A GROUNDED THEORY DESIGN AND IMPLEMENTATION OF A COURSE TO SUPPORT STUDENTS WITH DISABILITIES USING TABLET COMPUTERS AND SMARTPHONES AT THE LONDON SCHOOL OF ECONOMICS AND CANTERBURY CHRIST CHURCH UNIVERSITY, UK

Simon Hayhoe, (Canterbury Christ Church University / London school of Economics)
Kris Roger (London School of Economics)
Sebastiaan Eldritch-Boersen (London School of Economics)
Linda Kelland (London School of Economics)
INTRODUCTION

The reason for the study, aims and objectives
THE MOTIVATION FOR THE STUDY

The Disabled Students Allowance (DSA) is a government grant for students aged 18 years and over in English and Welsh higher education. Amongst other things, this grant supports the provision of traditional assistive technologies.

In April 2014, the British Minister for Universities and Science proposed cuts to the DSA. Although a later announcement has suggested that these cuts will be postponed until the academic year 2016-2017, a number of universities are already preparing alternative means to support disabled students in future.
AIMS & OBJECTIVES OF THE STUDY

Investigate a cost effective alternative to traditional, expensive assistive technologies

Develop education and training on the use of mainstream technologies that students largely own anyway and use for alternative purposes

Evaluate whether students are already using these devices, and how to employ them to best effect

Explore the most effective way of providing training in the use of these devices
CONTEXT OF THE STUDY

Literature and policies that provide context to the study
DEFINITION OF DISABILITY (2010 EQUALITIES ACT)

“You’re disabled under the Equality Act 2010... if you have a physical or mental impairment that has a ‘substantial’ and ‘long-term’ negative effect on your ability to do normal daily activities.

What substantial and long-term mean

‘substantial’ is more than minor or trivial – eg it takes much longer than it usually would to complete a daily task like getting dressed

‘long-term’ means 12 months or more- eg a breathing condition that develops as a result of a lung infection” (HM Government, 2014: Online)
DEFINITIONS AND TECHNOLOGY

Accessible technology:
- “Any item, piece of equipment, or system, whether acquired commercially, modified, or customized, that is commonly used to increase, maintain, or improve functional capabilities of individuals with disabilities.” (Architectural and Transportation Barriers Compliance Board, 2000: P. 80504)

Inclusive technology:
- Mainstream technology that can be used with either no or minimal adaption by a person with a disability as an accessible technology. It is also seen as technology that provides social inclusion, such as communication and interaction, for people with disabilities (Hayhoe, 2013, 2014a)
The methodology employed for the design and evaluation of the course was a development of Grounded Theory (Glaser & Strauss, 1967). The adaptation was a grounded methodology, in which the technical elements of the methodology is refined and employed for an ongoing process – either for analysis, design or activity (Hayhoe, 2012). This is a methodology in which all information, literature and theory can be regarded as data. Methodology in which hypothesis and theories are artificially induced.

The core of the methodology uses three phases of study, through which data is analysed to a point at which a hypothesis can be formed, and then selectively test.

The analysis is cyclical, as the selective testing of the hypothesis feeds into the initial stage of a next study.
TREATING DATA LIKE WRITING AN EVERLASTING PLAY (HAYHOE, 2012)

Open coding is like choosing the characters and main events in your play.

Axial coding is like choosing your plot, and examining how the story evolves.

Selective coding is like choosing the story lines that put the plots and sub-plots together.
Initial data gathering for Open coding involves trying to select a representative sample of subjects and their situations.

Axial coding is finding representative subjects and researching their plots in detail.

Selective coding involves researching a select sample according to their interactions with other actors and plots to analyse the stories that are being told in the play.
GROUNDED THEORY CYCLE OF ANALYSIS

**Open Coding:**
Initial examination of theories & evaluation of mobile devices

**Selective Coding:**
Evaluation of course & Material available through Virtual Learning Environment (VLE)

**Axial Coding:**
Staff and student consultation & Design of curriculum

*Initial, unrefined hypothesis developed at this stage*
OPEN CODING

Initial pilot phase of study
Theories of inclusion and technology were investigated. Research studies of the implementation of tablets of smartphones were analysed in the context of support for disabled students in higher educational institutions. Native apps in two mobile operating systems - Android and Apple iOS - were evaluated:

