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Abstract—The optimal power allocation that maximizes the
secrecy capacity (SC) of block fading Gaussian (BF-Gaussian)
networks with causal channel state information (CSI), M -
block delay tolerance and a frame based power constraint is
examined. In particular, the SC maximization is formulated
as a dynamic program. First, the SC maximization without
any information on the CSI is studied; in this case the SC is
maximized by equidistribution of the power budget, denoted
as the “blind policy”. Next, extending earlier results on the
capacity maximization of BF-Gaussian channels without secrecy
constraints, transmission policies for the low SNR and the high
SNR regimes are proposed. When the available power resources
are very low the optimal strategy is a “threshold policy”. On
the other hand when the available power budget is very large a
“constant power policy” maximizes the frame secrecy capacity.
Subsequently, a novel universal transmission policy is introduced,
denoted in the following as the “blind horizon approximation”
(BHA), by imposing a blind policy in the horizon of unknown
events. Through numerical results, the novel BHA policy is
shown to outperform both the threshold and constant power
policies as long as the mean channel gain of the legitimate
user is distinctively greater than the mean channel gain of
the eavesdropper. Furthermore, the secrecy rates achieved by
the BHA compare well with the secrecy rates of the secure
waterfilling policy in the case of acausal CSI feedback to the
transmitter.

Index Terms—delay constrained secrecy capacity, causal CSI

I. INTRODUCTION

Physical layer security (PLS) investigates the potential of
taking advantage of the impairments in real communication
media, such as fading or noise in wireless channels, in order
to achieve confidentiality in data exchange. PLS was pioneered
by Wyner, who introduced the wiretap channel and established
the possibility of creating perfectly secure communication
links without relying on private (secret) keys [1]. Recently,
there have been considerable efforts devoted to generalizing
this result to the wireless fading channel and to multi-user
scenarios [2], [3].

In the present study we investigate optimal power allocation
policies in block fading Gaussian (BF-Gaussian) wireless
networks with secrecy and delay constraints. In our model, a
transmitter wishes to broadcast secret messages to a legitimate
user by employing physical layer security approaches, subject
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U.S. National Science Foundation under Grant CMMI-1435778.

to a strict M -block delay constraint; accordingly, at the source
a stochastic encoder maps the confidential messages to code-
words of length n = MN transmitted over M independent
blocks, i.e., we assume that an interleaver of at most depth
M is employed. We assume that the fading realizations are
independent and identically distributed (i.i.d), that they remain
constant over each block of N channel uses and that they
change independently from one block to the next.

In the investigated setting, in order for random coding
arguments to hold it is required that n → ∞. For finite n,
the BF-Gaussian channels are typically not information-stable
and the generalized capacity expressions in [4] need to be
employed. In this work, similarly to the work in [5], we bypass
such issues by assuming that N → ∞. The case of M → ∞
that corresponds to the ergodic channel has been investigated
in [2] and [6].

The presentation of our results is organized as follows. First,
in Section II we restate the secure waterfilling solution to the
optimal power allocation problem in M -block BF-Gaussian
networks with acausal channel state information (CSI). This
framework is pertinent to applications with parallel chan-
nels (e.g. in the frequency domain) under short-term power
constraints (e.g. OFDM networks with frame based power
constraints). Assuming that the M -block CSI is available
at the transmitting and receiving nodes at the beginning of
the transmission frame, the secure waterfilling policy that
maximizes the network secrecy capacity [7] is discussed.

Next, in Sections IV and V we investigate BF-Gaussian
channels with long term power constraints. We begin with a
“blind scenario” in which the optimal power allocation is to
be decided without any CSI information; the statistics of the
channel gains are the only variables in the power allocation
decision process. In absence of any CSI information we show
that the optimal policy is to equally distribute the power budget
in the M transmission blocks.

