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Homomorpisms from Functional Equations:
The Goldie Equation

by
A. J. Ostaszewski

To Nick Bingham on the occasion of his 70th birthday

Abstract. The theory of regular variation, in its Karamata and Bojaníc-
Karamata/de Haan forms, is long established and makes essential use of the
Cauchy functional equation. Both forms are subsumed within the recent theory
of Beurling regular variation, developed elsewhere. Various generalizations of
the Cauchy equation, including the Go÷¾ab-Schinzel functional equation (GS)
and Goldie�s equation (GBE) below, are prominent there. Here we unify their
treatment by �algebraicization�: extensive use of group structures introduced by
Popa and Javor in the 1960s turn all the various (known) solutions into homo-
morphisms, in fact identifying them �en passant�, and show that (GS) is present
everywhere, even if in a thick disguise.

Key words: Beurling regular variation, Beurling�s equation, self-neglecting
functions, Cauchy equation, Go÷¾ab-Schinzel equation, circle group, Popa group.

Mathematics Subject Classi�cation (2000): 26A03; 33B99, 39B22, 34D05;
39A20

1 Introduction

We are concerned with an �algebraic conversion� of two functional equations,
so that their solution functions may be viewed as homomorphisms between
appropriate group structures on R; see §2.2 for the motivation. Both are known
in the functional equations literature in connection originally with problems
arising in utility theory and go back to Lundberg [Lun] and Aczél [Acz] (see
below for more recent studies); there, however, they were studied in order to
classify their solutions, cf. [AczD]. Our purposes here, which are algebraic, are
di¤erent and arise for us in the context of the classical Karamata theory of
Regular Variation (brie�y, RV � see [BinGT], henceforth BGT, the standard
text, and [BinO3] for updates) and of the recently developed theory of Beurling
RV, as in [BinO4,6], which includes the Karamata theory. The nearest to our
theme of homomorphy is the paper of Kahlig and Schwaiger [KahS], which
studies a sequence of deformations taking the equation (GS) below in the limit
to the classical Cauchy functional equation (CFE) of additivity (and so of
homomorphy).
The �rst functional equation, arising in Beurling RV, is the generalized

Goldie-Beurling equation on R+ := [0;1) :

K(x+ y�(x))�K(y) =  (y)K(x) (x; y 2 R+) (GBE)
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(in the two unknowns K and  ); where for some � 2 R+

�(x) = ��(x) � 1 + �x (x 2 R);

the classical Karamata case being � = 0 and the general Beurling case � > 0: In
the RV literature this equation appears in [BinG], in work inspired by Bojaníc
and Karamata [BojK], and is due principally to Goldie (�Goldie�s equation�). In
both these cases the solution K describes a function derived from the limiting
behaviour of some regularly varying function (see §2.2 below). For this reason
one may expect (by analogy with the various derivatives encountered in func-
tional analysis) that K should be an analogue of a linear function. Indeed, for
� = 0 and specializing to  � 1; the earliest classical case, K is additive; hence a
search for homomorphism, when � > 0; dictates our agenda here as an algebraic
complement and companion piece to the analytic argument of [BinO5,6].
We denote by GS the family of functions � above, which satisfy the Go÷¾ab-

Schinzel functional equation

�(x+ y�(x)) = �(x)�(y) (x; y 2 R); (GS)

although its �conditional form�arising from the restriction x; y � 0 might be
regarded as more appropriate. (Actually, the more correct and natural domain
is fx : �(x) > 0g; as in [BinO6], but see the comment below on involutory
extension, [BrzM] and also §3.) For their signi�cance to RV see the recent
[BinO6] and for their signi�cance elsewhere, especially to the theory of functional
equations, [Brz5].
The second functional equation of interest substitutes for the K on the right

of (GBE) a third unknown function �; yielding a natural �Pexiderized�general-
ization1

K(x+ y�(x))�K(y) =  (y)�(x) (x; y 2 R+); (GBE-P )

considered also in [ChuT]. Passage to this more general format is motivated by a
desire to include a further equation of Goldie (see [BinO5,(GFE)]), and also the
equation (GS) �as the case K =  = � and � = � � 1 �which turns out to be
highly thematic (see [Ost2], and Theorem 10). Note that in this specialization
the corresponding derivatives are identical: K 0 = �0; cf. §5.

2 Popa circle groups and asymptotic analysis

We review in §2.1 algebraic background relevant to our study of the functional
equations of §1, and in §2.2 the asymptotic analysis which leads to these func-
tional equations and associated functional inequalities.

1As in Pexider�s equation : f(xy) = g(x) + h(y) (in the three unknowns f; g; h) and its
generalizations �cf. [Brz1, 3], and the recent [Jab1].
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2.1 Circle groups

Recall that any ring R equipped with its circle product x � y := x+ y + xy (see
[Jac2, II.3], [Jac3]) is a monoid ([Coh1, 3.1]), the circle monoid, with neutral
element 0: (This format is preferable below to the alternative: x+ y � xy; iso-
morphic under the negation x 7! �x.) When x�y = y �x = 0; the elements x; y
are quasi-inverses of each other in the ring, and the quasi-units (those having
quasi-inverses) form the circle group of R. See e.g. [ColE] for recent advances
on circle groups and historical background. There is an intimate connection
with the Jacobson radical of a ring (see [Coh2, 5.4], or Jacobson [Jac1] in 1945),
characterized as the maximal ideal of quasi-units after Perlis� introduction of
the circle operation in 1942. The corresponding notion in a Banach algebra is
that of (left and right) adverses, similarly de�ned �see [Loo, 20C, 21C]. For the
connection of adverses and the Jacobson radical with the automatic continuity
of homomorphisms, thematic here, see [Dal, Prop. 3.1] (speci�c to characters),
and [Dal, §4] (more general).
The operation

x �� y := x+ y�(x);

with � : R! R arbitrary, was introduced in 1965 for the study of equation (GS)
by Popa [Pop], and later Javor [Jav] (in the broader context of � : E! F, with
E a vector space over a commutative �eld F), who observed that this equation
is equivalent to the operation �� being associative on R, and that �� confers a
group structure on G� := fg : �(g) 6= 0g �see [Pop, Prop. 2], [Jav, Lemma 1.2].
Below we term this a Popa circle group, or Popa group for short (see §2,3), as
the case �1(x) = 1 + x (i.e. with � = 1 above, so a �shift�) yields precisely the
circle group of the ring R.
As �� turns � into a homomorphism from G� to (Rnf0g;�):

