Cookies?
Library Header Image
LSE Research Online LSE Library Services

Model tuning in engineering: uncovering the logic

Steele, Katie and Werndl, Charlotte (2016) Model tuning in engineering: uncovering the logic. Journal of Strain Analysis for Engineering Design, 51 (1). pp. 63-71. ISSN 0309-3247

[img]
Preview
PDF - Accepted Version
Download (325kB) | Preview

Identification Number: 10.1177/0309324715575445

Abstract

In engineering, as in other scientific fields, researchers seek to confirm their models with real-world data. It is common practice to assess models in terms of the distance between the model outputs and the corresponding experimental observations. An important question that arises is whether the model should then be ‘tuned’, in the sense of estimating the values of free parameters to get a better fit with the data, and furthermore whether the tuned model can be confirmed with the same data used to tune it. This dual use of data is often disparagingly referred to as ‘double-counting’. Here, we analyse these issues, with reference to selected research articles in engineering (one mechanical and the other civil). Our example studies illustrate more and less controversial practices of model tuning and double-counting, both of which, we argue, can be shown to be legitimate within a Bayesian framework. The question nonetheless remains as to whether the implied scientific assumptions in each case are apt from the engineering point of view.

Item Type: Article
Official URL: http://sdj.sagepub.com/
Additional Information: © 2015 The Authors
Divisions: Philosophy, Logic and Scientific Method
Subjects: B Philosophy. Psychology. Religion > BC Logic
Sets: Departments > Philosophy, Logic and Scientific Method
Date Deposited: 14 Apr 2015 11:02
Last Modified: 02 Nov 2017 16:32
Projects: AH/J006033/1, ES/K006576/1
Funders: Arts and Humanities Research Council, Economic and Social Research Council
URI: http://eprints.lse.ac.uk/id/eprint/61547

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics