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Abstract: Faced with numerous potential catastrophes—nuclear and bioterrorism, mega-

viruses, climate change, and others—which should society attempt to avert? A policy to

avert one catastrophe considered in isolation might be evaluated in cost-benefit terms. But

because society faces multiple catastrophes, simple cost-benefit analysis fails: Even if the

benefit of averting each one exceeds the cost, we should not necessarily avert them all. We

explore the policy interdependence of catastrophic events, and develop a rule for determining

which catastrophes should be averted and which should not.
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“ ‘Is there no way,’ said I, ‘of escaping Charybdis, and at the same time keeping
Scylla off when she is trying to harm my men?’

“ ‘You dare-devil,’ replied the goddess, ‘you are always wanting to fight somebody
or something; you will not let yourself be beaten even by the immortals.’ ”

Homer, Odyssey, Book XII, trans. Samuel Butler.

Like any good sailor, Odysseus sought to avoid every potential catastrophe that might

harm him and his crew. But, as the goddess Circe made clear, although he could avoid the

six-headed sea monster Scylla or the “sucking whirlpool” of Charybdis, he could not avoid

both. Circe explained that the greatest expected loss would come from an encounter with

Charybdis, which should therefore be avoided, even at the cost of an encounter with Scylla.

We modern mortals likewise face myriad potential catastrophes, some more daunting

than those faced by Odysseus. Nuclear or bio-terrorism, an uncontrolled viral epidemic on

the scale of the 1918 Spanish flu, or a climate change catastrophe are examples. Naturally, we

would like to avoid all such catastrophes. But even if it were feasible, is that goal advisable?

Should we instead avoid some catastrophes and accept the inevitability of others? If so,

which ones should we avoid? Unlike Odysseus, we cannot turn to the gods for advice. We

must turn instead to economics, the truly dismal science.

Those readers hoping that economics will provide simple advice, such as “avert a catas-

trophe if the benefits of doing so exceed the cost,” will be disappointed. We will see that

deciding which catastrophes to avert is a much more difficult problem than it might first

appear, and a simple cost-benefit rule doesn’t work. Suppose, for example, that society

faces five major potential catastrophes. If the benefit of averting each one exceeds the cost,

straightforward cost-benefit analysis would say we should avert all five.1 We show, however,

that it may be optimal to avert only (say) three of the five, and not necessarily the three

with the highest benefit/cost ratios. This result might at first seem “strange” (hence the

title of the paper), but we will see that it follows from basic economic principles.

Our results highlight a fundamental flaw in the way economists usually approach potential

catastrophes. Consider the possibility of a climate change catastrophe — a climate outcome

so severe in terms of higher temperatures and rising sea levels that it would sharply reduce

economic output and consumption (broadly understood). A number of studies have tried

to evaluate greenhouse gas (GHG) abatement policies by combining GHG abatement cost

estimates with estimates of the expected benefits to society (in terms of reduced future

1Although we will often talk of ‘averting’ or ‘eliminating’ catastrophes, our framework allows for the
possibility of only partially alleviating one or more catastrophes, as we show in Section IV.A.
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damages) from avoiding or reducing the likelihood of a bad outcome.2 To our knowledge,

however, all such studies look at climate change in isolation. We show that this is misleading.

A climate catastrophe is only one of a number of catastrophes that might occur and

cause major damage on a global scale. Other catastrophic events may be as likely or more

likely to occur, could occur much sooner, and could have an even worse impact on economic

output and even mortality. One might estimate the benefits to society from averting each

of these other catastrophes, again taking each in isolation, and then, given estimates of the

cost of averting the event, come up with a policy recommendation. But applying cost-benefit

analysis to each event in isolation can lead to a policy that is far from optimal.

Conventional cost-benefit analysis can be applied directly to “marginal” projects, i.e.,

projects whose costs and benefits have no significant impact on the overall economy. But

policies or projects to avert major catastrophes are not marginal; their costs and benefits can

alter society’s aggregate consumption, and that is why they cannot be studied in isolation.

Like many other studies, we measure benefits in terms of “willingness to pay” (WTP),

i.e., the maximum fraction of consumption society would be willing to sacrifice, now and

forever, to achieve an objective. We can then address the following two questions: First,

how will the WTP for averting Catastrophe A change once we take into account that other

potential catastrophes B, C, D, etc., lurk in the background? We show that the WTP to

eliminate A will go up.3 The reason is that the other potential catastrophes reduce expected

future consumption, thereby increasing expected future marginal utility and therefore also

the benefit of averting catastrophe A. Likewise, each individual WTP (e.g., to avert just B)

will be higher the greater is the “background risk” from the other catastrophes. What

about the WTP to avert all of the potential catastrophes? It will be less than the sum of the

individual WTPs. The WTPs are not additive; society would probably be unwilling to spend

60 or 80% of GDP (and could not spend 110% of GDP) to avert all of these catastrophes.

WTP relates to the demand side of policy: it is society’s reservation price—the most

it would sacrifice—to achieve some goal. In our case, it measures the benefit of averting a

catastrophe. It does not tell us whether averting the catastrophe makes economic sense. For

2Most of these studies develop “integrated assessment models” (IAMs) and use them for policy evaluation.
The literature is vast, but Nordhaus (2008) and Stern (2007) are widely cited examples; other examples
include the many studies that attempt to estimate the social cost of carbon (SCC). For a survey of SCC
estimates based on three widely used IAMs, see Greenstone, Kopits and Wolverton (2013) and Interagency
Working Group on Social Cost of Carbon (2010). These studies, however, geenerally focus on “most likely”
climate outcomes, not low-probability catastrophic outcomes. See Pindyck (2013a,b) for a critique and
discussion. One of the earliest treatments of environmental catastrophes is Cropper (1976).

3As we will see, this result requires the coefficient of relative risk aversion to exceed one.
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that we also need to know the cost. There are various way to characterize such a cost: a fixed

dollar amount, a time-varying stream of expenditures, etc. In order to make comparisons

with the WTP measure of benefits, we express cost as a permanent tax on consumption at

rate τ , the revenues from which would just suffice to pay for whatever is required to avert

the catastrophe.

Now suppose we know, for each major type of catastrophe, the corresponding costs and

benefits. More precisely, imagine we are given a list (τ1, w1), (τ2, w2), . . . , (τN , wN) of costs

(τi) and WTPs (wi) associated with projects to eliminate N different potential catastrophes.

That brings us to our second question: Which of the N projects should we implement? If

wi > τi for all i, should we eliminate all N potential catastrophes? Not necessarily. We show

how to decide which projects to choose to maximize social welfare.

When the projects are very small relative to the economy, and if there are not too many

of them, the conventional cost-benefit intuition prevails: if the projects are not mutually

exclusive, we should implement any project whose benefit wi exceeds its cost τi. This intu-

ition might apply, for example, for the construction of a dam to avert flooding in some area.

Things are more interesting when projects are large relative to the economy, as might be the

case for the global catastrophes mentioned above, or if they are small but large in number (so

their aggregate influence is large). Large projects change total consumption and marginal

utility, causing the usual intuition to break down: There is an essential interdependence

among the projects that must be taken into account when formulating policy.

We are not the first to note the interdependence of large projects; early expositions of

this point include Dasgupta, Sen and Marglin (1972) and Little and Mirrlees (1974). (More

recently, Dietz and Hepburn (2013) illustrate this point in the context of climate change

policy.) Nor are we the first to note the effects of background risk; see, e.g., Gollier (2001)

and Gollier and Pratt (1996). But to our knowledge this paper is the first to address the

question of selecting among a set of large projects. We show how this can be done, and we

use several examples to illustrate some of the counterintuitive results that can arise.

For instance, one apparently sensible response to the non-marginal nature of large catas-

trophes is to decide which is the most serious catastrophe, avert that, and then decide

whether to avert other catastrophes. This approach is intuitive and plausible—and wrong.

We illustrate this in an example with three potential catastrophes. The first has a benefit w1

much greater than the cost τ1, and the other two have benefits greater than the costs, but

not that much greater. Naive reasoning suggests we should proceed sequentially: eliminate

the first catastrophe and then decide whether to eliminate the other two, but we show that

such reasoning is flawed. If only one of the three were to be eliminated, we should indeed
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choose the first; and we would do even better by eliminating all three. But we would do best

of all by eliminating the second and third and not the first: the presence of the second and

third catastrophes makes it suboptimal to eliminate the first.

In the next section we use two very simple examples to illustrate the general interdepen-

dence of large projects, and show why, if faced with two potential catastrophes, it might not

be optimal to avert both, even if the benefit of averting each exceeds the cost. In Section II

we introduce our framework of analysis by first focusing on the WTP to avert a single type

of catastrophe (e.g., nuclear terrorism) considered in isolation. We use a constant relative

risk aversion (CRRA) utility function to measure the welfare accruing from a consumption

stream, and we assume that the catastrophe arrives as a Poisson event with known mean

arrival rate; thus catastrophes occur repeatedly and are homogeneous in time. Each time

a catastrophe occurs, consumption is reduced by a random fraction.4 These simplifying as-

sumptions make our model tractable, because they imply that the WTP to avoid a given

type of catastrophe is constant over time.

This tractability is critical when, in Section III, we allow for multiple types of catastro-

phes. Each type has its own mean arrival rate and impact distribution. We find the WTP

to eliminate a single type of catastrophe and show how it depends on the existence of other

types, and we also find the WTP to eliminate several types at once. We show that the pres-

ence of multiple catastrophes may make it less desirable to try to mitigate some catastrophes

for which action would appear desirable, considered in isolation. Next, given information on

the cost of eliminating (or reducing the likelihood of) each type of catastrophe, we show how

to find the welfare-maximizing combination of projects that should be undertaken.

Section IV presents some extensions. First, we show that our framework allows for the

partial alleviation of catastrophes, i.e., for policies that reduce the likelihood of catastrophes

occurring rather than eliminating them completely. The paper’s central intuitions apply

even if we can choose the amount by which we reduce the arrival rate of each catastrophe

optimally. Second, our framework easily handles catastrophes that are directly related to one

another: for example, averting nuclear terrorism might also help avert bioterrorism. Third,

our results also apply to bonanzas, that is, to projects such as blue-sky research that increase

the probability of events that raise consumption (as opposed to decreasing the probability

of events that lower consumption).

4Similar assumptions are made in the literature on generic consumption disasters. Examples include
Backus, Chernov and Martin (2011), Barro and Jin (2011), and Pindyck and Wang (2013). Martin (2008)
estimates the welfare cost of consumption uncertainty to be about 14%, most of which is attributable to
higher cumulants (disaster risk) in the consumption process. Barro (2013) examines the WTP to avoid a
climate change catastrophe with (unavoidable) generic catastrophes in the background.
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The contribution of this paper is largely theoretical: we provide a framework for analyzing

different types of catastrophes and deciding which ones should be included as a target of

government policy. Determining the actual likelihood of nuclear terrorism or a mega-virus,

as well as the cost of reducing the likelihood, is no easy matter. Nonetheless, we want to

show how our framework might be applied to real-world government policy formulation. To

that end, we survey the (very limited) literature for seven potential catastrophes, discuss how

one could come up with the relevant numbers, and then use our framework to determine

which of these catastrophes should or should not be averted.