�(x �� y) = �(x)�(y) (x; y 2 G�)

� and of G+� := fg : �(g) > 0g to (R+nf0g;�) � given the group-theoretic
framework of RV which leads to the equations (GBE) and (GBE-P ), it is
natural to seek further group structures in order to algebraicize (GBE) as a
property of K that expresses homomorphism between Popa groups:

K(x �� y) = K(y) �� K(x) for some � 2 GS; (CBE)

with �(K(y)) �  (y); this to be termed the Cauchy-Beurling equation (CBE).
Given its origin in RV, (CBE) quite naturally calls for the domain variables

to range over R+; this domain is a semigroup rather than a subgroup under
��; as it omits the interval (�1=�; 0) � G+� . The missing interval, however,
comprises the ��-inverses x�1� := �x=�(x) for x 2 R+; so throughout the paper
we persistently refer to �homomorphisms�justi�ably so, if only because of the
implicit involutory extension of the domain of K to G+� obtained by taking
K(x�1� ) := K(x)�1� for x�1� := �x=�(x) 2 (�1=�; 0): Here y�1� analogously
denotes the inverse in the range group ��.

3



The case � = 0 of (GBE); rewritten (with x; y interchanged) as the di¤erence
equation

�yK(x)�K(y) (x) = 0; �yK(x) := K(x+ y)�K(x);

already suggests that K(y) should induce some form of �shear�or shift. This
di¤erence theme is exploited in §5 on �ows, and linked with integration.
Theorem 1 in §3 gives necessary and su¢ cent conditions for (GBE) to be

algebraicized (as above), yielding �en passant� the form of such a K directly
from classical results concerning (CFE). Likewise Theorem 10 in §4 gives nec-
essary and su¢ cent conditions for GBE-P to be algebraicized; this builds on the
technique of Theorem 1, and is similar but more involved. Again this yields en
passant the form of such a K directly from classical results concerning (CFE).
Theorem 2 in §5 reduces (GBE-P ) more directly to the context of Theo-

rem 1 for a di¤erentiable auxiliary  : (The di¤erentiability assumption is again
motivated by regular variation.) Interpreting �� as a group action, or �ow, the
underlying homomorphy is now expressed not by K but by the relative �ow-
velocity f(x) := �(x)= (x) : under mild regularity assumptions, if K solves
(GBE-P ); then f satis�es

f(x �� y) = f(x)f(y) (x; y 2 R+):

There is a converse for  := �=f �see Prop. D in §5.
Our quest for algebraicization links with results not only of Aczél but also of

Chudziak [Chu1], who in 2006 considered the problem of identifying pairs (f; g)
satisfying the functional equation

f(x+ yg(x)) = f(x) � f(y) (ChE)

for f : R! (S; �) with (S; �) a semigroup, and g : R! R continuous.
We note three related recent papers: [Chu2], where R is replaced by a vector

space over the �eld of real or complex numbers; [ChuK], where f; g are both
assumed continuous and (S; �) is the group of multiplicative reals; [Jab2], where
the functions f; g are assumed only to be bounded above locally.

2.2 Connection with regular variation

The functions in GS have their origin for RV in the asymptotic analysis of self-
equivarying functions '; brie�y ' 2 SE [Ost2], which for some function � > 0
satisfy

'(x+ t'(x))='(x)! �(t) (x!1; 8t 2 R+); (SE)

locally uniformly in t. For � � 1; these specialize to the self-neglecting functions
of Beurling (BGT 2.3.1, [Kor, IV.11]; cf. [BinO4]). For ' 2 SE the limit
� = �' is necessarily in GS [Ost2]. Only (CFE) visibly identi�es its solution K
as a homomorphism �of the additive group (R;+) �whereas homomorphy is
a central feature in the recent topological development of the theory of regular
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variation [BinO1,2], [Ost1]. The role of homomorphy is new in this context, and
is one of our principal contributions here.
At its simplest, a functional equation as above arises when taking limits

KF (t) := limx!1[F (x+ t'(x))� F (x)]; (BK)

for ' 2 SE; then, with � the associated limit as in (SE) above, for s; t ranging
over the set A on which the limit function KF (Beurling kernel) exists as a
locally uniform limit,

KF (s+ t) = KF (s=�(t)) +KF (t) : KF (t+ s�(t)) = KF (s) +KF (t):

As we shall see, both A and KF (A) carry group structures under which KF is
a homomorphism. Thus, even in the classical context, (GS) plays a signi�cant
role albeit disguised and previously unnoticed, despite its �nger-print, namely
the terms +1 or -1, appearing in the formulas for KF (cf. Th. 1(iv) below).
See [BinO2] for a deeper analysis of the connection between asymptotics of the
form (BK) in a general topological setting involving group homomorphisms,
and [BinO6] and [Ost3] for the broader context here.
Previously, in [BinO5], the equations (GBE-P ) above were analyzed using

only Riemann sums and associated Riemann integrals, introduced there as a
means of extending Goldie�s initial approach (via geometric series). Below we
o¤er an approach to all of the above equations that is new to the regular variation
literature, and partly familiar, albeit in a di¤erent setting, in the GS-literature
of �addition formulae��see [Brz3, 4, 6] and [Mur] (this goes back to Aczél and
Go÷¾ab [AczG]): here we intertwine Popa groups and integration.
Corresponding to a less restrictive asymptotic analysis (BGT Ch. 3), the

functional equations above give way to functional inequalities. For instance,

F (x+ y) � eyF (x) + F (y); (GFI)

the Goldie functional inequality (see [BinO5] for background and references; cf.
end of §3) becomes group-subadditivity:

