
 

 

Piotr Fryzlewicz and Catherine Timmermans  
SHAH: SHape-Adaptive Haar wavelets for 
image processing 
 
Article (Accepted version) 
(Refereed) 
 
 
 Original citation: Fryzlewicz, Piotr and Timmermans, Catherine (2016) SHAH: SHape-Adaptive 
Haar wavelets for image processing. Journal of Computational and Graphical Statistics, 25 (3). pp. 
879-898. ISSN 1061-8600 
DOI: 10.1080/10618600.2015.1048345 
 
 
© 2016 The Authors 
 
This version available at: http://eprints.lse.ac.uk/62183/ 
Available in LSE Research Online: August 2016 
 
LSE has developed LSE Research Online so that users may access research output of the School. 
Copyright © and Moral Rights for the papers on this site are retained by the individual authors 
and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE 
Research Online to facilitate their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any profit-making activities or any 
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research 
Online website.  
 
This document is the author’s final accepted version of the journal article. There may be differences 
between this version and the published version.  You are advised to consult the publisher’s version 
if you wish to cite from it. 
 
 
 
 

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=fryzlewi@lse.ac.uk
http://www.tandfonline.com/toc/ucgs20/current
http://dx.doi.org/10.1080/10618600.2015.1048345
http://eprints.lse.ac.uk/62183/


SHAH: SHape-Adaptive Haar wavelets for image processing

Piotr Fryzlewicz ∗ Catherine Timmermans †

May 1, 2015

Abstract

We propose the SHAH (SHape-Adaptive Haar) transform for images, which results in an or-

thonormal, adaptive decomposition of the image into Haar-wavelet-like components, arranged hi-

erarchically according to decreasing importance, whose shapes reflect the features present in the

image. The decomposition is as sparse as it can be for piecewise-constant images. It is performed via

an stepwise bottom-up algorithm with quadratic computational complexity; however, nearly-linear

variants also exist. SHAH is rapidly invertible.

We show how to use SHAH for image denoising. Having performed the SHAH transform,

the coefficients are hard- or soft-thresholded, and the inverse transform taken. The SHAH image

denoising algorithm compares favourably to the state of the art for piecewise-constant images. A

clear asset of the methodology is its very general scope: it can be used with any images or more

generally with any data that can be represented as graphs or networks.

Keywords: Adaptive transformations, greedy algorithms, multiscale, sparsity, statistical learning.

1 Introduction

The contribution of this work is twofold: firstly, we introduce a new transform for images, based on

new SHape-Adaptive Haar (SHAH) wavelets from which it takes its name, and secondly, we propose

a methodology for image denoising based on the SHAH transform.
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The SHAH transform of an image results in its orthonormal decomposition into a ranked collection

of weighted level differences between pairs of zones in the image, the “most informative” such contrasts

being ranked first. It thus provides a natural decomposition of the image into a set of features ordered

according to their importance for the image description. The transform identifies the edges and other

prominent features of the image, and the decomposition is as sparse as it can be for piecewise constant

images. The SHAH transform is performed via an stepwise bottom-up algorithm with quadratic linear

complexity, but nearly linear variants also exist. It might be viewed as the selection of a particular

image-driven orthonormal basis (hence the term “shape-adaptive”) and the projection of the image

onto the selected basis. Due to its shape-adaptivity, the transform bypasses the classical notion of

dyadic wavelet scales. It can be viewed as a two-dimensional extension of the Unbalanced Haar wavelet

transform of a curve (Fryzlewicz, 2007).

The SHAH transform produces sparse representations of images, especially (nearly-)piecewise-

constant ones, and hence can be used in conjunction with soft- or hard-thresholding operations with

the purpose of removing noise from the input image. This results in a “highly nonlinear” operation on

the image, being a superposition of two nonlinear operations: SHAH and thresholding. The resulting

image denoising technique is shown to perform well, in particular for piecewise-constant images. Its

performance can be improved further via linear averaging.

Although this paper focuses on image analysis, it is worth emphasizing that the methodology we

propose applies to more general data structures. Indeed, the SHAH transform can be applied to

any data that can be encoded as a graph whose nodes are associated with a given intensity and are

embedded in a normed, not necessarily two-dimensional, space.

Software implementing SHAH is available from http://stats.lse.ac.uk/fryzlewicz/shah/

shah_code.R.

1.1 Related work

This section aims to situate our work amongst the variety of available methods.

Multiscale image representation. The SHAH transform falls into the category of “multiscale

representation of images”. (Nonadaptively selected) wavelet bases are a canonical example of a tool

used to achieve such representations, and a survey of their use in image processing can be found in

Mallat (2009b). Wavelets, although widely used and relatively well understood, suffer from inefficacies
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in capturing non-horizontal or non-vertical features in an image; curvelets (Candès and Donoho, 2001)

attempt to remedy this by using a more flexible family of building blocks, which are also not selected

adaptively.