- Model of ITC
- Model of SAMR
<table>
<thead>
<tr>
<th>THE SAMR EDUCATIONAL TECHNOLOGY MODEL (HAYHOE, 2014A)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TRANSFORMATION</strong></td>
</tr>
<tr>
<td><strong>Redefinition</strong></td>
</tr>
<tr>
<td>Technology prompting the training of new skills</td>
</tr>
<tr>
<td>Customised technology that allows students to write or read using alternative technologies, such as the Perkins Brailer</td>
</tr>
<tr>
<td><strong>Modification</strong></td>
</tr>
<tr>
<td>Technology prompting the significant redesign of tasks</td>
</tr>
<tr>
<td>Customised technology that allows teachers and students mobility, writing facilities, reading facilities, hearing facilities</td>
</tr>
<tr>
<td><strong>Augmentation</strong></td>
</tr>
<tr>
<td>Technology mirrors an existing tool, with functional improvements</td>
</tr>
<tr>
<td>Accessible settings, such as voice recognition</td>
</tr>
<tr>
<td><strong>Substitution</strong></td>
</tr>
<tr>
<td>Technology acts as a replacement, with no functional change</td>
</tr>
<tr>
<td>Tablet computers, smart phones, mp3 players and multimedia devices with differing inputs and outputs</td>
</tr>
<tr>
<td><strong>ENHANCEMENT</strong></td>
</tr>
</tbody>
</table>
SAMR PYRAMID OF INCLUSION (HAYHOE, 2014A)

Traditional Separate Assistive Technology

Inclusive Technology
BOURDIEU & CAPITALS

Bourdieu (2010) argues distinction in life chances through capitals, e.g.
- social, cultural and financial capitals.

Habitus:
- “Principles which generate and organise practices.”
  (Bourdieu, 1990: P.53)

Field = knowledge and behaviour that teaches distinction
[(habitus)(capital)] + field = practice (Bourdieu, 2010: P.95)
MODEL OF TECHNICAL CAPITAL

“[Technical capital is] the availability of technical resources in a network, and the mobilization of these resources in ways that can positively impact access to information and upward mobility.” (Yardi. 2010: P.1)

- Yardi’s technical capital is related to cultural capital
AN EXAMPLE OF TECHNICAL CAPITAL

E.g. Brock, Kvasny & Hales (2010)

The use of on-line social forums and discussions boards for black women has enabled users to empower themselves by communicating information that would otherwise be unavailable to them

Therefore, it can be stated:

\[\text{[(mainstream habitus)(technical capital)]} + \text{mainstream field} = \text{inclusive practice}\]
“Inclusive technical capital can be defined as practice which uses inclusive mainstream technologies to promote inclusion in further forms of social, cultural and financial capitals, through enabled habitus in education and training…

It can thus be argued that inclusive technical capital appears to be more applicable to students’ use of new forms of mainstream settings and apps that have been embedded in modern tablet devices and therefore, either purposely or accidentally, lend themselves to redefinition as inclusive technologies.” (Hayhoe, 2015a: TBC)
SUMMARY OF FINDINGS OF THE EVALUATION OF APPLE IOS AND ANDROID (HAYHOE, 2015B)

Both systems have relatively similar inclusive accessible settings

Have similar potential for enhancement rather than transformation of tasks

Some settings and functions that make each operating system less useable as tools of technological inclusion

Disabled students, teachers and those that support students with disabilities must evaluate systems according to impairments and educational needs

Both operating systems still need to develop their functions, native apps and usability for students with disabilities
AXIAL CODING PHASE

Staff and student consultations
AXIAL CODING

Initial surveys of students (n = 18) and staff (n = 34) stakeholders were produced – this was not statistically significant due to small numbers, but did produce guidelines

Discussions were conducted between key personnel at the London School of Economics (LSE) and Canterbury Christ Church University (CCCU)

- this included those working with neuro-diverse student, officers involved in the support of learning technologies and officers involved in the use of assistive technologies
The majority of lecturers and tutors who expressed a preference knew they taught disabled students.