G(x+ y) � G(x) �k G(y):

Our analysis lends new clari�cation, via the language of homomorphisms, to
the �classical relation�in RV, connecting K and the auxiliary function  ; which
says that K = c( � 1) and  � e� (cf. [BGT Lemma 3.2.1], [BinO5, Th. 1]);
in particular, we point below to the implicit role of GS: Also, we explain and
extend the result of [BinO5, Th. 9] that the solution (on R+) in K; subject to
K(0) = 0; assuming positivity of � (i.e. to the right of 0); and continuity and
positivity of  , satis�es for some c � 0

K(x) = c � �f (x); for �f (x) :=
Z x

0

du=f(u); with f := �= :

For an interpretation of �f , inspired by Beck [Bec], as the occupation time
measure (of [0; x]) of the continuous f -�ow: dx=dt = f(x); see [BinO6] (and
[BinO4]).
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3 Algebraicization of Goldie�s equation

3.1 Preliminaries

We return to Popa�s contribution [Pop], recalling again from Javor [Jav] that ��
is associative i¤ � satis�es the Go÷¾ab-Schinzel equation (GS) above. Then for
� 6= 0 (G�; ��) is a group ([Pop, Prop. 2], [Jav, Lemma 1.2]), and (GS) asserts
that � is a homomorphism from G� to (R�; �) := (Rnf0g;�) :

�(x �� y) = �(x)�(y):

If � is injective on G�; then �� is commutative, as (GS) is symmetric on the
right-hand side. Continuous solutions of (GS); positive on R+; are given by
��(x) as above (see e.g. [Brz5] or the more recent [BinO5]). Whenever context
permits, if � � ��; write the group operation and the Popa group as

a �� b; (G�; ��);

here G� = Rnf���1g and G0 = R; we are also concerned with the subgroup
G+� = fx : x > ���1g:
As (x �� y)=� ! xy as � ! 1; write also G1 := Rnf0g = R�, and �1 � �

(multiplication); then G� takes in the additive reals at one end (� = 0); and the
multiplicative reals at the other; indeed

a �0 b := a+ b:

For the intermediate values of � 2 (0;1); �� : G� ! R� is an isomorphism, as

��(x �� y) = ��(x)��(y):

Rescaling its domain, G� is typi�ed by the case � = 1; where

a �1 b = a+ b+ ab = (1 + a)(1 + b)� 1 : (G1; �1) = (R�; �)� 1

(so the circle group of R) and the isomorphism �1 is a translation (cf. [Pop,
§3]), and so G1 and R� are conjugates.
Before considering homomorphisms between the groups above we formulate

a result that has two useful variants, relying on commutativity or associativity,
whence the subscripts. Below positive means positive on R+:

Lemma 1com . If (CBE) holds for some injective K; � with �� commutative,
and � : R+ ! R �then �(u) � 1 + �u; for some constant �:

Proof. Here K(u + v�(u)) = K(u) �� K(v) = K(v) �� K(u) = K(v + u�(v));
as �� is commutative. By injectivity, for all u; v � 0

u+ v�(u) = v + u�(v) : u(1� �(v)) = v(1� �(u));
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so (�(u) � 1)=u � � = const. for u > 0; taking v = 1; �(u) � 1 + �u for all
u � 0: �

Lemma 1assoc. If (CBE) holds for some injective K; � with �� associative,
and positive continuous � : R ! R � then �(u) = 1 + �u (u � 0); for some
constant �:

Proof. This follows e.g. from Javor�s observation above connecting associativ-
ity with (GS) ([Jav, p. 235]). Here K(u �� (v �� w)) = K(u) ��K(v) ��K(w) =
K((u �� v) �� w); so from injectivity:

u �� (v �� w) = (u �� v) �� w;

i.e. �� is associative, so satis�es (GS): By results in [Brz2] and [BrzM] (cf.[Ost2,
§6]0, positivity and continuity imply � 2 GS. �

For �� = �0 and �� = �1; the equation (CBE) reduces to the exponential
format of (CFE) ([Kuc, §13.1]; cf. [Jab1]). The critical case for Beurling
regular variation is for � 2 (0;1); with positive continuous solutions described
as follows. In the table below the four corner formulas correspond to classical
variants of (CFE):

Proposition A (cf. [Chu1]). For �� = �r; �� = �s; and f Baire/measurable
satisfying (CBE); there is  2 R so that f(t) is given for t � 0 by:

Popa parameter s = 0 s 2 (0;1) s =1
r = 0 t (et � 1)=s et

r 2 (0;1)  log(1 + rt) [(1 + rt) � 1]=s (1 + rt)

r =1  log t (t � 1)=s t

Proof. Each case reduces to (CFE) on R+, or a classical variant by an appro-
priate shift and rescaling. For instance, given f; for r; s > 0 set

F (t) := 1 + sf((t� 1)=r) : f(�) = (F (1 + r�)� 1)=s:

Then with u = 1 + rx; v = 1 + ry; as (uv � 1)=r = x �r y;

F (uv) = 1 + sf(x �r y) = 1 + sf(x) + sf(y) + s2f(x)f(y) = F (u)F (v);

for u; v � 0: So, as F is Baire/measurable (see again [Kuc, §13]), F (t) = t and
so f(t) = [(1 + rt) � 1]=s: The remaining cases are similar. �
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3.2 Main result for (GBE)

