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Abstract 

Decision makers in different health care settings need to weigh the benefits and harms of alternative treatment 

strategies. Such health care decisions include marketing authorization by regulatory agencies, practice guideline 

formulation by clinical groups, and treatment selection by prescribers and patients in clinical practice. Multiple criteria 

decision analysis (MCDA) is a family of formal methods that help make explicit the trade-offs decision makers accept 

between the benefit and risk outcomes of different treatment options. Despite the recent interest in MCDA, certain 

methodological aspects are poorly understood. This paper presents seven guidelines for applying MCDA in benefit-risk 

assessment, and illustrates their use in the selection of a statin drug for the primary prevention of cardiovascular 

disease. We provide guidance on the key methodological issues of how to define the decision problem, how to select a 

set of non-overlapping evaluation criteria, how to synthesize and summarize the evidence, how to translate relative 

measures to absolute ones that permit comparisons between the criteria, how to define suitable scale ranges, how to 

elicit partial preference information from the decision makers, and how to incorporate uncertainty in the analysis. Our 

example on statins indicates that fluvastatin is likely to be the most preferred drug by our decision maker, and that this 

result is insensitive to the amount of preference information incorporated in the analysis. 

Keywords: Decision aids; Multi-attribute utility function; Decision analysis 

1 Introduction 

Many decisions in health care involve assessing the balance of favorable and unfavorable effects of alternative 

treatment regimens, taking into account the associated uncertainties. For example, to choose among alternative 

treatment options, doctors and patients need comparative evidence to assess whether a new compound is expected to 

have a more favorable benefit-risk profile than existing alternatives. While subjectivity in the assessment of the benefit-

risk balance of alternative treatments cannot be avoided, the decision making process itself can be made more 

transparent by describing the underlying value judgments in a formal and consistent manner. 
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A recent systematic review (1) identified Multi-Criteria Decision Analysis (MCDA) and Stochastic Multicriteria 

Acceptability Analysis (SMAA) to be among the most promising methods for conducting a quantitative benefit-risk 

assessment. MCDA provides a framework for systematic and replicable analyses of complex decision problems 

involving value trade-offs (2). MCDA based on multi-attribute value- or utility models has been proposed for use in 

benefit-risk assessments (3-5). SMAA allows applying these models in cases where exact information on the decision 

maker preferences is not available. Although previous studies have demonstrated applicability of these approaches in 

relative treatment effect assessment (2, 6), certain methodological aspects are still poorly understood in the health care 

research community. The structured process of arriving at a multi-criteria benefit-risk decision regarding a particular 

medication is not trivial, and various potential pitfalls lie on the analyst's path. 

To enable wider application of MCDA in drug benefit-risk assessment, this paper provides guidance on seven important 

phases of the assessment process: how to define the decision problem, how to select a set of non-overlapping evaluation 

criteria, how to synthesize and summarize the available data, how to translate relative measures obtained through 

evidence synthesis to absolute scales that permit comparisons between the criteria, how to define suitable scale ranges, 

how to elicit preference information, and how to incorporate uncertainty into the analysis. Using a running example on 

a widely used class of cholesterol-lowering drugs, statins, we make recommendations about potential ways to address 

these key methodological challenges. 

2 Data 

Our running example considers a set of six statins for which there was evidence available from three recently conducted 

systematic reviews (7-9): atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin. The focus of the 

first study was on determining the comparative tolerability and harms of the individual statins, and it included data on 

the number of participants who experienced myalgia, elevations in hepatic transaminases, elevations in creatine kinase 

(CK), and discontinuations because of adverse events. The second and third studies focused on assessing the 

comparative benefits of statins and included data on all-cause mortality and major coronary events and on major 

cerebrovascular events, respectively. All open-label and double-blind randomized, controlled trials comparing one 

statin with another at any dose or with control that had more than 50 participants per trial arm, lasted longer than four 

weeks, and reported any of the outcomes of interest were eligible for inclusion. In total, this resulted in the inclusion of 

184 randomized controlled trials with 260,630 individuals with or without cardiovascular disease at baseline. 

3 Guidelines for MCDA of comparative benefit-risk assessment 

MCDA can potentially be useful for supporting different decisions. These include regulatory decisions at the market 

entry level, development of clinical practice guidelines when it is imperative to recommend a specific treatment option 

to initiate prescription drug therapy, and prescribing decisions in clinical practice. Although different in nature, all of 

these problems concern choosing among multiple treatment alternatives, and therefore the evidence concerning the 

beneficial and harmful effects of the available drug options need to be evaluated. The general guidelines we describe 

are therefore relevant for a broad spectrum of decision problems. An overview of the guidelines is presented in Table 1. 

<< TABLE 1: guidelines approx here >> 
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3.1 Define the decision problem 

The first step in the benefit-risk assessment of a prescription drug is to explicitly define the decision problem. This 

involves specifying, amongst others, the indication for which the assessment is conducted, the alternative treatments 

under consideration, the criteria on which the different treatments are to be evaluated, and the decision maker(s). The 

indication considered for our case study was the use of statins to reduce cardiovascular disease risk in patients who have 

one or more elevated cardiovascular risk factors, who are free of diabetes, and who do not have a history of 

cardiovascular disease, i.e., primary prevention. The alternatives under consideration were the six different statins 

included in our dataset, and the criteria were defined based on the clinical endpoints contained in this dataset. Our 

decision maker is a clinical expert from the domain of cardiovascular diseases. 

