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Abstract

A Searcher seeks to find a stationary Hider located at some point H (not
necessarily a node) on a given network Q. The Searcher can move along
the network from a given starting point at unit speed, but to actually find
the Hider she must pass it while moving at a fixed slower speed (which may
depend on the arc). In this ‘bimodal search game’, the payoff is the first
time the Searcher passes the Hider while moving at her slow speed. This
game models the search for a small or well hidden object (e.g., a contact
lens, improvised explosive device, predator search for camouflaged prey). We
define a Bimodal Chinese Postman tour as a tour of minimum time δ which
traverses every point of every arc at least once in the slow mode. For trees and
weakly Eulerian networks (networks containing a number of disjoint Eulerian
cycles connected in a tree-like fashion) the value of the bimodal search game
is δ/2. For trees, the optimal Hider strategy has full support on the network.
This differs from traditional search games, where it is optimal for him to hide
only at leaf nodes. We then consider the notion of a lucky Searcher who can
also detect the Hider with a positive probability q even when passing him at
her fast speed. This paper has particular importance for demining problems.
Subject classifications: teams: games/group decisions; search/surveillance;

tree algorithms: networks/graphs.
Area of review : Military and Homeland Security
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1 Introduction

In traditional models of search games, a Searcher moves around a search space
with the aim of reaching (and hence finding) a stationary Hider in minimal
time. In this paper we make the observation that a Searcher’s ability to detect
a Hider or hidden object may depend on the speed at which she is traveling,
so if she is moving too fast she may pass the Hider without detecting him. For
example, when searching for a contact lens it is necessary to move slowly on
one’s hands and knees, but there is also the option of standing up and walking
briskly to a different location. To take a more serious example, there has been
a lot of recent interest (Johnson and Ali, 2012) in the detection of landmines
and improvized explosive devices (IEDs). An explosives expert searching for
an IED may be able to move from place to place quickly in a vehicle, but
in order to detect the IEDs she must get out of her vehicle and move at a
slower pace. Similarly, specially trained mine detection dogs (MDDs) are
used extensively in the detection of mines, and it has been observed that
dogs perform this role more effectively when moving at a slower speed, as
explained in the following extract from a report for the Geneva International
Centre for Humanitarian Demining (McLean, 2001):

For many medium to large sized dogs, the natural walking
pace of a human (5-6 km/h) is an uncomfortable speed, leading
to pulling or dragging on a lead because the dog wants to walk (3-
4 km/h) or lope (8-10 km/h). The loping run can be maintained
by dogs for hours, and it is often the gait used by MDDs while
searching for mines. Unfortunately, while the loping gait allows
the dog to cover a great deal of ground and work for long periods,
it is probably moving too fast to conduct an effective search over
the entire surface of the ground. To search effectively, the dog
must move slowly by reducing its gait to a walk, or even a slow
walk. Dogs that do so naturally are likely to be better MDDs.

Another example, taken from biological science is that of a bird of prey
searching for prey: in this case the bird can fly quickly to an area of high grass,
and then land on the ground and walk at a slower speed when it wants to
see the hidden prey. Indeed, experimental studies have shown that in nature
high speed can have a detrimental effect on visual acuity (for example, see
Gendron 1986).

1



In this paper, we model the search space Q as a rooted network consisting
of a finite set of arcs of given lengths, with a distinguished node O called the
root. We denote the length (Lebesgue measure) of an arc a by λ(a) and
the total length of the network by λ. In the traditional model of search,
introduced by Isaacs (1969) and studied extensively by Gal (1979, 2000) and
others, the Searcher moves around the network at unit speed starting from
O until she meets a stationary Hider located somewhere on the network.
Here we suppose that on each arc the Searcher can travel at either a slow
speed, which may depend on which arc she is on, or a fast speed (which we
normalize to 1). It will be convenient to specify the Searcher’s slow and fast
speeds on an arc a in terms of the travel times α = αa and β = βa that it
takes her to travel the length of a at her slow and fast speeds, respectively.
The fast time β is thus equal to the length λ (a) of a.
In the bimodal search game, which we denote by B(Q,O) for a network Q

with root O, a Hider strategy is simply a point on the network. A Searcher
strategy is a path on Q starting from O on which the Searcher can move at
either her fast (unit) or slow speed, and which covers every point of Q at least
once in the slow mode. In general, we will allow the Searcher to change her
speed while in the interior of an arc, though only a finite number of times.
We will also assume that the Searcher searches any given arc all at once,
so that she never travels part of the way along an arc and then turns back.
We follow the convention originally introduced by Gal (1979) of denoting
Searcher pure strategies by upper case letters (S) and mixed strategies by
lower case (s). Hider pure strategies will usually be given by a point x on
the network, and mixed strategies by some probability density h(x). For
given Searcher and Hider pure strategies S and x, we define the search time,
denoted by T (S, x) as the first time that the Searcher passes the Hider while
moving at her slow speed. The Searcher wishes to minimize, and the Hider
to maximize, the search time. For mixed strategies s and h we write T (s, h)
for the expected search time.
Bimodal search games provide a nice continuous link between the classical

continuous path search games studied by Gal (1979) and discontinuous path
games, called generalized search in Alpern and Gal (2003). Suppose the slow
speed and fast speed are constant on the network, and σ ≤ 1 denotes the
ratio of the slow speed to the fast speed. If σ is very close to 1, that is
β ' α on all arcs, then there is no need for the Searcher to move at her fast
speed, so in this case bimodal search approaches Gal’s original game. On the
other hand, if we normalize the slow speed to 1 and let the fast speed 1/σ
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go to infinity (or equivalently let σ go to 0), this is as if the Searcher can
instantaneously (or almost instantly) jump to any point of the network at
any time, and resume slow search at that point. The latter case approximates
generalized search, in which the value of the game is half the time required
to tour the network at the slow speed. Thus bimodal search, with a speed
ratio σ going between 0 and 1, links the known cases of generalized search
and classical search by a continuum of search problems.
The paper is organized as follows. Section 2 analyzes some strategies for

the players that are available on any network. In Section 3 of the paper we
restrict our attention to the bimodal search game played on a single arc I
with the root at one end. In Gal’s original search game (what we call the
classical game), the solution for this case is trivial: the Hider hides at the
opposite end of the arc from the root and the Searcher just traverses the
arc. However in the bimodal search game the solution is far from trivial, and
in particular the optimal strategy for the Hider is a continuous probability
distribution (related to the beta distribution) whose support is the whole
arc. (If the Hider always hid at the far end, the Searcher would just go there
at the fast speed, and return at the slow speed). An optimal strategy of this
complexity for the Hider hasn’t been seen in the literature before for such a
simple network as a single arc.
In Section 4 we give the solution of the bimodal search game on a tree,

and explain how this solution can be extended to weakly Eulerian networks,
networks that consist of a number of disjoint Eulerian cycles which, when
contracted to a single point, leave a tree. For trees, the classical games of
Gal (1979) have finitely many strategies for each player, so Von Neumann’s
minimax result suffi ces in that context. However, for bimodal games the
strategy spaces (even for trees) are no longer finite, so a new minimax result
is needed, which we present in Section 5. In Section 6 we consider how the
game is related to a search game proposed by Kikuta and Ruckle (1994) in
which the Searcher moves in a network at constant speed but must pay a
search cost at each node to check whether or not the Hider is there. Finally,
in Section 7 we study a variant on the game in which the Searcher has a
positive probability of detecting the Hider even when traveling at his fast
speed.
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2 Simple Strategies for General Networks