Theorem 1 is our main result, relating solubility of (GBE) and the existence
of a homomorphism, as in condition (iii). Here condition (ii) identi�es the
connection K(u) � ( (u) � 1)=s; which is no surprise in view of [BojK, (2.2)]
and BGT Lemma 3.2.1, and the recent [BinO5, Th. 1] �cf. §2. This, however,
is the nub, as  (u) � 1 + sK(u) = �s(K(u)):
Note that (iv) covers the classical Cauchy case, provided that for  = 0 we

interpret both c(ex� 1)= and c[(1+�x) � 1]=� via �l�Hospital�s Rule�as cx:
Convention. Below and elsewhere a function is non-trivial if it not identi-

cally zero and not identically 1; it positive if it is positive on (0;1):

Theorem 1. For � 2 GS in the setting above, (GBE) holds for positive  ;K
with K non-trivial i¤
(i) K is injective;
(ii) � =:  K�1 2 GS; equivalently, either  � 1; or for some s > 0

K(u) � ( (u)� 1)=s and  (0) = 1; so K(0) = 0;

(iii)
K(x �� y) = K(x) �� K(y): (Hom-1)

Then
(iv) for some constants c;  and all x � 0

K(x) � c � [(1 + �x) � 1]=�; or K(t) �  log(1 + �t) (�� > 0);

or K(x) � c � (ex � 1)= (�� = 0):

Proof. Consider any non-zero K; this is strictly monotone and so injective, as

K(x+ y)�K(y) = K(x) (y=�(x)) (x; y 2 G+� );

and so continuous, by [BinO5, Th. 9, or Lemma]. So  is continuous, since

 (y) � [K(� �� y)�K(y)]=K(�);

for any � with K(�) 6= 0: For convenience, write k := K�1 and �(t) :=  (k(t));
i.e. a composition so continuous. Then

K(y) �� K(x) = K(y) +  (k(K(y))K(x) = K(x) (y) +K(y); (*)

so with u = K(x); v = K(y); (GBE) becomes

K(k(u) �� k(v)) = v + u (k(v)) = v �� u : k(u �� v) = k(u) �� k(v);

as �� is commutative (� 2 GS). So (Hom-1) follows from (*). Lemma 1com now
applies to k, as �� is commutative. So � 2 GS (as � is positive and continuous).
So for some s; � � 0

�(t) � 1 + �t and �(t) � 1 + st (t � 0):
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That is,  (K�1(t)) � �(t) � 1 + st; so  (x) = 1 + sK(x); on substituting
t = K(x): So if s > 0

K(x) = ( (x)� 1)=s (x � 0):

If s = 0; then  (t) � 1: In any case  (0) = 1; since setting y = 0 in (GBE) gives
(1� (0))K(x) � K(0) = 0; but K is injective, so non-trivial. Substituting into
(GBE) yields (as in [BinO5, Th. 1] for the case �� = +)

 (x �� y) =  (y)( (x)� 1) +  (y) =  (x) (y);

so  : G� ! G1 is a continuous homomorphism, and Prop. A applies. If
� = �� = 0; then  (t) � 1 or  (t) � et with  6= 0; and for c = =s

K(t) � c(et � 1)=; (s > 0); or K(t) �  log(1 + �t) (s = 0):

Otherwise,  � (1 + �x) with  6= 0; and then for c = �=a

K(x) � [(1 + �x) � 1]=a = c[(1 + �x) � 1]=�;

with  = 0 yielding linear K by our �L�Hospital convention�. The converse is
similar but simpler. �

Remarks. 1. For (iv) see [Acz] and [Chu1], and note from the comparison that
all positive solutions arise as homomorphisms.
2. Since 0 = 1G for G a Popa group, (Hom-1) implies K(0) = 0:

3.3 Functional Inequalities

The following Goldie functional inequality, for � 2 GS continuous, also arises
(in Beurling regular variation) for K : G� ! R:

K(x �� y) �  (y)K(x) +K(y) (x; y 2 G�); (GBFI)

the case � � 1 arises in RV (BGT Ch. 3; see also [BinO5]). With �(x) :=
 (K�1(x)) this is

K(x �� y) � K(x) �� K(y) (x; y 2 G�)

with �� commutative as � 2 GS: The inequality (GFI) above has (via logarith-
mic transformation) the equivalent form

F (xy) � yF (x) + F (y) (x; y 2 R+), (GFI+)

for F : R+ ! R+: The Popa approach with � = F�1 here similarly yields

F (xy) � F (y) �� F (x) (x; y 2 R+);

i.e. group-theoretic subadditivity (cf. BGT Ch. 3). The Goldie functional
inequality may also be transformed (setting F = �f�1) to a �Go÷¾ab-Schinzel
functional inequality�

f(u+ vf(u)) � f(u)f(v); (GSI)

recently studied in [Jab3].
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4 Algebraicization of the Pexiderized equation

In this section, as in Th. 1 (§3), we characterize circumstances when solubility
of (GBE-P ) is equivalent to a homomorphy (under K). The focus will be on
the function � �see below. A word of warning: the roles of the functions  
and � are complementary rather than equivalent: their interchange forces an
interchange of x and y signi�cant for the subtracted term (on the left). In the
subsequent section (§5) the focus is on  via  =� (though � is used):
In (GBE) the value of  (0); if non-zero, has no signi�cant role, and may

without loss of generality be scaled to unity; in (GBE-P ) the value  (0) has
a more signi�cant role, both in relation to � :=  K�1 (cf. Th. 1) and in
controlling whether K and � are identical. This is clari�ed by Proposition B in
§4.1. Throughout this section

�(x) � 1 + �x (� � 0):