Are you aware of students with disabilities (such as visual or hearing impairment, physical impairment in limbs) or neuro-diversity (such as dyslexia, dyspraxia or dyscalculia) in your teaching groups?
THE MAJORITY OF SPECIALISED DEVICES SEEN BY LECTURERS ARE RELATED TO HEARING IMPAIRMENTS

DO DISABLED STUDENTS USE THE FOLLOWING SPECIALIST DEVICES TO ACCESS YOUR MATERIALS OR LECTURES?
THE MAJORITY OF LECTURERS HAVE NO PROBLEM USING SPECIALIST ASSISTIVE TECHNOLOGIES

DO YOU FIND DIFFICULTIES USING SPECIALIST DEVICES IN YOUR LECTURES / TUTORIALS? IF YES, PLEASE STATE BRIEFLY WHAT PROBLEMS YOU HAVE ENCOUNTERED?
AN OVERWHELMING MAJORITY OF DISABLED STUDENTS USE MOBILE DEVICES

DO ANY OF YOUR DISABLED OR NEURO-DIVERSE STUDENTS USE MOBILE DEVICES, SUCH AS SMART PHONES OR TABLETS (E.G. IPHONE, SAMSUNG GALAXY, IPAD, KINDLE) IN YOUR CLASS TO, FOR EXAMPLE, RECORD YOUR LECTURE, OR ENLARGE TEXT?
Generally Speaking, lecturers and tutors were asked permission by students to use mobile devices.

Do your disabled or neuro-diverse students ask permission to use their smart phones or tablets during lectures or tutorials?

- Yes: 41
- No: 24
- Some of them: 35
LECTURERS ASSUME MOBILE DEVICES ARE BEING USED TO RECORD STUDENTS’ OWN RECORDED NOTES

WHAT DO THEY RECORD OR READ USING THEIR SMART PHONE OR TABLET? – LECTURERS COULD ANSWER MORE THAN ONE
Generally, lecturers do not mind being recorded by students during their lectures given context.

Do you prefer it if students do not record your lectures / tutorials?

Yes: 6
No: 71
Depends: 24
MOSTLY PAPER BASED MATERIALS ARE MADE AVAILABLE AFTER LECTURES, ELECTRONIC MATERIAL LESS SO

WHAT MATERIALS ARE AVAILABLE TO YOUR STUDENTS AFTER LECTURES?
LECTURERS MOSTLY MAKE ELECTRONIC MATERIAL AVAILABLE DURING LECTURES, BUT NOT SIGNIFICANTLY SO

WHAT MATERIALS ARE AVAILABLE TO YOUR STUDENTS BEFORE OR DURING LECTURES?

- Lecture notes in paper format: 30
- Video recordings of your lecture: 0
- Voice recordings of your lecture: 0
- Graphics in electronic format: 25
- Graphics in paper format: 5
- Data in electronic format: 40
- Data in paper format: 0
GENERALLY THERE IS A PREFERENCE FOR PAPER MATERIAL, ALTHOUGH NOT SIGNIFICANTLY SO

IF YOUR STUDENTS EXPRESS A PREFERENCE, DO THEY PREFER ELECTRONIC OR PAPER MATERIALS?
STAFF SURVEY ANALYSIS

Many of the lecturers and tutors were aware of students with disabilities
- Learning difficulties were cited more than physical impairments

Lecturers and tutors are aware of students with disabilities using mobile devices
- It was felt that this was not a problem for students to use mobile devices
- These were thought to be more prevalent than specialist assistive technology devices

Lecturers and tutors on the whole did not mind being recorded

Lecturers distributed paper notes and electronic graphics and data most

Students requested paper notes most, although electronic formats were also requested
APPLE AND ANDROID DEVICES USED MORE THAN OTHERS

WHICH OF THE FOLLOWING SMARTPHONES OR TABLETS DO YOU OWN - YOU MAY CHOOSE MORE THAN ONE

<table>
<thead>
<tr>
<th>Device</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>27</td>
</tr>
<tr>
<td>Samsung Galaxy Smartphone (e.g. S5 / S5)</td>
<td>18</td>
</tr>
<tr>
<td>iPad</td>
<td>14</td>
</tr>
<tr>
<td>Android tablet</td>
<td>9</td>
</tr>
<tr>
<td>Windows tablet</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>23</td>
</tr>
</tbody>
</table>
Devices mostly used to access, research and communicate, and to record to a lesser extent.