In this section we consider strategies for the bimodal search game that can
be used on any rooted network and evaluate the expected search times that
they guarantee. These generalize similar strategies introduced by Gal (1979)
for traditional (single-speed) search games, and the proofs are very similar.
The material that really distinguishes bimodal search will not be seen until
the next section.
The Searcher can always adopt the following strategy.

Definition 1 ABimodal Chinese Postman (BCP) tour P (t) is a closed
path P (t) on Q which traverses every point at least once in the slow mode
and takes minimum time δ = δ (Q) (called the bimodal tour time of Q). A
random mixture of an BCP tour and its time-reversed tour P (δ − t) is called
a Random Bimodal Chinese Postman (Random BCP) tour.

As an example, consider a network with two nodes, O (start) and A, that
are connected by three arcs which are identical in that they have the same
slow and fast traversal times α and β. A BCP tour must travel slowly for
time at least 3α and must also traverse one of the arcs fast in time β to
construct a tour. As such a tour is clearly possible, we have δ = 3α + β. If
we write Σα = Σarcs aαa for the sum of the slow travel times of the arcs of a
network Q and Σβ = Σarcs aβa for the corresponding sum at the fast times,
then a tree clearly has δ = Σα+ Σβ as each arc must be traversed once fast
and once slowly. An Eulerian network clearly has δ = Σα since a BCP tour
consists of an Eulerian tour taken at the slow speed.
By using a Random BCP tour in the bimodal search game B (Q,O) the

Searcher can find every point of the network Q in expected time at most
δ/2. To see this note that if the BCP tour finds a point x in time t, the
reversed tour finds it no later than δ− t, so on average in time not exceeding
(t+ (δ − t)) /2 = δ/2. In summary:

Lemma 2 A Random Bimodal Chinese Postman tour finds any point in a
rooted network Q,O in expected time not exceeding δ/2.

If the value of the game is δ/2, we say that Q is simply searchable.
We now turn to Hider strategies. A strategy always available to the Hider

on any network is the slow-uniform strategy, which hides in any interval of
any arc with a probability proportional to its slow traversal time. By using
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this strategy, the same argument as for traditional (single speed) games,
Lemma 1 of (Gal 1980), shows that she can ensure the expected search time
is at least Σα/2. (This is because Hider can ensure that the probability he is
found by time t does not exceed t/Σα, which implies the expected capture
time is at least Σα/2.

Lemma 3 If the Hider adopts the slow-uniform distribution, then for any
bimodal Searcher pure strategy, the expected capture time is at least Σα/2.

Clearly if Σα is equal to δ then we can immediately deduce from Lemmas
2 and 3 that the value of the game is δ/2. If the network Q is Eulerian, so
that there is a closed path that visits each arc exactly once, then clearly
δ = Σα. In this case a BCP tour is simply a Eulerian network traversed at
the slow speed. Hence we have:

Theorem 4 If Q is an Eulerian network then the value of the game B (Q,O)
for any starting point O is V = Σα/2 = δ/2. A Random BCP tour is optimal
for the Searcher and the slow-uniform strategy is optimal for the Hider.

While the results shown in this section are obvious extensions of the
original work of Gal (1979), we shall see in the next section that even for
a network consisting of a single arc, the bimodal search game can be very
different from the traditional single-speed search game.

3 Searching a single arc

We begin by defining and analyzing the bimodal search game played on
a single arc network Q = I = [0, 1] , with length (and fast travel time)
normalized to β = 1, root at O = 0 and the other end point 1 labeled as P.
The slow traversal time is given by α > 1, with corresponding slow search
speed σ = 1/α. At the end, we undo the normalization and rewrite our
results for an interval [0, β] of arbitrary fast traversal time (length) β and
slow traversal time α.
A single arc network is a very special case of a tree, and for tree networks

Q we will assume that the Searcher follows a depth-first path. This means
that whenever she is at any point x of Q, she searches every point of the
subtree starting at x (at least once in slow mode), before searching anywhere
else. In the classical model (Gal, 1979) and in more recent search games
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models (Alpern, 2010 and Alpern and Lidbetter, 2013), it is always optimal
for the Searcher to use depth-first searches. In the present case of a single
arc, this means that the Searcher simply goes monotonically from 0 to 1 and
then monotonically back again. So the only flexibility in the searcher pure
strategy is contained in the subset C of Q on which she searches (travels at
slow speed) on her first arrival at a point. That is, points x in C are found
by the Searcher on her first arrival at x, points in the complement C ′ of C
are found at the second arrival of the Searcher. We will require throughout
that the Searcher can alternate between slow and fast speeds only a finite
number of times, that is, C is a finite union of closed intervals. (To obtain
the existence of a value in Section 5, we will also put an arbitrarily small but
positive lower bound on the length of the intervals compromising C, but this
is a purely technical assumption we will ignore for the present.)
More generally, for a measurable set C, define the path SC which first

reaches the point x ∈ I at the first arrival time f (x) defined by

f (x) = f (x,C) = α · λ (C ∩ [0, x]) + 1 · (x− λ (C ∩ [0, x])) , (1)

where f ′ (x) equals α on C and equals 1 on C ′.

The path SC (t) reaches x for the second time (on the return journey) after
traversing the interval [x, 1] once fast and once slowly, so in time f (x) +
(1 + α) (1− x) . So

T (SC , x) =

{
f (x) , if x ∈ C

f (x) + (1 + α) (1− x) , if x ∈ C ′. (2)

The interpretation is that C is searched slowly on the way to P = 1 and its
complement C ′ is searched slowly on the way back.
In the traditional search game on an interval with endpoint start, all

Hider locations are dominated by hiding at the opposite end to the start, so
the Hider in this case has a pure strategy optimum. In the bimodal search
game, even on the simple interval network, it turns out that the Hider must
use a full support distribution on the interval!