We specifically focus on the comparative benefit-risk assessment of statins and the difficulty in choosing a first-line 

treatment out of the six currently available options. Our case study on statins is important in a number of ways. First, 

statins are among the most widely prescribed and used medications around the world. The recent clinical practice 

guidelines in the United States and the United Kingdom considerably expanded the scope and intensity of statin therapy 

for a broader population of individuals with or at risk of developing coronary heart disease. Second, the six statins 

currently on the market differ in terms of their benefit and harm profiles. So far, clinical practice guidelines have not 

considered the important differences among the six statins. Third, statins constitute a case in which the selection among 

alternative treatments is primarily a clinical one: by 2016, all six statins will be available in generic formulations, 

making cost considerations largely irrelevant. 

3.2 Choose a set of non-overlapping evaluation criteria 

When selecting the evaluation criteria, it is important to avoid overlaps as much as possible. In general, one can 

therefore not simply conduct the benefit-risk assessment based on all the available study endpoints as this is prone to 

result in an over representation of certain health effects. For example, while the change in HbA1c and the change in 

fasting plasma glucose are two well-established endpoints in clinical trials related to treatment with glucose-lowering 

products, they both serve as surrogate endpoints that measure how well the patients have, on average, responded to the 

investigated treatments. Only one of these endpoints should therefore be included in a multi-criteria decision model, 

especially if this model is of an additive structure. Similarly, it may happen that the same clinical events get counted 

multiple times. In such situations, the data set is ideally restructured such that overlap in the definition of the endpoints 

is avoided. Where this is not possible, the decision maker should select a non-overlapping subset of these endpoints.  

When there are multiple decision makers, they might disagree on which set of non-overlapping endpoints is most 

relevant for the benefit-risk assessment. In such cases, either a consensus on the model structure should be reached 

through discussions, or if no consensus can be reached, multiple analyses with different endpoints must be performed. 

Yet another option is to keep all (overlapping) endpoints, but this would require using a more complex, non-additive 

multi-criteria decision model, which includes additional preference parameters whose elicitation is out of scope of this 

paper. 

Most of the discontinuation events in our data set are likely to be due to myalgia or transaminase elevation. Therefore, 

when applied to our statins case study, the principle of removing overlapping criteria implies that either discontinuation 

or myalgia and transaminase should be excluded from the set of decision criteria. Our decision maker chose to include 
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myalgia and transaminase elevation and to exclude discontinuation. Additionally, if we were to simultaneously consider 

all-cause mortality, risk of stroke, and risk of myocardial infarction, the occurrence of a fatal stroke or a fatal 

myocardial infarction would be counted towards two of these criteria. The main reason for initiating statin treatment is 

to reduce an individual's risk of experiencing a cardiovascular event. One way to resolve this problem would therefore 

be to include the risks of stroke and myocardial infarction and exclude all-cause mortality. A downside of this approach 

is that any beneficial or harmful effects that statin treatment may have on non-cardiovascular related mortality would 

then no longer be captured. Alternatively, one could further refine the available data by decomposing stroke and 

myocardial infarction into fatal and non-fatal and then including all-cause mortality, non-fatal stroke, and non-fatal 

myocardial infarction as the beneficial effects. The advantage of this approach is that it captures all the relevant clinical 

endpoints. A potential drawback is however that those clinical trials in which fatal and non-fatal events are not clearly 

differentiated can no longer be included.  Because we had sufficient data available, we chose this latter approach in our 

statin selection example. The following six criteria were therefore included in our analysis: all-cause mortality, non-

fatal stroke, non-fatal myocardial infarction, myalgia, transaminase, and CK elevation. 

Criteria that represent the same health effects must necessarily be highly correlated. However, this does not mean that 

including two correlated criteria always results in overlap. For example, the effect of a blood-thinning agent on the 

prevention of thrombosis is strongly correlated to the risk of it causing bleeding events. However, despite this 

correlation, both are separate events and should be represented as distinct criteria in the MCDA model. Data permitting, 

this correlation can be taken into account in the analysis (see 10, 11). 

3.3 Synthesize and summarize the available data 

The next step is to numerically assess the performance of the treatments on the selected benefit and risk criteria. For 

some criteria, there could be only one clinical study available from which the estimates of absolute treatment effects 

(e.g. incidence rates) can be obtained directly (2). For other criteria, there may be multiple studies available, meaning 

that some form of evidence synthesis is required before one is able to express a treatment's performance on these 

criteria in terms of a single numerical value (with associated credible intervals). For criteria measurements that are 

derived from randomized controlled trials, the use of network meta-analysis is now commonplace (12-15). As this 

approach utilizes both direct and indirect comparisons when estimating differences in the performance between the 

considered treatments, it is not required to restrict the analysis to only those studies that have a chosen common 

comparator, which would be required when applying traditional pairwise meta-analyses. 

The clinical trials included in our dataset cover multiple indications, including primary prevention, secondary 

prevention, diabetes management (among individuals with or at risk of developing coronary heart disease), and 

treatment of acute coronary syndrome. As both the relative and absolute reduction in cardiovascular disease risk 

associated with the use of statins can vary depending on the patient population considered, it is important that all the 

studies included in the benefit-risk assessment fit the indication for which a decision has to be taken. Previous network 

meta-analyses indicated no significant differences in the estimated relative effects with different subgroups (7-9, 16). 

For this reason, and to increase accuracy of the estimates, we chose to estimate relative effects for the four chosen 

decision criteria using data from all available 184 studies. Figure 1 presents the network structure for studies that 

measured all-cause mortality events. Odds ratios estimated for the chosen six decision criteria are presented in Figure 2. 

<< FIGURE 1: network approx here >> 
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<< FIGURE 2: odds approx here >> 

3.4 Translate relative measures obtained in evidence synthesis to absolute scales that permit 

comparisons between the criteria 

Network meta-analyses produce relative effect estimates, which are unsuitable for specifying value trade-offs, as they 

do not contain information on the baseline effect. To illustrate why, consider two alternatives that are evaluated in terms 

of two criteria. Suppose that the relative risk of alternative 1 against alternative 2 is 1.5 for criterion A and 0.8 for 

criterion B. While on a relative scale, the difference between the two treatments is much larger for criterion A than for 

criterion B, these differences are impossible to interpret without considering the baseline effect of treatment 2. For 

example, suppose that the baseline effect of alternative 2 is 2% on criterion A and 50% on criterion B. For alternative 1, 

the previously reported relative risks then translate into an absolute risk of 3% on criterion A and an absolute risk of 

40% on criterion B. Depending on what these criteria entail, a 10% difference in absolute risk on criterion B may be far 

more important than a 1% difference in absolute risk on criterion A, showing that the results from a network meta-

analysis first need to be translated to values measured on absolute scales before one is able to make value trade-offs in a 

meaningful way. 

The results of our previously conducted network meta-analyses on statins were presented on the odds ratio scale, which 

suffers from the same problem illustrated above for the risk ratio. In both cases, the solution is the same: translate the 

relative effects to an absolute scale using an estimate of the absolute effect for a suitably selected baseline treatment (6, 

17). The absolute effect estimates can be from randomized trials or observational studies, and the baseline treatment can 

either be a placebo or an active treatment. What matters is that the studies included in the estimation of the baseline 

effects are representative of the target population and that the mean follow-up of each of these studies is similar so that 

the event rates observed in these studies are comparable. If no suitable data are available, estimations of the baseline 

effects may need to be elicited from expert clinicians. 

We estimated baseline effects in our case study for both the hard clinical outcomes (nonfatal strokes, nonfatal MIs, and 

all-cause mortality) and side effects (myalgia, transaminase, CK elevation). For each side effect, we estimated the 

baseline effect using a Bayesian random-effects pooling of the event rates in the placebo arms across all trials. We 

specified an informative prior (a half-normal: |N(0, 0.25)|) for the heterogeneity standard deviation to ensure it could be 

estimated. The absolute effect of the placebo intervention was then defined as the resulting predictive distribution. The 

predictive distribution incorporates both the uncertainty around the mean and the between-studies heterogeneity, and 

thereby fully accounts for heterogeneity in the observed effects. Baseline risks of the hard clinical outcomes were 

estimated using a single large study representative of the target population. The study results were then used to model 

the Beta distributed baseline effects using a Bayesian approach with a flat Beta(1,1) prior, following Tervonen et al. (2). 

We chose ALLHAT-LLT as the largest non-industry sponsored study corresponding to the primary prevention 

population (18). According to the American College of Cardiology risk calculator, the trial population of ALLHAT-

LLT has on average a 21.40% 10-year risk for atherosclerotic cardiovascular disease, defined as coronary death or 

nonfatal myocardial infarction, or fatal or nonfatal stroke
 
(http://tools.cardiosource.org/ASCVD-Risk-Estimator/). 

Estimates of the absolute effects for the 6 statins were subsequently obtained by combining the absolute effect of 

placebo with the relative effects obtained from the network meta-analyses. This is achieved by sampling from both the 

estimated distribution for the baseline risk and the distribution for the log odds ratios. For a given baseline risk pA and a 
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log-odds ratio for treatment B of dAB, the absolute risk for treatment B is given by pB = logit-1(logit(pA) + dAB). The 

absolute effects are illustrated for the chosen 6 criteria in Figure 3. When compared to Figure 2, the different rate of 

side effects appears to be much less pronounced because all absolute effect estimates incorporate uncertainty around the 

highly uncertain baseline effect. However, the occurence of side effects is strongly correlated through this common 

baseline, and this is taken into account in the decision analysis, so that the true treatment differences are preserved. 

<< FIGURE 3: absolute risks approx here >> 

3.5 Define suitable scale ranges 

In practical applications of MCDA, the constructed multi-criteria model is often assumed to be of an additive structure, 

which is illustrated in Figure 4. Then the problem of formally representing the decision maker's preferences reduces to 

the problem of specifying a set of partial value functions that reflect the relative desirability of decision criteria levels 

(e.g. increase of a side effect from 0% to 5% vs. from 5% to 10%), and a set of weights that reflect the relative 

importance of worst-best scale increases across the criteria ranges. In order to contextualize the decision and make 

subsequent weight elicitation meaningful, the criteria scale ranges should be defined with respect to plausible outcome 

ranges. That is, if mortality over the set of considered treatments varies only within 2–6%, the partial value functions 

should be defined for this range instead of e.g. 0–100%. Although the partial values can always be interpolated within 

the range, using ranges irrelevant for the decision context causes the preferences to be captured with a lower accuracy. 