Adaptive image representation and processing. In contrast to wavelets or curvelets, the build-

ing blocks of the SHAH transform are selected adaptively from the data. A review of adaptive image

representations can be found in Peyré (2011). The principle of adaptivity (although not the particular

construction used in SHAH) is shared by a number of “-let” transforms, including bandlets of Le Pen-

nec and Mallat (2005) (see also Mallat and Peyré 2008 for a review of related techniques), wedgelets

(Donoho, 1999; Claypoole and Baraniuk, 2000), tetrolets (Krommweh, 2010), the Easy Path Wavelet

Transform (Plonka, 2009), edge-adapted nonlinear multiresolution techniques (Arandiga et al., 2008)

and directed trees (Narendra and Goldberg, 1980). Heijmans and Goutsias (2000) provide, through

morphological wavelets, a framework for describing nonlinear lifting-based wavelets decompositions.

Grouplets (Mallat, 2009a) preserve the classical notion of scale and grid subdivision present in the

Haar or lifting transforms (see below for references to lifting), but equip the standard Haar transform

with an “association field” that groups together points that are not necessarily neighbours. This leads,

in a context different from that in SHAH, to similar Haar-like filtering operations with weights not

necessarily equal to those in SHAH. We emphasise that in contrast to grouplets, SHAH does not follow

the dyadic scale structure of the classical wavelet transform. Other approaches to image processing

(in this case, denoising) which can be viewed as adaptive but do not use the notion of decomposition

or hierarchy are, for example, adaptive weight smoothing (Polzehl and Spokoiny, 2000) and penalized

regression on a graph (Kovac and Smith, 2011). A recent review of image denoising techniques can

be found in Milanfar (2013).

Wavelet-like methods on graphs outside of the image context. Hammond et al. (2009)

and Antoine et al. (2010) define wavelets on graphs by studying eigenvalues of the graph Laplacian;

the latter takes the form of a matrix encoding the connectivity of each node and edge. Coifman

and Maggioni (2006) use the powers of a diffusion operator as the scaling tool leading to multiscale

analysis. Several variants of their ideas (Szlam et al., 2005; Maggioni et al., 2005) lead to different

wavelet constructions. Crovella and Kolaczyk (2003) uses the n-hop distance (the minimal number

of edges one has to travel to go from the central node to another) to define wavelets on the graph.
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Jansen et al. (2009) use the lifting algorithm akin to that of Sweldens (1996) to construct wavelets on

graphs using a bottom-up approach where wavelets between the nearest nodes get constructed first.

Some authors also have defined wavelet transforms specifically designed for the dendrogram: Murtagh

(2007) uses Haar bases, while Gavish et al. (2010) generalizes to unbalanced Haar. Singh et al. (2010)

iteratively reduces the graph by replacing two (groups of) nodes by a single one, but unlike in SHAH,

the graph structure is not used in the reduction process. The latter method is closely related to the

idea behind treelets (Lee et al., 2008), defined for unordered data. We end by mentioning that SHAH

can be viewed as a contiguity-constrained agglomerative clustering technique, a broad class of methods

described generically in Chapter 5 of Murtagh (1985).

Relationship to Swelden’s lifting transform. “Lifting” (Sweldens, 1996) is a device for designing

iterative data transformations whereby (transformed) data points get “predicted” using neighbouring

values and, once the prediction error has been recorded, the predicted coefficient is removed from the

system to reduce its complexity. It is a non-adaptive transformation in the sense that its form does

not depend on the values of the data being processed, and it is a linear transformation of the data.

In its original version cited above, each iterative stage involves predicting and removing half of all

available coefficients. Versions for data on more complex domains also exist, for example the “lifting

one coefficient at a time” scheme of Jansen et al. (2009), which is also non-adaptive and linear.

In contrast to these, SHAH, which also uses the notion of predicting data points or their clustered

regions using neighbouring values, and then successively removing them (either “one coefficient at a

time”, or “a small subset of coefficients at a time”), is an adaptive and non-linear transform of the

data. The adaptivity and non-linearity arise as a result of SHAH choosing, in a data-dependent way,

which part of the data to operate on in each stage of the transform.

To give but one example of the consequencies of these properties, we remark that image denoising

via SHAH, described later in Section 3 is an operation which belongs to the class of methods described

by DeVore (1998) as “highly non-linear”, since it involves a non-linear operation (thresholding) per-

formed on an adaptively (and hence non-linearly) chosen basis. This is part of the reason why linear

averaging of SHAH image reconstructions can bring improvements in their quality, as described in

that section.

Finally, in contrast to classical lifting, the SHAH transform is conditionally orthonormal, by which

we mean “orthonormal given the selected basis”. This property is important, amongst others, in the
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application of SHAH to image denoising where it leads to a fast algorithm for threshold selection, and

in fast computation of the inverse SHAH transform.

1.2 Organization of the paper

The paper is organised as follows. Section 2 defines the SHAH algorithm and describes some of its

properties. Section 3 shows how to apply SHAH to image denoising. Section 4 concludes.