Theorem 5 A rooted tree Q,O consisting of a single interval (arc) [0, 1]
with root O = 0 is simply searchable. That is, if the slow speed is σ, so slow
traversal time is α = 1/σ, the value of the bimodal search game on it is given
by V = δ/2 = (1+α)/2 = (1+1/σ)/2. The unique optimal Hider distribution
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has density h∗ and cumulative distribution H∗ given by

H∗ (x) = 1− (1− x)γ and h∗ (x) = γ (1− x)γ−1 , (3)

where γ =
α− 1

α + 1
.

More generally, if the slow and fast traversal times are α and β, V = δ/2 =
(α + β) /2 and

H∗ (x) = 1−
(

1− x

β

)γ
, h∗ (x) = γ

(
1− x

β

)γ−1
, γ =

α− β
α + β

=
1− σ
1 + σ

. (4)

Proof. We consider the normalized version (β = 1) and show that the
unique Hider strategy that ensures the same expected search time against
any Searcher strategy SC is h∗. We then show that this expected search time
is δ/2, so by Lemma 2, that is the value.
It follows from equation (2) that for any Hider density h (x) with cu-

mulative distribution H (x) and any Searcher strategy SC , we can write the
expected search time T (h, SC) as

T (h, SC) =

∫
C

f(x) h(x) dx+

∫
C′

(f(x) + (1 + α) (1− x) ) h(x) dx

=

∫ 1

0

f(x) h(x) dx+

∫
C′

(1 + α) (1− x) h(x) dx. (5)

We evaluate the left integral of (5) using integration by parts, giving∫ 1

0

f(x) h(x) dx =

∫ 1

0

−f(x)
d

dx
(1−H(x)) dx

= [−f(x) (1−H(x))]10 +

∫ 1

0

f ′(x) (1−H(x)) dx

= 0 + α

∫
C

1−H (x) dy +

∫
C′

1−H (x) dx. (6)

We evaluate the expected time T (h, SC) by substituting (6) in (5) to obtain

T (h, SC) = α

∫
C

1−H (x) dx+

∫
C′

(1−H (x) + (1 + α) (1− x) h(x)) dx.

(7)
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We seek an h = h∗ such that (7) is independent of C. So for all x ∈ [0, 1], we
must have

α (1−H∗ (x)) = (1−H∗ (x) + (1 + α) (1− x) h∗(x)) or (8)

H∗′ (x) = γ
1−H∗ (x)

1− x , H∗ (0) = 0, H∗ (1) = 1, γ =
α− 1

α + 1
.

This ODE has the unique solution given by (3). For this H (x) , we have

α (1−H∗ (x)) = (1−H∗ (x) + (1 + α) (1− x) h∗(x))

= α (1− x)
α−1
α+1 , so for any C,

T (h∗, SC) =

∫ 1

0

α (1− x)
α−1
α+1 dx =

α + 1

2
, as claimed.

For an interval [0, β] with traversal times α and β, γ is given by (4). Since (3)
is the unique solution of the ODE (8), the optimal Hider strategy is unique.

The distribution h∗ can also be expressed as the beta distribution with
parameters 1 and γ. Figure 1 depicts a graph of the density function h∗ and
the corresponding cumulative distribution H∗, for the traversal time para-
meters α = 2 and β = 1 (giving γ = 1/3). Note that the density approaches
infinity as x approaches 1.

Figure 1. Graphs of h∗(x) (top) and H∗(x)
(bottom), γ = 2/3.
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Note that as α→∞ (σ → 0) for fixed β = 1, the h∗ distribution converges
to the uniform distribution; as α→ β = 1 (σ → 1) it converges to the atomic
distribution at x = 1. The former case corresponds to the so-called arbitrary
start single-speed game, in which the Searcher can start anywhere, and the
uniform distribution was shown to be optimal by Dagan and Gal (2008). The
latter case corresponds to traditional single-speed game, in which the only
undominated Hider strategy is to hide at the opposite end (x = 1) to the
Searcher starting point. So we have a nice continuous bridge between two
well known variations of the single-speed game.
We can vary the game another way by specifying a starting point in the

interior of an interval, and even give the two resulting arcs different slow
speeds. It turns out that the value of the game is independent of the starting
point. This is stated in the following result.

Corollary 6 Consider the bimodal search game on an interval Q = [0, β1 + β2]
with an interior starting point O = β1, and slow traversal times α1 on the
arc a1 = [0, β1] and α2 on the the arc a2 = [β1, β1 + β2] . This network is
simply searchable, with V = δ/2 = (α + β) /2, where α and β are the total
slow and fast traversal times α = α1 + α2 and β = β1 + β2.

Proof. Suppose the Hider hides along each arc ai with distribution pih∗i ,
where pi = δi/δ and h∗i is the optimal hiding distribution on ai, O given in
Theorem 5. Fix any bimodal pure Searcher strategy. Since it must be depth-
first it either searches a1 before b1 or the other way around. Suppose the
former. Then if the Hider is in a1 the expected search time is at least δ1/2,
by Theorem 5 for a single arc; similarly if he is in a2, then the expected search
time is at least δ1 (the time to tour a1) plus δ2/2 (the expected additional
time to find him in a2). Consequently the expected capture time is at least

p1
δ1
2

+ p2

(
δ1 +

δ2
2

)
=

1

2

(
δ1
δ

(δ1) +
δ2
δ

(
δ1 +

δ2
2

))
=

(δ1 + δ2)
2

2δ
=
δ

2
.

The same estimate holds if the search takes place in the reverse order.
The construction of the optimal Hider distribution for an interior start

game on an interval is illustrated below.

Example 7 Consider the interval network Q = [−1/3, 2/3] with interior
start at O = 0. The arc a1 = [−1/3, 0] has α1 = 2/3 and β1 = 1/3
(σ1 = 1/2) and the arc a2 = [0, 2/3] has α2 = 2 and β2 = 2/3 (σ2 = 1/3).
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So δ1 = 1, δ2 = 8/3, and the total weights on a1 and a2 are p1 = 3/11
and p2 = 4/11. We have γ1 = (2/3− 1/3) / (2/3 + 1/3) = 1/3 and γ2 =
(2− 2/3) / (2 + 2/3) = 1/2 So the weight on the left arc between −y and

0 is (3/11)

(
1−

(
1− (−y)

1/3

)1/3)
and on the right arc between 0 and y is

(8/11)

(
1−

(
1−

(
y

(2/3)

))1/2)
. The graph in Figure 2 below shows the opti-

mal probability for the Hider to be between 0 and y on the two arcs a1 and
a2.