<< FIGURE 4: additive model approx here >> 

The challenge in defining suitable scale ranges relates to uncertainty of the measurements. We have previously (2) 

suggested to define the worst-best scaling based on interval hulls of the per-criterion 95% credible intervals from the 

absolute scale joint distribution. For example, in case of all-cause mortality, this is 0.05-0.15, as defined by the 

distributions of fluvastatin and lovastatin (Figure 3, mid-left panel). Although such ranges capture most of the variance, 

they might be inappropriate with long-tailed measurement distributions. Table 2 illustrates this with respect to the 

statins case; the span of 95% empirical credible intervals for transaminase (0.01-0.31) is considerably smaller than the 

full sample range (0.00-0.86). However, as using too large scale ranges causes imprecision for the preference 

elicitation, we do not currently have a better recommendation than using the 95% ranges. 

<< TABLE 2: quantiles approx here >> 

3.6 Elicit preference information 

After the scale ranges have been defined, additive value models incorporate decision maker preferences by eliciting 

partial value functions and their scaling factors (weights). 

Partial value functions 

Partial value functions reflect the desirability of scale values within individual criteria. Eliciting preferences over scale 

values on continuous criteria can be done with the bisection method (19). For example, if an outcome of interest is the 

risk of stroke and its worst and best levels are 6% and 2%, respectively, then the first step in the bisection method 

would be to ask for the value of x such that a decrease from 6% to x% is as important as a decrease from x% to 2%. If 

the decision maker replies by stating that x equals 4, the partial value function for stroke is likely to be linear. Linear 
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partial value functions are often appropriate for criteria that measure event rates in a defined patient population, as in 

these cases equal size ranges in percentages (e.g. 5-7% or 90-92%) reflect the same number of affected patients. Non-

linear partial value functions, in contrast, reflect situations where the value associated with a fixed performance 

increment depends on the level of achievement on a criterion. For example, suppose that the amount of toxicity that a 

decision maker is willing to accept for a 6-month increase in mean survival time is larger for an increase from 6 months 

to 1 year (e.g., patients who underwent prior treatment) than for an increase from 2.5 years to 3 years (e.g., treatment-

naïve patients). The partial value function for overall survival would then be concave (i.e., a function whose slope 

decreases as the level of performance increases). Partial value functions that are convex or S-shaped are also possible. 

The lower value function in Figure 4 illustrates a hypothetical case of bisection elicitation where the criterion measures 

weight loss and the observed losses vary from 0% to 15%. Let us suppose that the first answer of the clinical expert is 

that half of the benefits are obtained at 10% weight loss, which is normally used as a threshold for clinically significant 

effect. Then, the analyst could ask again what is the half-point of effects between 0% and 10%, and that the expert 

states 7%. This leads to the partial value function given in the figure, which can then be used for calculating the 

alternatives' partial values, and once the weights are known, to rank the alternative treatments. The bisection procedure 

in principle is continued infinitely, but usually a few answers provide a good approximation of the “true” partial value 

function. 

Weight information 

Weights of the additive model express accepted trade-offs over the criteria scale swings. For example, if the scale of 

mortality is [6%, 2%] and the scale of discontinuation is [50%, 10%], then if mortality has weight 100 and 

discontinuation weight 1, the increase of mortality from 2% to 6% is considered one hundred times worse than the 

increase of discontinuation from 10% to 50%. Note that this is the only meaning of the weights - they do not express 

any kind of absolute importance. Therefore, elicitation questions such as 'what is more important: all-cause mortality or 

myalgia?' are meaningless when dealing with additive value models. 

In the above example, the criteria measurements are expressed as incidence rates and the partial value functions are 

taken to be linear, and therefore it may seem reasonable to trade off one event against another, rather than compare the 

incidence ranges. However, doing so depends heavily on the linearity assumption - i.e. that a change on a single 

criterion from 2% to 1% is equally valuable to a change from 100% to 99%. This may decrease the precision as well as 

value of the elicited weight information because it would become less specific to the problem at hand. The importance 

of taking scale ranges into account is clearer when the decision involves outcomes such as blood pressure lowering in 

the treatment of hypertension. For example, the decision maker may face the dilemma of whether the difference in 

blood pressure lowering on the scale [-5, -15] mmHg outweighs the occurrence of serious adverse events on the scale 

[2%, 0%]. 

Weights can be elicited with the swing method, in which the decision maker is asked to judge the relative importance of 

the worst-best scale swings (as described above). However, all elicitation techniques resulting in exact weights are 

subject to behavioral biases (20). Therefore many modern MCDA approaches allow incorporating weight information 

in imprecise or incomplete formats. Imprecise information can be modeled, instead of point estimates, as intervals for 

the trade-off ratios. For example, instead of trade-off ratio of 2, the decision maker could express imprecision with the 

ratio belonging to the interval [1.5, 2.5]. Incomplete information expresses exact but poor information, similarly to pair-
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wise choices in conjoint analysis. The simplest form of incomplete weight information is (partial) ranking of scale 

swings (ordinal information). 

Both incomplete and imprecise statements define linear constraints on the set of feasible weights, where the weights are 

always non-negative and normalized to sum to a constant, usually to unity. For example, if the decision maker provides 

exact weight information in a two-criterion problem, stating that the scale swing of the first criterion is twice as 

important as that of the second criterion, this would result in a single normalized weight vector [2/3, 1/3]. If instead the 

decision maker provides imprecise information stating that the trade-off ratio belongs to the interval [1, 2], this results 

in a feasible weight space where the first weight is bound within interval [1/(1+1), 2/(2+1)] = [0.5, 2/3], and the second 

weight is one minus the first weight (and bound within [1/3, 0.5]). If the decision maker provides only incomplete 

(ordinal) information stating that the scale swing of the first criterion is more important than that of the second criterion, 

this restricts feasible weights so, that w1 > w2
, and the resulting range for the first weight is (0.5, 1.0]. 