Then, we examine networks with causal access to the
legitimate user’s and the eavesdropper’s CSI over a horizon of
M transmission blocks; the pairs of the legitimate user’s and
eavesdropper’s channel gains are sequentially revealed to the
network nodes. We distinguish three subcases accounting for:
(i) the low SNR regime, (ii) the high SNR regime, and, (iii) a
novel universal approximation incorporating the blind scenario
in the horizon of future events, denoted in the following as the
“blind horizon approximation” (BHA).
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In the low SNR regime a threshold transmission policy is
shown to be approximately optimal, in line with earlier results
in networks without secrecy constraints [8]. On the contrary,
in the high SNR regime the optimal strategy is to transmit with
constant power in those blocks in which a non zero secrecy
capacity can be achieved, in agreements with the results
presented in [9] for the case without secrecy. Finally, using
the BHA we derive a tractable expression for the transmission
policy that depends quadratically on the remaining power and
linearly on the gap between the legitimate and eavesdropping
receivers’ CSI. The derived policy is shown to outperform
both the threshold and the constant power policy as long
as the expectation of the gap between the legitimate and
eavesdropping receivers’ CSI is non-negligible.

II. SYSTEM MODEL

We assume a BF-Gaussian channel with i.i.d. realizations.
During the m-th transmission block the legitimate user’s
channel gain is denoted by αm and the eavesdropper’s channel
gain by βm. The proofs of the coding theorems will be
included in the journal version of this paper.

Definition: The secrecy capacity density during one trans-
mission block of the BF-Gaussian channel for an input power
γ and channel gains (α, β) can be expressed as

cs(γ, α, β)
.
=

"
log

1 + αγ

1 + βγ

#+
(1)

with [·]+ = max(·, 0). The secrecy capacity of the M -
block transmission frame for a vector of input powers γ =
[γ0, γ1, . . . , γM−1] and pairs of channel gains (α, β) =
[(α0, β0), (α1, β1), . . . , (αM−1, βM−1)], can be expressed as:

Cs
.
=

1

M

M−1X
m=0

cs(γm, αm, βm). (2)

III. POWER CONTROL WITH SHORT-TERM POWER
CONSTRAINT AND FULL M -BLOCK CSI

The optimal power allocation policy assuming that at the
beginning of the transmission frame the CSI of M parallel
blocks is revealed to the transmitting and receiving nodes
has been derived in [2] and [7] and is repeated below for
convenience. This is the baseline secure waterfilling policy and
its performance cannot be exceeded in the causal scenario.

Without loss of generality we assume that the pairs of
channel gains (αm, βm), m = 0, . . . ,M − 1 are already
permuted so that the differences

δm = αm − βm (3)

appear in non-increasing order. The optimal power allocation
problem can be stated as:

max
γ

Cs (4)

s.t.
M−1X
m=0

γm ≤ MP and γm ≥ 0,m = 0, . . . ,M − 1.(5)

We further define the inverse channel gaps dm as:

dm =
1

βm
− 1

αm
. (6)

The power allocation γ∗ = (γ∗
0 , γ

∗
1 , . . . , γ

∗
M−1) that maxi-

mizes the secrecy capacity satisfies the M -block power con-
straint with equality, i.e,

M−1X
m=0

γ∗
m = MP, (7)

and is given by the secure waterfilling algorithm

γ∗
m

�
1

λ

�
=

8<
:

1
2

hÈ
d2m + 4

λdm −
�

2
αm

+ dm

�i
, m ∈ Q

0, otherwise
(8)

where Q = {i : λ−1 ≥ δi
−1}.

The functions γ∗
m(λ−1) are monotone increasing and con-

tinuous in λ−1. As a result, there exists a unique integer
µ in {0, . . . ,M − 1} such that λ−1 ≥ δm

−1 for m ≤ µ
and λ−1 < δm

−1 for m > µ. The waterlevel λ−1 can
be derived by sequentially pouring water to the functions
γ∗
m(λ−1) until the power constraint is met with equality, i.e.,Pµ
m=0 γ

∗
m(λ−1) = MP .

IV. POWER CONTROL WITH LONG-TERM POWER
CONSTRAINT WITHOUT CSI

We assume an overall long-term power constraint over M
sequential transmission blocks in the form of (5). Accordingly,
the channel gains of the legitimate user and the eavesdropper
are assumed stationary over time with known expected values
µα and µβ respectively and realizations αm and βm during
the m-th block. Our objective at block m, given that we have
remaining power pm, is the identification of the power alloca-
tion γ∗

m that maximizes the instantaneous secrecy capacity and
the secrecy capacity for the future transmission blocks from
block m+ 1 to M .

A. Blind Scenario

We first consider the case in which during the m-th block
we take a decision on the value of γm without having
information on the current channel gains (αm, βm), except for
their stationarity over time and the remaining power pm. In this
formulation, our objective is to maximize the expected secrecy
capacity over the entire horizon. In essence, this formulation
corresponds to the case without delay and with perfect CSI at
the receiver and no CSI at the transmitter ( [5] Section II.A).

Let γ = (γ0, . . . , γM−1). The stochastic optimization ob-
jective function can be written as follows:

max
γ

E

(
M−1X
m=0

cs(γm, αm, βm)

)
= max

γ
E

(
M−1X
m=0

cs(γm, α, β)

)
,

(9)
where the expectation taken over the random variables αm and
βm is re-written with rapport to the generic random variables
α and β.

The above problem can be written as a stochastic dynamic
program as follows: We let Vm(pm) (called the value function)
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be the aggregate secrecy capacity density gained from block
m to the end of the horizon if the optimal power allocation
policy is used. Then the dynamic programming equations can
be written as:

Vm(pm) = max
0≤γm≤pm

E{cs(γm, α, β) + Vm+1(pm − γm)}

m = 0, . . . ,M

VM (pM ) = 0 (resources exhausted). (10)

We perform backward dynamic programming on the opti-
mality equations (10). We define the function:

f(γ) ≡ E
��

log
1 + αγ

1 + βγ

�+�
. (11)

We start the dynamic programming recursion at block m = M ,
where the optimality equations are:

VM (pM ) = max
0≤γM≤pM

f(γM ), (12)

Since f is nondecreasing, the maximization in (12) is achieved
at γ∗

M = pM . Thus, we have: γ∗
M = pM and VM (pM ) =

f(pM ). Thus, at block m = M − 1 the optimality equations
are:

VM−1(pM−1) = max
0≤γM−1≤pM−1

f(γM−1) + f(pM−1 − γM−1).

(13)
Let h(γ) = f(γ) + f(p − γ). Note that h′(γ) = f ′(γ) −
f ′(p − γ), and since f ′(γ) is nonincreasing and f ′(p − γ)
is nondecreasing in γ, we have that h′ is nonincreasing. This
means that it can have at most one extreme point in the interval
[0, p], and the extreme point must be a maximum. At γ = p

2

we have: h′
�
p
2

�
= f ′(p2 )− f ′(p2 ) = 0. Therefore in (13) the

maximum is achieved at γ∗
M−1 = pM−1

2 and VM−1(pM−1) =
2f(pM−1

2 ).
Continuing the recursion we get

VM−n(pM−n) = (n+ 1)f
�pM−n

n+ 1

�
(14)

and the optimal decision is γ∗
M−n = pM−n

n+1 . This implies that
if we have no information about the channel the optimal thing
to do is to divide the power into as many equal parts as there
are periods remaining, i.e., for m = 0, . . . ,M − 1

γ∗
m = P. (15)

The above results are intuitive; as expected, the blind maxi-
mization of a function of the outcomes of M independent trials
can be achieved by equidistribution of the available resources.

V. POWER CONTROL WITH LONG-TERM POWER
CONSTRAINT AND CAUSAL CSI

In the current section we investigate the case in which
during the m-th transmission block we causally obtain infor-
mation regarding the channel state, i.e., the pair (αm, βm) is
causally revealed to the transmitter before the decision on γm
is made. In this setting, during the m-th transmission block,
we have to solve the following optimization problem:

Vm(pm) = max
γm∈A

cs(αm, βm, γm) + E
n
Vm+1(pm − γm)

o
Am =

¦
γm : 0 ≤ γm ≤ pm1{δm>0}

©
. (16)

We distinguish two cases, according to the available power
budget P ; the low SNR and the high SNR regimes.