Figure 2. Optimal probability Hider is between 0 and
y, −1/3 ≤ y ≤ 2/3 as described in Example 7.

4 Search on Rooted Trees

Under the continuing assumption that the Searcher uses depth-first paths,
the analysis of bimodal games on an interval can be extended to rooted
trees. In this section we show that rooted trees are simply searchable —their
search values are half their respective bimodal tour times. The following
‘replacement lemma’shows that the search value of a tree is not changed if
we replace a subtree by a leaf arc with the same bimodal tour time.

Lemma 8 Suppose Q,O is a rooted tree with δ (Q) = δ and with a proper
subtree Q1 starting at some node P. Let Q∗, O be the tree which is the same
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as Q,O except that the subtree Q1 at P is replaced by a subtree Q2 consisting
of a single arc a with δ (a) = δ1 ≡ δ (Q1) . If Q∗, O and Q1, P are simply
searchable, then so is Q,O.

Proof. Fix an optimal Hider distribution h∗ onQ∗, O. Let h be a distribution
on Q which is equal to h∗ on Q − Q1 and is proportional to an optimal
distribution on Q1. Let S be any pure bimodal search strategy on Q,O. We
will show that T (S, h) ≥ δ/2. Let J = [t0, t1] denote the closed time interval
when S is searching Q1 - it is an interval by the depth-first assumption. Let
S∗ be the pure bimodal search strategy on Q∗, O which has S∗ (t) = S (t) for
t /∈ J and which is any bimodal search of Q1, P during J. We will show that

T (S, h) ≥ T (S∗, h∗) ≥ δ/2, by assumption on h∗.

Let F and F ∗ denote the cumulative distribution for the capture times cor-
responding to S, h and S∗, h∗, respectively. Note that T (S, h) and T (S∗, h∗)
are the means of the respective distributions F and F ∗, so it is enough to
show that the mean of F is at least the mean of F ∗. Clearly F (t) = F ∗ (t) for
t /∈ J. Furthermore, the conditional mean of F on J is at least the conditional
mean of F ∗ on J , because E (F (t)− F (t0)) ≥ δ1/2 (by assumption) and
E (F ∗ (t)− F ∗ (t0)) = δ1/2 (by Theorem 5). It follows that the mean of F is
at least the mean of F ∗, so T (S, h) ≥ T (S∗, h∗) ≥ δ/2, as claimed. It follows
from Theorem 2 that V (Q,O) = δ/2, and hence Q,O is simply searchable.

Note that in choosing the traversal times α (a) and β (a) of the new arc a
in the above construction, we have to satisfy the equation α (a) +β (a) = δ1,
where δ1 is given. This gives us one degree of freedom, which we can exploit.
We will show soon that we can use the above lemma to establish that

V = δ/2 for all trees, but to illustrate the idea we first give a special case of
an interval with two distinct slow search times. Recall that we equate fast
time β with length.

Example 9 Take Q = [0, 1] , O = 0, as in Section 3 and with an artificial
node P = 1/2 separating subintervals with distinct slow speeds. Consider a
decomposition Q1 = [1/2, 1] , and Q0 = Q − Q1 = [0, 1/2] . Suppose that α0
(slow traversal time of Q0) is 1 and α1 (slow traversal time for Q1) is 2; so
we have distinct slow speeds on the full interval, σ0 = 1/2 (on the left) and
σ1 = 1/4 (on the right). Note that δ (Q1) = α1 + β1 = 2 + 1/2 = 5/2. We
use Lemma 8 to replace Q1 with another arc Q2 = a (starting at P = 1/2)
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such that δ (a) = 5/2. If we can also achieve σa = 1/4, the same as σ0, then
we will have a single arc network Q∗ with constant slow speed, so we know
from Theorem 5 that V (Q∗) = δ(Q)/2 = 2. Thus our algebraic problem is to
have slow and fast traversal times for the new arc α which satisfy

α + β = 5/2 and β/α = 1/2, or α = 10/6 and β = 5/6 .

The new network Q∗ constructed by Lemma 8 has slow and fast traver-
sal times α∗ = 1 + 10/6 = 16/6 and β∗ = 1/2 + 5/6 = 8/6, with γ∗ =
(16/6− 8/6) / (16/6 + 8/6) = 1/3 by (4) and constant slow speed σ∗ = 1/2.
Hence by Theorem 5 the optimal cumulative Hider distribution is given by
H∗ (y) = 1 − (1− y/ (8/6))1/3 on [0, 8/6] . The arc Q0 = [0, 1/2] is mapped
by the Lemma isometrically onto the same interval [0, 1/2] , which is hidden
in with total probability 1 − (1− (1/2) / (8/6))1/3 = 1 − 3

√
5/2 ' 0.145. The

second arc Q1 = [1/2, 1] is mapped onto the interval [1/2, 10/6] linearly by
y → g (y) = 1/2 + (5/3) (y − 1/2) . So the optimal Hider distribution on the
original two speed interval Q0 = [0, 1] is given by H∗ (y) for y ≤ 1/2 and by
H∗ (g (y)) for 1/2 ≤ y ≤ 1, as illustrated in Figure 3.

Figure 3. Optimal Hider distribution for Example 9.

Clearly this example can be extended more generally, so any tree con-
sisting of two consecutive arcs above the root, with distinct slow speeds, is
simply searchable, as stated formally below.

Lemma 10 Let Q, O be the rooted tree based consisting of an interval [0, β1 + β2]
with root O = 0, with slow speed α1/β1 on arc [0, β1] and distinct slow speed
α2/β2 on arc [β1, β1 + β2] . Then Q,O is simply searchable, i.e. has value
V (Q,O) = δ/2 = (α1 + α2 + β1 + β2) /2.
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The two procedures illustrated in Examples 7 and 9 and established in
Corollary 6 and Lemma 10 can be used to recursively convert any rooted tree
into a single—speed interval with root at the end. We take any penultimate
node (leading to two leaf nodes) and convert the two leaf arcs to a single one
by Corollary 6. Then we convert the two arcs (going in and out of the former
penultimate node) to a single arc with a constant speed by Lemma 10. A
slightly more general procedure is outlined in the proof of the following.

Theorem 11 Every rooted tree is simply searchable. That is, the search
value V (Q,O) of a rooted tree Q,O exists and is equal to half its bimodal
tour time δ.