I Two Simple Examples

Why is it that “large,” i.e., non-marginal projects are inherently interdependent and cannot

be evaluated in isolation? The following simple examples should help convey some of the

basic intuition, and also clarify the connection between our work and the prior literature.

The first example addresses a (static) decision to undertake a set of projects, and shows

how the decision rule changes if the projects are large. The second example asks whether

resources should be sacrificed today to avert one or two catastrophes that will otherwise occur

in the future. It illustrates the effect of background risk, the interdependence of WTPs, and

the connection to cost-benefit analysis.

Static Example. Suppose we are deciding whether to undertake two independent

projects.5 To make the basic point in the simplest possible case, we assume that these

are yes/no projects, so that the resources expended on project i, ei, equals either 0 or xi.

We can approximate net welfare, W , using a second-order Taylor expansion:

W (e1, e2) ≈ W (0, 0) +
2∑

i=1

ei
∂W

∂ei

∣∣∣∣
e1=e2=0

+ 1
2

2∑
i=1

2∑
j=1

eiej
∂2W

∂ei∂ej

∣∣∣∣
e1=e2=0

. (1)

If both projects are “marginal,” i.e. the xi are very small, then we can ignore the second-

order term in (1), and the optimal decision is to set ei = xi if ∂W/∂ei|e1=e2=0 > 0 and

ei = 0 otherwise. In other words, the standard cost-benefit rule applies: undertake a project

if doing so yields an increase in net welfare. But if the projects are not marginal, then

we cannot ignore the second-order term in (1). Now the standard cost-benefit rule fails.

Why? Because of the second derivative terms, the value of project 1 depends on whether

5A version of this example was suggested by an anonymous referee, whom we thank.
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project 2 is also being carried out, and vice versa. Thus large projects cannot be evaluated

independently of each other.6

Two-Period Example. As a second example, suppose there are two potential catastro-

phes that, if not averted, will surely occur at a future time T . Each catastrophe will reduce

consumption at time T by a fraction φ. Consumption today is C0 = 1, so consumption at T

is CT = 1 if both catastrophes are averted, CT = 1−φ if one is averted, and CT = (1−φ)2 if

neither is averted. Each catastrophe can be averted by sacrificing a fraction τ of consumption

today and at time T . We assume CRRA utility and ignore discounting, so welfare is

V =
1

1− η

[
C1−η

0 + C1−η
T

]
,

and for simplicity let η = 2. If neither catastrophe is averted, welfare is V0 = −[1+(1−φ)−2].

If we avert one of the two catastrophes by sacrificing a fraction of consumption w1, welfare

is V1 = −(1− w1)
−1 [1 + (1− φ)−1]. The WTP is the fraction w1 that equates V0 to V1:

w1 = 1−
[
1 + (1− φ)−1

1 + (1− φ)−2

]
. (2)

The WTP to avert both catastrophes, w1,2, equates V0 to V1,2 = −2(1− w1,2)
−1, so

w1,2 = 1− 2

1 + (1− φ)−2
. (3)

Finally, if there were only one catastrophe, the WTP to avert it would be

w′
1 = 1−

[
2

1 + (1− φ)−1

]
. (4)

We can use eqns. (2), (3), and (4) to illustrate several points:

1. Background risk increases the WTP to avert a catastrophe. It is easy to see that w1 >

w′
1, i.e., the WTP to avert Catastrophe 1 is increased by the presence of Catastrophe 2.

For example, if φ = 0.5, w1 = 0.40 and w′
1 = 0.33. Catastrophe 2 reduces CT , raising

marginal utility at time T , and thereby raising the value of averting Catastrophe 1.7

6This is essentially the idea behind Dasgupta, Sen and Marglin (1972) and Little and Mirrlees (1974).
Also, note that this interdependence does not depend on the binary (i.e., ei = 0 or xi) nature of the projects.
As we show in Section IV.A.2, it holds even if the size of each project (i.e., xi) can be freely chosen.

7This result is related to the notion of “risk vulnerability” introduced by Gollier and Pratt (1996). They
derive conditions under which adding a zero-mean background risk to wealth will increase an agent’s risk
aversion with respect to an additional risky prospect. The conditions are that the utility function exhibits
absolute risk aversion that is both declining and convex in wealth, a natural assumption that holds for all
HARA utility functions. Risk vulnerability includes the concept of “standard risk aversion” (Kimball (1993))
as a special case. In our model, background risk is not zero-mean: background events reduce consumption
in our baseline framework and increase consumption in the extension in Section IV.C.
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2. WTPs don’t add. Specifically, w1,2 < w1 + w2. For example, if φ = 0.5, w1,2 = 0.60 <

w1 + w2 = 0.80. Sacrificing 40% of consumption sharply increases the marginal utility

loss from any further sacrifice of consumption.

3. Naive cost-benefit analysis can be misleading. More specifically, we might not avert a

catastrophe even if the benefit of averting it—considered in isolation—exceeds the cost.

For example, suppose φ = 0.5 as before, so that w1 = w2 = 0.4. If τ1 = τ2 = 0.35, the

benefit of averting each catastrophe exceeds the cost. But we should not avert both.

For if we avert neither catastrophe, net welfare is V0 = −5; if we avert one, net welfare is

W1 = −4.62; and if we avert both, net welfare is W1,2 = −4.73. Averting both is better

than averting neither, but we do best by averting exactly one. To understand this,

note that if we avert one catastrophe, what matters is whether the additional benefit

from averting the second exceeds the cost, i.e., whether (w1,2−w1)/(1−w1) > τ2. We

should not avert #2 because (w1,2 − w1)/(1− w1) = 0.33 < τ2 = 0.35.

These examples help connect our work to the earlier literature and illustrate why large

projects are interdependent. We turn next to a fully dynamic model that includes uncertainty

over the arrival and impact of multiple potential catastrophes, and that lets us derive a key

result regarding the set of catastrophes that should be averted.

II The Model with One Type of Catastrophe

We first consider a single type of catastrophe. It might be a climate change catastrophe, a

mega-virus, or something else. What matters is that we assume for now that this particular

type of catastrophe is the only thing society is concerned about. We want to determine

society’s WTP to avoid this type of catastrophe, i.e., the maximum fraction of consumption,

now and throughout the future, that society would sacrifice. Of course it might be the case

that the revenue stream corresponding to this WTP is insufficient to eliminate the risk of the

catastrophe occurring, in which case eliminating the risk is economically infeasible. Or, the

cost of eliminating the risk might be lower than the corresponding revenue stream, in which

case the project would have a positive net social surplus. The WTP applies only to the

demand side of government policy. Later, when we examine multiple types of catastrophes,

we will also consider the supply (i.e., cost) side.

To calculate a WTP, we must consider whether the type of catastrophe at issue can occur

once and only once (if it occurs at all), or can occur repeatedly. For a climate catastrophe, it

might be reasonable to assume that it would occur only once—the global mean temperature,
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for example, might rise much more than expected, causing economic damage far greater than

anticipated, and perhaps becoming worse over time as the temperature keeps rising.8 But

for most potential catastrophes, such as a mega-virus, nuclear terrorism, or nuclear war, it is

more reasonable to assume that the catastrophe could occur multiple times. Throughout the

paper we will assume that multiple occurrences are indeed possible. However, in an online

Appendix we examine the WTP to eliminate a catastrophe that can occur only once.

We will assume that without any catastrophe, real per-capital consumption will grow

at a constant rate g, and we normalize so that at time t = 0, C0 = 1. Let ct denote log

consumption. We define a catastrophe as an event that permanently reduces log consumption

by a random amount φ (so that φ is roughly the fraction by which the level of consumption

falls). Thus if the catastrophic event first occurs at time t1, Ct = egt for t < t1 and then falls

to Ct = e−φ+gt at t = t1. For now we impose no restrictions on the probability distribution

for φ. We use a simple CRRA utility function to measure welfare, and denote the index of

relative risk aversion by η and rate of time preference by δ. Unless noted otherwise, in the

rest of this paper we will assume that η > 1, so utility is negative. This is consistent with

both the finance and macroeconomics literatures, which put η in the range of 2 to 5 (or even

higher). Later we treat the special case of η = 1, i.e., log utility.

We assume throughout this paper that the catastrophic event of interest occurs as a

Poisson arrival with mean arrival rate λ, and that the impact of the nth arrival, φn, is

i.i.d. across realizations n. Thus the process for consumption is:

ct = log Ct = gt−
Q(t)∑
n=1

φn (5)

where Q(t) is a Poisson counting process with known mean arrival rate λ, so when the nth

catastrophic event occurs, consumption is multiplied by the random variable e−φn . We follow

Martin (2013) by introducing the cumulant-generating function (CGF),

κt(θ) ≡ log E ectθ ≡ log E Cθ
t .

As we will see, the CGF summarizes the effects of various types of risk in a convenient

way. Since the process for consumption given in (5) is a Lévy process, we can simplify

κt(θ) = κ(θ)t, where κ(θ) means κ1(θ). In other words, the t-period CGF scales the 1-

8That is why some argue that the best way to avert a climate catastrophe is to invest now in geoengineering
technologies that could be used to reverse the temperature increases. See, e.g., Barrett (2008, 2009) and
Kousky et al. (2009).
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period CGF linearly in t. We show in the appendix that the CGF is then9

κ(θ) = gθ + λ
(
E e−θφ1 − 1

)
. (6)

Given this consumption process, welfare is

E
∫ ∞

0

1

1− η
e−δtC1−η

t dt =
1

1− η

∫ ∞

0

e−δteκ(1−η)t dt =
1

1− η

1

δ − κ(1− η)
, (7)

where κ(1− η) is the CGF of equation (6) with θ = 1− η. Note that equation (7) is quite

general and applies to any distribution for the impact φ. But note also that welfare is finite

only if the integrals converge, and for this we need δ − κ(1− η) > 0 (Martin (2013)).

Eliminating the catastrophe is equivalent to setting λ = 0 in equation (6). We denote

the CGF in this case by κ(1)(θ). (This notation will prove convenient later when we allow

for several types of catastrophes.) So if we sacrifice a fraction w of consumption to avoid the

catastrophe, welfare is
(1− w)1−η

1− η

1

δ − κ(1)(1− η)
. (8)

The WTP to eliminate the event (i.e., set λ = 0) is the value of w that equates (7) and (8):

1

1− η

1

δ − κ(1− η)
=

(1− w)1−η

1− η

1

δ − κ(1)(1− η)
.

Should society avoid this catastrophe? This is easy to answer because with only one type

of catastrophe to worry about, we can apply standard cost-benefit analysis. The benefit is

w, and the cost is the permanent tax on consumption, τ , needed to generate the revenue

to eliminate the risk. We should avoid the catastrophe as long as w > τ . As we will see

shortly, when there are multiple potential catastrophes the benefits from eliminating each

are interdependent, causing this simple logic to break down.10

9We could allow for ct = gt−
∑N(t)

n=1 φn, where gt is any Lévy process, subject to the condition that ensures
finiteness of expected utility. (For the special case in (5), gt = gt for a constant g.) This only requires that
the term gθ in the CGFs is replaced by g(θ), where g(θ) is the CGF of g1, so if there are Brownian shocks with
volatility σ, and jumps with arrival rate ω and stochastic impact J , then g(θ) = µθ + 1

2σ2θ2 +ω
(
E eθJ − 1

)
.