Do you use your device to study or to help you in the following activities - you may choose more than one.

- Taking notes by myself: 10
- Taking notes in lectures: 7
- Sound recording a lecture: 7
- Video recording a lecture: 0
- Accessing lecture notes: 16
- Seeing or zooming into far away writing or graphics: 4
- Accessing recorded lectures: 10
- Communicating with your lecturers or fellow students about work: 15
- Communicating with your lecturers or fellow students socially: 12
- Researching information on the web: 15
- Seeing or zooming into a whiteboard or presentation: 3
ALL STUDENTS WHO EXPRESSED A PREFERENCE SAID THEY PREFERRED MOBILE DEVICES

IF THE SAME FUNCTION OF YOUR SPECIALIST DEVICE WAS AVAILABLE THROUGH YOUR TABLET OR MOBILE TELEPHONE, WHICH WOULD YOU PREFER TO USE?
RESULTS OF THE STUDENT SURVEY & DISCUSSIONS WITH RELEVANT STAFF

The initial survey showed that there was motivation to use mobile technologies as inclusive devices by the students and staff who responded.

Conversations between officers at the LSE and CCCU working with disabled students and educational technologies suggested that:

- Students would like a course based on study skills.
- That discrete sessions on specific topics would also be beneficial to students in need of support.
SELECTIVE CODING
THE HYPOTHESIS FORMED

Students would prefer a model based on three primary study skills – note taking, recording of lectures and mind mapping.

Students would want to attend discrete study skills sessions once every two weeks, during lunch time.

Students would want to access materials via a VLE to support their sessions.
SELECTIVE CODING

The sessions were run at the LSE and CCCU from October 2014 to January 2015
- diaries of the experience were recorded
- an online evaluation of students was conducted

The evaluation of the taught course was limited and provided few results
- Therefore, it was concluded that the survey had little significance

A record of the hits and access dates of the supporting materials on the VLE were recorded
ATTENDANCE OF CLASSES WAS VERY SMALL, AND FLUCTUATED

RECORD OF ATTENDANCE IN THE CLASSES

- Introduction and Note Taking
- Mind Mapping
- Recording Sessions (Video and Sound)

CCCU vs LSE
VLE STATISTICS SHOWED A DIFFERENT PICTURE

Teaching materials, tutorials and videos of the sessions were uploaded on VLE

Number of students registered on the VLE system = 24

All but 2 of the students accessed the material

Materials were accessed well into the new year, after the course and evaluation had finished

Statistics appeared to show that websites on specific apps, and to a lesser extent video recordings of sessions, were popular

PowerPoint tutorials were less popular
## Break Down of Note-Taking Statistics

<table>
<thead>
<tr>
<th>Note-taking and Sharing Information</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Note-taking Session Recording (Echo 360 link)</td>
<td>7 -</td>
<td>Monday, 2 February 2015, 4:47 PM (140 days 4 hours)</td>
<td></td>
</tr>
<tr>
<td>Notetaking Apps Roundup</td>
<td>42 -</td>
<td>Tuesday, 3 February 2015, 9:24 AM (139 days 11 hours)</td>
<td></td>
</tr>
<tr>
<td>Share your Apps here!</td>
<td>23 -</td>
<td>Monday, 26 January 2015, 9:20 PM (146 days 23 hours)</td>
<td></td>
</tr>
<tr>
<td>Additional resources</td>
<td>7 -</td>
<td>Monday, 2 February 2015, 4:49 PM (140 days 4 hours)</td>
<td></td>
</tr>
<tr>
<td>Scrivener web site</td>
<td>11 -</td>
<td>Monday, 26 January 2015, 9:23 PM (146 days 23 hours)</td>
<td></td>
</tr>
<tr>
<td>Eduroam Guides</td>
<td>8 -</td>
<td>Monday, 10 November 2014, 12:26 PM (224 days 9 hours)</td>
<td></td>
</tr>
<tr>
<td>Tutorials on Note Taking</td>
<td>9 -</td>
<td>Monday, 2 February 2015, 4:47 PM (140 days 4 hours)</td>
<td></td>
</tr>
<tr>
<td>Tutorials on Accessible Settings</td>
<td>4 -</td>
<td>Monday, 26 January 2015, 9:23 PM (146 days 23 hours)</td>
<td></td>
</tr>
</tbody>
</table>
**BREAKDOWN OF MIND-MAPPING STATISTICS**