Proof. We prove this result by induction on the number n of arcs of Q,
noting that we must put (artificial) nodes of degree 2 at points of an arc
where the slow search speed changes, as in Example 9 above. If n = 1 or
2 then Q is topologically an interval. If the root is in the interior, it has
two arcs and is simply searchable by Corollary 6. If the root is at an end,
it has one or two arcs and is simply searchable by Theorem 5 or Lemma
10. Suppose the result is true for trees with up to n − 1 arcs, and let Q,O
be a rooted tree with n > 2 arcs. Let Q1 be subtree of Q rooted at some
node P with at least two and fewer than n arcs. Since Q1 has fewer than n
arcs it is simply searchable by the induction hypothesis. Now apply Lemma
8 to obtain a new rooted tree Q∗, O by replacing Q1 at P with a single
arc a with δ (a) = α (a) + β (a) = δ (Q1) , with V (Q,O) = V (Q∗, O) and
δ (Q∗) = δ (Q) = δ. Since Q∗ has at most n− 1 arcs, it is simply searchable,
and hence so is Q,O.
We now show how the ideas of this section can be used to construct an

optimal Hiding distribution on a rooted tree.

Example 12 Consider the rooted tree drawn on the left in Figure 4. The
lengths (and fast travel times β) of the arcs are indicated to the left of the
arcs in the figure and the slow travel times α are indicated on the right. Note
that the subtree at P is the same as the interior start interval of Example 7,
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which has a bimodal tour time δ of 11/3.

Figure 4. Illustration of networks in Example 12
with fast and slow travel times indicated.

According to Lemma 8, we can replace it (as we do on the right) with a
single arc of δ = 11/3. We also want this new arc to have the same speed
as the root arc, namely σ = 1/4. So we solve α + β = 11/3 and β/α = 1/4
to get times α = 44

15
, β = 11

15
for the new arc above P. The full tree on the

right has β = 1/2 + 11/15 = 37/30, α = 4β, and hence by (4) it has γ =
(4β − β) / (4β + β) = 3/ (5β) = 18/37. So the cumulative distribution on OP
(on the left or right) is given by 1 − (1− y/ (37/30))18/37 , which is the blue
curve on the right in Figure 5, drawn up to y = 1/2. The total probability of
hiding on OP is 1− (1− (1/2) / (37/30))18/37 ' 0.22. The distribution of the
subtree above P is the same as in Example 7, except that the probabilities are
reduced by a factor of .78 = 1 − .22. The optimal Hider distribution on the
tree is shown below in Figure 5, with the lower arc distribution drawn to the
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right.

Figure 5. Optimal Hider distribution on tree of
Figure 4.

To summarize some of our results, we have shown that both Eulerian
networks (Theorem 4) and trees (Theorem 11) are simply searchable. As
in Gal (2000), these results can be combined to show that weakly Eulerian
networks (roughly speaking, networks which consist of disjoint Eulerian net-
works arranged in a tree-like fashion) are also simply searchable. The proof
is essentially the same as that of Gal, or in the more recent paper of Alpern
(2011). In the latter, given any weakly Eulerian network Q0, we first identify
all the nodes in a given Eulerian component, to produce another network Q1.
We then replace every resulting loop at such an identified node by an arc of
half its length, to arrive at a final network Q2, which is a tree. These two
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transformations are shown in Figure 6.

Figure 6. A network Q0 and its transformed
networks, Q1 and Q2, illustrating how Q0 is

simply searchable.

Both transitions result in networks that are no worse for the searcher (lower
or equal value) and preserve the total length of the network. For bimodal
games, we simply note that the transitions are still favorable to the Searcher,
and the bimodal tour times δ are preserved. So the same arguments show
that V (Q2) = δ/2 and hence V (Q0) ≥ V (Q1) ≥ V (Q2) = δ/2. Since we
always have V (Q0) ≤ δ/2 by Lemma 2, V (Q0) = δ/2, as claimed. We do
not know if the converse result proved by (Gal, 2000), that simply searchable
networks are weakly Eulerian, also holds for bimodal search.

5 Existence of the Value

In other sections of this paper, we always establish the existence of the value
directly by exhibiting explicit optimal strategies for the players. However it
is nice to know that standard minimax theorems can guarantee the existence
of the value of the game played on an arbitrary network Q, in advance of
knowing optimal strategies. We outline existence arguments here, beginning
with the easier case in which Q has a single arc, and then proceeding to
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general networks. The argument is more complicated than for the traditional
(single speed) theory.
We first show the value exists when Q = [0, 1] is the single arc network

of Section 3, with constant slow speed σ. Let C denote the family of all
ε-thick (as defined in Parks (1979)) closed subsets of Q = [0, 1] , that is, sets
which are finite unions of closed intervals of length at least 2ε, or contain an
endpoint. The set C is compact with respect to the Haussdorf distance and
Lebesgue measure λ (C) is continuous for C ∈ C (Krantz and Parks, 1999).
(Without the ε-thick assumption, the sets Cn = {i/n : i = 0, 1, . . . , n} which
have Lebesgue measure 0, converge to [0, 1].)
For any closed set C ∈ C , define SC to be the path in Q that moves at

speed σ when t ∈ C and at speed 1 when t /∈ C, while going from 0 to 1.
When going back to 0 it does the opposite.
We wish to show that the capture time T (x, SC) is lower semicontinuous

in x and C, so that the existence of a value follows from the Glicksberg (1952)
or Alpern-Gal (1988) theorems. We first observe that the first arrival time
function f (x,C) of (1) can be written as

f (x,C) = x− (α− 1) λ (C ∩ [0, x]) ,

which as observed above is continuous in x and C (this requires our as-
sumption of ε-thickness). So if x ∈ C, then T (x, SC) = f (x,C) and a
small change to x̂ and Ĉ either (i) keeps x̂ ∈ Ĉ, in which case T (x̂, SĈ) =

f
(
x̂, Ĉ

)
is close to T (x, SC) by continuity of f , or (ii) has x̂ /∈ Ĉ, in which

case T (x̂, SĈ) = f
(
x̂, Ĉ

)
+ (1 + α) (1− x̂) > T (x, SC) . If x /∈ C, then

T (x, SC) = f
(
x̂, Ĉ

)
+ (1 + α) (1− x) and since C is compact it follows that

for close x̂, Ĉ we also have x̂ /∈ Ĉ and T (x̂, SĈ) = f
(
x̂, Ĉ

)
+(1 + α) (1− x̂) ,

which is close to T (x, SC) by continuity of f. So T is lower semicontinuous,
as claimed.
Since the pure strategy set Q of the Hider is compact and the pure strat-