This lets us handle Brownian shocks and unavoidable catastrophes without modifying the framework. Since
the generalization has no effect on any of our qualitative results, we stick to the simpler formulation.

10A referee suggested that we could have alternatively expressed benefits in terms of the growth rate of
consumption, rather than as a percentage of its level. Then WTP would be the maximum reduction in
the growth rate society would be willing to sacrifice to avert a catastrophe. Expressing benefits this way
is certainly reasonable. If the costs of averting catastrophes are likewise modeled as required reductions in
the growth rate (which we think is much less reasonable), our dynamic model could be written in a static
form. Modeling benefits and costs in terms of levels is the conventional approach, which we have chosen to
maintain.
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III Optimal Policy with Multiple Catastrophes

We now allow for multiple types of catastrophes, show how to find the WTP to avert each

type, and examine the interrelationship among the WTPs. We can then address the issue

of choosing which catastrophes to avert. We aim to answer the following question: Given a

list of costs and benefits of eliminating different types of catastrophes, which ones should we

eliminate? The punch line will be given by Result 2 below: There is a fundamental sense

in which benefits add but costs multiply. This will imply that there may be a substantial

penalty associated with implementing several projects. As a result, it may be optimal not

to avert catastrophes whose elimination seems justified in naive cost-benefit terms.

As before, we assume that a catastrophic event causes a drop in consumption. We also

assume that these events occur independently of each other. So log consumption is

ct = log Ct = gt−
Q1(t)∑
n=1

φ1,n −
Q2(t)∑
n=1

φ2,n − · · · −
QN (t)∑
n=1

φN,n (9)

where Qi(t) is a Poisson counting process with mean arrival rate λi, and the CGF is

κ(θ) = gθ + λ1

(
E e−θφ1 − 1

)
+ λ2

(
E e−θφ2 − 1

)
+ · · ·+ λN

(
E e−θφN − 1

)
. (10)

Here we write φi for a representative of any of the φi,n (since catastrophic impacts are all

i.i.d. within a catastrophe type). If no catastrophes are eliminated, welfare is again given by

eqn. (7). In the absence of catastrophe type i, welfare is

1

1− η

1

δ − κ(i)(1− η)

where the i superscript indicates that λi has been set to zero. Thus willingness to pay to

eliminate catastrophe i satisfies

(1− wi)
1−η

1− η

1

δ − κ(i)(1− η)
=

1

1− η

1

δ − κ(1− η)
,

and hence

wi = 1−
(

δ − κ(1− η)

δ − κ(i)(1− η)

) 1
η−1

.

Similarly, the WTP to eliminate some arbitrary subset S of the catastrophes, which we will

write as wS, is given by

(1− wS)1−η =
δ − κ(S)(1− η)

δ − κ(1− η)
. (11)

(The superscript S on the CGF indicates that λi is set to zero for all i ∈ S.) The next result

shows how wS, the WTP for eliminating the subset of catastrophes, can be connected to the

WTPs for each of the individual catastrophes in the subset.

10



Result 1. The WTP to avert a subset, S, of the catastrophes is linked to the WTPs to avert

each individual catastrophe in the subset by the expression

(1− wS)1−η − 1 =
∑
i∈S

[
(1− wi)

1−η − 1
]
. (12)

Proof. The result follows from a relationship between κ(S)(θ) and the individual κ(i)(θ). Note

that κ(i)(θ) = κ(θ) − λi

(
E e−θφi − 1

)
and κ(S)(θ) = κ(θ) −

∑
i∈S λi

(
E e−θφi − 1

)
. (This is

effectively the definition of the notation κ(i) and κ(S).) Thus∑
i∈S

κ(i)(θ) = |S|κ(θ)−
∑
i∈S

λi

(
E e−θφi − 1

)
= (|S| − 1)κ(θ) + κ(S)(θ),

where |S| denotes the number of catastrophes in the subset S, and hence

∑
i∈S

δ − κ(i)(1− η)

δ − κ(1− η)
=

(|S| − 1)(δ − κ(1− η)) + (δ − κ(S)(1− η))

δ − κ(1− η)
.

Using (11), we have the result.

If, say, there are N = 2 types of catastrophes, then Result 1 implies that

1 + (1− w1,2)
1−η = (1− w1)

1−η + (1− w2)
1−η. (13)

Thus we can express the WTP to eliminate both types of catastrophes, w1,2, in terms of w1

and w2. But note that these WTPs do not add: since the function (1 − x)1−η is convex,

equation (13) implies that w1,2 < w1 + w2, by Jensen’s inequality.

By the same reasoning, it can be shown that w1,2,...,N <
∑N

i=1 wi. Likewise, if we divide

the N catastrophes into two groups, 1 through M and M + 1 through N , then w1,2,...,N <

w1,2,...,M + wM+1,...,N . The WTP to eliminate all N catastrophes is less than the sum of

the WTPs for each of the individual catastrophes, and less than the sum of the WTPs to

eliminate any two groups of catastrophes.

A Which Catastrophes to Avert?

The WTP, wi, measures the benefit of averting Catastrophe i as the maximum fraction of

consumption society would sacrifice to achieve this result. We measure the corresponding

cost as the actual fraction of consumption that would have to be sacrificed, via a permanent

consumption tax τi, to generate the revenue needed to avert the catastrophe. Thus we

11



could avert all the catastrophes in some set S at the cost of multiplying consumption by∏
i∈S(1− τi) forever.11,12

Thus, if we eliminate some subset S of the catastrophes, welfare (net of taxes) is∏
i∈S(1− τi)

1−η

(1− η)(δ − κ(S)(1− η))
=

∏
i∈S(1− τi)

1−η

(1− η)(δ − κ(1− η))(1− wS)1−η
, (14)

where the equality follows from (11). Our goal is to pick the set of catastrophes to be

eliminated to maximize this expression. To do so, it will be convenient to define

Ki = (1− τi)
1−η − 1 and Bi = (1− wi)

1−η − 1. (15)

Here Ki is the percentage loss of utility that results when consumption is reduced by τi

percent, and likewise for Bi.

These utility-based definitions of costs and benefits are positive and increasing in τi and

wi, respectively, and Ki > Bi if and only if τi > wi. For small τi, we have the linearization

Ki ≈ (η − 1)τi; and for small wi, we have Bi ≈ (η − 1)wi. The utility-based measures

have the nice property that the Bi’s across catastrophes are additive (by Result 1) and the

Ki’s are multiplicative. That is, the benefit from eliminating, say, three catastrophes is

B1,2,3 = B1 + B2 + B3, and the cost is K1,2,3 = (1 + K1)(1 + K2)(1 + K3) − 1. This allows

us to state our main result in a simple form.

Result 2 (Benefits add, costs multiply). It is optimal to choose the subset, S, of catastrophes

to be eliminated to solve the problem

max
S⊆{1,...,N}

V =

1 +
∑
i∈S

Bi∏
i∈S

(1 + Ki)
, (16)

11This multiplicative cost assumption implies that it is cheaper in absolute terms to avert a given catas-
trophe if the economy is small than if it is large. We think this is the natural formulation, because we
also model the impact of catastrophes as multiplicative (and thus additive in logs, as in (9)), but we could
alternatively have assumed that consumption was multiplied by 1−

∑
i∈S τi. When costs are small relative to

the aggregate economy we have
∏

i∈S(1− τi) ≈ 1−
∑

i∈S τi, so the two assumptions are essentially identical.
When costs are not small, our multiplicative cost assumption is conservative, because it implies a smaller
cost of averting groups of catastrophes than the alternative additive assumption would. But even with our
multiplicative formulation, it will often not be optimal to avert catastrophes that, considered in isolation,
appear to pass a cost-benefit hurdle.

12As a referee pointed out, if the model is reformulated so that both benefits and costs affect the growth
rate rather than level of consumption, then the problem becomes separable and the standard cost-benefit
rule applies. With respect to costs, we would then have consumption multiplied by a factor exp(−

∑
i∈S τit).

We have chosen to model costs as taking the form
∏

i∈S(1− τi) because this is the conventional assumption
made in the literature, and to us seems more reasonable.
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where if no catastrophes are eliminated (i.e., if S is the empty set) then the objective function

in (16) is taken to equal one.

Proof. If we choose some subset S then, using Result 1 to rewrite the denominator of ex-

pression (14) in terms of the individual WTPs, wi, expected utility equals∏
i∈S(1− τi)

1−η

(1− η) (δ − κ(1− η))
(
1 +

∑
i∈S [(1− wi)1−η − 1]

)
or, rewriting in terms of Bi and Ki, ∏

i∈S(1 + Ki)

(1− η) (δ − κ(1− η))
(
1 +

∑
i∈S Bi

) .
Since (1 − η)(δ − κ(1 − η)) < 0, the optimal set S that maximizes the above expression is

the same as the set S that solves the problem (16).

It is problem (16) that generates the strange economics of the title. To understand how

the problem differs from what one might naively expect, notice that the set S solves

max
S

log

(
1 +

∑
i∈S

Bi

)
−
∑
i∈S

log (1 + Ki).

One might think that if costs and benefits Ki and Bi are all small, then—since log(1+x) ≈ x

for small x—this problem could be closely approximated by the simpler problem

max
S

∑
i∈S

(Bi −Ki). (17)

This linearized problem is separable, which vastly simplifies its solution: a catastrophe should

be averted if and only if the benefit of doing so, Bi, exceeds the cost, Ki. But the linearized

problem is only a tolerable approximation to the true problem if the total number of catas-

trophes is limited, and in particular, if
∑

i∈S Bi is small. It is not enough for the Bis to be

individually small. The reason is that averting a large number of small catastrophes has the

same aggregate impact on consumption (and marginal utility) as does averting a few large

catastrophes. We illustrate this with the following example.

Example 1: Many Small Catastrophes. Suppose we have a large number of identical

(but independent) small potential catastrophes, each with Bi = B and Ki = K. The naive

intuition is to eliminate all if B > K, and none if B ≤ K. As Result 3 below shows, the

naive intuition is correct in the latter case; but if B > K we should not eliminate all of the

catastrophes. Instead, the number to eliminate, m, must solve the problem

max
m

1 + mB

(1 + K)m . (18)

13



In reality, m must be an integer, but we will ignore this constraint for simplicity. The optimal

choice, m∗, is then determined by the first order condition associated with (18),

B

(1 + K)m∗ −
(1 + m∗B) log(1 + K)

(1 + K)m∗ = 0.

Solving this equation for m∗, we find that m∗ = 1/ log(1 + K)− 1/B.