2 The SHape-Adaptive Haar transform for images

2.1 Core ideas

The SHape-Adaptive Haar (SHAH) transform encodes images in an invertible, data-driven, hierarchi-

cal and sparse way. It requires three pieces of information to describe an image: the intensities of the

pixels, a notion of neighbourhood between the pixels, as well as the spatial location of the pixels in the

two-dimensional space. The object describing an image in this way is termed an Intensity Network

(IN). We describe below how to define it for a given image. The SHAH transform is a data-driven pro-

cedure for dimension reduction, with minimum loss of information at each step. It can be interpreted

as an agglomerative-type algorithm, where pixels of an image, each initially forming a separate zone,

get progressively grouped into contiguous zones according to a specific criterion. We now describe the

core ideas of the SHAH transform.

Defining the IN (Intensity Network). The IN associated with an image is constructed as follows.

Consider a grey level image, stored as a real-valued matrix of dimensionsN×M . Then, draw a network

on this image. Each pixel is a node of the network, and each node is related by edges to its four nearest

neighbours (in the left (or west, W), right (east, E), top (north, N) and bottom (south, S) directions,

respectively). This graph structure mathematically encodes the idea of neighbourhood between the

pixels of the image. More complex topologies are possible; we do not pursue them in this work but

implement some in our software (more details below). Assign unique labels l1, l2, . . . , lNM to each

node. Associate an orientation with the edges so that each of them consists of an input node li and

an output node lj with i < j. (We only use the terms ‘input’ and ‘output’ to facilitate references

to the oriented edge (li, lj).) Store the mapping relating those labels to the Cartesian coordinates of

the pixels in a codebook. Moreover, associate uniform weights to all the nodes of the network, as the
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information they store (i.e. the value of the related pixel) is a priori equally important in the image

description. The object comprising the pixel values (the NM real values stored in an N ×M matrix)

and the graph structure (the NM nodes and 2NM −N −M edges) embedded in the space through

the codebook is termed an Intensity Network (IN). An example of an IN can be found in Figure 1.

Figure 1: Right: a typical IN. Left: the image it refers to. The codebook encodes the location of the
pixels (note the coordinates in this example are indexed from top to bottom, then left to right). The
graph structure encodes the neighbourhood relationships between the pixels; the couples (li, lj) are
ordered so that i < j. The intensity vector encodes the values of the pixels.

Choice of image topology. Throughout this article, we work with 4-element neighbourhoods (W,

N, E, S). These are, arguably, the simplest reasonable neighbourhoods, which also offer the fastest

computation. More complex neighbourhood structures are clearly possible, most notably 8-element

neighbourhoods (W, NW, N, NE, E, SE, S, SW). Although we do not pursue the latter in this work

because of the increased computation times, we do implement the SHAH transform with 8-element

neighbourhoods in the R code provided at http://stats.lse.ac.uk/fryzlewicz/shah/shah_code.

R. One attractive feature of the SHAH algorithm is that it always proceeds in the same way once

the initial edge topology has been defined. In particular, this is true of the 3-dimensional version of

SHAH, also implemented in our software.

Smoothing the image. The idea of the SHAH transform is to progressively smooth the image in

a data-adaptive way, while retaining as much information as possible about the current image in each
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smoothing step. In practice, compute (weighted) differences between pairs of neighbour nodes along

each edge. Those differences are referred to as details. Identify the smallest detail (in absolute value)

and replace the values of the corresponding linked nodes by their (weighted) average. Then, reduce

those two nodes to a single (linked, merged) node in the network, which is given a larger weight due

to the increased number of pixels it encodes. Finally, update the graph structure of the network by

removing the edge between the linked nodes. Since the detail being replaced is the smallest one, the

loss of information is the smallest possible. This reduction process is iterated NM − 1 times, up to

the point at which the image is finally reduced to a single node. Figure 2 shows an example of how

the graph structure might evolve during the reduction process.

Figure 2: A schematic illustration of SHAH applied to the image from Figure 1. The network is
iteratively reduced by one node at each iteration. The nodes selected for reduction are indicated in
grey. The labels of the input and output nodes as well as the detail coefficients returned at iteration
k are indicated below each image.

7



Encoding the transform. At each iteration of the algorithm, store the labels of the nodes that are

removed, as well as the (weighted) difference between them. Thus, each iteration returns three values:

the input node label, the output node label and the selected detail, the latter being the (weighted)

value at the output node minus the (weighted) value at the input node of the edge. There are NM −1

iterations for reducing an N ×M image to a single node associated with a unique real value for the

reduced image. The complete reduction process can thus be stored in two column vectors: one of

them encodes the (NM − 1) edges and the other encodes the (NM − 1) detail coefficients, which can

be interpreted as intensity differences. Both of the vectors are constructed element by element, from

bottom to top. In addition, the (very) top element of either vector stores, respectively, a degenerate

edge linking the remaining node to itself, and the associated value of intensity. Those two vectors

combined with the spatial information stored in the codebook define the SHAH transform of the

image, an illustration of which can be found in Figure 3. The output of the SHAH transform will also

be referred to as the SHAH signature of the input image, see Figure 4 for an example.

Figure 3: SHAH of the IN from Figure 1.