egy set C of the Searcher is compact with respect to Haussdorf distance,
the lower semicontinuity of the payoff function insures the existence of the
value and an optimal mixed Searcher (minimizer) strategy, by the Alpern-Gal
Minimax Theorem (Alpern and Gal, 1988).
If Q,O is a general rooted network, a pure strategy for the Searcher is

determined by a pair (P,K) , where P is a Lipschitz function from R+ into
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Q with Lipschitz constant 1, K belongs to C, now taken as subsets of the
time space R+, and P (K) = Q . A Searcher pure strategy SP,K is one that
follows the path P, going at the slow speed σ (which is constant on arcs)
at times t ∈ K and at speed 1 otherwise. The condition P (K) = Q now
says that every point of Q is slow searched. We endow the set P of all unit
speed paths P with the topology of uniform convergence, under which it is
compact. Consequently the Searcher pure strategy set S = P × C is also
compact. The lower semicontinuity of the payoff function follows as before.
The only additional argument is that if a point x is not slow searched on
the first traversal, that is if x /∈ P (K), then for close x̂, P̂ , Ĉ we also have

x̂ /∈ P̂
(
Ĉ
)
. To see this, note that as P (K) is a compact subset of Q, we

have d (x, P (K)) = ε > 0, where d is the metric on Q. Taking each "hatted"
variable within ε/3 of its "unhatted" version, with respect to d, uniform

metric on P, and Haussdorf metric on C, we obtain x̂ /∈ P̂
(
Ĉ
)
, as required.

6 Relation to the Kikuta-Ruckle Search Game

We now discuss how the bimodal search game is related to another search
game proposed by Kikuta and Ruckle (1994), studied further by Kikuta
(1995) and recently extended by Baston and Kikuta (2013), in which the
Hider must hide at a node and the Searcher must pay a search cost to search
any given node. The Searcher’s choice of skipping or searching a node cor-
responds to the idea of moving fast or slowly respectively. This idea of the
Searcher choosing whether to "skip or search" can be found in Gluss (1961),
though not in a game theoretic context.
Kikuta’s game K = K(Q,O) is played on a network Q with root O,

like our bimodal search game, but it follows the traditional search game
formulation in which the Searcher can move only at unit speed (so α = β in
our model). However, the Hider can only hide at nodes (including specified
nodes of degree 2) and the Searcher must pay a fixed search cost c(i) for
searching a node i. When reaching a node the Searcher can either pay the
search cost to search it or pass it without searching it. The total payoff is
the sum of the time taken for the Searcher to find the Hider and the total
cost she has paid to search nodes prior to finding the Hider.
Consider the game K(Qn, O) played on the network Qn in Figure 7, in

which a single arc of unit length is split into n smaller arcs by inserting n
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equally spaced nodes of search cost c/n. In this example n = 6.

O
1/n 1/n1/n1/n1/n1/n

Figure 7. The network Qn.

This can be viewed as an approximation of the bimodal search game on the
unit arc. The interpretation is that paying the search cost of c/n to search a
node in Qn is equivalent to passing that node at the slow speed (and hence
searching it) in the bimodal search game. Traversing the whole of Qn without
paying the search cost at any of the nodes is equivalent to traversing the unit
arc at the fast speed of 1 in the bimodal search game; traversing the whole of
Qn and paying the search cost of c/n at each of the n nodes is equivalent to
traversing the unit arc at the slow speed of 1/ (1 + c) in the bimodal search
game.
The authors showed in Alpern (2010) and Alpern and Lidbetter (2013)

that the game K(Qn, O) is a special case of a search game on a variable
speed network. In the variable speed model the Hider can hide anywhere but
the Searcher’s speed on a given arc depends on her direction of travel. For
example in the variable speed network Q̃n in Figure 8, the Searcher traverses
the horizontal arcs in the same time 1/n in either direction, and traverses the
diagonal arcs in time c/n in the upward direction and time 0 in the downward
direction. We use the convention of writing the traversal time away from the
root on the left of an arc.

O 1/n 1/n 1/n 1/n 1/n 1/n
1/n 1/n 1/n 1/n 1/n 1/n

0 0 0 0 0 0c/n c/n c/n c/n c/n c/n

Figure 8. The network Q̃n.

It is optimal for the Hider to choose one of the leaf nodes in Q̃n (that is
either the end of a diagonal arc or the end of the horizontal arc on the far
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right hand side), as other hiding points are dominated. It is thus easy to see
that the variable speed game played on Q̃n is equivalent to the Kikuta game,
K(Qn, O), so we can compare the variable speed game on Q̃n to a bimodal
game on the unit arc I with slow travel time α = 1 + c and fast travel time
β = 1.
In Alpern and Lidbetter (2014), the authors present a solution of the

variable speed game played on tree networks, showing that it is optimal
for the Hider to use the Equal Branch Density (EBD) distribution, first
defined by Gal (1979) for the classical game, and for the Searcher to use a
strategy which mixes between depth-first searches. The EBD is the unique
distribution on the leaf nodes such that at any branch node, the probability
that the Hider is in a branch is proportional to its tour time. For fixed n and
k = 0, 1, . . . , n − 1, let qn(k) be the probability under the EBD distribution
that the Hider chooses a leaf arc in Q̃n whose base is at distance greater than
k/n from the root. So qn(0) is the probability the Hider does not choose the
first leaf arc of Q̃n (that is the leaf arc on the far left in Figure 8).
The probability the Hider is on the first leaf arc of Q̃n under the EBD

distribution is proportional to the tour time, c/n of that arc. Since the total
tour time of Q̃n is 2 + c , this probability is (c/n) / (2 + c). Then qn(0) is the
complementary probability given by

qn(0) = 1− c/n

2 + c
=
n(2 + c)− c
n(2 + c)

= 1− γ

n
,

where γ = (α− β) / (α + β) = c/(2 + c), as in (4). Recursively calculating
the probabilities qn(1), qn(2), . . ., we obtain the formula

qn(k) =

k∏
j=0

(
1− γ

n− j

)
, for k = 0, 1, . . . , n− 1.

The probabilities qn(k) also give the optimal strategy for the Kikuta game
K(Qn, O). For the bimodal search game played on the unit arc I, we showed
in Section 3 that the optimal probability for the Hider to choose a point
after x ∈ [0, 1] is 1 − H∗(x) = (1− x)γ. In Qn the furthest node from the
root before the point x is the bnxc th node, and the distance of this node
from O converges to x as n → ∞. In the game K(Qn, O) it is optimal for
the Hider to hide after this point with probability qn(bnxc). We will show
that as n → ∞ this probability qn(bnxc) converges to (1− x)γ so that the
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optimal Hider strategy in Kikuta’s game converges to the optimal strategy
in the bimodal game.