If w = 0.020, τ = 0.015 and η = 2, B ≈ 0.020, K ≈ 0.015, and m∗ = 17. But if η = 3,

m∗ = 9. And if η = 4, B ≈ 0.062, K ≈ 0.031, and m∗ = 6. A larger value of η implies a

smaller number m∗, because the percentage drop in consumption, 1− (1− τ)m, results in a

larger increase in marginal utility, and thus a greater loss of utility from averting one more

catastrophe.

Does it matter how large is the “large number” of catastrophes in this example (assuming

it is larger than the number we will avert)? No, because we fixed the values of w and τ (and

hence B and K) for each catastrophe. But if we go back a step and consider what determines

w, it could indeed matter. The catastrophes we do not avert represent “background risk,”

and more background risk makes w larger. Thus w (and hence B) will be larger if we face

200 small catastrophes than if we face only 50.

B Scylla and Charybdis

Suppose there are N = 2 types of catastrophes, and B1 is sufficiently greater than K1 that we

will definitely avert Catastrophe 1. Should we also avert Catastrophe 2? Result 2 provides

the answer: Only if the benefit-cost ratio B2/K2 exceeds the following hurdle rate:

B2

K2

> 1 + B1 . (19)

Thus the fact that society is going to avert Catastrophe 1 increases the hurdle rate for

Catastrophe 2. Furthermore, the greater is the benefit B1, the greater is the increase in the

hurdle rate for Catastrophe 2. Notice that this logic also applies if B1 = B2 and K1 = K2;

it might be the case that only one of two identical catastrophes should be averted.

As we saw in the two-period example of Section 1, what matters is the additional benefit

from averting Catastrophe 2, i.e., (w1,2 − w1)/(1 − w1). Substituting in the definitions of

Ki and Bi, we can see that equation (19) is equivalent to (w1,2 − w1)/(1− w1) > τ2. It can

easily be the case that w2 > τ2 but (w1,2 − w1)/(1− w1) < τ2. The reason is that these are

not marginal projects, so w1,2 < w1 + w2. This is what raises the hurdle rate in eqn. (19).

To avert Catastrophe 1, society is willing to sacrifice up to a fraction w1 of consumption, so
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(b) η = 3

Figure 1: There are two potential catastrophes, with τ1 = 20% and τ2 = 10%. The figures
show, for all possible values of w1 and w2, which catastrophes should be averted (in curly
brackets). We should avert both catastrophes only for combinations (w1, w2) in the middle
shaded region. That region shrinks considerably when risk aversion, η, increases.

the remaining consumption is lower and marginal utility is higher, increasing the utility loss

from the second tax τ2.

Example 2: Two Catastrophes. To illustrate this result, suppose τ1 = 20% and τ2 = 10%.

Figure 1 shows which catastrophes should be averted for different values of w1 and w2. When

wi < τi for both catastrophes (the bottom left rectangle), neither should be averted. We

should avert both only for combinations (w1, w2) in the middle lozenge-shaped region. That

region shrinks considerably when we increase η. In the context of equation (19), the larger is

η the larger is B1, and thus the larger is the hurdle rate for averting the second catastrophe.

Consider the point (w1, w2) = (60%, 20%) in Figure 1(b). As shown, we should avert

only the first catastrophe even though w2 > τ2. Here B1 = 5.25, B2 = 0.56, and K2 = 0.23,

so B2/K2 = 2.39 < 1 + B1 = 6.25. Equivalently, w1,2 = 61.7%, so (w1,2 − w1)/(1 − w1) =

4.3% < τ2 = 10%. The additional benefit from averting Catastrophe 2 is less than the cost.

How is the WTP to avert Catastrophe 1 affected by the existence of Catastrophe 2?

Catastrophe 2 is a kind of “background risk” that (a) reduces expected future consumption;

and (b) thereby raises future expected marginal utility. Because each catastrophic event

reduces consumption by some percentage φ, the first effect reduces the WTP; there is less

(future) consumption available, so the event causes a smaller absolute drop in consumption.

The second effect raises the WTP because the loss of utility is greater when total consump-
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tion has been reduced. If η > 1 so that expected marginal utility rises sufficiently when

consumption falls, the second effect dominates, and the existence of Catastrophe 2 will on

net increase the benefit of averting Catastrophe 1, and raise its WTP.

C Multiple Catastrophes of Arbitrary Size

With multiple catastrophes of arbitrary size, the solution of problem (16) is much more

complicated. How does one find the set S in practice? In general, one can search over every

possible subset of the catastrophes to find the subset that maximizes the objective function

in (16). With N catastrophes there are 2N possible subsets to evaluate. There is a stark

contrast here with conventional cost-benefit analysis, in which an individual project can be

evaluated in isolation.

The next result shows that we can eliminate certain projects from consideration, before

checking all subsets of the remaining projects.

Result 3 (Do no harm). A project with wi ≤ τi should never be implemented.

Proof. Let i be a project with wi ≤ τi; then by definition, Bi ≤ Ki. Let S be any set of

projects that does not include i. Since

1 + Bi +
∑

s∈S Bs

(1 + Ki)
∏

s∈S(1 + Ks)︸ ︷︷ ︸
obj. fn. in (16) if we avert S and i

≤
(1 + Bi)(1 +

∑
s∈S Bs)

(1 + Ki)
∏

s∈S(1 + Ks)
≤

1 +
∑

s∈S Bs∏
s∈S(1 + Ks)︸ ︷︷ ︸

obj. fn. if we avert S

,

and since S was arbitrary, it is never optimal to avert catastrophe i.

In the other direction—deciding which projects should be implemented—things are much

less straightforward. However, we have the following result, whose proof is in the appendix.

Result 4. (i) If there is a catastrophe i whose wi exceeds its τi then we will want to

eliminate some catastrophe, though not necessarily i itself.

(ii) If it is optimal to avert catastrophe i, and catastrophe j has higher benefits and lower

costs, wj > wi and τj < τi, then it is also optimal to avert j.

(iii) If there is a project with wi > τi that has both highest benefit wi and lowest cost τi,

then it should be averted.

(iv) Fix {(τi, wi)}i=1,...,N and assume that wi > τi for at least one catastrophe. For suffi-

ciently high risk aversion, it is optimal to avert exactly one catastrophe: the one that

maximizes (1−τi)/(1−wi), or equivalently (1+Bi)/(1+Ki). If more than one disaster

maximizes this quantity, then any one of the maximizers should be chosen.
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Beyond Result 4, it is surprisingly difficult to formulate general rules for choosing which

projects should be undertaken to maximize (16). In the log utility case, though, our assump-

tion that impacts and costs are both multiplicative makes things simpler, as the next result

(whose proof is in the Appendix) shows.

Result 5 (The naive rule works with log utility). With log utility, the problem is separable: a

catastrophe i should be averted if and only if the benefit of doing so exceeds the cost, wi > τi.

To get a feeling for the possibilities when η > 1, and how counter-intuitive they can

be, we present several simple examples. For instance, one apparently plausible approach

to the problem of project selection is to act sequentially : pick the project that would be

implemented if only one catastrophe were to be averted, and then continue, selecting the

next most desirable project; and so on. It turns out that this approach is not optimal.

Example 3: Sequential Choice Is Not Optimal. Suppose that there are three catastrophes

with (K1, B1) = (0.5, 1) and (K2, B2) = (K3, B3) = (0.25, 0.6); these numbers apply if,

say, η = 2 and (τ1, w1) =
(

1
3
, 1

2

)
and (τ2, w2) = (τ3, w3) =

(
1
5
, 3

8

)
. If only one were to be

eliminated, we should choose the first (so that in eqn. (16), V = 1.33); and we would do

even better by eliminating all three (so that V = 1.37). But we would do best of all by

eliminating the second and third catastrophes and not the first (so that V = 1.41).

The next example shows, again with three types of catastrophes, how the choice of which

to avert can vary considerably with the costs and benefits and with risk aversion.

Example 4: Choosing Among Three Catastrophes. We now extend Example 2 by adding

a third catastrophe. Specifically, suppose that there are three potential catastrophes with

τ1 = 20%, τ2 = 10%, and τ3 = 5%. Figure 2 shows, for various different values of w3 and η,

which potential catastrophes should be averted as w1 and w2 vary between 0 and 1. (Figure 2

is analogous to Figure 1, except that now there is a third potential catastrophe.)

When η is close to 1, as in Figure 2a, the usual intuition applies: Catastrophe 3 is

always averted (since w3 > τ3), and Catastrophes 1 and 2 should be averted if wi > τi.

Figure 2b shows that this intuition fails when η = 2; now it is never optimal to avert

all three catastrophes. In Figure 2c, we increase w3 to 20%, and the decision becomes

complicated. Consider what happens as we move horizontally across the figure, keeping w2

fixed at 50%. For w1 < 30%, we avert Catastrophes 2 and 3 but not Catastrophe 1, even

when w1 > τ1 = 20%. The reason is that the additional benefit from including Catastrophe

1, (w1,2,3 − w2,3)/(1 − w2,3), is less than the cost, τ1. If w1 > 30%, the additional benefit

exceeds the cost, so we should avert Catastrophe 1. But when w1 is greater than 70% (but
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(d) η = 3, w3 = 20%

Figure 2: There are three catastrophe types with τ1 = 20%, τ2 = 10%, and τ3 = 5%.
Different panels make different assumptions about w3 and η. Numbers in brackets indicate
which catastrophes should be averted for different values of w1 and w2.
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less than 90%), we should avert Catastrophes 1 and 2, but not 3; the additional benefit of

also averting Catastrophe 3, i.e., (w1,2,3 − w1,2)/(1− w1,2), is less than the cost, τ3. Finally,

when we increase η to 3, in Figure 2d, the range of values of w1 and w2 for which all three

catastrophes should be averted is much smaller.

We now show that the presence of many small potential catastrophes raises the hurdle

rate required to prevent a large one.

Example 5: Multiple Small Catastrophes Can Crowd Out a Large Catastrophe. Suppose

that there are many small, independent, catastrophes, each with cost k and benefit b, and

one large catastrophe with cost K and benefit B. Then we must compare

max
m

1 + mb

(1 + k)m with max
m

1 + B + mb

(1 + K)(1 + k)m
.

Ignoring the integer constraint, and assuming that it is optimal to eliminate at least one

small catastrophe, the optimized values of these problems are

b(1 + k)1/b

e log(1 + k)
and

b(1 + k)(1+B)/b

e(1 + K) log(1 + k)
,

respectively. It follows that we should eliminate the large catastrophe if and only if

B

log(1 + K)
>

b

log(1 + k)
. (20)

Thus the hurdle rate for elimination of the large catastrophe is increased by the presence of

the small catastrophes.

Figure 3 shows this graphically. Here η = 4 and the small catastrophes, indicated on

each figure by a small solid circle, have wi = 1% and τi = 0.5% (on the left) or wi = 1%

and τi = 0.25% (on the right). If the large catastrophe lies in the shaded region determined

by (20), it should not be averted. In contrast, absent the small catastrophes, the major one

would be averted if it lies anywhere above the dashed 45◦ line.

