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The Strategic Dis/advantage of Voting Early�

Eddie Dekelyand Michele Piccionez

September 26, 2013

Abstract

The objective of this paper is to study a model of voting with
multiple candidates in which the voters choose the time in which they
cast their votes. By voting late a voter can condition his vote on
which candidates are still viable. By voting early a voter can reduce
the �eld of viable candidates. It turns out that the latter factor can be
harmful: while the likelihood that future voters vote for one�s favorite
candidate increases, so does the likelihood that they vote for one of
the remaining viable opponents, and the latter e¤ect can be dominant.

In particular, if voters vote for their favorite candidates as
long as the probability of that candidate winning is strictly positive,
then early voting has a strategic disadvantage and all equilibria are
equivalent to simultaneous voting. Voting in this manner is an equi-
librium when one�s favorite candidate is signi�cantly better than all
the others. Conversely, when some other candidate is almost as good
then any Markov, symmetric and anonymous equilibrium must involve
sequential voting (and di¤er from simultaneous voting).
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for �nancial support. We also appreciate the excellent RA work from Michael Safronov
and Jaber Zarezadeh. We are grateful to the referee and editor for helpful comments and
guidance.

yNorthwestern and Tel Aviv University
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1 Introduction

We study a simple model of voting in which voters choose the time in which
they cast their votes. Our main objective is to study how the preferences
of voters a¤ect the temporal structure of voting. We highlight a particular
strategic disadvantage of "early voting" in the presence of multiple candi-
dates: narrowing down the �eld of competitors induces subsequent voters
to vote either for early voters�s preferred candidate or for her opponents,
and the latter negative e¤ect can dominate the former positive one. More
speci�cally, we identify in a particular parametrized model when sequential
or simultaneous voting will occur.
Several institutions present instances of sequential voting, with either

exogenous or endogenous timing. In many legislative bodies, voting takes
place sequentially. US presidential primaries are a particularly interesting
example of sequential voting since each state decides the date of its own
election.
Momentum or bandwagons e¤ects are generally held to be the main man-

ifestation of the di¤erence between simultaneous and sequential voting. Such
e¤ects underscore the advantages of early voters over later voters in the de-
termination of the election outcome. Momentum e¤ects can arise from two
distinct forces that interact in sequential voting. The �rst is strategic. As
votes are cast sequentially, some candidates may �nd their chances of win-
ning signi�cantly reduced, and some voters may decide to shift their votes
in favour of candidates that are more likely to succeed. The second is in-
formational. Early voting can signal the quality of the candidates to later
voters.
In this paper, we abstract from issues pertinent to the signalling of infor-

mation about the valuation of candidates by assuming that the preferences
of the voters are independent. We study an election with three candidates
in which voting consists of two stages. In the �rst, "timing game," stage,
prior to the preferences being realized, voters choose simultaneously the pe-
riod in which they will cast their votes. In the second, "voting game," stage,
the preferences are realized privately and voting takes place according to the
order chosen in the �rst stage. In the voting game voters in later periods
observe the votes expressed by the voters in earlier periods. The candidate
that obtains the majority of votes wins the election and ties are broken by a
fair lottery.
We focus on the trade-o¤ between two incentives that guide the strategic
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considerations of voters with respect to the temporal dimension of voting.
On the one hand, a later voter has lower chances of wasting a vote as she
acquires better knowledge about the likelihood of victory of the candidates.
On the other hand, an early voter can in�uence the outcome of the election
by a¤ecting the probability of victory of some candidates in later periods.
In particular, voting early in�uences the �eld of candidates and can keep
one�s candidate viable and make others unviable. We demonstrate a novel
insight into the nature of sequential voting: if later voters persist in voting
for their favorite candidate despite low chances of victory, early voting has
a strategic disadvantage. In particular, if voters use voting strategies that
we call persistent, that is, they vote for their preferred candidates as long as
these candidates have a positive chance of winning, all equilibria in the �rst
stage are equivalent to simultaneous voting. The reason is that, with such
voting behavior, voting for one�s favorite candidate, say A, in the �rst period
can only be advantageous by making another candidate, say B, unviable and
thus inducing voters for whom B was the favorite and A the second best to
switch to A. But voters for whom B was the favorite and C the second best
would also be induced to switch to C. While these two forces might seem
to cancel one another, it turns out that the losses are more signi�cant than
the gains. Thus, when voters continue to vote for their favorite candidate so
long as she might win, shrinking the �eld is detrimental and voters have no
incentives to vote early.
More precisely, the paper focuses on simple strategies for which voting

(but not necessarily timing) is pure and symmetric across voters and candi-
dates (see Section 4 for a formal de�nition). We show (Theorem 1) that when
restricting attention to simple persistent strategies, if the number of voters
is at least six, then all equilibria are equivalent in terms of the outcome to
one in which everyone votes in the last period. The restriction to persistent
voting is consistent with equilibrium behavior if the value of every voter�s
second-best candidate is low compared to the favorite candidate. However,
if the second-best candidate�s value is close to the value of the favorite can-
didate equilibria in simple strategies cannot be persistent and must involve
voting in multiple periods. (Theorem 2 and Corollary 1). Thus, we are able
to link some preference environments to sequential or simultaneous voting.
The paper is organized as follows. In the next section, we brie�y discuss

the related literature. The model and results are contained in Sections 3, 4, 5
and 6. In Section 7, we discuss possible extensions. The Appendix contains
some of the proofs.
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2 Related Literature