Theorem 13 As n→∞, the optimal Hider strategy qn for the gameK(Qn, O)
on the unit interval converges to the optimal Hider strategy in the bimodal
search game B([0, 1], O). That is

qn(bnxc) ≡
bnxc∏
j=0

(
1− γ

n− j

)
→ (1− x)γ as n→∞.

We feel sure that Theorem 13 is a known result but are unable to find it
in the literature, so we include a sketch of a proof in the online appendix for
completeness. We thank an anonymous referee to whom the final simplified
proof we present is due.

7 Lucky Fast Searcher

Up until now, we have been assuming that when passing the Hider at the
fast speed (taken to be 1), the Searcher has no chance at all of detecting him.
However we note that one often finds missing objects by chance (a glint of
light, a lucky glance) even at a speed that is not guaranteed to find them. In
this section, we attempt to model this possibility by ascribing a probability q,
known to both players, to the probability of detecting the Hider when passing
him at fast speed. Since this new game Bq (Q,O) is quite complicated, we
will only analyze the case where Q is the unit interval I = [0, 1] , which was
solved (for the original case q = 0) in Section 3. Thus the fast traversal time
is given by β = 1 and the slow traversal time is α = 1/σ > 1, where σ < 1 is
the slow (search) speed.
Observe that when q = 1 there is no point in the Searcher adopting the

slow search speed, as going at fast speed 1 also captures the Hider upon
finding him. Thus the game B1 (Q,O) is equivalent to the usual network
search game defined by Isaacs, and the various results of Gal apply. For the
simple case Q = I, the solution is a trivial one where the Hider always hides
at the far end 1, the Searcher goes there at maximum speed, and the capture
time (and value) is 1. When q = 0, as observed in the previous paragraph,
this is just our original bimodal search game B (Q,O) . Thus the continuum
of games Bq (Q,O) , 0 ≤ q ≤ 1, forms a nice bridge between bimodal search
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games as discussed in this paper and familiar search games (q = 1) as studied
by Gal.
In our original bimodal games B (Q,O), the Searcher could often (for

example, in all weakly Eulerian networks) restrict to exhaustive searches,
which we define as Bimodal Chinese Postman Tours. For the interval case
Q = I these go from one end of the interval to the other and back again.
However, with lucky Searcher games, the Searcher may want to exploit the
possibility of going back and forth several times at the fast speed. We call
this larger family of search paths non-exhaustive. It unsurprisingly turns out
that exhaustive search is simpler to analyze, so we do this first in Subsection
7.1; then in Subsection 7.2 we analyze the more complicated non-exhaustive
form of the game. Whilst we will consider more general search strategies for
exhaustive search in 7.1, it turns out that the Searcher constructs his optimal
mixed strategy from only the two pure strategies of going fast to the end of
I and slowly back again or going slowly to the end of I and fast back again,
as in Section 3. In Subsection 7.2, we restrict attention to pure Searcher
strategies Sj (j = 0, 1, ...) defined by going from one end of the interval to
the other fast the first j times and then back to the other end slowly on the
(j + 1)th transit. (So of these strategies, only S0 and S1 are permitted in
Subsection 7.1).

7.1 Exhaustive lucky Searcher games

In this subsection we discuss the solution to the lucky fast Searcher game
on the interval with fast traversal speed 1 and slow traversal speed σ, when
the Searcher is forced to used pure strategies which are Bimodal Chinese
Postman Tours.
For exhaustive search, it turns out that the Searcher need not use general

strategies SC , which alternate speeds while going to the far end. As in the
original bimodal game, he can restrict to S0 (going out slowly and finding
the Hider before reaching the end) and S1 (going out fast, finding the Hider
on the way out with some probability and if not, finding him on the return
trip). For q suffi ciently close to 1 (how close depends on σ) the pure strategy
S1 is optimal. The optimal probability p0 of choosing S0 (with probability
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1− p0 of S1) turns out to be given by the formula

p0 = p0 (q, σ) =

(
1− q (1 + σ)

2− q (1 + σ)

)+
, so

p0 = 0 and S1 is optimal for q (1 + σ) ≥ 1, or q ≥ 1/ ((1 + σ)) .

This extends the case of p0 = 1/2 (what we called random bimodal Chinese
postman path) for the non-lucky case q = 0. As q increases from 0, the
slow probability p0 decreases from 1/2 until it eventually reaches p0 = 0 for
q = 1/ (1 + σ) . This is intuitively plausible, as going fast is more attractive
when it includes an increased possibility of capturing the Hider when passing
him. For q ≥ 1/ (1 + σ) , the pure strategy S1 (p0 = 0) is optimal.
Next we consider the optimal Hider strategies. In the region q ≥ 1/ (1 + σ)

where the Searcher uses S1, the Hider adopts the pure strategy H = 1 (hide
at the far end), as in traditional search games on trees, where the Hider hides
at leaf nodes. In the complementary region, the Hider uses a variation of the
beta distribution defined earlier in (3), with the probability density given by

h∗q,σ (x) = γq,σ (1− x)γq,σ−1 , where (9)

γq,σ = γ/ (1− q) =
1− σ

(1 + σ) (1− q) . (10)

To see how the optimal Hider distribution γq,σ adapts to decreasing q, in
Figure 9 we plot a series of distributions for fixed σ = 1/2 and incremental
values of q. The black, green, red and blue lines (bottom to top at x =
0) correspond to q = 0, 1/2, 3/5 and 2/3, respectively. When q = 2/3
= 1/ (1 + σ), then the optimal Hider strategy is the uniform distribution
(though this is not true for general σ). It is also optimal for the Hider to use
the pure strategy x = 1.
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Figure 9. The optimal Hider distribution for
q = 0, 1/2, 3/5, 2/3.

We summarize our results in the following theorem, the proof of which is
given in the appendix.

Theorem 14 The solution of the exhaustive form of the lucky Searcher game
on the interval I = [0, 1] , starting at 0, is as follows:

• For q ≥ 1/ (1 + σ) , the optimal strategies are S1 (fast to 1) for the
Searcher and H = 1 for the Hider. The value is simply V = 1.

• For q ≤ 1/ (1 + σ) , the unique optimal Hider strategy is h∗q,σ (as given
in (9))and the optimal Searcher strategy is to play S0 (slow to 1) with
probability p0 = p0 (q, σ) and S1 (fast to 1, slow back) with probability
1− p0. The value V e for the exhaustive problem is given by

V e =
(1− q) (1 + 1/σ)

2− q (1 + σ)
. (11)
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We note that if the Searcher is restricted to the ‘combinatorial strategies’
S0 and S1, the Hider can adopt any distribution with the same mean me =
1/
(
1 + γq,σ

)
= (1−q)(1+σ)

2−q(1+σ) as h
∗
σ,q.