Example 6: Choosing Among Eight Catastrophes. Figure 4 shows some numerical exper-

iments. Each panel plots randomly chosen (from a uniform distribution on [0, 50%]) WTPs

and costs, wi and τi, for eight catastrophes. Fixing these wis and τis, we calculate Bi and

Ki for a range of values of η. We then find the set of catastrophes that should be eliminated

to maximize (16). These are indicated by blue dots in each panel; catastrophes that should

not be eliminated are indicated by red crosses. The 45◦ line is shown in each panel; points

below it have wi < τi and hence should never be averted. Points above the line have wi > τi,

so the benefit of averting exceeds the cost. Even so, it is often not optimal to avert.
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Figure 3: Illustration of Example 5. The presence of many small catastrophes (each with
cost τi and WTP wi, indicated by a solid circle) expands the region of inaction for a larger
catastrophe, which should not be averted if its cost τ and WTP w lie in the shaded region.

Figure 4a shows that when η is close to 1, every catastrophe above the 45◦ line should

be averted, consistent with Result 5. As η increases above 1.2, the optimal project selection

depends in a complicated way on the level of risk aversion. When η = 5, it is optimal

to avert just one ‘doomsday’ catastrophe. When η = 4, it is optimal to avert two different

catastrophes. When η = 3, three should be averted—but still not the doomsday catastrophe.

As η declines further, it again becomes optimal to avert the doomsday catastrophe.

IV Extensions

Thus far, we have made various assumptions to keep things simple. We have taken an ‘all-or-

nothing’ approach in which a catastrophe is averted entirely or not at all. We have assumed

that a policy to avert catastrophe A has no effect on the likelihood of catastrophe B. And

we have assumed that catastrophes are, well, catastrophes, that is, bad news. This section

shows that all three assumptions are inessential. We can allow for partial, as opposed to total,

alleviation of catastrophes; we can allow for the possibility that a policy to avert (say) nuclear

terrorism decreases the likelihood of bio-terrorism; and we can use the framework to consider

optimal policies with respect to potential bonanzas—projects such as blue-sky research or

infrastructure investment that increase the probability of something good happening (as

opposed to decreasing the probability of something bad happening).
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Figure 4: Eight catastrophes. Optimal project choice at different levels of risk aversion, η.
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A Partial Alleviation of Catastrophes

As a practical matter, the complete elimination of some catastrophes may be impossible or

prohibitively expensive. A more feasible alternative may be to reduce the likelihood that the

catastrophe will occur, i.e., to reduce the Poisson arrival rate λ. For example, Allison (2004)

suggests that the annual probability of a nuclear terrorist attack is λ ≈ 0.07. While reducing

the probability to zero may not be possible, we might be able to reduce λ substantially at a

cost that is less than the benefit. Should we do that, and how would the answer change if

we are also considering reducing the arrival rates for other potential catastrophes?

Our analysis of multiple catastrophes makes this problem easy to deal with. We consider

the possibility of reducing the arrival rate of some catastrophe from λ to λ(1− p), which we

call “alleviating the catastrophe by probability p.” We write w1(p) for the WTP to do just

that for the first type of catastrophe. Thus w1, in our earlier notation, is equal to w1(1).

We consider two forms of partial alleviation. First, suppose there are specific policies that

alleviate a given catastrophe type by some probability; an example is the rigorous inspection

of shipping containers. This implies a discrete set of policies to consider, and the previous

analysis goes through essentially unmodified. Second, we allow the probability by which the

catastrophe is alleviated to be chosen optimally. Perhaps surprisingly, the discrete flavor of

our earlier results still holds, and those results are almost unchanged.

A.1 Discrete Partial Alleviation

To find the WTP to alleviate the first type of catastrophe by probability p, that is, w1(p), we

make use of a property of Poisson processes. We can split the ‘type-1’ catastrophe into two

subsidiary types: 1a (arriving at rate λ1a ≡ λ1p) and 1b (arriving at rate λ1b ≡ λ1(1− p)).13

Thus we can rewrite the CGF (10) in the equivalent form:

κ(θ) = gθ + λ1a

(
E e−θφ1 − 1

)︸ ︷︷ ︸
type 1a, arriving at rate λ1a

+ λ1b

(
E e−θφ1 − 1

)︸ ︷︷ ︸
type 1b, arriving at rate λ1b

+
N∑

i=2

λi

(
E e−θφi − 1

)
︸ ︷︷ ︸

all other types

,

so that alleviating catastrophe 1 by probability p corresponds to setting λ1a to zero, and

alleviating catastrophe 1 by probability 1 − p corresponds to setting λ1b to zero. This fits

the partial alleviation problem into our framework. For example, Result 1 implies that

1 + (1−w1(1))1−η = (1−w1(p))1−η + (1−w1(1− p))1−η, and the argument below equation

13The mathematical fact in the background is that if we start with a single Poisson process with arrival
rate λ, and independently color each arrival red with probability p and blue otherwise, the red and blue
processes are each Poisson processes, with arrival rates λp and λ(1− p) respectively.
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(13) implies that w1(p)+w1(1− p) > w1(1) for all p ∈ (0, 1). For example, w1

(
1
2

)
> 1

2
w1(1);

the WTP to reduce the likelihood by half is more than half the WTP to eliminate it entirely.

More generally, we can split each type of catastrophe into two or more subtypes. Suppose

Catastrophe #2 can be alleviated by 20% at some cost, and by 30% at a higher cost, but it

cannot be fully averted. We can split this into type 2a arriving at rate 0.2× λ2, which can

be averted at cost τ2a < 1; type 2b arriving at rate 0.3 × λ2, which can be averted at cost

τ2b < 1; and type 2c, arriving at rate 0.5× λ2, which cannot be averted.

To summarize, our framework can accommodate without modification policies that alle-

viate catastrophes by some probability, if catastrophe types are defined appropriately.

A.2 Optimal Partial Alleviation

Now we allow the probability by which a given catastrophe is alleviated to be chosen freely.

We assume that for each catastrophe i, we are given the cost function τi(p) associated with

alleviating by probability p. For now we do not specify the particular form of τi(p), but

below we will consider a natural special case in which τi(p) is determined as a function

of τi ≡ τi(1) and p. The next result, whose proof is in the Appendix, links the WTP to

alleviate a catastrophe by some probability to the WTP to avert fully: it shows that wi(p)

is determined by wi ≡ wi(1) and p.

Result 6. The WTP to avert catastrophe i by probability p ∈ [0, 1] is given in terms of

wi = wi(1) by the formula

wi(p) = 1−
{
1 + p

[
(1− wi)

1−η − 1
]} 1

1−η .

In terms of Bi(p)—defined, analogous to (15), by Bi(p) = [1− wi(p)]1−η − 1—we have

Bi(p) = pBi.

Defining Ki(p) = (1− τi(p))1−η − 1, the optimization problem is to

max
pj∈[0,1]

1 +
∑N

j=1 Bj(pj)∏N
j=1 (1 + Kj(pj))

,

or equivalently—using Result 6 to write Bj(pj) = pjBj and defining ki(p) = log(1+Ki(p))—

max
pj∈[0,1]

log

(
1 +

N∑
j=1

pjBj

)
−

N∑
j=1

kj(pj).

If the functions kj(·) are convex, which we now assume is the case, then this is a con-

vex problem, so that the Kuhn–Tucker conditions are necessary and sufficient. Attaching
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multipliers γj to the constraints pj − 1 ≤ 0 and µj to the constraints −pj ≤ 0, we have the

following necessary and sufficient conditions: for all j, we have γj ≥ 0 and µj ≥ 0, and

Bj

1 +
∑

i piBi

− k′j(pj) = γj − µj where γj(pj − 1) = 0 and µjpj = 0.

To go further, we consider two alternative assumptions about the cost functions ki(p).

Alternative 1: Inada-type conditions on ki(p). Suppose that k′j(0) = 0 and k′j(1) = ∞.

Then we can rule out corner solutions, so all Lagrange multipliers are zero and

Bj

k′j(pj)
= 1 +

∑
i

piBi for each j. (21)

If it is optimal to avert at least one catastrophe, then 1 +
∑

i piBi >
∏N

j=1(1 + Kj(pj)) and

hence 1 +
∑

i piBi > 1 + Kj(pj) for all j. But then, using the fact that k′j(pj) = K ′
j(pj)/[1 +

Kj(pj)], condition (21) implies that Bj > K ′
j(pj) at any interior optimum.14 Compare this

with the corresponding condition in the naive problem maxpj

∑
j Bj(pj)−

∑
j Kj(pj), which

is that Bj = K ′
j(pj). Once again, the presence of multiple catastrophes raises the hurdle

rate, but now for an increase in pj, i.e., greater alleviation.

Alternative 2: A benchmark functional form for ki(p). Suppose that

(1− τi(p))(1− τi(q)) = 1− τi(p + q) for all p, q, and i,

so that ‘alleviating by p’ and then ‘alleviating by q’ is as costly as ‘alleviating by p + q in

one go.’ (This might hold if, e.g., a deadly virus comes from goats or chimps, and funds can

be devoted to goat research, chimp research, or both. It would not hold if, e.g., there is a

finite cost of alleviating by 0.5 but an infinite cost of fully averting.) This assumption pins

down the form of the cost function:15 writing τi(1) = τi, we must have τi(p) = 1− (1− τi)
p

or, equivalently, 1 + Ki(p) = (1 + Ki)
p. Then the functions ki(·) defined above are linear:

ki(pi) = log(1 + Ki(pi)) = piki, (22)

where ki ≡ log(1 + Ki). Thus k′i(pi) = ki, an exogenous constant independent of pi.

14Remember that Bj = Bj(1) is a number, not a function; since Bj(pj) = pjBj , from Result 6, we can
also interpret Bj as the marginal benefit of an increase in pj , that is, B′

j(pj).
15To see this, note that the defining assumption can be rewritten as h(p) + h(q) = h(p + q), where

h(x) = log(1− τi(x)). This is Cauchy’s functional equation, whose solution (given that τi(x) and hence h(x)
is monotonic) is that h(x) = cx for some constant c. The result follows on imposing τi(1) = τi.
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By analyzing the Kuhn–Tucker conditions, the set of catastrophes can be divided into

three groups. First, there are catastrophes j that should not be averted even partially (so

that pj = 0). For these catastrophes the cost-benefit tradeoff is unattractive, in that

Bj

kj

< 1 +
∑

i

piBi.

Then there are the catastrophes that should be fully averted. These are catastrophes j that

pass a certain hurdle rate,
Bj

kj

> 1 +
∑

i

piBi.

Finally, there may be catastrophes that are partially averted. These must satisfy

Bj

kj

= 1 +
∑

i

piBi.

Catastrophes are therefore characterized by their benefit-cost ratios Bj/kj. These can

be thought of as parameters of the policy choice problem. If, by coincidence, two or more

different types of catastrophes have the same ratio Bj/kj, then we may have two or more

types of catastrophe that are partially alleviated. But generically, all catastrophes will have

different values of Bj/kj and so at most one catastrophe should be partially alleviated ; the

remainder are all-or-nothing, and should be fully averted if their benefit-cost ratio exceeds

the critical hurdle rate X ≡ 1 +
∑

i piBi, and not averted at all if their benefit-cost ratio is

less than X.16 The interdependence manifests itself through the fact that the hurdle rate X

is dependent on the characteristics of, and optimal policies regarding, all the catastrophes.