The literature on sequential voting has mostly dealt with the issue of infor-
mation aggregation in binary elections. Dekel and Piccione (2000) study a
model in which voting is sequential and show that, in symmetric environ-
ments with two candidates, the symmetric equilibria in simultaneous voting
are also equilibria in any sequential structure. Battaglini (2005) shows that,
with abstention and costly voting, the above inclusion fails and the set of
equilibria in simultaneous and sequential voting can be disjoint. Fey (1996)
and Wit (1997) study a two-signal, common-value environment in which
herd-cascade equilibria exist. Morton and Williams (1999) �nd theoretical
and laboratory evidence that later voters use the information transmitted by
earlier voters. Callander (2007) shows the existence of �bandwagons�when
the number of voters is in�nite and voters have a desire to conform with
the majority. Battaglini et al. (2007) compare the equity, information ag-
gregation, and e¢ ciency of simultaneous and sequential voting rules when
voting is costly and information is incomplete. Ali and Kartik (2010) con-
struct equilibria in which voters vote sincerely and that exhibit momentum
e¤ects. Hummel (2012) studies sequential equilibria with three candidates,
where voters�preferences are correlated. First period outcomes are informa-
tive about later behavior and lead to equilibria where later voters do not vote
for candidates who do poorly early as they know their chances are slim.
Knight and Schi¤ (2010) study polling data from US presidential elec-

tions and �nd that early voters have signi�cantly more in�uence than late
voters. Deltas et al. (2010) provide a framework for analyzing the trade-o¤
between learning about the candidates�quality (valence) and coordination
in primary elections. They simulated various types of sequential elections
using estimated structural parameters and showed that sequential elections
in which candidates remain in the race yield the highest expected valence.
The theoretical literature on multi-stage voting also includes Sloth (1993),

who studies sequential voting with perfect information and shows that the
subgame perfect equilibria of roll-call voting are closely related to sophisti-
cated equilibria of simultaneous voting, and Bag et al. (2009) who show that
a class of voting procedures based on repeated ballots is Condorcet consistent.
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3 The Model

The model has N , N � 4, voters and 3 candidates, denoted by A, B, C,
whom voter i values as (viA; v

i
B; v

i
C). We assume that each (v

i
A; v

i
B; v

i
C) is

i.i.d. across voters with probability f(�) on [0; 1]3.1 The function f(�) is
symmetric across the candidates and assigns zero probability to ties. In one
special case that we will consider in this paper, each voter�s preferences are
a random selection of permutations of (1; x; 0), for �xed x 2 (0; 1). We will
refer to this case as to the x-model.
Voting consists of two stages: a timing, and then a voting, stage. In the

timing stage, before the preferences are realized, voters choose simultaneously
the period t 2 f1; 2g in which they will cast their votes.2 This decision is
assumed to be irrevocable. In the second, voting, stage, preferences are
realized privately and voting takes place according to the order decided in
the timing stage. Voters know the timing stage decisions of all voters and, at
their time of voting in the second stage, know the earlier votes. The election
is won by the candidate that obtains the majority of votes. Ties are decided
by a fair lottery.
To de�ne the voting stage strategies of the voters, let 
 = f1; 2gN be

the set of all possible timing-stage outcomes, i.e., speci�cations of who votes
when. For ! 2 
, let ti(!) be the period in which player i votes, H2(!) =

fA;B;Cgjfi:t
i(!)=1gj be the set of possible realizations of votes in period

1, and H1(!) the empty history. A voting-stage strategy for player i is a
collection si = fsi(!)g!2
 where each si(!) maps Hti(!)(!)� [0; 1]3 to �, the
set of probability distributions over fA;B;Cg.

4 Equilibria

Throughout the paper we focus on equilibria that in the voting stage involve
strategies that are pure and symmetric across candidates and across voters;
we call these simple voting-stage strategies. Formally de�ne n1J to be the
total number of votes received by candidate J in period 1, J = A;B;C.

1The symmetry assumption is important for our results.
2The number of periods is chosen solely for simplicity. See Section 6.
If the choice of timing was made after preferences were realized then the game would

be quite di¤erent. We think that our approach to timing is more realistic and interesting;
for instance, it seems to match primaries better.
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Given a pro�le of voting-stage strategies s, let s(!) denote the N -tuple
(s1(!); :::; sN(!)). The pro�le s is symmetric across voters if the strate-
gies depend only on the number of voters in each period and are identical for
voters in the same period, i.e., if s(�!) = �s(!) for any permutation � and
any ! 2 
. Given a pro�le s that is symmetric across voters, let �ts(N1) be
the expected payo¤ of a voter of period t given that N1 voters vote in period
1. A voting-stage strategy pro�le is symmetric across candidates if for any
! 2 
, the strategy of each voter i maps (after the appropriate reordering)
every permutation of the triple

(n
ti(!)�1
A ; viA); (n

ti(!)�1
B ; viB); (n

ti(!)�1
C ; viC)

to an identical permutation of its image in �.3

We now provide two elementary existence results for the timing-game
stage when voting-stage strategies are symmetric across voters. Given a
pro�le of voting-stage strategies s, de�ne a timing-stage Nash equilibrium
(induced by s) as a Nash equilibrium of the game in which the strategy
space in the voting stage is restricted to the singleton s.