In Figure 10 we plot q against σ to show how the region is split up
according to the optimal strategies of the players. The region labeled (i)
corresponds to q ≥ 1/ (1 + σ), and regions (ii) and (iii) correspond to q ≤
1/(1 + σ). The distinction between regions (ii) and (iii), while irrelevant in
this subsection, will be made clear in the next Subsection 7.2.

Figure 10. Decomposition of the σ-q plane by optimal
strategy type.

7.2 Non-exhaustive lucky Searcher games

We now consider the non-exhaustive version of lucky search, where the
Searcher may use any ‘combinatorial strategy’S0, S1, S2, .... So the ques-
tion to address is whether these new strategies help the Searcher and lower
the value, or whether the Hider mixed strategies adopted in Subsection 7.1
keep the same minimum search time against these new strategies.
We will consider three regions corresponding to the relationship between

q and σ. Region (i), depicted in Figure 10, is defined by the inequality
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q ≥ 1/ (1 + σ), and we note that the pure strategy H = 1 certainly ensures
that T = 1 against any strategy of the Searcher, as it takes at least time
1 to reach it. So there is nothing new to say about region (i). The next
question is whether the mixed strategy h∗q,σ which was formerly optimal for
q ≤ 1/ (1 + σ) still guarantees the exhaustive search value V e of (11) against
the new strategies S2, S3, .... The answer to this question depends on the
relative magnitude of q and 2σ/ (1 + σ), the region (ii), where q is smaller;
and the region (iii), where q is larger. In region (ii), we have T

(
h∗q,σ, S

j
)
≥ V e

for all j, so there is no change in the analysis of this region. It turns out that
the only region where adding non-exhaustive search strategies actually helps
the Searcher is the triangular region (iii) where 2σ/ (1 + σ) ≤ q ≤ 1/ (1 + σ) .
In region (iii) the optimal searcher strategy can be described as a station-

ary behavioral strategy or as a mixture of the Sj where j is odd. We give
the former description here and the latter in the statement of Theorem 15.
The optimal behavioral search strategy can be described by specifying the
probability of going slow or fast on each transit: When at 0 going to 1, always
go fast. When at 1 going to 0, go slow with probability p′, independent of
previous choices. The formula for the optimal slow probability p′ is given by

p′ = p′ (q, σ) =
q2σ

(1− q) (1− qσ)
. (12)

The optimal strategies for the non-exhaustive form of the lucky Searcher
game are stated formally in the theorem below, whose proof can be found in
the online appendix.

Theorem 15 Consider the non-exhaustive form of the lucky Searcher game
on the interval I = [0, 1] . In the regions (i) given by q ≥ 1/ (1 + σ) and (ii)
given by q ≤ 1/ (1 + σ) and q ≤ 2σ/ (1 + σ) , the solution is the same as for
the exhaustive form of the game described in Theorem 14. In the remaining
region (iii) given by 2σ/ (1 + σ) ≤ q ≤ 1/ (1 + σ) , the solution is as follows:

• The optimal Searcher strategy is to choose each odd strategy S2j+1 with
probability p′ (1− p′)j, where p′ is given by (12).

• The optimal Hider strategies are those where the mean distance to 0 is
given by

mne =
1− σ − (1− q)2 (1 + σ)

q (2− q (1 + σ))
.
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• The value V ne of the non-exhaustive game is given by

V ne =
(1 + σ) (1− q)2 + 1− σ

q (2− q (1 + σ))
.

It is useful to observe that in the region (iii), where the Searcher benefits
from non-exhaustive search, the optimal Hider strategy is further from 0, that
is mne ≥ me. The intuitive explanation is that in region (iii), the Searcher’s
slow speed is quite slow, so he is more inclined to persevere at his fast speed,
and hence he may traverse the arc several times at the fast speed before
finally resorting to using his slow speed.
We note that since we are restricting the Searcher to pure strategies

S0, S1, ..., this means that the Hider strategy of hiding certainly at distance
mne from O is optimal. If we had made the same restriction in Subsection
7.1, the strategy of choosing to hide at me would have also been optimal for
the Hider.

8 Conclusion

The simple search paradigm introduced by Isaacs (1965), in which target
capture occurs when the Searcher merely passes the Hider’s location at her
usual speed, has proved very useful and generated many important results.
In addition to those of Gal already mentioned, we should add those of Rei-
jjnierse and Potters (1993) and Pavlovic (1995). However this paper observes
that this paradigm does overlook some important aspect of search, particu-
larly when the sought hidden object is small or well hidden, and consequently
requires a slower speed for actual detection. This paper shows that, when
such a slow detection speed is specified, some of the existing theory is main-
tained or generalized, while other aspects change dramatically. In particular
optimal hiding requires use of all of the network, even in some very simple
cases (all tree networks, for example). We hope that our work will encour-
age dialogue between demining practitioners and those working in theoretical
search theory. We are optimistic that the theory of bimodal search could be
developed to be of some practical use in constructing demining algorithms,
so that mines left buried from earlier conflicts can be safely removed.
A useful extension of our model (suggested by an anonymous referee)

would be to allow intermediate search speeds, where detection probability is
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a decreasing concave function of speed. Such a stochastic model has been
studied as a stochastic game (Alpern et al, 2014) in the the context of search
for a mobile hider.
We also note that we have assumed in our model that the object in ques-

tion is hidden adversarially, but we did not consider the analogous Bayesian
problem. That is, if the object is located on the network according to some
given probability distribution. In some circumstances this problem is easier
to solve. For example, if the Hider is located uniformly on a tree we can show
that the Searcher’s optimal strategy is to perform a depth-first search of the
tree, traversing an arc slowly the first time it is encountered and quickly the
second time.
Another aspect of bimodal search that has not been explored here is the

context in which two (or more) agents all want to minimize the meeting
time, that is, in the area of rendezvous search, e.g. Alpern (1995) and Weber
(2012). One might require that one or both of the searchers are in their slow
mode to enable rendezvous. In particular the case of rendezvous on the line
(as in Gal (1999), Howard (1999); Chester and Tutuncu (2004) and Han et
al (2008)) should be re-evaluated in the context in which the agents must
slow down to enable mutual detection. We also believe that the problem of
search in a maze (unknown network), as studied in Anderson and Gal (1990)
could usefully be attacked from this direction.
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