This is illustrated in Figure 5, which makes the same assumptions about wi and τi as in

Figure 1; the only difference is that we now allow for optimal partial alleviation, with cost

functions ki(p) as in (22). The basic intuition is not altered by partial alleviation.

B Related Catastrophes

Thus far, we have thought of policy responses to one catastrophe as having no effect on the

likelihood of another catastrophe. We might expect, however, that a policy to avert nuclear

terrorism may also help to avert bio-terrorism. As in Section IV.A.1, our framework allows

for this possibility, once catastrophe types are defined appropriately.

16This characterization fails in the all-or-nothing case, as can be seen by considering an example with two
catastrophes and B1 = 8, K1 = 0.4, B2 = 36, K2 = 4. The optimal policy with partial alleviation is to avert
Catastrophe 1 fully, and Catastrophe 2 with probability 0.371. Correspondingly, Catastrophe 2 has a lower
Bj/kj . But in the all-or-nothing case, it is best to avert Catastrophe 2 and not Catastrophe 1.
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Figure 5: Modifying the example illustrated in Figure 1 to allow for partial alleviation
with cost functions as in (22). There are two potential catastrophes, with τ1 = 20% and
τ2 = 10%. Unnumbered zones are areas where one of the catastrophes should be partially
alleviated (and it should be obvious from the location which one).

For example, we may want to bundle nuclear and bio-terrorism together into a single

catastrophe type that can be averted at some cost. When a terrorist attack occurs, it may

be either a biological attack or a nuclear attack. The distribution of damages associated

with biological attacks may differ from the distribution of damages associated with nuclear

attacks; the resulting distribution for φ, the loss associated with the ‘bundled’ catastrophe,

is then simply a mixture of the two distributions.

To illustrate how our framework can accommodate this possibility, suppose nuclear and

bio-terrorism are the only two types of catastrophe, with arrival rates λ1 and λ2 and stochastic

impacts φ1 and φ2 respectively. If the two are entirely independent, and policies to avert

them are independent (as we have been implicitly assuming thus far) then the CGF is

κ(θ) = gθ + λ1

(
E e−θφ1 − 1

)
+ λ2

(
E e−θφ2 − 1

)
. (23)

Alternatively, if we believe that the same policy action will avert both nuclear and bio-

terrorism, we can think of there being a single catastrophe17 that arrives at rate λ ≡ λ1 +λ2,

and such that a fraction p ≡ λ1/(λ1 + λ2) of arrivals correspond to nuclear attacks with

17As in footnote 13, if we have a ‘red’ Poisson process with arrival rate λ1 and a ‘blue’ Poisson process
with arrival rate λ2, we can define a ‘color-blind’ stochastic process that does not distinguish between blue
and red arrivals. This stochastic process is also a Poisson process, with arrival rate λ1 + λ2.
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stochastic impact φ1, and a fraction 1 − p = λ2/(λ1 + λ2) correspond to bio-attacks with

stochastic impact φ2. This ensures that the arrival rate of nuclear attacks is λ1, as before,

and similarly for bio-attacks. Then we can think of the CGF as

κ(θ) = gθ + λ
(
E e−θφ − 1

)
. (24)

Equations (23) and (24) describe the same CGF, since E e−θφ = p E e−θφ1+(1− p) E e−θφ2 .

If policies to avert nuclear and bio-terrorism are best thought of separately, then it is natural

to work with (23); averting nuclear terrorism corresponds to setting λ1 = 0. If, on the other

hand, a policy to avert nuclear terrorism will also avert bio-terrorism, then it is more natural

to work with (24); averting both corresponds to setting λ = 0.

Lastly, we can combine the results of this section and Section IV.A.1 to allow a single

policy to avert multiple catastrophes partially (and potentially by different probabilities).

Consider a policy that alleviates catastrophe type 1 with probability p1 and type 2 with

probability p2. Then split types 1 and 2 into four separate types: types 1a and 1b have

arrival rates λ1p1 and λ1(1 − p1) respectively, and types 2a and 2b have arrival rates λ2p2

and λ2(1− p2). Now view types 1a and 2a as an amalgamated Poisson process with arrival

rate λ̃ ≡ λ1p1 +λ2p2 (with impact distribution equal to a mixture of distributions φ1 and φ2

with weights λ1p1/(λ1p1 + λ2p2) and λ2p2/(λ1p1 + λ2p2)). The policy option then is to set λ̃

to zero, and the previous results go through unchanged.

C Bonanzas

Our framework also applies to projects that may lead to good outcomes. For simplicity,

suppose that log consumption is ct = gt in the absence of any action. There are also projects

j = 1, . . . ,m that can be implemented. If project j is implemented, log consumption is

augmented by the process
∑Qj(t)

i=1 φj,i; if they are all implemented, log consumption follows

ct = gt +

Q1(t)∑
i=1

φ1,i + · · ·+
Qm(t)∑
i=1

φm,i,

where the processes Q1(t), . . . , Qm(t) are Poisson processes as before. For consistency with

previous sections, we define κ(θ) = gθ to be the CGF of log consumption growth if no

policies are implemented, κ(j)(θ) = gθ + λj

(
E eθφj,1 − 1

)
to be the CGF of log consumption

growth if project j is implemented, and κ(S)(θ) = gθ +
∑

j∈S λj

(
E eθφj,1 − 1

)
to be the CGF

of log consumption growth if projects j ∈ S are implemented.

If no projects are implemented, expected utility is 1/ [(1− η)(δ − κ(1− η))]. If projects

j ∈ S are implemented, expected utility is 1/
[
(1− η)(δ − κ(S)(1− η))

]
. The WTP for the
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set S of projects, wS, therefore satisfies

(1− wS)1−η =
δ − κ(S)(1− η)

δ − κ(1− η)
.

This is the analog of equation (11). Similarly, because we have the key formula
∑

i∈S κ(i)(θ) =

(|S| − 1) κ(θ) + κ(S)(θ), we immediately have the formula (12). Results 1 and 2 therefore

also hold for bonanzas, by the same logic as before.

V Some Rough Numbers

This paper is largely theoretical in nature; our objective has been to show that policies

or projects to avert or reduce the likelihood of major catastrophes cannot be analyzed in

isolation, and the problem of deciding which catastrophes should be averted and which

should not is non-trivial. However, it is useful to examine some rough numbers to see how

our framework could be applied in practice. To that end, we examine some of the potential

catastrophes that we believe are important, along with some very rough estimates of the

likelihood, potential impact, and cost of averting each of them.

The CGF of (10) applies to any distribution for the impacts φi. In our case, we will assume

that zi = e−φi is distributed according to a power distribution with parameter βi > 0:

b(zi) = βiz
βi−1
i , 0 ≤ zi ≤ 1 . (25)

Thus E(e−φiθ) = βi/(βi+θ). A large value of βi implies a large E zi and thus a small expected

impact of the event.18 Given this distribution, the CGF for N types of catastrophes is

κ(1− η) = g(1− η)− λ1(1− η)

β1 − η + 1
− λ2(1− η)

β2 − η + 1
− ...− λN(1− η)

βN − η + 1
. (26)

This CGF tends to infinity as η → 1 + mini βi from below. In order that δ − κ(1− η) > 0,

we must therefore assume that βi > η − 1 for all i: catastrophes cannot be too fat-tailed.

To apply this power distribution (25) for zi = e−φi , we determine βi for each type of

catastrophe from an estimate of E zi. Using estimates of λi and τi, we set g = δ = 0.02 and

calculate wi, Bi, and Ki for η = 2 and η = 4. The wi for each catastrophe is calculated

taking into account the presence of the other catastrophes. The estimates of λi, βi, and τi

18A power distribution of this sort has often been used in modeling (albeit smaller) catastrophic events
such as floods and hurricanes; see, e.g., Woo (1999). Barro and Jin (2011) show that the distribution provides
a good fit to panel data on the sizes of major consumption contractions. Note E(zi) = βi/(βi + 1), and the
variance of zi around its mean is var(zi) = βi/[(βi + 2)(βi + 1)2].
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are summarized in Table 1 along with the calculated values of wi, Bi, and Ki. The last

row of the table shows the WTP to avert all seven catastrophes (w1,...,7 <
∑

i wi) and the

corresponding benefit and cost in utility terms, B1,...,7 =
∑

i Bi and 1+K1,...,7 =
∏

i(1+Ki).

Note that for both values of η, B1,...,7 > K1,...,7, but as we will see, it is not optimal to avert

all seven catastrophes.

The estimates of λi, βi, and τi are explained in Appendix C. For some of the catastrophes

(floods, storms, and earthquakes), the estimates are based on a relatively large amount of

data. For others (e.g., nuclear terrorism), they are based on the subjective estimates of

several authors, and readers may disagree with some of the numbers. As a result, they

should be viewed as speculative and largely illustrative.

Some of the catastrophes we consider involve death as opposed to a drop in consumption.

In Martin and Pindyck (2014), we show that the WTP to avert the death of a fraction φ

of the population is much greater than the WTP to avert a drop in consumption by the

same fraction.19 This should not be surprising; most people would pay far more to avoid a

5% chance of dying than they would to avoid a 5% drop in consumption. The difference in

WTPs depends on the value of a life lost, which is often proxied by the “value of a statistical

life” (VSL). Estimates of the VSL are in the range of 3 to 10 times lifetime consumption. We

find that a VSL of 6 times lifetime consumption implies that the WTP to avoid a probability

of death of φ is equal to the WTP to avoid a drop in consumption of at least 5φ. We use

this multiple to translate a φ for death into a welfare-equivalent φ for lost consumption.

The estimates of wi, Bi, and Ki in Table 1 depend on δ and η. What are the “correct”

values of these two parameters? We have chosen values consistent with the macroeconomics

and finance literatures, but we view δ and η as policy parameters, i.e., reflecting the choices

of policy makers. Thus there are no single values that we can deem “correct.”20

Which of the seven potential catastrophes summarized in Table 1 should be averted?

We can answer this using Result 2. Although B1,...,7 > K1,...,7, it is not optimal to avert

19To our knowledge, the literature on climate change, and in particular the use of IAMs to assess climate
change policies, utilize consumption-based damages, i.e., climate change reduces GDP and consumption
directly (as in Nordhaus (2008) and Stern (2007)), or reduces the growth rate of consumption (as in Pindyck
(2012)). Millner (2013) discusses welfare frameworks that incorporate death.

20The rate of time preference δ matters because catastrophic events are expected to occur infrequently, so
long time horizons are involved. The macroeconomics and finance literatures suggest δ ≈ 2 to 5 percent. Some
economists, e.g., Stern (2008), argue that on ethical grounds, δ should be zero. Likewise, η reflects aversion
to consumption inequality across generations. In the end, δ and η are (implicitly) chosen by policy makers,
who might or might not believe (or care) that their decisions reflect the values of voters. For interesting
discussions of social discounting, see Caplin and Leahy (2004) and Gollier (2013). For a wide-ranging and
insightful discussion of economic policy-making under uncertainty, see Manski (2013).
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Table 1: Characteristics of Seven Potential Catastrophes.