Alternatively, the SHAH transform can be viewed as the projection of the image on a particu-

lar image-adapted orthonormal basis in which the basis functions are arranged hierarchically (in a

multiscale way) and encode the image sparsely (see Figure 5 for an example).
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Figure 4: The signature of the image from Figure 1. The algorithm proceeds along the “Construction”
arrow, as k decreases from p− 1 = 8 to 0. Input and Output columns indicate, respectively, the input
and output node of each edge processed. The d column contains the values of the corresponding detail
coefficients.

Figure 5: Basis functions {Ψk}k=p−1...1 for the image of Figure 1, obtained in the order of their
construction, for rank k = p− 1 (top left), . . . , k = 2 (bottom left), k = 1 (bottom right), with p (the
number of pixels) being equal to 9. The remaining basis function Ψ0 is constant. The basis functions
are orthonormal and, except for Ψ0, reflect level changes between contiguous zones in the image.
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Overview of the key properties. The SHAH transform is a one-to-one transformation of the

input image. It provides a data-driven encoding of images, in which both the pixel intensities and the

image topology are accounted for. It describes the image as a linear combination of simple, regionwise-

constant basis images, hierarchically organized according to what can be viewed as the importance of

the image feature they encode. If SHAH is applied to a noiseless image with edges, then the edges

and the regions of constant intensity they delimit are captured in the basis elements, which leads to

sparsity in the description of the image. For noisy images, the SHAH transform also attempts to

concentrate, in a greedy fashion, as much energy of the image in as few coefficients as possible. The

algorithm can be applied to more general geometries than a rectangular image with a grid.

2.2 The SHAH algorithm

In this section, we provide the algorithmic details of the SHAH transform. The input and output

of the algorithm are defined in a formal general way. The one-dimensional version of SHAH, termed

Unbalanced Haar (UH) was introduced in Fryzlewicz (2007) and applied to curve classification in

Timmermans and von Sachs (2015).

Input: an image described as an Intensity Network. The IN of an image I is defined as a set

{D(p), E IN,X(p)}, where

• D(p) is a codebook. It encodes the coordinates of the p points in the image, identified by labels

l = 1 . . . p. Those points are the locations of the p nodes of the network.

• E IN is a graph. It is a ranked set of E oriented edges ǫl = (j, k), l = 1 . . . E, with j, k ∈

{1, . . . , p}, j 6= k, identifying the linked nodes. In the case when no natural orientation exists for

the edges, any choice is equally convenient but an orientation is required for the transform to

be invertible.

• X(p) is a vector of intensities. It is a real-valued vector of length p encoding the intensities of

the image I at the successive points defined in D(p).

A typical example is as follows.

• The image I is a grey level image of N ×M pixels encoded as a matrix A.
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• D(p) = {(j, k)}j=1...N,k=1...M with j, k defining row and column indices in A. The points are

labelled l = 1 . . . p, with p = NM .

• X = {Xl}l=1...p, where Xl = ajk is the grey level of the pixel with coordinates (j, k) associated

with the label l in A.

Output: the SHAH transform of the IN. The SHAH transform of an image I is defined as the

set {D(p), EOUT, d}, where

• D(p) is the same codebook as in the input.

• EOUT is a graph. It is a ranked set of p oriented edges ǫl = (j, k), l = 0 . . . p − 1, with j, k ∈

{1, . . . , p}, j 6= k identifying the linked nodes. Edge ǫ0 links to itself and j = k for this edge.

• d is a vector of intensity differences. It is a real-valued vector of length p encoding the intensity

differences associated with the edges successively defined in EOUT. The value d0 is an intensity

instead of an intensity difference.

As an example, the output of the SHAH transform of the IN from Figure 1 is in Figure 3.

The algorithm. The algorithm, detailed below, is also illustrated in Figure 2.

The SHAH algorithm

Input

Intensity Network= {D(p), E IN, X}

Output:

SHAH= {D(p), EOUT, d}

Notation:

Index i tracks the current iteration;

E (i) is the set of edges in the network at iteration i: E (i) = {ǫl = (j, k)}

X(i) is the value of the nodes remaining in the network at iteration i.

j(i) = {wl}l=1...p−i is a set of weights associated with the p− i nodes remaining in the network at iteration i.
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Initialization:

i := 1;

E (1) := E IN

X(1) := X

for j = 1 . . . p, wj := 1.

Iteration #i:

1. Compute details d̃l along each of the edges ǫl = (j, k) in E (i):

d̃l :=
wj

√

w2
j
+w2

k

Xk − wk
√

w2
j
+w2

k

Xj .

2. Select an edge ǫl∗ with the minimum absolute value of detail:

l∗ := argminl |d̃l|.

In case of multiple equal minimum values |d̃l|, select the smallest index l. Note ǫl∗ = (j∗, k∗).

3. Smooth:

Xj∗ :=
wj∗Xj∗+wk∗Xk∗

√

w2
j∗

+w2
k∗

.

Xk∗ := Xj∗ .

4. Encode the partial value of SHAH:

EOUT
p−i := (j∗, k∗).

dp−i := d̃l∗ .