3.7 Incorporate uncertainty in the analysis 

The two main sources of uncertainty in benefit-risk assessment are the uncertain outcome estimates due to limited 

sample sizes in clinical trials, and imprecise or incomplete weight information. To propagate the uncertainty in these 

inputs into uncertainty in the ranking of the treatments, we have previously proposed (2, 6) to apply Stochastic 

Multicriteria Acceptability Analysis (SMAA) (21, 22).  This entails sampling a sufficient amount of observations (23) 

from the measurement distributions, and for each of these, sampling a weight vector from a uniform distribution within 

the feasible weight space (24, 25). In each of the Monte Carlo iterations, the alternatives are ranked from best to worst 

according to their  total value, which is computed using the realized values of the weights and measurement outcomes 

(see Figure 4). Different realizations of the weights and measurement outcomes may translate into a different ranking of 

the treatments. In SMAA, this uncertainty is captured by computing the rank acceptability indices, which describe, for 

all possible combinations of ranks and treatments, the fraction of Monte Carlo iterations for which a treatment is ranked 

at a certain position. 

Sampling weights uniformly from the feasible weight space specified with trade-off intervals is not trivial, especially if 

there are many decision criteria. We recommend using the Hit-And-Run sampler, which is an efficient Markov Chain 

Monte Carlo technique (24, 25). There exists an open source R package 'hitandrun' that implements the sampling 

method and another package 'smaa' for computing the SMAA rank acceptability indices. Both are freely available at the 

CRAN repository. 

The choice of criterion scales has an effect on the simulation technique. For example, in our statins case, the 95% 

credible interval hull for transaminase is 1-31%, but samples from the pooled distribution span the range 0-86%. 

Therefore, if the partial value function is defined for 1-31%, some of the samples will be outside this range. A simple 

approach to solve the problem is to extrapolate using extreme points of the function range. This will cause the 

simulation results to contain higher variance. However, as the rank acceptabilities are computed based on rank counts 

from the individual simulations, the out-of-range samples do not introduce excessive variance due to the ordinal nature 

of the computations. 

By allowing imprecise weight information, the SMAA approach enables to analyze the treatment benefit-risk profiles 

with increasingly precise weight information: missing, ordinal, trade-off intervals, and exact trade-offs. To illustrate the 
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effects of increasing precision of weight information, we elicited weight information from an expert in cardiovascular 

medicine. We first asked for a ranking of the criteria scale swings and then elicited exact trade-off statements. 

Afterwards we asked the expert to assess uncertainty of his exact statements to obtain trade-off intervals. The elicitation 

protocol is presented in Appendix A. 

4 Results 

The results of the weight elicitation are presented in Table 3. For exact and interval trade-offs, transaminase and CK 

elevation had weights much smaller than the sampling error (<< 0.01), and therefore in those analyses we included only 

the other 4 criteria. We computed the SMAA rank acceptability indices using the four sets of weight information: 

missing, ordinal, interval trade-offs, and exact trade-off statements. The rank acceptabilities are illustrated in Figure 5. 

The analysis code and the full data set are freely available online (26). 

<< TABLE 3: weight elicitation results approx here >> 

<< FIGURE 5: rank acceptabilities approx here >> 

The results indicate that without any weight information (Figure 5, top-left panel), all treatments apart from the no-

treatment alternative, control, have a possibility to be the preferred one, although atorvastatin, fluvastatin, and 

simvastatin have the highest first rank probabilities. When ordinal information is incorporated in the analysis, 

fluvastatin becomes clearly the likely candidate for being the preferred treatment (76% first rank acceptability), and 

pravastatin and rosuvastatin obtain approximately zero first rank probabilities. When more precise weight information 

(trade-off intervals) is added into the analysis, the results remain approximately the same. The precise weight 

statements indicate that the hard clinical endpoints are very important in the analysis. For example, the scale swing of 

all-cause mortality was considered by our decision maker to be approximately 440 times more important than the scale 

swing of transaminase, which could be then excluded from the analysis altogether. The imprecise ratio bounds are quite 

tight, and therefore results from the analysis with exact trade-off ratios (weights) are very similar to the ones from the 

analysis with interval trade-offs.  The remaining uncertainty is due to the imprecise relative effects that were obtained 

as pooled estimates in the network meta-analysis. 

5 Discussion 

Considering the benefits and harms of multiple treatment options has clear appeal for a variety of decisions in 

healthcare. Such considerations are an essential component of prescription decisions in clinical practice, development 

of clinical practice guidelines by expert committees, and benefit-risk assessments for market entry decisions in 

regulatory settings (27-31). MCDA offers a framework to explicitly compare and contrast, and transparently trade-off 

the benefits and harms of multiple healthcare interventions. 