Potential η = 2 η = 4
Catastrophe wi Bi Ki wi Bi Ki

Mega-Virus:
λi = 0.02, βi = 5, τi = 0.02 0.159 0.189 0.020 0.309 2.030 0.062

Climate:
λi = 0.004, βi = 4, τi = 0.04 0.048 0.050 0.042 0.180 0.812 0.130

Nuclear Terrorism:
λi = 0.04, βi = 17, τi = 0.03 0.086 0.095 0.031 0.141 0.580 0.096

Bioterrorism:
λi = 0.04, βi = 32, τi = 0.03 0.047 0.049 0.031 0.079 0.280 0.096

Floods:
λi = 0.17, βi = 100, τi = 0.03 0.061 0.065 0.020 0.096 0.356 0.062

Storms:
λi = 0.14, βi = 100, τi = 0.02 0.051 0.053 0.020 0.082 0.293 0.062

Earthquakes:
λi = 0.03, βi = 100, τi = 0.01 0.011 0.011 0.010 0.020 0.063 0.031

Avert all Seven: 0.339 0.513 0.188 0.442 4.415 0.677

Note: For each catastrophe, table shows estimate of mean arrival rate λ, impact distribution
parameter β, and prevention cost τ , as discussed in Appendix C. The impact of each event is
assumed to follow eqn. (25); β = E z/(1 − E z), where z = e−φ is the fraction of consumption
remaining following the event (so a large β implies a small expected impact). For each value of η,
the table shows wi, the WTP to avert catastrophe i as a fraction of consumption, and the benefit
and cost in utility terms, Bi and Ki, assuming g = δ = 0.02. The bottom row shows the WTP to
avert all seven catastrophes, and the corresponding benefit B1,...,7 and cost K1,...,7 in utility terms.

all seven. As Figure 6 shows, the correct answer depends partly on the coefficient of risk

aversion, η. If η = 2, five of the seven catastrophes should be averted; earthquakes and a

climate catastrophe should not be averted. But if η = 4, a climate catastrophe should be

averted, but not bioterrorism, storms or earthquakes, even though the benefit of averting

each of these three catastrophes exceeds the cost.

Note from Table 1 and Figure 6 that if η = 2, the WTP to avert a climate catastrophe

is just slightly greater than the WTP to avert bioterrorism (0.048 versus 0.047). However,

if η = 4 the WTP for climate becomes much greater than the WTP for bioterrorism (0.180

versus 0.079). Why the sharp increase in the WTP for climate? The reason is that a climate
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Figure 6: The figures show which of the seven catastrophes summarized in Table 1 should be
averted. Catastrophes that should be averted are indicated by blue dots in each panel; catastrophes
that should not be averted are indicated by red crosses.

catastrophe has a relatively low arrival rate (λ = 0.004, which implies it is very unlikely to

occur in the next 20 or so years) but a large expected impact (β = 4), whereas the opposite

is true for bioterrorism (λ = 0.04 and β = 32). With high risk aversion, the impact on

marginal utility of a very severe (even if unlikely) climate outcome is scaled up considerably.

We want to stress the word “Rough” in the title of this section. Some readers will

disagree with the numbers in Table 1, or how we modeled some catastrophes. For example,

we set the expected drop in consumption from a climate catastrophe at 20%. We think this

is consistent with recent assessments, but those assessments are widely dispersed. Also, we

assumed the arrival rate for a climate catastrophe is constant, but it is more likely to increase

over time. Nonetheless, the results in Table 1 and Figure 6 illustrate our key points: policies

to avert major catastrophes should not be evaluated in isolation, not all catastrophes should

necessarily be averted, and the choice of which ones to avert is complex. Figure 7 makes this

last point in a different way, by showing how the set of catastrophes that should be averted

depends on risk aversion, η, and the time preference rate, δ. Only if η and δ are low should

all seven be averted, and the optimal choice varies widely for larger values of η and δ.

VI Conclusions

How should economists evaluate projects or policies to avert major catastrophes? We have

shown that if society faces more than just one catastrophe (which it surely does), conventional

cost-benefit analysis breaks down; if applied to each catastrophe in isolation, it can lead to

policies that are far from optimal. The reason is that the costs and benefits of averting a
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Figure 7: The set of catastrophes to be averted depends in a complex way on η and δ. V: virus;
C: climate; N: nuclear terrorism; B: bioterrorism; F: floods; S: storms; Q: quakes.

catastrophe are not marginal, in that they have significant impacts on total consumption.

This creates an interdependence among the projects that must be taken into account when

formulating policy. In fact, as we demonstrated in Example 1, cost-benefit analysis can even

fail when applied to small catastrophes if they have a non-marginal aggregate impact.

Using WTP to measure benefits and a permanent tax on consumption as the measure of

cost (both a percentage of consumption), we derived a decision rule (Result 2) to determine

the optimal set of catastrophes that should be averted. And we have shown that this decision

rule can yield “strange” results. For instance, as we demonstrated in Example 3, although

naive reasoning would suggest using a sequential decision rule (e.g., avert the catastrophe

with the largest benefit/cost ratio, then decide on the one with the next-largest ratio, etc.),

such a rule is not optimal. In general, in fact, there is no simple decision rule. Instead,

determining the optimal policy requires evaluating the objective function (16) of Result 2 for

every possible combination of catastrophes. In a strong sense, then, the policy implications

of different catastrophe types are inextricably intertwined.

Given that the complete elimination of some catastrophes may be impossible or pro-

hibitively expensive, a more realistic alternative may be to reduce the likelihood that the

32



catastrophe will occur, i.e., reduce the Poisson arrival rate λ. We have shown how that

alternative can easily be handled in our framework. In the previous section we examined the

costs and benefits of completely averting seven catastrophes, but we could have just as easily

considered projects to reduce the likelihood of each, and given the amounts of reduction and

corresponding costs, determined the optimal set of projects to be undertaken.

The theory we have presented is quite clear. (We hope most readers will agree.) But there

remain important challenges when applying it as a tool for government policy, as should be

evident from Section V. First, one must identify all of the relevant potential catastrophes; we

identified seven, but there might be others. Second, for each potential catastrophe, one must

estimate the mean arrival rate λi, and the probability distribution for the impact φi. Finally,

one must estimate the cost of averting or alleviating the catastrophe, which we expressed

as a permanent tax on consumption at the rate τi. As we explained, for some catastrophes

(floods, storms and earthquakes), a relatively large amount of data are available. But for

others (nuclear and bio-terrorism, or a mega-virus), estimates of λi, βi and τi are likely

to be subjective and perhaps speculative. On the other hand, one can use our framework

to determine optimal policies for ranges of parameter values, and thereby determine which

parameters are particularly critical, and should be the focus of research.
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Appendix

A The CGF in (6)

We need to calculate E Cθ
1 . To do so, use the law of iterated expectations:

E Cθ
1 = E

[
E
(
Cθ

1

∣∣Q(1)
)]

=
∞∑

m=0

P(Q(1) = m) E
[
eθ(g−

PQ(1)
n=1 φn)

∣∣∣Q(1) = m
]
.

Since Q(1) is distributed according to a Poisson distribution with parameter λ,

P(Q(1) = m) = e−λ λm

m!
.

Meanwhile,

E
[
eθ(g−

PQ(1)
n=1 φn)

∣∣∣Q(1) = m
]

= E
[
eθ(g−

Pm
n=1 φn)

]
= eθg

(
E e−θφ1

)m
,

because the catastrophe sizes φ1, . . . , φm are i.i.d. Thus

E Cθ
1 =

∞∑
m=0

e−λ λm

m!
eθg
(
E e−θφ1

)m
= e−λ+θg

∞∑
m=0

(
λ E e−θφ1

)m
m!

= e−λ+θg exp
{
λ E e−θφ1

}
.

Taking logs, κ(θ) = gθ + λ
(
E e−θφ1 − 1

)
, as required.

B Proof of Results 4, 5, and 6

Proof of Result 4. Property (i) follows immediately from (16) and the fact that (1+Bi)/(1+

Ki) > 1, so that we do better by eliminating i than by doing nothing at all. (This does not

imply, however, that it is optimal to avert i itself—there may be even better options.)

Property (ii) follows by contradiction: if j were not included in the set of catastrophes

to be eliminated, then we could increase the objective function in (16) by replacing i with j.

Property (iii) follows because if Bi > Ki, some catastrophe should be averted, by (i).

And now by (ii), we see that catastrophe i should be averted.

To prove that (iv) holds, note first that by Result 3, it is never optimal to avert a

catastrophe with τi ≥ wi. So restrict attention to catastrophes with wi > τi. Then, by

Result 2, we seek to

max
S

1 +
∑

i∈S

(
α1−η

i − 1
)∏

i∈S β1−η
i

,

where αi = 1−wi and βi = 1− τi are fixed and satisfy 0 < αi < βi < 1 for all i. Since βi < 1

and η > 1, the denominator explodes as η →∞. Thus, the problem is equivalent to

max
S

∏
i∈S

βη−1
i

∑
j∈S

α1−η
j ,
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or

max
S

∏
i∈S

βi

(∑
j∈S

α1−η
j

) 1
η−1

.

Now we use the fact that for arbitrary positive x1, . . . , xN , we have limθ→∞
(
xθ

1 + · · ·+ xθ
N

) 1
θ =

maxi xi. This means that for sufficiently large η, the problem is equivalent to

max
S

(
max
k∈S

1

αk

)∏
i∈S

βi.

Notice that for a fixed set S, (
max
k∈S

1

αk

)∏
i∈S

βi ≤ max
k∈S

βk

αk

,

because βi < 1 for all i. So given a candidate set S, we can increase the objective function

by averting only the catastrophe k ∈ S that maximizes βk/αk. This holds for arbitrary S, so

the unconstrained optimum is achieved by averting only a single catastrophe that maximizes

βk/αk. This is equivalent to the conditions provided in the statement of the result.

Proof of Result 5. With log utility, we can use the property of the CGF that κ′
t(0) =

E log Ct to write expected utility as

E
∫ ∞

0

e−δt log Ct dt =

∫ ∞

0

e−δtκ′
t(0) dt = κ′(0)

∫ ∞

0

te−δt dt =
κ′(0)

δ2
.

If we eliminate catastrophes 1 through N costlessly, expected utility is κ(1,...,N)′(0)/δ2.