<table>
<thead>
<tr>
<th>Mind-Mapping</th>
<th>Views</th>
<th></th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mind View Website</td>
<td>4</td>
<td></td>
<td>Monday, 26 January 2015, 9:52 AM</td>
<td>147 days 11 hours</td>
</tr>
<tr>
<td>iMind Map Website for Tablets</td>
<td>2</td>
<td></td>
<td>Monday, 26 January 2015, 9:53 AM</td>
<td>147 days 11 hours</td>
</tr>
<tr>
<td>iMind Map Free Trial Download for a PC</td>
<td>2</td>
<td></td>
<td>Saturday, 29 November 2014, 12:24 AM</td>
<td>205 days 20 hours</td>
</tr>
<tr>
<td>iMind Map YouTube Tutorials</td>
<td>1</td>
<td></td>
<td>Saturday, 29 November 2014, 12:24 AM</td>
<td>205 days 20 hours</td>
</tr>
<tr>
<td>Mind Mapping Session Recording (Echo 360 link)</td>
<td>3</td>
<td></td>
<td>Monday, 2 February 2015, 4:47 PM</td>
<td>140 days 4 hours</td>
</tr>
<tr>
<td>Mind Mapping Tutorials</td>
<td>2</td>
<td></td>
<td>Wednesday, 28 January 2015, 12:18 PM</td>
<td>145 days 8 hours</td>
</tr>
</tbody>
</table>
## BREAKDOWN OF RECORDING STATISTICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Count</th>
<th>Date &amp; Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Copyright Tutorial (US Based)</td>
<td>2</td>
<td>Tuesday, 2 December 2014, 1:06 PM (202 days 7 hours)</td>
</tr>
<tr>
<td>Comprehensive Description of the Data Protection Act</td>
<td>3</td>
<td>Monday, 24 November 2014, 10:47 AM (210 days 10 hours)</td>
</tr>
<tr>
<td>Echo 360 lecture recording for students</td>
<td>17</td>
<td>Monday, 16 March 2015, 8:56 PM (97 days 23 hours)</td>
</tr>
<tr>
<td>Lecture and Class Recording - Session Recording (Echo 360 link)</td>
<td>2</td>
<td>Monday, 8 December 2014, 11:04 AM (196 days 9 hours)</td>
</tr>
<tr>
<td>Videoing, Audio Recording, and Photographing Lectures Tutorial</td>
<td>1</td>
<td>Thursday, 15 January 2015, 11:32 AM (158 days 9 hours)</td>
</tr>
<tr>
<td>Sharing Files and Google Scholar Tutorial</td>
<td>1</td>
<td>Wednesday, 28 January 2015, 12:14 PM (145 days 8 hours)</td>
</tr>
</tbody>
</table>
Students did not attend the sessions in numbers
This meant that there was little impact on the student bodies’ use of the technology passed on through face-to-face teaching:
• At the LSE feedback was it was patronising to have a separate course
• At CCCU students said it was difficult to physically attend the sessions
Nevertheless, there was greater access of the materials on the VLE, and downloads of the tutorials that were offered
CONCLUSION

Overall findings and possible future directions
CONCLUSIONS

Students do prefer using mainstream mobile devices over traditional separate assistive technologies given the choice to do so.

There is a demand for training and support for the use of mobile devices by disabled students in order to help develop study skills.

Tentatively, it was found that students from the universities did not like to attend separate classes, because it was thought they had a disability.

It was difficult to time sessions to allow all to attend, therefore flexibility seemed to be an element that was needed for the course.

Following the point immediately above, it would seem that students with disabilities appeared to feel comfortable accessing materials via the VLE rather than taught sessions.
FUTURE RECOMMENDATIONS AND PLANS

A follow up survey of lecturers is planned in due course to evaluate its impact.

The study is also being used as a critical model for future undergraduate and postgraduate teaching at Canterbury Christ Church University.

- This is in response to the changes to the Disabled Students Allowance.