A. Low SNR Regime

In the low SNR regime, the available power is assumed
small, i.e., P ≪ 1. As a result a valid linear approximation
of the logarithmic function would be log(1 + z) ≃ z, leading
to an approximate expression for the secrecy capacity density
given by:

cs(γ, α, β) ≃ [α− β]+γ = [δ]+γ, (17)

with δ defined in (3). The value function Vm at m = M could
then be written as

VM (pM ) = max
γM∈AM

[δM ]+γM . (18)

The secrecy capacity is thus approximated as a linear function
of the power, so that at m = M the optimal power allocation
is straightforwardly given by

γ∗
M =

§
pM , if δM > 0,
0, otherwise, (19)

which gives the following value function at m = M :

VM (pM ) = [δM ]+pM . (20)

At m = M − 1 the value function takes the form

VM−1(pM−1) = max
γM−1∈AM−1

[δM−1]
+γM−1

+ E{[δ]+}(pM−1 − γM−1). (21)

Thus, at m = M − 1, the optimal power allocation is given
by

γ∗
M−1 =

§
pM−1, if [δM−1]

+ > E{[δ]+}
0, if [δM−1]

+ ≤ E{[δ]+} (22)

Motivated by this result, the following near optimal power
policy during the m-th block is proposed:

γ∗
m =

§
pm, if [δm]+ > E{[δ]+}
0, if [δm]+ ≤ E{[δ]+} (23)

with p0 = MP and m = 0, . . . ,M − 1. In the proposed
threshold power policy, whenever a ”good enough” gap in
the channel gains δm of the legitimate and the eavesdropping
receivers occurs then we transmit at full power.

Intuitively, in the low SNR regime there will not be many
opportunities for achieving high values of the secrecy capacity
density, so whenever such an opportunity occurs it should be
seized in order to maximize the secrecy capacity over the
whole horizon. The threshold is fixed to the expected value
of the gap between the channel gains of the legitimate user
and the eavesdropper, lower bounded by zero. Even when
the legitimate user’s channel is on average worse than the
eavesdropper’s, it is still possible to transmit at some non-
zero rate even in the low SNR regime, given a long enough
horizon, i.e., for large M .
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B. High SNR Regime

In the high SNR regime, i.e., for P → ∞, we can transmit
at very high power during any of the transmission blocks. A
good approximation for the secrecy capacity density during
the m-th block is derived as

lim
γ→∞

cs(γ, α, β) =

"
log

α

β

#+
. (24)

The maximization of the secrecy capacity is as a result inde-
pendent of the power allocation and any transmission policy
could be used. Accounting for other important considerations,
e.g. the minimization of the information leakage, it is proposed
to only transmit during the blocks that satisfy the condition
δm > 0, i.e.,

γ∗
m =

� pm

M−m , if δm > 0

0, if δm ≤ 0
(25)

with p0 = MP and m = 0, . . . ,M − 1.

VI. BLIND HORIZON APPROXIMATION (BHA)

In this section a novel universal approximation is derived
by incorporating the blind policy in the horizon of future
events. Suppose that we have the current CSI at block m,
αm and βm when we take the power allocation decision γm.
The optimality equations for this model are as follows:

Vm(pm) = max
γm∈Am

cs(αm, βm, γm)

+ E
n
Vm+1(pm − γm)

o
(26)

Am =
¦
γm : 0 ≤ γm ≤ pm1{δm>0}

©
. (27)

The proposed approximation for Vm is given as:

V̂m(pm) = max
γm∈Am

gm(γm), (28)

where gm is as follows:

gm(γ) = cs(αm, βm, γ) + (M −m)cs

�
µα, µβ ,

pm − γ

M −m

�
,

(29)
with µα and µβ being the expected values of the channel gains
of the legitimate user and the eavesdropper respectively. The
idea behind the BHA is to approximate the expected value of
the secrecy capacity density in future time slots by assuming
that (i) the channel gains will converge to their expected
values, and, (ii) as a result of this the power allocation will
be the blind policy due to symmetry.