Our case on statins illustrated the key challenges in applying MCDA to comparative benefit-risk assessment. First, the 

set of criteria should be defined to capture all aspects relevant for the decision, and to avoid double counting. Second, 

evidence from clinical trials should be synthesized through network meta-analysis to obtain relative treatment estimates, 

and these should be transformed to absolute effect estimates. The transformation requires a baseline estimate, which 

should be obtained taking into account the target population. Third, suitable scale ranges for the absolute scales should 

be defined for the weight elicitation. We recommend using the 95% credible interval hull from the absolute scale joint 
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distribution. Fourth, weight information should be elicited at different levels of precision to understand the effect of 

imprecise and incomplete weights on the analysis results. And finally, uncertainty on both the effect estimates and the 

weights should be incorporated into the analysis by applying a simulation-based technique, resulting in rank 

probabilities for all the different precisions of weight information. 

Beyond the methodological considerations outlined in this paper, operationalizing the use of MCDA for comparative 

benefit-risk assessment has a number of limitations. While MCDA is gaining momentum in regulatory settings for 

evaluating the benefit and risk assessment of single agents (28), drug licensing agencies such as the European 

Medicines Agency and the Food and Drug Administration are still reluctant to consider comparative evidence to 

evaluate the relative benefit-risk profiles of new drugs (32, 33). When regulatory agencies adopt relative effectiveness 

as a criterion for licensing decisions in the future, network meta-analysis, and its combination with MCDA, would serve 

as a valuable tool to inform decision-making in the regulatory setting. 

Comparative benefit-risk assessment using MCDA has clear implications for routine clinical practice. However, using 

MCDA for making prescribing decisions in clinical practice faces a number of practical challenges. Incorporating 

MCDA models into evidence-based computerized decision aids would necessitate pre-specifying, automating, and 

making available large parts of the MCDA model ahead of a clinical encounter. Decision aids such as SHARE-IT are 

already capable of automating and packaging key aspects of existing evidence into accessible summaries for patients 

(34). Future efforts should focus on integrating MCDA capabilities to such decision aids. Patients could use these either 

prior to a clinic visit or during the patient-clinician encounter. This would allow the patient-provider interaction to focus 

primarily on patient preferences on various benefit and harm outcomes, which would inform the prescribing decision. 

As we argued previously (35), we envision a future where computer decision aids are informed by systematic reviews 

and syntheses of all relevant clinical evidence on clinically meaningful benefit and harm outcomes. Combining 

evidence syntheses with MCDA would make feasible evidence-based decisions that are informed by provider expertise 

and knowledge, and tailored according to patient preferences. 

The approach presented in this paper is purely illustrative and is not intended to dictate prescribing decisions in clinical 

practice. To the contrary, our case study highlights the importance of carefully accounting for decision maker 

preferences when considering both benefit and harm outcomes, and their trade-offs. Irrespective of how the benefit-risk 

assessment is conducted, however, we appreciate that there are external factors that influence the final decision taken. 

For example, consider a new treatment that is compared against the standard of care. Even when this new treatment is 

considered to have a better benefit-risk balance, the decision may still fall in favor of the established treatment because 

of concerns with certain identified risks for which the available evidence was highly uncertain. Depending on the nature 

of the problem, the final benefit-risk decision may also be affected by various ethical, social, and economic aspects that 

do not directly influence a treatment's benefit-risk balance but could nevertheless still have a profound impact on the 

acceptance of the decision by the public and other stakeholders. As such MCDA approaches present an opportunity to 

guide and inform decisions, rather than to dictate them. 
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Tables 

Table 1: Summary of the guidelines 

Decision making phase Main questions for the analyst 

Define the decision problem Which indication are we assessing? What are the alternative treatments 

under consideration? What are the relevant evaluation criteria? Who is 

the decision maker? 

Choose a set of non-overlapping evaluation 

criteria 

Are some of the evaluation criteria measuring the same underlying 

concept? Which ones is the decision maker comfortable with removing? 

Are some important criteria missing? 

Synthesize and summarize the available data Is there more than a single study available? Would network meta-

analyses be suitable for synthesizing the evidence? 

Translate relative measures obtained in 

evidence synthesis to absolute scales 

Are the baseline effects invariant over subgroups? Can we distinguish a 

high quality study with a population representative of the decision 

problem target population? 

Define suitable scale ranges Are the 95% credible intervals suitable for preference elicitation? 

Elicit preference information Are linear partial value functions appropriate? Does the decision maker 

understand the weight elicitation process? 

Incorporate uncertainty in the analysis Can we distinguish some good / bad treatment alternatives with only 

ordinal weight information? What amount of weight information is 

sufficient for discriminating some of the best alternatives? How much 

decision uncertainty remains with exact weights? 

 

Table 2: Sample quantiles (100,000 draws) on absolute measurement scales
1
 

Endpoint / Quantile 0% 2.5% 97.5%  100% 

                                                        

1 The 0% and 100% (min/max) are highly unstable, and are shown only to illustrate that by setting the 

scale ranges to the 95% credible interval, we must accept a small error in the final analysis due to 

sampled values falling outside the defined scale range. 
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Nonfatal MI 0.01 0.02 0.06 0.09 

Nonfatal Stroke 0.00 0.00 0.09 0.92 

All-cause Mortality 0.03 0.05 0.15  0.21 

Myalgia 0.00 0.00 0.13 0.74 

Transaminase 0.00 0.01 0.31 0.86 

CK Elevation 0.00 0.00 0.06 0.82 

 

Table 3: Swing weight elicitation results for the four analyses with increasingly precise weight 

information 

Analysis Weight information
2
 

Preference-free Missing 

Ordinal wmort  > wstroke  > wMI  > wmya lgia
> wCK > wtrans  

Exact trade-offs Unnormalized weights, defined with respect to the more important outcome. For 

example, mortality scale swing was considered by the decision maker to be 4 times 

as important as the scale swing of stroke, meaning that the weight of non-fatal 

strokes = ¼ of the weight of all-cause mortality. 

wmort =1

wstroke =
1

4
*wmort

wMI =
1

2
*wstroke

wmya lgia =
1

25
*wMI

wCK =
1

2
*wmya lg ia

wtrans =
1

1.1
*wCK

 

Normalized weights. CK elevation and transaminase have weights << 0.01, and are 

thus irrelevant for the analysis. 