Proposition 1 Given any pro�le s of voting-stage strategies that is sym-
metric across voters, the game has a timing-stage Nash equilibrium in pure
strategies. Moreover, if �1s(X +1) > �

2
s(X), there exists a timing-stage Nash

equilibrium in which the number of voters in the �rst period is strictly greater
than X.

Proof: To show existence, �rst note that, if �1s(N) � �2s(N � 1), the claim
is trivially true. If �1s(1) < �2s(0) it is a timing-stage Nash equilibrium for
everyone to vote in the second period. Otherwise, de�ne ~N1 be the largest
N1 such that �1s(N

1) � �2s(N
1 � 1). It is trivial to see that ~N1 voters

choosing the �rst period is indeed a timing-stage Nash equilibrium since
�1s(

~N1) � �2s(
~N1 � 1) and �1s( ~N1 + 1) < �2s(

~N1). The second part of the
proposition follows by repeating the argument for N1 � X.�

Remark 1 For a second existence result, note that if we �x any s that is
symmetric across voters then the timing game is symmetric hence has a sym-
metric timing-stage equilibrium (possibly in mixed strategies).

3Where
�
n
ti(!)�1
J

�
J2fA;B;Cg

is the null triple if i moves in period 1.
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5 Simultaneous voting

Our goal is to gain insights into the relationship between the preference of
voters and the timing of voting. As discussed, late voters may bene�t from
being informed about some of the votes; and early voters may bene�t from
in�uencing the behavior of late voters. One di¢ culty in deriving results
about the relationship between preferences and timing is the well-known
feature of many voting models that voters can coordinate their behavior in
an unappealing manner. To see this observe that in the x-model a sequential
equilibrium with simple voting-stage strategies and sequential voting is easily
obtained for any x 2 (0; 1) when voters vote (i) for the preferred candidate in
the �rst period, and (ii) for the most preferred candidate among the (possibly
unique) leading candidates in the second period when N1 < N � 1. When
N1 = N � 1, an optimal voting strategy for the (single) second-period voter
that is symmetric across candidates is easily ascertained. Obviously, given
the above voting-stage pro�le, it cannot be an equilibrium that all voters vote
in period 2 as the most preferred candidate of a unique �rst-period voter wins
with certainty. Existence of sequential voting in pure strategies then follows
by Proposition 1, and in symmetric strategies by Remark 1. Note that this
observation also provides an existence proof in the x�model for equilibria
with simple second-stage strategies.
In this section, we sidestep the above problem of undesirable voting co-

ordination rather bluntly by �xing the voting-stage strategies so that voters
vote for their favorite candidate so long as it is possible she might win and
focus on equilibrium behavior in the timing stage. Formally, given a real-
ization of votes in the �rst period, a candidate J is said to be second-period
viable if J wins the election with strictly positive probability when all vot-
ers in the second period vote for J . A voting-stage strategy is said to be
persistent if, when voting in the �rst period it votes for the candidate with
the highest valuation and, when voting in the second period, it votes for
the viable candidate with the highest valuation. The game in which the set
of voting strategies is restricted to persistent strategies is called a P-voting
game. Note that persistent voting strategies are simple: pure and symmetric
across voters and candidates.
The assumption that voting is persistent is consistent with equilibrium

behavior when preferences are such that the di¤erence in valuations between
the most preferred and the second most preferred candidate is su¢ ciently
large for all realizations. For example, in the x-model persistence is consis-
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tent with equilibrium behavior when x is small. Since the number of voters
and candidates is �nite, the set of possible realizations of votes is also �-
nite. Hence, the increase in the probability of victory of a viable candidate
from receiving one extra vote is bounded from below by a strictly positive
number. By contrast for large x, persistent strategies are not consistent with
equilibrium behavior; this follows because, for some realization of �rst-period
votes, a voter whose favorite candidate is viable but behind the second-best
candidate votes for his second-best candidate if x is close enough to one.
The intuition is that, when x is close to one, a voter wishes to minimize the
chances of winning of the least preferred candidate and can do so by voting
for whoever between the other two candidates is leading. This will be shown
formally in Lemma 1 in the next section.
The following example shows that persistence is not enough to rule out

sequential voting. It constructs a sequential-voting equilibrium in a P-voting
game that is equilibrium is distinct from a simultaneous-move equilibrium
(which also exists in this case, and is strictly worse from the perspective of
one player).

Example 1 Consider the x-model and suppose that N = 5 and that 4 voters
vote in the �rst period. The behavior of a voter in the last period di¤ers from
the behavior in simultaneous voting and a¤ects the outcome only when the
candidate with the highest valuation obtains zero votes in the �rst period and
the other two candidates get 2 votes each.4 The expected utility of a �rst-
period voter conditional upon such realizations is 1

2
+ x

4
.5 This is also the

expected utility of all voters when they move simultaneously. However, the
utility of the second-period voter with a persistent voting strategy is higher
than in simultaneous voting as the candidate valued x wins with certainty
when the most preferred candidate is not viable. To see that this is indeed an

4If some candidate receives three or more votes in the �rst period they would receive
that whether the �fth voter votes in the �rst or second period, hence this voter�s timing
is irrelevant. If both candidates receive two votes and the �fth voter�s favorite candidate
is one of those, then the �fth voter would vote for that candidate regardless of whether he
voted after the �rst four or simultaneously with them. Thus his timing only matters as
indicated in the text.