5. Reduce the network and prepare next iteration:

Update E i by replacing all indexes k∗ by j∗.

Discard duplicate edges in E i, retaining only the first occurrence of each edge.

This defines E (i+1).

w(i+1) := {w1, . . . , wj∗−1,
√

w2
j∗ + w2

k∗ , wj∗+1, . . . , wk∗−1, wk∗+1 . . . wp−i+1}.

X(i+1) := {X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk∗−1, Xk∗+1 . . . Xp−i+1}.

i := i+ 1.

6. Back to Step 1, until length(X(i)) = 1.

Final step:

EOUT
0 := (j∗, j∗).

d0 := X(p)
√
p
.

Some remarks are in order. The filter taps dl = (− wk
√

w2
j+w2

k

,
wj

√

w2
j+w2

k

) used in computing the detail

coefficient dl are always chosen so that, if the original image were constant over the region which
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the detail coefficient corresponds to, the value of the detail dl would be zero. This is a consequence

of the fact that the starting values of the weights wj at the beginning of the algorithm are equal

to 1. The form of the update to the weight vector w(i+1) is designed to preserve this property as

the algorithm progresses. The property that the detail equals zero over constant regions is a natural

requirement which causes the SHAH algorithm to offer sparse representations for piecewise-constant

images, in a similar vein to standard Haar wavelets which also produce zero detail coefficients in

regions of constancy. This, and the requirement that ‖dl‖
2
2 = 1, uniquely determines the values of the

taps applied to compute the detail coefficients, up to sign flips.

The smooth weights sl = (
wj

√

w2
j+w2

k

, wk
√

w2
j+w2

k

) are chosen so that the filters dl∗ and sl∗ are or-

thonormal. This implies that the SHAH transform is conditionally orthonormal, by which we mean

“orthonormal given the selected basis”. This property is important, amongst others, in the applica-

tion of SHAH to image denoising where it leads to a fast algorithm for threshold selection, and in fast

computation of the inverse SHAH transform.

The SHAH basis selection takes place iteratively, via the minimisation of |d̃l| in step 2 of the

algorithm. This is a greedy procedure which ensures that each consecutive detail coefficient encodes

as little variation of the image as possible, thereby attempting to concentrate as much signal as possible

in the latter stages of the algorithm, in the hope of obtaining a sparse representation of the image.

This is in contrast to the standard non-adaptive Haar transform for images, where no basis selection

takes place, and implies, in particular, that SHAH is a non-linear transformation.

2.3 Computational complexity and variants of the algorithm

In the version described above, the computational complexity of the SHAH algorithm is quadratic in

the number of pixels, i.e. is of computational order p2. This is because at each iteration i, all the

edges are examined. However, other variants of the SHAH algorithm are possible, with substantially

reduced computational complexity. We outline some ideas below.

• Examination of a fixed number of edges. Substantial computational cost can be saved if only

a pre-set number of edges (not exceeding a constant), are examined at each iteration i. The

edges can be selected in a deterministic or random way. This potentially results in an algorithm

of computational order p, i.e. linear in the number of pixels, depending on how the edges are

selected.
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• Two- or multi-stage algorithm. For an image of size N × N , firstly divide the image into

(N/k)2 non-overlapping sub-images, each of size k×k. Execute the algorithm on each sub-image

separately (stage 1), then execute it on the resultingN/k×N/k matrix of coefficients d0 from each

sub-image (stage 2). The computational complexity is then (N/k)2k4 + (N/k)4, which attains

its minimum when k = N1/3, resulting in the complexity of N8/3 = p4/3. The algorithm can be

executed similarly in more stages than one, bringing the computational complexity arbitrarily

close to linear, if the number of stages is large enough.

• Removal of multiple nodes at once. In the version described above, one pair of nodes is merged at

each iteration (this can be viewed as the ‘removal’ of one of the nodes and updating of the other).

An alternative might be to merge multiple pairs of nodes, corresponding to a number of smallest

detail values. Merging a fixed proportion ρ ∈ (0, 1) of the node pairs in each iteration results in

an algorithm of computational order p log p. Pairs of nodes can be merged simultaneously in a

single iteration if, out of the set of pairs of nodes to be merged, no node belongs to more than

one pair.

If, in addition to the output described in Section 2.2, the SHAH algorithm stores the filter coefficient

wj∗/
√

w2
j∗ + w2

k∗ used at each iteration i, the inverse SHAH transform is performed by simply reversing

the steps of the SHAH algorithm. The computational complexity of the inverse SHAH transform is

then linear in the number of pixels.

We now briefly discuss how the different variants of the algorithm compare in terms of execution

times. Table 1 shows times obtained for 128× 128 and 256× 256 images. Computational savings will

differ depending on the fixed number of edges examined in the “fixed number of edges” version, on

the k parameter in the two-stage algorithm and on the ρ parameter in the “removal of multiple nodes

at once” version. Clearly, the standard version, implemented in R, is unacceptably slow and one of

the faster versions needs to be used in practice.