A. Case I: αm > βm and µα > µβ

When αm > βm and µα > µβ the function gm can be
rewritten as:

gm(γ) = log
�1 + αmγ

1 + βmγ

�

+ (M −m) log

 
1 + µα

pm−γ
M−m

1 + µβ
pm−γ
M−m

!
(30)

Taking g′m(γ) = 0 gives the following roots:

(x1, x2) =

 
E +

√
G

2F
,
E −

√
G

2F

!
(31)

where E and F are given below, G is given in the Appendix
and for simplicity of notation we let Lm = 1

M−m :

E = 2µαµβL
2
m(αm − βm)pm + [Lm(αm − βm)

× (µα + µβ) + (αm + βm)(µα − µβ)], (32)
F = µαµβL

2
m(αm − βm)− αmβm(µα − µβ), (33)

We can show that G ≥ 0 (the proof is omitted due to space
limitations). Furthermore, x1 is always outside the interval
[0, pm] so that we always retain only root x2. As a result we
have the BHA power allocation given below (the proof can be
found in the Appendix):

γ∗
m =

§
min(x2, pm), if (αm − βm) ≥ (µα − µβ)
max(0, x2), if (αm − βm) < (µα − µβ)

(34)

B. Case II: αm > βm and µα ≤ µβ

When αm > βm and µα ≤ µβ the function gm can be
rewritten as:

gm(γ) = log

�
1 + αmγ

1 + βmγ

�
(35)

and the BHA reduces to the threshold policy so that

γ∗
m = pm. (36)

C. Case III: αm ≤ βm

When αm ≤ βm the function gm can be rewritten as:

gm(γ) = (M −m) log

 
1 + µα

pm−γ
M−m

1 + µβ
pm−γ
M−m

!
(37)

and the optimal BHA policy is to allocate no power, i.e.,

γ∗
m = 0. (38)

VII. NUMERICAL RESULTS

In this section, we present numerical evaluations of the
per block secrecy rates following the proposed transmission
policies in Rayleigh channels, i.e., the channel gains αm and
βm are exponentially distributed with mean values µα and
µβ respectively. We set M = 10, µβ = 1 and the average
SNR per block as µαP . In Figs. 1-4 we depict the secrecy
rates per block achieved by the various transmission strategies
normalized to the benchmark secure waterfilling rate achieved
with acausal CSI for µα = {0.1, 1.01, 5, 10}, averaged over
1000 channel realizations. We note that the waterfilling rate
is not achievable in the case of causal CSI except for the
asymptotic scenario of an ergodic channel with M → ∞.

The threshold policy outperforms the constant policy in the
low SNR regime and vice versa in the high SNR regime.
Furthermore, the constant policy always outperforms the blind
policy as in the latter part of the power budget is spent on
blocks with zero secrecy capacity density when αm ≤ βm.

On the other hand, for µα ≤ µβ the BHA policy coincides
with the threshold policy. In this case the BHA policy is not
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Fig. 1. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 0.1, µβ = 1 and M = 10.
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Fig. 2. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 1.01, µβ = 1 and M = 10.

optimal in the whole SNR axis and is outperformed in the
intermediate and high SNR regimes by the constant policy.
The same is true for µα ≃ µβ . However, when µα is distinctly
greater than µβ the secrecy rate achieved with the BHA policy
is greater than the rates achieved with the threshold and the
constant policy over the entire SNR axis.

Finally, in Fig. 5 the average secrecy rates per block
achieved by the causal BHA policy and the acausal waterfilling
are depicted for µβ = 1 and M = 10. Interestingly, as long as
µα is distinctly greater than µβ , we loose almost no secrecy
rate -in absolute terms- due to the causal nature of the CSI
feedback over the entire SNR axis.