4.1 Preliminaries

Our �rst step is Proposition B below. We begin with some useful

Observations. 1. The value of K(0) may be arbitrary; if  (0) = 0; then K
is constant.
The solubility of (GBE-P ) is una¤ected by the choice of K(0); since K(x) may
be replaced by K(x) � K(0): If  (0) = 0; then K(x) � K(0) �take y = 0 in
(GBE-P ):
2. If K satis�es (GBE-P ); then
(i) K(x) �  (0)�(x) +K(0);
(ii) provided  (0) 6= 0;  (0)� satis�es (GBE) and �(0) = 0:
Taking y = 0 gives (i). Substitution, for  (0) 6= 0; into (GBE-P ) yields

�(x+ y�(x)) = �(y) + �(x) (y)= (0):

In particular, �(0) = 0 (put x = y = 0):
3. For  and � positive, both K and � are continuous and invertible.
This follows from [BinO5, Lemma] as � here is strictly monotone; hence so is
K(x) by 2(ii). From here we have the following extension of [BinO5, Th. 1]:

Lemma 2. For  and � positive, there is s � 0 such that

~ (x) :=  (x)= (0) = 1 + s�(x):

So � : G� ! Gs is a homomorphism, and

either ~ � 1; or �(x) = (~ (x)� 1)=s with s > 0;

equivalently for s > 0, ~ : G� ! G1 is a homomorphism:

~ (x+ y�(x)) = ~ (x)~ (y):

10



Proof. Since K(x �� y) = K(y �� x) and K(x) =  (0)�(x) +K(0);

 (0)�(y) +K(0) +  (y)�(x) =  (0)�(x) +K(0) +  (x)�(y):

So

�(y)[1� ~ (x)] = �(x)[1� ~ (y)] : [~ (x)� 1]=�(x) = [~ (y)� 1]=�(y) = s;

say, the latter for x; y > 0 since � is positive. So, for y > 0 and x � 0 arbitrary,
~ (x)� 1 = �(x)[~ (y)� 1]=�(y): Substituting ~ (x) � 1 + s�(x) in (GBE-P );

�(x+ y�(x)) = �(y) + �(x)(1 + s�(y)) (x; y 2 R):

For s > 0; writing � in terms of ~ and cancelling s;

[~ (x+ y�(x))� 1] = [~ (y)� 1] + [~ (x)� 1]~ (y): �

4. If K = �, then  (0) = 1 and �(t) :=  (K�1(t)) = 1 + st:
Immediate from 2(ii) above and  (x)= (0) = 1+ s�(x): Theorem 1 in §3 above
motivates the interest in  K�1.
Proposition B extends this last observation, and helps clarify Theorem 10 in

§4.3, the main result of this section.

Proposition B. If � :=  K�1 2 GS and  (t)= (0) = 1 + s�(t); then �(t) �
1 + st and one of the following two conditions holds:
(i)  (t) �  (0) and K(x) �  (0)�(x) +K(0);
(ii) s > 0 and K = � i¤  (0) = 1:

Proof. Put �(t) := 1+ ct; with c � 0: Since  (K�1(t)) =  (0)(1+ s�(K�1(t)));

1 + ct =  (0)[1 + s�(K�1(t))] : [1 + s�(x)] (0) = (1 + cK(x)):

From the latter, c = 0 i¤ s = 0, as K and � are non-constant. If c = s = 0;
then, again as K is non-constant,  (t) �  (0); and so Observation 2(ii) applies.
Suppose next that c > 0: Then

K(x) =  (0)�(x)s=c+ ( (0)� 1)=c:

So, again since K(x) =  (0)�(x) +K(0) and �(0) = 0;

K(0) = ( (0)� 1)=c; and s = c > 0:

So if  (0) = 1; then K(0) = 0 and K(x) = �(x): Conversely, if K = �; then
K(0) = 0; and so  (0) = 1: �

11



4.2 A generalized circle operation

In identifying when � is a homomorphism, Theorem 1 yields no similar infor-
mation about K unless K(0) = 0; i.e. unless the constant K(0) is �subtracted�
(translated away) from K. So a fresh idea is needed to accommodate on the
domain of K the �constant� in the range of K. That leads to an apparently
more general circle operation below; however, Proposition C reduces it back to
a Popa operation, albeit �disguised�by another translation in the domain of K:
This yields a group structure on R with a possibly non-zero neutral element (a
pre-image under �; masquarading as the �subtracted�constant of K).
The strategy now is this. Suppose that (GBE-P ) is soluble with  ; �

positive; as K and � are strictly monotone (cf. observation 3 above), put
y = K�1(v); x = ��1(u): Then

K(��1(u) +K�1(v)�(��1(u))) = v +  (K�1(v))u = v �� u;

where �(t) :=  (K�1(t)): Apply K�1 :

��1(u) �� K�1(v) = ��1(u) +K�1(v)�(��1(u)) = K�1(v �� u):

Writing

�(t) := ��1(K(t)); �(t) := �(��1(K(t))); u � K(K�1(u)); (�-�)

this says
�(K�1(u)) +K�1(v)�(K�1(u)) = K�1(v �� u):

This motivates a generalized Popa operation:

u � v or u ��� v := �(u) + v�(u);

with �; � continuous, positive functions and � invertible.
Supposing this to yield a group structure (see Prop. C), and assuming

� 2 GS (so that �� is commutative), we arrive at a homomorphism

K�1(u �� v) = K�1(u) �K�1(v): (Hom-2)

We need to note the example �(x) = x+b with �(x) � 1: Here x�y = x+y+b;
so that x � y � z = x+ y + z + 2b; and the neutral element e satis�es

x+ e+ b = x i¤ e = �b; and then x�1 = �x� 2b:

We write +b for this operation and call this group the b-shifted additive reals.2

We will see that b is responsible for the �constant�: K(0) = �(b): Note that
+0 = + = �0:

Proposition C. The operation � = ��� is a group operation on a subset A � R
containing 0 and dense in R+ i¤ the subset is closed under � and for some
constants b; c with bc = 0