5The two candidates with two votes are equally likely to win; if it is the candidate
form whom a �rst-period voter voted then their utility is 1 (and this candidate wins
with probability 1/2) and if it is the other candidate it is equally likely to be this voter�s
second or least favorite candidate, yeilding (with probabilty 1/2) either mx or 0 with equal
probability. Hence 1/2+(x+ 0) =4.
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equilibrium, note that a �rst-period voter is indi¤erent between voting in the
�rst or in the second period as, by moving to the second period, voting will
be equivalent in outcome to simultaneous voting.6

The next theorem shows that this example is very special. If N � 6,
sequential voting cannot be an equilibrium outcome.

Theorem 1 Suppose that N � 6. Any P-voting game has an equilibrium in
which all voters choose to vote in the second period. Moreover, all P-voting
equilibria are equivalent in outcome to this equilibrium.

Proof : See Appendix.

The intuition behind this result is simple despite its long proof. The
events in which a candidate ceases to be voted for are exactly those in which
that candidate, say candidate C, has no chance of winning the election.
Therefore, one cannot save one�s favorite candidate by voting early. The
question remains whether one can facilitate coordination on one�s favorite
candidate by voting early and making another candidate unviable. Con-
ditional upon the event of C, say, becoming unviable, voting is e¤ectively
binary in that only two candidates can win the election. However in a binary
election, the utility of a voter is decreasing in the number of voters as her
in�uence gets diluted. Having some voters switch from C to A or B with
equal probabilities is then equivalent to increasing the number of voters in
a binary election. Hence, a voter is better o¤ by voting in later periods and
allowing candidates that are not viable to receive votes.
This analysis clearly relies on the symmetry of the candidates. Neverthe-

less, it helps clarify and highlight the general point that decreasing the �eld
of candidates can be disadvantageous as it facilitates focusing not only on
one�s preferred candidate, but also on that candidate�s opponents. While we
do not develop this, it is clear that with more candidates this disadvantage
would persist.

6 Sequential voting

In this section, we will investigate when sequential voting is an equilibrium;
naturally this will require that voters in the voting stage switch their vote

6The proof of the following theorem will imply that there cannot exist an example in
which the voters in the �rst-period strictly prefer voting in the �rst period.
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away from their preferred candidate at times when she is still viable. Propo-
sition 1 implies that a su¢ cient condition for the existence of equilibria with
sequential voting when voting-stage strategies are symmetric across voters
and candidates is that, if N1 = n1J = 1, second-period voters vote for J with
a probability higher than 1

3
. To provide a sharper characterization, we focus

on the x-model for the case of large x. In particular, we show that for x large
all equilibria in simple strategies must involve sequential voting (and hence
do not involve persistent strategies). After proving the result we provide an
example of a natural class of equilibria that do not exist for small x.

Theorem 2 Consider the x-model. If x is su¢ ciently close to one, there
does not exist a pure-strategy sequential equilibrium with simple voting-stage
strategies in which all the voters vote in the same period.

Before turning to the proof of this theorem we state a corollary.

Corollary 1 Consider the x-model. If x is su¢ ciently close to one, there
exists an " < 1 such that in any (mixed strategy) sequential equilibrium with
simple voting-stage strategies the probability of all players voting in the same
period is bounded above by ".

In particular if x is large then there is an "0 < 1 that bounds from above
the probability of any player choosing to move in either period in all sym-
metric equilibria. The corollary follows because otherwise there is a sequence
of simple mixed-strategy sequential equilibria whose limit involves all players
playing in the same period, and one can see that this limit is inconsistent
with Theorem 2. (The corollary can also be proven directly along the lines
of the proof of Theorem 2 below, but instead of using the special case of Re-
mark 2 used in the proof, using the full strength of Lemma 1 and considering
all possible timing-stage outcomes.)
To prove Theorem 2 we make use of the following result. Let rC (nA; nB)

be the probability of victory of C conditional upon the information that nA
voters have voted for A, nB voters for B, N1 � nA � nB for C, and the
remaining voters vote for candidate J with probability eJ . The next lemma
states that if eA � eB, then �conditioning upon candidates having at least
2 more votes for A than for B �changing the vote for B into a vote for A
weakly decreases the probability of victory of C, and if C�s probability of
winning was interior then it strictly decreases that probability.
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Lemma 1 Suppose that eA � eB.

1. If nA � 1 > nB then rC (nA; nB) � rC(nA � 1; nB + 1)

2. If nA � 1 > nB and 0 < rC (nA; nB) < 1 then rC (nA; nB) < rC(nA �
1; nB + 1)

Remark 2 In particular rC (2; 0) < rC (1; 1), i.e., if there is one vote each
for A and B then switching from B to A decreases the likelihood of C winning.

Proof. See Appendix.

Proof of Theorem 2: If all voters vote in the same period, simple voting-
stage strategies vote for the highest valued candidate. Hence, there does not
exist an equilibrium in which all voters vote in the �rst period since one voter
would be better o¤ moving to the second period. (To see this consider the
event that votes are evenly split between one�s worst and middle candidate,
with either zero or one vote for one�s favorite. Then by waiting one increases
expected utility as instead of wasting one�s vote on one�s favorite candidate,
one increases from 1/2 to 1 the likelihood of one�s second favorite rather
than one�s worst candidate succeeding.) We need to show that if they all
vote in the second period, one voter will move to the �rst period. Consider
for simplicity the realization of votes (n1A; n

1
B; n

1
C) = (1; 0; 0). There are four

simple strategy pro�les that might be an equilibrium in the second-period of
the voting stage.