VIII. CONCLUSIONS

We have investigated the optimal power allocation in delay
constrained M -block BF-Gaussian networks. By studying the
blind case with no CSI availability during the decision pro-
cess we have concluded that the optimal policy consists of
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Fig. 3. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 5, µβ = 1 and M = 10.
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Fig. 4. Per block secrecy rates normalized to the secure waterfilling rate
achieved by various policies for µα = 10, µβ = 1 and M = 10.

equally distributing the power along the transmission blocks.
Furthermore, the study of networks with causal access to the
CSI has been performed accounting for three distinct cases;
the low and the high SNR regimes and a novel universal
approximation. In the low SNR regime we have proposed
a near optimal threshold policy whereas in the high SNR
regime a constant transmission policy has been shown to be
near optimal. Finally, by incorporating the blind policy in the
horizon of future events we have been able to derive a novel
universal approximation that we have denoted as “the blind
horizon approximation” (BHA). Through numerical evalua-
tions it has been shown that the BHA compares favorably with
the benchmark waterfilling policy in the acausal feedback case
and consistently outperforms the threshold and constant power
transmission policies as long as the mean channel gain of the
legitimate user is distinctively greater than the mean channel
gain of the eavesdropper.
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IX. APPENDIX

The expression for G is given in (39) below. It can be shown
that when αm > βm and µα > µβ , G ≥ 0.

Next we prove that x1 is always outside the interval [0, pm].
We have two cases, according to the sign of F . For F > 0,
it is straightforward to show that x1 ≥ E

2F > pm, since the
coefficient of pm in the ratio E

2F is greater than or equal to
1 and the constant term is strictly positive. Thus, if F > 0
then x1 > pm. On the other hand for F < 0, x1 < 0, since
E +

√
G is strictly positive. Therefore, x1 is always outside

the interval [0, pm].
Regarding whether x2 is in the interval [0, pm] we first

calculate the derivative of gm at points 0 and pm, given in (40)
and (41) below. If (αm − βm) ≥ (µα − µβ), then g′m(0) ≥ 0.
Since only one root of g′m can exist in the interval [0, pm],
namely x2, if g′m(pm) ≥ 0 then the root (maximum) must be
outside of the interval [0, pm], x2 ≥ pm, and the maximum is
achieved at pm. However, if g′m(pm) < 0 then the root must
be in [0, pm] and the maximum is achieved at x2. Thus the
maximum in [0, pm] is achieved at min(x2, pm).

If on the other hand (αm − βm) < (µα − µβ), then
g′m(pm) ≤ 0. Since only one root of g′m can exist in the
interval [0, pm], namely x2, if g′m(0) ≤ 0 then the root (the

maximum) must be outside of the interval [0, pm], x2 ≤ 0 and
the maximum is achieved at 0. However, if g′m(0) > 0 then
the root must be in [0, pm] and the maximum is achieved at
x2. Thus the maximum in [0, pm] is achieved at max(0, x2).
This gives the power allocation in (34).
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ααm
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βµαL
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βbLmpm + 4αmµ2
αβmLmpm + 4αmµ2

αL
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mpmµβ − 4βmµ2

βµαL
2
mpm

+ 4βmµ2
αL

2
mpmµβ − µ2
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2
mβm + αmµ2

αL
2
m + αmL2
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β − βmL2

mµ2
β − 2αmµαL

2
mµβ + 2βmµαL

2
mµβ

− 2αmµ2
βLm − 2βmµ2

βLm − 4µβαmβm + 4µ2
αL

2
mµβ − 4µαL

2
mµ2

β + 2βmµαµβm + 2αmµ2
αLm

+ 2βmµ2
αLm + 4µααmβm − 2αmµαµβ ]. (39)

g′m(0) =
[µαµβL

2
m(αm − βm)]p2m + [Lm(αm − βm)(µα + µβ)]pm + [(αm − βm)− (µα − µβ)]

(1 + µαLmpm)(1 + µβLmpm)
(40)

g′m(pm) =
[−αmβm(µα − µβ)]p

2
m + [−(µα − µβ)(αm + βm)]pm + [(αm − βm)− (µα − µβ)]

(1 + αmpm)(1 + βmpm)
(41)
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