                                                        
2
 Weights of the different criteria: wMI  (nonfatal MI), wstroke  (nonfatal stroke), wmort  (all-cause 

mortality), wmya lgia
 (myalgia), wtrans  (transaminase), wCK  (CK elevation). 
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wmort = 0.72, wstroke = 0.18, wMI = 0.09, wmya lgia = 0.003 

Interval trade-offs wmort /wstroke ∈ [3, 5]

wstroke /wMI ∈ [1.5, 2.5]

wmya lg ia /wMI ∈ [20,30]

wMI /wCK ∈ [1.5, 2.5]

wCK /wtrans ∈ [0.8,1.4]
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Figure captions 

Figure 1: Network of trials used for the analysis. Edge thickness indicates the amount of studies 

comparing the treatments on the outcome ‘All-cause Mortality’ (1–22). 

Figure 2: Odds ratios of the six treatments against control on the chosen 6 benefit-risk criteria. 

Figure 3: Absolute scale measurement ranges for the 6 treatments and control (used as baseline) on the 

chosen 6 benefit-risk criteria. 

Figure 4: Example partial value functions (u1, u2) for a two-criterion additive value model, for a 

hypothetical choice of an obesity treatment. The first criterion measures the incidence rate of serious 

side effects (treatment risks), and the second criterion measures the observed weight loss in 

percentages (treatment benefit). Treatment a1 has 0.5-incidence rate of the side effects, which translates 

to a value of 0.66 on criterion 1. Treatment a
2
 has 0.6-incidence rate of side effects, which translates to 

a value of 0.33 on criterion 1. The weights 0.6 and 0.4 express that the scale swing of the first criterion 

[0.7, 0.4] is 50% more important than the scale swing of the second criterion [0%, 15%]. In this 

example, given exact measurements and preference information (shapes of partial value functions and 

weights), the second alternative (a
2
) is preferred over the first alternative (a

1
) because it has a higher 

value with the given value function (0.56 vs 0.44). 

Figure 5: Rank acceptability indices for the 6 treatments and control from the 4 analyses with 

increasingly precise weight information. 
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Comparison Odds Ratio (95% CrI)
Atorva vs Control 0.54 (0.44, 0.67)
Fluva vs Control 0.64 (0.37, 1.0)
Lova vs Control 0.86 (0.56, 1.4)
Prava vs Control 0.74 (0.60, 0.83)
Rosuva vs Control 0.69 (0.51, 0.89)
Simva vs Control 0.67 (0.56, 0.87)

10.3 2
Nonfatal MI

Comparison Odds Ratio (95% CrI)
Atorva vs Control 0.77 (0.52, 1.1)
Fluva vs Control 0.23 (0.0062, 2.0)
Lova vs Control 0.58 (0.20, 1.7)
Prava vs Control 0.81 (0.59, 1.0)
Rosuva vs Control 0.69 (0.44, 0.99)
Simva vs Control 0.68 (0.44, 0.95)

10.006 3
Nonfatal Stroke

Comparison Odds Ratio (95% CrI)
Atorva vs Control 0.83 (0.70, 0.94)
Fluva vs Control 0.67 (0.44, 1.0)
Lova vs Control 1.0 (0.72, 1.4)
Prava vs Control 0.86 (0.75, 0.96)
Rosuva vs Control 0.94 (0.79, 1.1)
Simva vs Control 0.81 (0.67, 0.95)

10.4 2
All−cause Mortality

Comparison Odds Ratio (95% CrI)
Atorva vs Control 1.1 (0.87, 1.5)
Fluva vs Control 1.0 (0.53, 2.0)
Lova vs Control 1.3 (0.79, 2.1)
Prava vs Control 1.0 (0.77, 1.6)
Rosuva vs Control 1.3 (0.94, 1.8)
Simva vs Control 0.80 (0.55, 1.3)

10.5 3
Myalgia

Comparison Odds Ratio (95% CrI)
Atorva vs Control 2.6 (1.7, 4.1)
Fluva vs Control 6.8 (2.2, 25.)
Lova vs Control 2.0 (0.93, 4.5)
Prava vs Control 1.0 (0.62, 1.6)
Rosuva vs Control 1.7 (1.0, 2.9)
Simva vs Control 1.1 (0.66, 2.0)

10.6 30
Transaminase

Comparison Odds Ratio (95% CrI)
Atorva vs Control 1.3 (0.69, 2.6)
Fluva vs Control 0.097 (0.0046, 0.76)
Lova vs Control 1.1 (0.48, 3.5)
Prava vs Control 1.2 (0.71, 2.3)
Rosuva vs Control 1.5 (0.76, 2.9)
Simva vs Control 1.2 (0.53, 2.5)