1. Voters may vote for either B or C and cease voting for A. For this type
of strategies and x close to one, it is optimal for a voter to switch to
the �rst period and vote for the lowest valued candidate as, for N � 4,
the probability of victory of this candidate drops to zero.

2. Voters may choose persistent voting strategies. For x su¢ ciently close
to one, a voter maximizes the expected payo¤ by minimizing the prob-
ability of victory of the candidate with the lowest valuation. Then,
after an A vote in the �rst period, by Lemma 1, and in particular by
Remark 2, it is a strict best reply to vote for A when valued x (assum-
ing everyone else votes for their favorite candidate). Hence persistent
strategies are not an equilibrium.
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3. Third, voters with preferences (1; x; 0), (x; 1; 0), (1; 0; x), and (x; 0; 1)
vote for A and voters with the remaining preferences vote for the high-
est valued candidate. (It is clear that that by Lemma 1 this pro�le of
strategies is an equilibrium for x close to one, but this is not needed
for our conclusion.) In this case, the probability that the second-period
voters vote for A after the realization of votes (n1A; n

1
B; n

1
C) = (1; 0; 0)

is higher than with (n1A; n
1
B; n

1
C) = (0; 0; 0). Hence, a voter with pref-

erences (1; x; 0) prefers to move to the �rst period and vote for A.

4. All voters in the second period vote for A. Obviously, in this case
a voter prefers to vote in the �rst period for the candidate whom he
values most.�

The intuition behind this theorem is as follows. When only one voter votes
in the �rst period, if x is close to one, there does not exist an equilibrium
in which voters in the second period use persistent voting strategies. Thus
the result from the preceding section does not apply. If the voters coordinate
in equilibrium by ceasing to vote for the candidate receiving the �rst period
vote, then it is optimal for one voter to move to the �rst period and vote
for the option with zero value. If voters vote for the leading candidate with
probability higher than 1

3
, it is optimal for one voter to move to the �rst

period and vote for the option with the highest value. Thus at least one
voter moves to the �rst period.
Arguments similar to those used in the proof of Lemma 1 establish that,

when x is close to one, following some �rst-period outcomes it is not optimal
to vote for the most preferred candidate in the second period. Thus, voting
behavior is not equivalent to simultaneous voting.
In the x-model with x large, existence of an equilibrium with simple

second-stage strategies follows from the example in the �rst paragraph of
Section 5. The existence of equilibria that do not involve the perverse coor-
dination that appears there follows from Proposition 1 and Remark 1 using
the following pro�le of simple second-period strategies. These equilibria are
an example of what might be called satis�cing voting strategies: voting for
one�s favorite candidate so long as the second-best candidate has fewer votes
than the favorite, and voting for the second-best otherwise. That for x large
these strategies are an equilibrium for the second period of the voting game
given any outcome of the timing game and any outcome of �rst-period voting
can be shown using Lemma 2. Moreover, it is easy to see that these strategies
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cannot be an equilibrium for small x as voting for the second-best candidate
as required in part 2 below is not optimal for small enough x.

Example 2 1. If candidate J receives in the �rst period a number of votes
strictly less than the other two candidates, J 0 and J", voters in the
second period cease voting for J and vote for J 0 or J" with the higher
valuation.

2. If in the �rst period candidate J is leading and the other two candidates,
J 0 and J", have the same number of votes, a voter in the second period
votes for J if J is valued one, for J if J is valued x and at least one
other voter votes in the second period, and for J 0 or J" with the higher
valuation in the remaining cases.

3. If in the �rst period all the candidates have the same number of votes,
voters in the second period vote for the candidate with the highest val-
uation.

7 Conclusions and Extensions

The main conclusion of this paper is that for sequential voting to arise endoge-
nously, later voters must shift votes in favor of the second-best candidates
when the probability of victory of their favorite candidate is not negligible.
If voters desist from voting their favorite candidate only when her probabil-
ity of victory is very small, voting early has a strategic disadvantage as it
decreases the probability of victory of one�s favorite candidate. Although our
results were proved for the case of three candidates, the intuitions behind
them carry over quite naturally to the case of more than three. While we
have not veri�ed the formal details, we expect the above results to hold in
the latter case.
Theorem 1 extends to the case of a �nite but arbitrary number of periods.

The proof follows from minor modi�cations of the arguments available in this
paper and is not provided. However, when voting has more than 2 periods,
the strategic environment is complex and can involve strategies that, at least
at �rst glance, appear non-intuitive. For example, strategic voting for the
second-best candidate can occur in some periods even when one�s favorite
is leading. Consider the x-model and suppose that voting takes place in 3
periods. Assume that x = 1� " and that in period 1 the votes for A, B, and

13



C are n1A; n
1
A � 1, and n1A � 1. Also suppose that one voter votes in period

2 and two voters vote in period 3 and that the preferences of the period 2
voter are (1; 1 � "; 0): If in period 2 the voter votes for A , the distribution
of votes in period 3 is n1A + 1; n