So WTPs satisfy

log(1− w1,...,N) =
κ′(0)− κ(1,...,N)′(0)

δ
and log(1− wi) =

κ′(0)− κ(i)′(0)

δ
. (27)

Exploiting the same relationship between CGFs as before, we find that

N∑
i=1

κ′(0)− κ(i)′(0)

δ
=

κ′(0)− κ(1,...,N)′(0)

δ
,

and so
N∑

i=1

log(1− wi) = log(1− w1,...,N). (28)

Now, suppose we eliminate catastrophes 1 through N at cost τi (i.e., as before, consump-

tion is multiplied by (1− τi) to eliminate catastrophe i), then expected utility is

E
∫ ∞

0

e−δt log
[
C

(1,...,N)
t (1− τ1) · · · (1− τN)

]
dt =

1

δ2
κ(1,...,N)′(0)+

1

δ
[log(1− τ1) + · · ·+ log(1− τN)]
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where C
(1,...,N)
t is notation for the consumption process after eliminating catastrophes 1

through N . Using equation (27), this becomes

1

δ2
[κ′(0)− δ log(1− w1,...,N)] +

1

δ
[log(1− τ1) + · · ·+ log(1− τN)] ,

and using (28), this becomes

1

δ2
κ′(0) +

1

δ

[
log

(
1− τ1

1− w1

)
+ · · ·+ log

(
1− τN

1− wN

)]
.

This means that the problem is separable: we should eliminate projects i with wi > τi.

Proof of Result 6. As in Section IV.A.1, we can split the original catastrophe (arriving

at rate λ) into N different catastrophes, each arriving at rate λ/N , and link the cost of

eliminating each of these individually to the cost of eliminating the overall catastrophe.

From equation (12), N
[
(1− wi(1/N))1−η − 1

]
= (1− wi)

1−η − 1, and hence

wi(1/N) = 1−
{

1 +
1

N

[
(1− wi)

1−η − 1
]} 1

1−η

. (29)

This establishes the result when p = 1/N , for integer N . Next we extend to rationals, M/N .

But this follows immediately because, using equation (12) again, M
[
(1− wi(1/N))1−η − 1

]
=

(1− wi(M/N))1−η − 1, and so, using (29),

wi(M/N) = 1−
{

1 +
M

N

[
(1− wi)

1−η − 1
]} 1

1−η

.

This establishes the result for arbitrary rational p. Finally, since WTP is a continuous

function of p, and since the rationals are dense in the reals, the result holds for all p; and it

is immediate that the formula for wi(p) is equivalent to the formula for Bi(p).

C Catastrophe Characteristics

Here we explain the numbers in Table 1. For catastrophes such as floods, storms, and earth-

quakes, a relatively large amount of data are available. For others (e.g., nuclear terrorism),

there is little or no data, so the numbers are based on subjective estimates of several authors.

Mega-Viruses: Numerous authors view major pandemics as both likely and having a

catastrophic impact, but do not estimate probabilities of occurrence. Instead, an occurrence

is simply viewed by several authors as “likely.” For a range of possibilities, see Byrne (2008)

and Kilbourne (2008). For detailed discussions of how such mega-viruses could start (and

maybe end), see, e.g., Beardsley (2006) and Enserink (2004). A mega-virus would directly

reduce GDP and consumption by reducing trade, travel, and economic activity worldwide,

but its greatest impact would be the deaths of many people. In related work (Martin and
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Pindyck (2014)), we show that the WTP to avert an event that kills a random φ percent

of the population is much larger than the WTP to avert an event that reduces everyone’s

consumption by the same fraction φ.

The last major pandemic to affect developed countries was the Spanish flu of 1918–1919,

which infected roughly 20 percent of the world’s population and killed 3 to 5 percent. Because

populations today have greater mobility, a similar virus could spread more easily. We take the

average mortality rate of the next pandemic to be 3.5 percent, which we estimate is equivalent

in welfare terms to a roughly 17.5 percent drop in consumption.21 This corresponds to a

value of 0.825/0.175 = 4.7 for β, which we round to 5. We assume λ = 0.02, i.e., there is

roughly a 20 percent chance of a pandemic occurring in the next 10 years.

What would be required to avert such an event? There is nothing that can be done

to prevent new viruses from evolving and infecting humans (most likely from an animal

host). If a new virus is extremely virulent and contagious, containment involves (1) the

implementation of systems to identify and isolate infected individuals (e.g., before they

board planes or trains); and (2) the rapid production of a vaccine (which would require

yet-to-be developed technologies, and government investment in a large-scale production

facility). Both of these elements involve substantial ongoing costs, but we are not aware of

any estimates of how large those costs would be. As a best guess, we will assume that those

costs could amount to 2% or more of GDP, and set τ = 0.02.

Climate: A consensus estimate of the increase in global mean temperature that would

be catastrophic is about 5 to 7◦C. A summary of 22 climate science studies surveyed by

Intergovernmental Panel on Climate Change (2007) puts the probability of this occurring

by the end of the century at around 5 to 10%. Preliminary drafts of the 2014 IPCC report

suggest a somewhat higher probability. Weitzman (2009, 2011) argued that the probabil-

ity distribution is fat-tailed, making the actual probability 10% or more. We will use the

“pessimistic” end of the range and assume that there is a 20% chance that a catastrophic

climate outcome could occur in the next 50 or 60 years, which implies that λ = 0.004. What

would be the impact of a catastrophic increase in temperature? Estimates of the effective

reduction in (world) GDP from catastrophic warming range from 10% to 30%; we will take

the middle of this range, which puts φ at 0.20 (so that β = 4).22

What would be the cost of averting a climate catastrophe? Some have argued that this

would require limiting the atmospheric GHG concentration to 450 ppm, and estimates of

the cost of achieving this target vary widely. A starting point would be the GHG emission

21We use a multiple of 5, which, as discussed in Martin and Pindyck (2014), would apply if we use the
“value of a statistical life” (VSL) to represent the value of a life lost, and take the VSL to be six times
lifetime consumption. A great many studies have sought to estimate the VSL using data on risk-of-death
choices made by individuals, and typically find that the VSL is on the order of 3 to 10 times lifetime income
or lifetime consumption. See, for example, Viscusi (1993) and Cropper and Sussman (1990).

22See, e.g., Pindyck (2012) and Stern (2007, 2008, 2013).
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reductions mandated by the Kyoto Protocol (which the U.S. never signed). Estimates of the

cost of compliance with the Protocol range from 1% to 3% of GDP.23 Using the middle of

that range (2%) and assuming that stabilizing the GHG concentration at 450 ppm would be

twice as costly as Kyoto gives a cost of τ = 0.04.

Nuclear Terrorism: Various studies have assessed the likelihood and impact of the

detonation of one or several nuclear weapons (with the yield of the Hiroshima bomb) in

major cities. At the high end, Allison (2004) put the probability of this occurring in the

U.S. in the subsequent ten years at about 50%, which would imply a mean arrival rate

λ = 0.07. Others put the probability for the subsequent ten years at around 5%, which

implies λ = 0.005. For a survey, see Ackerman and Potter (2008). We take an average of

these two arrival rates and round it to λ = 0.04.

What would be the impact? Possibly a million or more deaths in the U.S., which is

0.3% of the population. In welfare terms, this would be equivalent to a roughly 1.5% drop

in consumption. But the main impact would be a shock to the capital stock and GDP

from a reduction in trade and economic activity worldwide, as vast resources would have to

be devoted to averting further events. This could easily result in a 4% drop in GDP and

consumption, for a total (effective) drop of 5.5%. This corresponds to β = 17.

The cost of completely averting a nuclear terrorist attack would be considerable. One

element is increased surveillance and intelligence (which presumably is already taking place).

But in addition, we would need to thoroughly inspect all of the containers shipped into the

U.S. daily; currently almost none are inspected. The combined cost of these two activities

could be 3% of GDP, so we set τ = 0.03.

Bioterrorism: Rough (and largely subjective) estimates of the likelihood of a bioterror-

ist attack and the costs of reducing or eliminating the risks can be found in Nouri and Chyba

(2008), Lederberg (1999), and references they cite. We will assume that the likelihood of a

bioterrorist attack is about the same as a nuclear attack, and set λ = 0.04. Bioterrorism is

unlikely to result in large numbers of deaths; instead the major impact would be a shock to

GDP from panic and a reduction in trade and economic activity worldwide. As with a nu-

clear attack, vast resources would have to be devoted to averting further attacks. We assume

that a bioterrorist attack would be less disruptive than a nuclear attack, and estimate that it

could result in a 3% drop in GDP and consumption. This implies that β = 0.97/0.03 = 32.

The cost of averting bioterrorism includes increased surveillance and intelligence (which,

as with nuclear terrorism, is presumably already taking place), but also the development

of and capacity to rapidly produce vaccines and anti-viral agents to counter whatever virus

or other organisms were released. We will assume that the cost of completely averting

bioterrorism is the same as for nuclear terrorism, so τ = 0.03.

Floods, Storms, and Earthquakes: We make use of the recent study by Cavallo et al.

23See the survey of cost studies by Energy Information Administration (1998) and the more recent country
cost studies surveyed in Intergovernmental Panel on Climate Change (2007).
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(2013) of natural disasters and their economic impact. They utilized a data set covering 196

countries over the period 1970 to 2008, which combined World Bank data on real GDP

per capita with data on natural disasters and their impacts from the EM-DAT database.24

Cavallo et al. (2013) estimated the effects of disasters occurring in 196 countries during 1970

to 1999 on the countries’ GDP in the following years. There were 2597 disasters during

1970–2008, out of a total of 39 × 196 = 7664 country-year observations, which implies an

average annual rate of 2597/7664 = 0.34. Of these disasters, about half were floods, about

40% storms (including hurricanes), and about 10% earthquakes. Thus we set λ = 0.17, 0.14,

and 0.03 for floods, storms, and earthquakes respectively.

These disasters resulted in deaths, but the number was almost always very small relative

to the country’s population. (For example, Hurricane Katrina caused 1833 deaths, which

was less than 0.001% of the U.S. population.) We therefore ignore the death tolls from

these events and focus on the impact on GDP. Cavallo et al. (2013) found that only the

largest disasters (the 99th percentile in terms of deaths per million people) had a statistically

significant impact on GDP ten years following the event (reducing GDP by 28% relative

to what it would have been otherwise). But although not statistically significant, smaller

disasters (at the 75th percentile) reduced GDP by 5 to 10%. Assuming that events below the

75th percentile had no impact, we take the average impact for all three types of disasters to

be a 1% drop in consumption, which implies β = 100. Thus floods, storms and earthquakes

are relatively common catastrophes, but have relatively small impacts on average.

Storms cannot be prevented, but their impact can be reduced or completely averted.

This involves relocating coastline homes and other buildings, retrofitting homes, putting

power lines underground, etc. Similar steps would have to be taken to avert the impact

of floods. We assume the cost of completely averting each of these disasters is about 2%

of consumption. The cost of averting the impact of earthquakes should be lower — we

assume 1% of consumption — because many buildings in vulnerable areas have already been

built to withstand earthquakes. Thus we set τ = 0.02 for storms and floods, and 0.01 for

earthquakes.

Other Catastrophic Risks: Much less likely, but certainly catastrophic, events include

nuclear war, gamma ray bursts, an asteroid hitting the Earth, and unforeseen consequences

of nanotechnology. For an overview, see Bostrom and Ćirković (2008), and see Posner (2004)

for a further discussion, including policy implications. We ignore these other risks.

24The EM-DAT database was created by the Centre for Research on the Epidemiology of Disasters at the
Catholic University of Louvain, and has data on the occurrence and effects of natural disasters from 1900 to
the present. The data can be accessed at http://www.cred.be/.
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