�(x) � x+ b and �(x) � 1 + c(x+ b):
2The multiplicative analogue x � y := xy=b comes from the format x � y := �(x) + x�(y):
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That is:

�(x) � x and �(x) � 1 + cx; OR �(x) � x+ b and �(x) � 1:

So this is either a Popa group x �c y := x+ y(1 + cx); or the b-shifted additive
reals with the operation x+b y := x+ y + b:

Proof. Suppose that � de�nes a group. In the application later we assume that
� is injective, but here for x an element of the group, x � 0 = �(x); and then �
must be injective (by the assumed group properties of � including 0 2 A). By
associativity,

(x � y) � z = �(x � y) + z�(x � y) (x; y; z 2 A);

and

x � (y � z) = �(x) + (y � z)�(x) = �(x) + (�(y) + z�(y))�(x) (x; y; z 2 A):

Comparing the z terms,

�(x � y) = �(x)�(y) (x; y 2 A);

and so
�(x � y) = �(x) + �(y)�(x) (x; y 2 A): (**)

So, as � is injective, the preceding two equations imply

���1(�(x) + �(y)�(x)) = �(x)�(y) (x; y 2 A):

Put u := �(x) and v = �(y) :

���1(u+ v���1(u)) = ���1(u)���1(v) (u; v 2 A);

so that ���1 2 GS; by the assumed positivity, continuity and density. So for
some c � 0

���1(u) � 1 + cu : �(v) � 1 + c�(v) (u; v 2 A):

So
x � y = �(x) + y(1 + c�(x)) (x; y 2 A):

So by (**)

�(�(x) + y(1 + c�(x))) = �(x) + �(y)(1 + c�(x)) (x; y 2 A):

Recalling that ���1(u) � 1 + cu; and writing u = �(x) and v for y; this is

�(u+ v(1 + cu)) = u+ �(v)(1 + cu) = u(1 + c�(v)) + �(v) (u; v 2 A):

Now set v = 0 2 A to obtain, with a := (1 + c�(0)) and b := �(0);

�(u) = au+ b (u 2 A):

13



As � is injective 0 6= a 2 A: If e is the neutral element, then

y = e � y = �(e) + y�(e) (y 2 A);

so �(e) = 0 (taking y = 0) and �(e) = 1 (taking 0 6= y 2 A): So �(e) = ae+ b =
0; and so e = �b=a: Right-sided neutrality requires that

x = x � e = �(x) + e�(x) = ax+ b+ e(1 + cax) = ax� bcx+ b+ e (x 2 A):

So e = �b = �b=a; so a = 1 and bc = 0:
One possibility is b = 0 = e, i.e. �(x) � x and �(x) � 1 + cx: (Indeed,

e = 1c = 0:) The other possibility is c = 0; in which case �(x) � 1; �(x) � x+b;
and e = �b: �

4.3 Main result for (GBE-P )

Applying Prop. C we deduce the circumstances when (GBE-P ) may be trans-
formed to a homomorphism between (usually, Popa) groups. We then read o¤
the form of the solution function from Prop. A. In the theorem below we see
that K(x) � ( (y)�1)=s only in the cases (i) and (iii), but not in (ii) �compare
Th. 1. Indeed, in (ii) K is a¢ nely related to �; unless K(0) = 0 (and then i¤
b = 0 and � � K). Section 5 pursues the a¢ ne relation.
Note that in all cases � is a homomorphism between Popa groups.

Theorem 10 If (GBE-P ) is soluble for  positive, � positive and invertible,
�(x) � 1 + �x (with � � 0); then, for �; � selected as in (�-�) above, � = ���
is a group operation and K�1 is a homomorphism under �:

K�1(u �� v) = K�1(u) �K�1(v) (u; v 2 R+);

i¤ � :=  K�1 2 GS and one of the following three conditions holds:
(i) � = 0; � = �0 and �� = �s for some s > 0; then for some  2 R

K(t) � �(t) � (et � 1)=s ;  (t) � et;

(ii) � = 0; �� = �0and � = +bfor some b 2 R; then

K(t) � �(t+ b) = �(t) + �(b);  (t) � 1 (t 2 R);

and � : G0 ! G0 is linear ;
(iii) � > 0; � = �� and �� = �s for some s � 0; then for some  2 R and t � 0

K(t) � �(t) � [(1 + �t) � 1]=s; (s > 0) ; or  log(1 + rt) (s = 0);

 (t) � (1 + �t) (s > 0) ; or  (t) � 1 (s = 0):

Proof. We suppose that � is a group operation. As above

K�1(v �� u) = K�1(u) �K�1(v);
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using this and associativity of �, Lemma 1assoc (with k = K�1 for K; � for ��
and �� for ��) entails � 2 GS, as � is positive and continuous: so

�(t) =  (K�1(t)) = 1 + st :  (t) = 1 + sK(t) (t 2 R);

for some s � 0; (see Prop. B). So �� is commutative, (Hom-2) holds, and
 (0) = 1:
By Prop. C, K�1 is a homomorphism i¤ one of the two cases below arises.