1
A � 1; n1A � 1 whereas voting for B yields

n1A; n
1
A; n

1
A � 1. In the latter case the subsequent voters will vote for their

best between A and B to minimize their probability of getting 0, thereby
giving the period 2 voter a payo¤ close to 1. If the distribution of votes in
period 3 is n1A + 1; n

1
A � 1; n1A � 1 and both period 3 voters have preferences

(0; 1� "; 1) (the probability of this event is 1
36
), the period 2 voter obtains a

payo¤ equal to zero with probability 1
2
. Note the anti-herding feature in this

example: an increase in the number of votes for B can lead a voter to vote
for A instead.
Strategic voting can even induce voters to vote for their least preferred

candidate. Consider again the x-model for x small and that voting takes 3
periods. The realization of votes in the �rst period is 1 vote for A, N=2� 1
votes for C, and none for B. There is only one voter in period 2 and has
preferences (1; x; 0). If he votes for A or B, then B is still viable and, if x
is small, it is an equilibrium for voters in period 3 to vote for the favorite
candidate. Voting for C makes B not viable and hence voters will switch to
the preferred candidate between A and C. This can increase the probability
of A winning if N is large.
Our results raise some interesting questions for the timing of voting of

states of di¤erent sizes. On the one hand, a large state alone could desta-
bilize simultaneous voting by early voting whereas a small state alone may
be unable to a¤ect the behavior of later voters. On the other hand, a truly
large state may have lower incentives than small states to vote early in the
election. A large state could have a signi�cant in�uence in determining the
choices of later states but, as we have seen in Theorem 1, this can be detri-
mental to the probability of success of a large state�s preferred candidate.
A speci�c example demonstrating this possibility is available in the working
paper version of this paper; we leave studying the case of asymmetric voters
for future work.
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8 Appendix

Proof of Theorem 1: Clearly, it is an equilibrium for all voters to vote in the
last period. (One voter moving earlier cannot make any candidate unviable
hence there is no bene�t to moving earlier.) Consider an equilibrium in which
voting takes place in two periods and that is not equivalent to simultaneous
voting. For simplicity in notation, we will assume that if two candidates
cease to be viable in period 1, voters vote for their highest valued candidate
in period 2. As the outcome is thus determined in period 1 this assumption
is inessential.
Consider a voter i who votes in period 1. Without loss of generality,

suppose that A is the candidate having the highest valuation for i. We will
�rst show that, for any N , i�s payo¤ cannot decrease if he decides to vote
for A in period 2. This will imply that he is at least as well o¤ if he votes in
period 2 for the best viable candidate. We will then show that, for N � 6,
i�s payo¤ must increase if he decides to vote for A in period 2.
Given a �xed number of period 1 voters, consider the events for which,

if voter i deviates and votes in period 2, the voting of the other voters is
a¤ected. To de�ne such pivotal events, let n̂1J , J = A;B;C denote the
number of votes received by candidate J in period 1 excluding the vote of
player i. De�ne the inequalities

N � n̂1A � n̂1J � 1 < maxfn̂1A + 1; n̂1Jg (1)

N � n̂1A � n̂1J � maxfn̂1A; n̂1Jg (2)

where J 2 fB;Cg. If (1) and (2) hold for J = B and both A and B are
viable then period 2 voters whose most valuable candidate is C vote for their
second most valuable candidate (A or B) when voter i votes for A in the
�rst period (as then C is not viable by (1)), and vote for C when voter i
votes for A in the second period (as then C is viable by (2)). A symmetric
explanation holds for J = C.
Take 
 � � � 1 such that, for n̂1A = 
 and n̂1B = �, (1) and (2) hold and

both A and B are viable. De�ne the events

E1(k) = fn̂1A = 
; n̂1B = �; k voters vote for C in period 2g
E2(k) = fn̂1A = � � 1; n̂1B = 
 + 1; k voters vote for C in period 2g
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and de�ne E(k) = E1(k) [ E2(k). The following elementary fact is stated
without proof.

Fact If (1) and (2) hold and A and J are viable for n̂1A = 
 and n̂
1
J = �,

where 
 � ��1, then (1) and (2) hold and A and J are viable for n̂1A = ��1
and n̂1J = 
 + 1.

We will now show that the probability of A winning conditional on E(k)
does not decrease with k. To do so, we will replace one second-period vote
for C with a vote for A or B with probability 0:5 each and show that the
probability of A winning cannot increase. In particular, we will show that,
conditional on E1(k), the e¤ect of decreasing k is to weakly increase the prob-
ability that A wins. However, for the corresponding event E2(k) decreasing k
weakly decreases the probability that A wins by an o¤setting amount. Since
E2(k) is at least as likely as E1(k), the overall e¤ect conditional on E(k)
of decreasing k is to weakly decrease the probability that A wins. We will
then show that for all remaining events with n̂1A � n̂1B, the probability of A
winning decreases as k decreases.
Let ~nA denote the total number of votes for candidate A in period 2 when

the vote of voter i is not included, andN1 the total number of voters in period
1 including voter i. First note that conditional on E(k) and i voting for A
in either the �rst or the second period, A wins with probability 1 if

~nA >
N � 1� k � n̂1A � (N1 � n̂1B)

2
(3)

and wins with probability 1=2 if

~nA =
N � 1� k � n̂1A � (N1 � n̂1B)

2
(4)

