ǩ for some Ǩ <∞, η > 0, and

all n ∈ N. For this purpose, consider the following derivation for η = 1 + δ/2 with δ > 0 as in Definition A.1:

EFn [F
2+δ/2
n,i,s,š ] = EFn [(σ−1

s (θn)σ−1
š (θn)(Ms(Zi, θn) + EFn [Ms(Zi, θn)])(Mš(Zi, θn) + EFn [Mš(Zi, θn)]))2+δ/2]

≤ 42+δEFn [|σ−1
s (θn)Ms(Zi, θn)||σ−1

š (θn)Mš(Zi, θn)|2+δ/2]

≤ 42+δ{EFn [|σ−1
s (θn)Ms(Zi, θn)|2+δ]}(2+δ/2)/(2+δ){EFn [|σ−1

š (θn)Mš(Zi, θn)|2+δ]}(2+δ/2)/(2+δ),

where the first line holds by Eq. (S2.4), the second line holds by the convexity of x2+δ/2, and the third line

follows from Hölder’s inequality. The desired result then follows immediately from (θn, Fn) ∈ F̄0, as this
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implies that F
2+δ/2
n,i,s,š is i.i.d. and that EFn

[|σ−1
j (θn)Mn,j(Z, θn)|2+δ] < K for all j = 1, . . . , p and n ∈ N.
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