Case (i): Popa case � = �c. For some c � 0

��1(K(x)) = �(x) � x; and �(y) = �(��1(K(y))) � 1 + cy:

So
K(t) = �(t) and 1 + ���1(K(t)) = 1 + ct (t 2 R):

For � > 0; on rearranging ��1(K(y)) � cy=�; combining and using injectivity:

K(t) = �(t) = �(ct=�) : c = � (t 2 R):

So � = �� and by (Hom-2),

K�1(u �s v) = K�1(u) �� K�1(v) (u; v 2 R): (Hom-3)

So K : G� ! Gs is a homomorphism. By Prop. A and Observation 3 above,
for some 

K(t) � ((1 + �t) � 1)=s; or  log(1 + �t) (s = 0):

If � = 0; then c = 0; i.e. � � � � 1; and so again (Hom-3) holds but with � = 0 :

K(t) = (et � 1)=s (s > 0); or t (s = 0):

Case (ii): Shifted case. For some b

��1(K(x)) = �(x) � x+ b; and �(y) = �(��1(K(y))) = 1 + ���1(K(y)) � 1:

So � = 0; as ��1(K(y)) � y + b is non-zero. Furthermore, as K(x) � �(x+ b);
writing K and  in terms of � in (GBE-P );

K(x+ y) = �(x+ y + b) = �(y + b) + �(x)(1 + s�(y + b)) (x; y 2 R):

Putting z = y + b;

�(x+ z) = �(z) + �(x)(1 + s�(z)) = �(x) �s �(z) (x; z 2 R):

So3 � : G0 ! Gs is a homomorphism (and �(0) = 0): Two subcases arise.
Subcase s = 0 : then  � 1 and � is linear: K(x) = �(x+ b) = �(x) + �(b):

3Alternatively, apply Prop. A to F (t) := K�1(t)+ b; as F : Gs ! G0; since K�1(u�� v) =
K�1(u) +K�1(v) + b:
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Subcase s > 0 : then, as  (0) = 1, K(x) = �(x) +K(0) with K(0) = �(b); but
by Prop. A and Observation 3

�(x) = (ex � 1)=s : K(x) = (e(x+b) � 1)=s = eb�(x) + �(b):

So here b = 0; and K = �; which is included as � = �0 = +0:
The converse is similar and simpler. �

Remarks. 1. The implications (i)-(iii) are new here, but for their conclusions
see also [Acz] and [Chu1]; as with Th. 1 in §3 above, a comparison shows that
all positive solutions arise as homomorphisms.
2. The transformations used to obtain a homomorphism in fact simplify (GBE-
P ) to the case where �(u) = u and  (v) = 1 + c�(v).

5 Flows

Using Riemann sums and their limits [BinO5, Th. 9] gives conditions4 such
that if (GBE-P ) is soluble, then the solution function K and the auxiliary � are
di¤erentiable, and K 0 = c � =� for some constant c: We give a new proof which
also extends our understanding of (GBE-P ) by reference to the underlying �ow
velocity f := �= .
Indeed, this section focuses via f on the auxiliary  rather than on �, though

� continues to play a part. We assume below that  (0) 6= 0; in order to pursue
the consequences of the a¢ ne relation (cf. Observation 2(ii) of §4)

K(x) �  (0)�(x) +K(0);

reducing the quest to �nding � �in terms of �f , as de�ned in §2. To link results
below to earlier ones, note that if K(0) = 0; then K � � i¤  (0) = 1 (cf. also
Prop. B); however, unlike in (GBE) �where the Popa homomorphy of Th.
1 entails K(0) = 0 � in (GBE-P ) the value K(0) need not be zero, since the
homomorphy of Th. 10 refers to a generalized Popa group on R as in §4.2 (so
possibly with a non-zero neutral element).

5.1 Main result for �ows

The setting in Theorem 2 below di¤ers slightly from [BinO5, Th. 9] �we do
not assume non-negativity of �;  ; but instead that  is di¤erentiable, since in
applications  is such (in view of Prop. A). From this, continuity of K will be
shown to imply automatic di¤erentiability �for a textbook treatment of such
matters see Járai [Jar]. We could just as easily have assumed  monotone (also
implied by Prop. A), since a monotone, continuous real function is di¤erentiable
almost everywhere [Rud, §8.15] (and is absolutely continuous i¤ it is the integral
of its derivative).

4Specializing to the present context: � positive to the right near 0 and  continuous.
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Theorem 2. For �; � 2 GS continuous and  not identically zero and di¤eren-
tiable: if the solution K to (GBE-P ) is continuous, then either K is constant
or:
(i) K is di¤erentiable and K 0(x) � �0(0)=f(x) for f(x) := �(x)= (x);
(ii) �0(x)=�0(0) � K 0(x)=K 0(0) and �(x) = c � �f (x) for some c 2 R;
(iii) K 0

0 := K=K 0(0) : (R; ��)! (R; �) is a homomorphism:

K 0
0(x+ y�(x)) = K 0

0(x)K
0
0(y):

We defer the proof to the end of §5.3, but note the immediate

Corollary 1. In the setting of Theorem 2
(i) K(x) � �0(0)�f (x) + K(0), where f(x) := �(x)= (x) is the relative �ow-
velocity ;
(ii) �(x) � aK(x) + b for some a; b 2 R;
(iii) provided  (0) = 1, the �ow-velocity f : (R; ��) ! (R; �) is a homomor-
phism, equivalently f solves Chudziak�s functional equation (ChE): So  (x) �
�(x)=f(x); where f satis�es (ChE):

Remarks. 1. As (GS) corresponds to K =  = �; �(u) = �(u) � 1; here
K(0) =  (0) = �(0) = 1 and f = �= = 1; so �f (x) = x and �(x) = cx; so
�(x) = K(x) = �(x) +K(0) = cx+ �(0) = 1 + cx:
2. The classical (GBE) case corresponds to � � 1 (i.e. � = 0) and � = K;
so  (x) = 1=f(x) = ex , as f is a Popa-homomorphism by Prop. A. So
K(x) = �(x) = c � �f (x) with �f (x) � (ex � 1)=:

5.2 Su¢ ciency

We begin with a Proposition which, taken together with Theorem 2 above,
characterizes the solutions to (GBE-P ) in terms of f:

Proposition D. If f satis�es (CBE), then subject to K(0) = 0, K � �f (x)
solves (GBE-P ) for the auxiliaries  (x) := �(x)=f(x) and � � �f (x).