Figure 6 shows the compression capabilites of the different version of the algorithm on the noisy

images from Section 3, Examples 1 and 2. The steeper the curve at the start, the larger the proportion

of the variance of the image explained by the same number of the largest SHAH coefficients. The curves

corresponding to the standard SHAH, the “fixed number of edges” and the “removal of multiple nodes

at once” versions are practically indistinguishable. Understandably, the two stage version is a less

good image compressor, because of its region constraints.
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128 × 128 256 × 256

Standard SHAH 62 999
Fixed number of edges 19 266
Two stage 5 67
Multiple nodes at once 4 18

Table 1: Execution times of various versions of the SHAH algorithm, for images of sizes 128 × 128
and 256× 256, in seconds on a standard PC; code written in R. The “fixed number of edges” version
uses M = 1000 edges chosen at random each time. The two-stage version uses k = 2. The (removal
of) “multiple nodes at once” version uses ρ = 0.01.
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(a) Noisy image from Section 3,
Example 1, size 128× 128.
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(b) Noisy image from Section 3,
Example 1, size 256× 256.
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(c) Noisy image from Section 3,
Example 2, size 256× 256.

Figure 6: Proportion of image variance (y axis) explained by each given number of the largest SHAH
coefficients (x axis). Black: standard SHAH; blue: “fixed number of edges” version with M = 1000
edges chosen at random each time; green: “removal of multiple nodes at once” version with ρ = 0.01;
red: two-stage version with k = 2. The black, blue and green lines virtually overlap.

It is also worth noting that the image from Example 2 is represented more sparsely due to its

much higher signal-to-noise ratio than the image in Example 1. This is despite the fact that the

noise-free image from Example 1 is piecewise-constant, and therefore it would be represented (much)

more sparsely via SHAH than the noise-free image from Example 2, which is not piecewise-constant.

2.4 Properties of SHAH

In this section, we briefly summarize the key mathematical properties of SHAH. The proofs are

straightforward, so we omit them.

1. SHAH as a data-driven orthonormal decomposition of the image. At iteration i of the SHAH

algorithm, each dp−i can be represented as the inner product of the original image X and an

image Ψp−i, where

• Ψp−i is selected in a data-driven way at each iteration i,
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• Ψp−i has mean zero, except when i = p,

• Ψp−i is orthonormal to all previously selected Ψk, k > p− i.

Therefore, {Ψk}
p−1
k=0 is an orthonormal basis and

X =

p−1
∑

k=0

dkΨk. (1)

Further, due to the Parseval identity, the total energy (i.e. the sum of squares) of X equals

∑p−1
k=0 d

2
k. An example of the basis Ψk is provided in Figure 5. The orthonormality of Ψk is a

simple consequence of the orthonormality of the detail and smooth filters used at each iteration

of the algorithm. SHAH is an invertible transform.

2. Hierarchical nature and Haar-like character of the basis Ψk. Let supp(Ψk) denote the support

of Ψk, i.e. the domain on which it is non-zero.

• For each k = 1, . . . , p− 1, supp(Ψk) consists of two contiguous adjacent zones such that Ψk

is constant positive on one and constant negative on the other. Ψ0 is positive and constant

on the entire domain.

• The structure of the basis Ψk is hierarchical is the sense that if the supports of Ψl and Ψk

overlap and l < k, then supp(Ψk) must be contained either within the zone where Ψl is

positive or the zone where it is negative.

These properties are reminiscent of the Haar wavelet basis. However, here, the key difference is

that the supports of Ψk are determined by the data and can have arbitrary contiguous shapes,

as is apparent from the example in Figure 5. This is because the basis images Ψk are chosen

adaptively from the data at each iteration of the algorithm.

3. Sparsity of representation and energy concentration.

• For each k = 1, . . . , p − 1, if supp(Ψk) is contained within a region where X is constant,

then the corresponding dk = 0. This is a consequence of the mean-zero property of Ψk.

• Consequently, by the construction of the SHAH algorithm, for a piecewise-constant image

X, the only non-zero elements of the vector (d0, d1, . . . , dp−1), besides possibly d0, will be

d1, . . . dZ−1, where Z is the number of zones of contiguous identical values in X, the notion
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of contiguity being defined by the linkage structure of the network. Therefore, SHAH

encodes the edges of such an image in the sparsest possible way.

• For non-piecewise-constant (e.g. noisy) images, the SHAH algorithm is an attempt to

achieve the same effect, i.e. to concentrate as much energy of the image X in as few initial

coefficients d1, d2, . . . as possible, and therefore to represent its significant features sparsely.

3 Image denoising using SHAH

The SHAH wavelet transform can be used for image denoising in a similar process to any other

wavelet transform, whether adaptive or not. The usual procedure in nonlinear wavelet-based image

denoising is to take the wavelet transform of the image, perform a shrinkage/thresholding operation on

the wavelet coefficients (in the hope of thresholding out the typically large number of coefficients that

carry mostly noise, but retaining most of those carrying signal) and take the inverse wavelet transform.

The statistical model we consider in this section is Xu,v = fu,v + εu,v, u, v = 1, . . . , N , where Xu,v is

the observed noisy image, fu,v is the unknown true image, and εu,v is iid noise distributed as N(0, σ2).