First, suppose that N � 1� k� n̂1A� (N1� n̂1B) is even. Note that if it is
even for one component event in E(k), it is even for the other component as
well. If k is decreased by one, the only N -tuples whose outcome is a¤ected
are those in (4). In this case, the probability of A winning is unchanged
when k is decreased by one since the voter who ceases voting for C votes for
A with probability 1=2 and B with probability 1=2.
Now consider the case of odd N � 1� k � n̂1A � (N1 � n̂1B) and suppose

that one of the voters who vote for C in period 2 switches to A or B with
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probability 1=2 each. To evaluate the change in the probability of victory of
A, in E1 (k) we need to consider N -tuples for which

~nA =
N �N1 � k + (� � 
)

2
(WL1)

~nA =
N �N1 � k + (� � 
)

2
� 1 (LW1)

and, in E2 (k),

~nA =
N �N1 � k � (� � 
)

2
+ 1 (WL2)

~nA =
N �N1 � k � (� � 
)

2
(LW2)

For the events satisfying WL1 and WL2, if one of the k voters for C
switches to voting for A with probability 1=2 and B with probability 1=2,
the probability ofA winning decreases from 1 to 3=4. For the events satisfying
LW1 and LW2, the probability of A winning increases from 0 to 1=4.
Since the distribution of ~nA conditional upon E1(k) or E2(k) is binomial

and symmetric around
N �N1 � k

2
, we have that

Pr(WL1 j E1(k)) = Pr(LW2 j E2(k)) (5)

Pr(WL2 j E2(k)) = Pr(LW1 j E1(k)): (6)

By the same token,

Pr(LW1 j E1(k)) � Pr(WL1 j E1(k)): (7)

Since the symmetry of the binomial distribution also implies that the proba-
bility of E1(k) cannot exceed the probability of E2(k), it can be easily veri�ed
that the probability of A winning cannot increase if one of the k second period
C-voters switches to A or B with probability 1=2 each.
To see this note that the change in the probability of A winning after

one of the k second-period voters switches to A or B with probability 1=2 is
equal to

1

4
[Pr (LW1 j E1 (k))� Pr (WL1 j E1 (k))] Pr (E1 (k)) +

1

4
[Pr (LW2 j E2 (k))� Pr (WL2 j E2 (k))] Pr (E2 (k)) :
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Given equations (5),(6) and (7) we have

Pr (LW1 j E1 (k))�Pr (WL1 j E1 (k)) = � [Pr (LW2 j E2 (k))� Pr (WL2 j E2 (k))] > 0

and since Pr (E1 (k)) � Pr (E2 (k)) the result follows.
In view of the Fact, to conclude that i�s payo¤ never decreases when he

votes for his highest-valued candidate in period 2, we need to consider �rst
period realizations for which n̂1A � n̂1B. In particular, we want to show that,
conditional upon the event fn̂1A � n̂1B, k voters vote for C in period 2g, the
probability of A winning the election decreases with k.
As before, we consider 2 cases. If N � 1�k� n̂1A� (N1� n̂1B) is even and

k decreases by one, the N -tuples whose outcome is a¤ected are those in (4).
As before, if a voter who ceases voting for C votes for A with probability
1=2, the probability of A winning is unchanged.
If N � 1 � k � n̂1A � (N1 � n̂1B) is odd, decreasing k by one changes the

outcome of the election only when

~nA =
N � k � n̂1A � (N1 � n̂1B)

2

or

~nA =
N � k � n̂1A � (N1 � n̂1B)

2
� 1.

Since n̂1A � n̂1B, the event de�ned by the �rst equality is more likely. For
an N -tuple satisfying the �rst equality, decreasing k decreases the probability
of A winning from 1 to 3=4. For an N -tuple satisfying the second equality,
decreasing k increases the probability of A winning from 0 to 1=4. Hence,
decreasing k cannot increase the probability of A winning. Since conditional
upon i voting for A, the probabilities of B or C winning the election are
identical, voter i is not worse o¤ voting for A in period 2.
We conclude the proof of theorem showing that, ifN � 6, voter i is strictly

better o¤ voting in period 2 for the best viable candidate. First suppose that

N is even. If N1 � N

2
+ 2, consider the event fn̂1B =

N

2
; n̂1C = N

1� N
2
� 1g.

Conditional upon this event, if voter i votes for A in period 1, B wins the
election with probability 1 whereas, if the second best is C, voting for C in

period 2 gives C a positive probability of victory. If N1 =
N

2
+1, (1) and (2)

are satis�ed for n̂1A = 0 and n̂1B =
N

2
. This corresponds to the case where
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 = 0 and � =
N

2
in the de�nition of E(k). For k = 1,

Pr (WL1 j E1(1))� Pr (LW1 j E1(1)) = �
1

2
Pr

�
~nA =

N

2
� 2
�

since Pr(WL1 j E1(1)) = 0 and Pr(LW1 j E1(1)) = Pr (~nA = N=2� 2 j E1(1)) =
1

2
Pr (~nA = N=2� 2) :

N � 6 implies that Pr
�
~nA =

N

2
� 2
�
> 0 and, since the probability

of E1(1) is strictly smaller than the probability of E2(1), voter i is strictly
better o¤ voting in period 2.