10.004 4
CK Elevation
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Treatment Absolute risk (95% CrI)
Control 0.041 (0.036, 0.046)
Atorva 0.023 (0.018, 0.028)
Fluva 0.026 (0.015, 0.044)
Lova 0.036 (0.023, 0.058)
Prava 0.030 (0.025, 0.037)
Rosuva 0.028 (0.021, 0.038)
Simva 0.028 (0.022, 0.036)

0.01 0.07
Nonfatal MI

Treatment Absolute risk (95% CrI)
Control 0.029 (0.025, 0.034)
Atorva 0.023 (0.016, 0.033)
Fluva 0.0059 (0.00035, 0.089)
Lova 0.017 (0.0060, 0.048)
Prava 0.024 (0.018, 0.031)
Rosuva 0.020 (0.013, 0.031)
Simva 0.020 (0.014, 0.029)

0 0.1
Nonfatal Stroke

Treatment Absolute risk (95% CrI)
Control 0.11 (0.10, 0.12)
Atorva 0.091 (0.079, 0.11)
Fluva 0.076 (0.051, 0.11)
Lova 0.11 (0.080, 0.15)
Prava 0.095 (0.083, 0.11)
Rosuva 0.10 (0.087, 0.12)
Simva 0.090 (0.076, 0.11)

0.04 0.16
All−cause Mortality

Treatment Absolute risk (95% CrI)
Control 0.010 (0.00093, 0.10)
Atorva 0.011 (0.0010, 0.12)
Fluva 0.011 (0.00088, 0.11)
Lova 0.013 (0.0011, 0.13)
Prava 0.011 (0.00096, 0.11)
Rosuva 0.013 (0.0012, 0.13)
Simva 0.0083 (0.00073, 0.089)

0 0.14
Myalgia

Treatment Absolute risk (95% CrI)
Control 0.0074 (0.0012, 0.043)
Atorva 0.019 (0.0030, 0.11)
Fluva 0.049 (0.0058, 0.31)
Lova 0.015 (0.0021, 0.096)
Prava 0.0074 (0.0011, 0.045)
Rosuva 0.013 (0.0019, 0.076)
Simva 0.0085 (0.0013, 0.053)

0 0.32
Transaminase

Treatment Absolute risk (95% CrI)
Control 0.0035 (0.00029, 0.039)
Atorva 0.0046 (0.00036, 0.055)
Fluva 0.00030 (8.1e−06, 0.011)
Lova 0.0040 (0.00027, 0.054)
Prava 0.0043 (0.00034, 0.052)
Rosuva 0.0051 (0.00039, 0.061)
Simva 0.0041 (0.00031, 0.052)

0 0.07
CK Elevation
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Control Atorva Fluva Lova Prava Rosuva Simva

Rank 7
Rank 6
Rank 5
Rank 4
Rank 3
Rank 2
Rank 1

No weight information

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control Atorva Fluva Lova Prava Rosuva Simva

Ordinal statements

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control Atorva Fluva Lova Prava Rosuva Simva

Trade−off intervals

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control Atorva Fluva Lova Prava Rosuva Simva

Exact trade−offs (weights)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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1 

Appendix A: weight elicitation protocol 

Endpoint Definition Best value 

(%) 

Worst value 

(%) 

Rank Exact Ratio bounds 

Nonfatal MI 5-year incidence of non-fatal heart 

attacks with severity ranging from 

mild to severe  

2 6    

Nonfatal Stroke 5-year incidence of non-fatal strokes 

with severity ranging from mild to 

severe 

0 9    

All-cause 

Mortality 

5-year incidence of mortality 5 15    

Myalgia  Fraction of individuals with muscle 

pain 
0 13    

Transaminase Fraction of individuals with 

clinically meaningful (3x baseline 

values) elevations in either alanine 

aminotransferase or aspartate 

aminotransferase 

0 31    

CK Elevation Fraction of individuals with 

clinically meaningful (1.5-3x 

baseline values) elevations in 

creating kinase 

0 6    

  

1. Ordinal elicitation 

Given a treatment with outcome values of ‘Worst value’, give an order of importance for changing the outcome values 

to ‘Best value’ (would you rather change the risk of 'Nonfatal MI' from 6% to 2% or the risk of 'Nonfatal Stroke' from 

9% to 0%?). 

Mark these ranks in the column ‘Rank’, such that “1” is the best, “2” second best, etc. 

2. Exact importance ratios 

For each outcome other than the one you chose as the least important (rank n) in the previous step, give an estimate on 

how many times more important the worst-best scale swing of that outcome is compared to the swing of the next most 

important one. 

For example, assume that ‘Nonfatal MI’ was your most important outcome,  'Myalgia' the second most important one, 

followed by Transaminase. Now, if you judge Nonfatal MI risk scale swing to be 2 times more important than that of 

Myalgia, then the decrease of Nonfatal MI risk from 6% to 2% is 2 times more important than the decrease of Myalgia 

from 13% to 0%. The following question would then be of the ratio of importance of the scale swing of Myalgia against 
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2 

that of Transaminase. 

Mark these importance ratios in the column 'Exact'. 

3. Ratio bounds 

For each of the judgments done in the previous step (exact importance ratios), give lower and upper bounds on your 

judgments. 

For example, if you in the previous step judged the Nonfatal MI scale swing to be 2 times more important than that of 

Myalgia and you're quite uncertain about the exact number, the ratio bounds could be [1, 3] (i.e. the scale swing is 1-3 

times as important). 

Mark these bounds in the column ‘Ratio bounds’. 
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