At the transform stage, in the case of SHAH, we have a number of options for speeding up

computation for large images, as described in Section 2.3. Empirically, we have found that the two-

stage algorithm with k = 2 or k = 4 often leads to the best denoising, especially for noisier images,

and this is the version we focus on here. It may come as a surprise that the two-stage algorithm is

able to beat the various one-stage versions, despite its worse compression capabilities, as shown in

Section 2.3. This, we believe, is due to the fact that the two-stage algorithm is “less greedy” than the

one-stage versions because of its region constraints, which may be advantageous for processing noisier

images, in which the one-stage algorithms may have more scope for making globally significant basis

choice mistakes because of their lack of region constraints.

In the thresholding step, we pursue two strategies: apply either soft, or hard thresholding to each

SHAH coefficient di, for i = 1, . . . , p− 1. This results in the following operations

d̂Si = sign(di)max(0, |di| − λS) (soft thresholding)

d̂Hi = di I(|di| > λH) (hard thresholding),

where λS and λH are thresholds used in soft and hard thresholding, respectively, and I() is the indicator
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function.

Motivated by the choice of the regularisation parameter for image smoothing in Kovac and Smith

(2011), we choose the threshold λ as follows (our strategy applies to both soft and hard thresh-

olding and therefore we write, generically, λ for either λH or λS). For each candidate λ, we com-

pute the reconstructed image f̂λ
u,v and estimate the variance of the empirical residuals as σ̃2

λ =

N−2
∑N

u,v=1(Xu,v − f̂λ
u,v)

2. By construction, σ̃2
0 = 0 and σ̃2

∞ is the empirical variance of Xu,v, which

is typically larger than σ2. We then select the largest λ for which

σ̃2
λ ≤ σ̂2, (2)

where σ̂2 is the Median-Absolute-Deviation-based estimate of σ2 used in Kovac and Smith (2011).

By choosing the largest possible value of λ which leads to “reasonable” residuals from the fit

in the sense of (2), we ensure that the reconstructed image is “as simple as possible” in the sense

of being composed of the smallest possible number of wavelet coefficients, under the constraint (2).

We also note that thanks to the conditional orthonormality of SHAH (i.e., orthonormality given the

selected SHAH basis), the operation of checking all possible values of λ can be performed quickly in

the SHAH coefficient domain, and is implemented in the code provided in this fast way. We illustrate

the potential of the above SHAH-based image denoising procedure on two examples.

Example 1. We use the cartoon medical image, of size 256×256, investigated in Polzehl and Spokoiny

(2000) and Kovac and Smith (2011). The clean and noisy images are shown in the top left and top

middle plots of Figure 7. This is a piecewise-constant image, for which we expect SHAH to perform

well due to the piecewise-constant nature of the SHAH basis functions. The top right plot shows the

reconstruction obtained by the Adaptive Weight Smoothing (AWS) technique of Polzehl and Spokoiny

(2000), this was produced by the aws routine from the aws R package (version 1.9-4, dated 2014-03-05),

executed with its default parameters.

We process the image via the SHAH denosing procedure described earlier, used here with k = 4

and both hard and soft thresholding. The execution of the code, written in R, took under 10 seconds

on a standard PC. The reconstructions, shown in the bottom left and bottom middle plot of Figure

7, respectively, appear mostly satisfactory but the reconstructed circle is ‘jagged’ in appearance. To

remedy this, significant improvements are available by performing the following procedure: (a) for

i = 1, . . . ,m, add further iid N(0, σ2
1) noise to image Xu,v to obtain Y

(i)
u,v , (b) perform SHAH denoising
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(c) Adaptive Weight Smoothing
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(d) SHAH with hard thresholding
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(e) SHAH with soft thresholding
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(f) SHAH-avg with hard thresh-
olding

Figure 7: Clean, noisy and denoised image using Adaptive Weight Smoothing and SHAH with hard
and soft thresholding as well as SHAH-avg with hard thresholding.
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on each image Y
(i)
u,v , (c) average the results over i. We call the thus-constructed procedure SHAH-avg.

The averaging introduces an extra smoothing effect which tends to alleviate the jaggedness of the

individual reconstructions. We note again that the SHAH denoising procedure is highly nonlinear,

and it should be expected that different SHAH bases are selected for each i; therefore the individual

reconstructions can be expected to differ enough for each i for the averaging effect to be helpful in

removing spurious artefacts present in the individual reconstructions. Throughout this section, we

demonstrate SHAH-avg with σ1 = σ̂/2 and m = 10; these parameters have not been optimised in any

way.

Table 2 lists the mean-square errors of the various reconstructions, and estimates of their total

variation, computed as in Kovac and Smith (2011). SHAH-avg with hard thresholding is by far the

best in terms of the MSE. Apart from this method, also AWS-avg (constructed like SHAH-avg but

with SHAH replaced by AWS with default parameters) and SHAH with hard thresholding lead to

Total Variation values close to those of the clean image. Importantly, we note that AWS-avg does

not offer a significant MSE improvement over AWS, due to the latter reconstruction already being

smooth, and perhaps even overly so. SHAH-avg offers very significant MSE improvement over SHAH.