Now suppose that N is odd. If N1 � N + 5

2
, consider the event fn̂1B =

N � 1
2

; n̂1C = N
1 � N � 1

2
� 1g. Conditional upon this event, A cannot win

the election and, if voter i�s second best is B, voting for B in period 2 gives
B the certainty of victory whereas voting for A in period 1 gives C a positive

chance of winning the election. If N1 =
N + 3

2
, (1) and (2) are satis�ed for

n̂1A = 1 and n̂1B =
N � 1
2

. This corresponds to the case where 
 = 1 and

� =
N � 1
2

in the de�nition of E(k). For k = 2,

Pr(WL1 j E1(k))� Pr(LW1 j E1(k)) = �
1

4
Pr

�
~nA =

N � 5
2

� 1
�
:

since Pr(WL1 j E1(2)) = 0 and Pr(LW1 j E1(2)) = Pr (~nA = (N � 5) =2� 1 j E1(2))
which in turn equals Pr (~nA = (N � 5) =2� 1) =4.

When k = 2, Pr
�
~nA =

N � 5
2

� 1
�
> 0. But k can be equal to 2 if there

are at least two voters (excluding i) in period 2, that is, N � 7. �

Proof of Lemma 1:
We �rst state and prove an intermediate lemma.

Lemma 2 For non-negative integers �1, �2 and ��, if �2 � �1, �2 + �1 �
��+ 1, and for e such that 1

2
� e � 1,

�2X
�=�1

(1� e)� e����
�
��

�

�
<

�2�1X
�=�1�1

(1� e)� e����
�
��

�

�
:
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Proof of Lemma 2: The di¤erence of the left and right hand sides simpli�es
to

� (1� e)�1�1 e����1+1
�

��

�1 � 1

�
) + (1� e)�2 e����2

�
��

�2

�
:

Note that

(1� e)�1�1 e����1+1
(1� e)�2 e����2 =

�
e

1� e

���1+1+�2
� 1:

If �1 � ��
2
, the claim is obviously true as �2 � �1 because

�
��
l

�
is decreasing in

l for l � ��=2. If �1 < ��
2
, then ��� (�1� 1) > ��=2 and since �2 > ��� (�1 � 1)

by assumption and
�

��
���(�1�1)

�
=
�

��
�1�1

�
the claim follows using the same

argument.�

To prove Lemma 1, de�ne qC(nB; nC) to be the probability that C wins
conditional upon exactly nC voters voting for C, at least nB for B, and at
least M�nB for A, where 0 �nB < M

2
� 1.

Obviously, if qC(nB; nC) = 1, then qC(nB+1; nC) = 1 for 0 �nB < M
2
�1.

Now we will show that, if 0 < qC(nB � 1; nC) < 1, then qC(nB; nC) >
qC(nB � 1; nC) for 1 �nB � M

2
. For this purpose, de�ne e = eA

eA+eB
. The

proof proceeds by showing this for various cases of nC andM , and concludes
by taking expectations over nC .
First suppose that nC = N

3
. Note that if 0 < qC(nB � 1; nC) < 1 then

N=3 � M � nB as the latter is the number of votes for A so otherwise C
looses to qC = 1. Now observe that

qC(nB;
N

3
) =

1

3
e
N
3
�M+nB (1� e)

N
3
�nB

�2N
3
�M

N
3
� nB

�
:

Straightforward algebra shows that this expression is increasing in nB for
0 �nB � M

2
.

Now consider the case that nC = N
2
. Then qC(0; nC) < 1 and qC(1; nC) =

1.
Next, if nC = N�1

2
and M = 2, then

qC(1; nC) = 1� 1
2
e
N�3
2 � 1

2
(1� e)

N�3
2

qC(0; nC) = 1� eN�32 � 1
2
� N � 3

2
e
N�5
2 (1� e) :
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As N � 5, it is easy to see that qC(0; nC) < qC(1; nC).
One more special case to consider is when nC = N�1

2
and M > 2. Then

qC(1; nC) = 1� 1
2
e
N+1
2
�M

qC(0; nC) = 1� eN+12 �M � 1
2
�
�
N + 1

2
�M

�
e
N�1
2
�M (1� e) :

Again it is straightforward to verify that, as N � 5, qC(0; nC) < qC(1; nC).
Since qC(2; nC) = 1 the claim again holds.
Finally suppose that N

3
< nC � N�2

2
. Then,

qC(nB; nC) =

nC�nBX
l=N�2nC�nB

�l�l

�
N �M � nC

l

�
;

where �l = e
N�M�nC�l (1� e)l, �l = 1

2
for l = N � 2nC�nB or l = nC�nB,

and �l = 1 for N � 2nC�nB < l < nC�nB. (The parameter l denotes the
number of votes for A.)
Lemma 2 implies that

nC�nB�1X
l=N�2nC�nB

�l

�
N �M � nC

l

�
<

nC�nB�2X
l=N�2nC�nB�1

�l

�
N �M � nC

l

�
and

nC�nBX
l=N�2nC+1�nB

�l

�
N �M � nC

l

�
<

nC�nB�1X
l=N�2nC�nB

�l

�
N �M � nC

l

�
:

(The conditions on the lower and upper bounds of the summations required
for Lemma 2 follow since nB < M=2� 1.) Since

2qC(nB; nC) =

nC�nB�1X
l=N�2nC�nB

�l

�
N �M � nC

l

�
+

nC�nBX
l=N�2nC�nB+1

�l

�
N �M � nC

l

�

it is easy to verify that the above inequalities imply that qC(nB; nC)�qC(nB+
1; nC) < 0. The proof is then completed by taking expectations over nC .�
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