Proof. Substituting for K in (GBE-P ); and using u + ��(u) = v + u�(v); as
� 2 GS; we are to prove that

K(v + u�(v))�K(v) =
Z v+u�(v)

v

dt=f(t) =  (v)�(u) =  (v)

Z u

0

dt=f(t):

This follows from

 (v)

Z u

0

dt=f(t) = �(v)=f(v)

Z u

0

dt=f(t) = �(v)

Z u

0

dt=f(v)f(t)

= �(v)

Z u

0

dt=f(v + t�(v)) (put w = v + t�(v))

=

Z v+u�(v)

v

dw=f(w): �
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Corollary 2. In the setting of Prop. D the solution K � �f of (GBE-P ) takes
one of the forms (for x � 0):

�f (x) �
Z x

0

etdt = (ex � 1)=; (� = 0;  6= 0);

�f (x) �
Z x

0

(1 + �t)dt = ((1 + �x)+1 � 1)=�( + 1); (� 2 (0;1);  6= �1);

�f (x) � x; (� 2 [0;1]):

Proof. Apply Prop. A, writing  for �: The �nal formula is the limit of the
cases � = 0 and � > 0 as  approaches 0 or �1; respectively: �

5.3 Necessity

The proof of Theorem 2 (converse to Prop. D above) rests on three results, the
�rst a �smoothness result�. (For continuity and di¤erentiability of integrals with
respect to a parameter, see [Jar, §§ 3 and 11].) Recall that for a Popa group
G = G�; 1G = 0 and �1

� denotes its inverse.

Proposition E (Convolution Formula). For di¤erentiable � 2 GS;

dx�1� = ��(s)�2ds;

so for x � 0

a � b(x) :=
Z x

0

a(x �� t�1� )b(t)dt = �(x)

Z x

0

a(s)b(x �� s�1� )
ds

�(s)2
;

for a; b continuous; in particular, if b is di¤erentiable/ C1, then so is the con-
volution function a � b; and

(a � b)0(x) = �0(x)a � b(x) + b(0)a(x)=�(x) +
Z x

0

a(s)b0(x �� s�1� )
ds

�(s)3
:

Proof. Noting �0�(x) = �; di¤erentiation of �(s�1� ) = 1=�(s) gives

�d(s�1� ) = ��(s)�2�ds:

Put s = x �� t�1� ; then t = x �� s�1� = x+ s�1� �(x): Finally,

b(x �� s�1� ) = b(x+ s�1� �(x));

which is di¤erentiable in x; so db(x �� s�1� )=dx = b0(x �� s�1� )=�(s); since 1 +
�s�1� = �(s�1� ) = �(s)�1: �
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The following two lemmas prepare the �nal ground-work for a proof of The-
orem 2.

Lemma 4. For continuous �; a non-trivial (i.e. non-zero) di¤erentiable func-
tion  ; and continuous � 2 GS : if the solution K to (GBE-P ) is continuous,
then K satis�es the di¤erence equation

K(x+ u)�K(x) = �(u=�(x)) (x);

so K has the �ow representation

xK(x) =

Z x

0

K(t)dt+

Z t

0

�((x� t)=�(t)) (t)dt;

and so is di¤erentiable on R+:

Proof. For u; v � 0 take w := u+v�(u) = v+u�(v); then u = (w�v)=�(v); so

K(w) = �((w � v)=�(v)) (v) +K(v): (***)

Now write x for v and u for (w � v) to obtain

K(x+ u)�K(x) = �(u=�(x)) (x):

In (***) integrate w.r.t. v from 0 to w; then

wK(w) =

Z w

0

K(v)dv +

Z w

0

�((w � v)=�(v)) (v)dv:

The second term, being a Beurling convolution, is di¤erentiable by Prop. E. �

Lemma 5 (Flow Homomorphism). If K is a di¤erentiable solution to
(GBE-P ), normalized so that K(0) = 0; then either K � 0; or:
(i) K 0(x) � �0(0) �  (x)=�(x) = �0(0)=f(x); for f(x) the �ow-velocity (of §2);
(ii) K 0(x)=K 0(0) � �0(x)=�0(0); so �(x) = c�f (x) for some c 2 R;
(iii) K 0

0 := K 0=K 0(0) : (R+; ��)! (R+; �) satis�es

K 0
0(x+ y�(x)) = K 0

0(x)K
0
0(y):

In particular, if  (0) = 1; then

f(x+ y�(x)) = f(x)f(y):

Proof. Fixing y with  (y) 6= 0; it follows from (GBE-P ) that �(x) is di¤eren-
tiable everywhere. Di¤erentiating with respect to x and using x �� y = y �� x

K 0(x+ y�(x))�(y) =  (y)�0(x):
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As �(0) = 1; substituting 0 alternately for one of x and y, and then for both:

K 0(y)�(y) =  (y)�0(0); K 0(x) =  (0)�0(x); K 0(0) =  (0)�0(0):

So if  (0)�0(0) = 0; then K � 0: Otherwise, combining,

�0(x)=�0(0) = K 0(x)=�0(0) (0) = K 0(x)=K 0(0);

and in particular �0(x) = c (x)=�(x) = c=f; with c = �0(0)= (0): So �(x) =
c�f (x); as �(0) = 0 (from (GBE-P ) for x = y = 0); giving (i) and (ii). So

K 0(x+ y�(x))

K 0(0)
=

1

K 0(0)

 (y)

�(y)
�0(x) =

1

K 0(0)
� K

0(y)

�0(0)
� K

0(x)

 (0)
=
K 0(x)K 0(y)

K 0(0)K 0(0)
;

equivalently, if  (0) = 1,K 0(0) = �0(0), f(x) � �0(0)=K 0(x) is a homomorphism:
�

Proof of Th. 2. Assuming K non-constant, rescaling if necessary, without
loss of generality K(0) = 0 and K 0(0) = 1: Now combine Lemmas 4 and 5. �
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