We end this example by noting that SHAH with hard thresholding retains 58 non-zero SHAH

coefficients for this image, which is fewer than 0.1% of the total number of SHAH coefficients (the

latter being equal to the number of pixels). This can be interpreted to mean that the reconstructed

image is composed of 58 features, each of which is of the form of a difference between two consecutive

regions of the image.

Example 2. We consider the teddy image from the R package wavethresh. The size is 256 × 256.

Unlike the previous two examples, this image is not piecewise constant. The purpose of this example

is to investigate how SHAH handles the task of denoising non-piecewise-constant images. The clean

and noisy images are shown in the top left and top middle plots of Figure 8.

The AWS and AWS-avg reconstructions are slightly more appealing visually than those produced

by SHAH and SHAH-avg (here with hard thresholding and k = 2), which is unsurprising given the

non-piecewise-constant character of the image. However, the visual difference does not appear to be

large. The MSEs for the various methods tested are in Table 3. SHAH retains 387 non-zero coefficients.

The two examples considered provide evidence for the unsurprising tendency of SHAH to perform

better on piecewise-constant images than on general smooth ones. The fundamental reason for this is

20



MSE TV

Wavelet thresholding 4634 3268
Gaussian kernel estimate 2582 5416
Kovac and Smith (2011)∗ 2896 1696
AWS 2080 4019

AWS-avg 1955 3700

SHAH + hard thresholding 2771 3747
SHAH + soft thresholding 2634 3173

SHAH-avg + hard thresholding 1534 3921
SHAH-avg + soft thresholding 2308 3071
Clean image 0 3787

Table 2: Empirical Mean-Square Errors (MSE) and estimates of Total Variation (TV) for the various
reconstruction methods of the image from Example 1. The value for the starred method is taken
from Kovac and Smith (2011). AWS refers to Adaptive Weight Smoothing from Polzehl and Spokoiny
(2000). AWS-avg is constructed like SHAH-avg but with SHAH replaced by AWS with default pa-
rameters. Boxed value in the MSE column is the lowest MSE across methods. Boxed values in the TV
column are those within 5% of the TV for the clean image. Wavelet thresholding uses the Daubechies’
Least Asymmetric filter indexed 10, combined with universal hard thresholding (default option in the
R package wavethresh). Gaussian kernel estimate is an unattainable Gaussian kernel smoother in
which the bandwidth was chosen by minimising the MSE with respect to the true image (execution:
routine kernsm from the R package aws).

MSE

Wavelet thresholding 2615
Gaussian kernel estimate 1007
AWS 1062

AWS-avg 837
SHAH + hard thresholding 1766
SHAH + soft thresholding 1653
SHAH-avg + hard thresholding 1249
SHAH-avg + soft thresholding 1336

Table 3: Empirical Mean-Square Errors (MSE, divided by 104 and rounded) for the various recon-
struction methods of the image from Example 2. AWS refers to Adaptive Weight Smoothing from
Polzehl and Spokoiny (2000). AWS-avg is constructed like SHAH-avg but with SHAH replaced by
AWS with default parameters. Boxed value in the MSE column is the lowest MSE across methods.
Wavelet thresholding uses the Daubechies’ Least Asymmetric filter indexed 10, combined with uni-
versal hard thresholding (default option in the R package wavethresh). Gaussian kernel estimate is an
unattainable Gaussian kernel smoother in which the bandwidth was chosen by minimising the MSE
with respect to the true image (execution: routine kernsm from the R package aws).
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(c) Adaptive Weight Smoothing
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(d) SHAH with hard thresholding
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(e) SHAH-avg with hard thresh-
olding
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(f) Adaptive Weight Smoothing-
avg

Figure 8: Clean, noisy and denoised image using AWS, AWS-avg, SHAH with hard thresholding and
SHAH-avg with hard thresholding.
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that the SHAH building blocks are themselves piecewise-constant.

4 Conclusion

In this article, we have proposed the SHAH (SHape-Adaptive Haar) transform for images, which

results in an orthonormal, adaptive decomposition of the image into Haar-like components, arranged

hierarchically according to decreasing importance, whose shapes reflect the features present in the

image. The decomposition is extremely sparse for piecewise-constant images. It is performed via an

stepwise greedy bottom-up algorithm with quadratic computational complexity; however, nearly-linear

variants also exist. SHAH is rapidly invertible. We have shown how to use SHAH in conjunction with

thresholding for the purpose of image denoising. SHAH is general in scope and can be used not only

with images but also with any data that can be described as graphs or networks.

One interesting open question is that of the applicability of SHAH to the decomposition of colour

images, for example those using the RGB colour space. In the RGB case, depending on the application,

one would entertain the possibility of selecting the SHAH basis either independently for each colour

band (e.g. if one wished to remove noise from each band separately), or jointly across the bands.

Similar basis choice considerations would apply to multispectral or hyperspectral images. We leave

this for future research.
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