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Linear Categorical Marginal Modeling of Solicited

Symptoms in Vaccine Clinical Trials

Bergsma, W.P., Aris, E.M.D, and Tibaldi, F.S.
Biometrics Department, GlaxoSmithKline Biologicals, Rixensart, Belgium

Department of Statistics, London School of Economics and Political Science, London, UK

Abstract

Analysis of the occurrence of adverse events, and in particular of solicited symptoms,
following vaccination is often needed for the safety and benefit-risk evaluation of any
candidate vaccine, and typically involves taking repeated measurements. In this article, it
is shown that Linear Categorical Marginal Models are well-suited to take the dependencies
in the data arising from the repeated measurements into account and provide detailed
and useful information for comparing safety profiles of different products while remaining
relatively easy to interpret. Linear Categorical Marginal Models are presented and applied
to a Phase III clinical trial of a candidate meningoccocal pediatric vaccine.

keywords : Marginal models, repeated categorical data, vaccine development, safety.

1 Introduction

When developing new vaccines, it is necessary to show that new candidates have an acceptable
safety profile. Typically, the clinical safety evaluation of the vaccine is performed regarding
two specific aspects. First, the occurrence of a certain number of local or general symptoms
is checked proactively via diary cards recording the occurrence or absence of the symptom
during a certain number of days after the injection. These symptoms are usually called
solicited symptoms. For ease of recording a standard intensity scale is often used and contains
a certain number of possible intensity of the symptom, typically between 1 and 3 (see, for
example Table 1). Subjects are then asked to fill in the maximum daily intensity of each
reported solicited symptom during the entire solicited symptom follow-up period in the diary
card. We will consider here a 4-day follow-up period, the day of vaccination being denoted
as day 1.

In parallel to this solicited symptoms collection, the subject is asked to record any occurrence
of adverse event experience that could also occur post vaccination. As there is no pre-
specification of the type or medical classification of the symptoms for which information is
requested, these symptoms are usually called unsolicited symptoms.

In order to avoid different types of biases, solicited and unsolicited symptoms occurring
after the vaccination by the candidate vaccine (hereafter denoted as active group) are often
compared to the ones obtained after injection of a licensed vaccine (control group) observed
in the same experimental conditions.

This paper will focus on the analysis of solicited symptoms. As the outcomes of these symp-
toms are often collected as categorical variables, the analysis methods presented below will
specifically take this aspect into account. Several ways for comparing the active and the
control groups will be presented and compared. First, the data along with standard methods
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Table 1: Definition of solicited adverse events intensities

Adverse Event Intensity Description

Pain∗ 0 Absent
1 Minor reaction to touch
2 Cries/protests on touch
3 Cries when limb is moved/spontaneously painful

Redness∗ 0 Absent
1 >0 to ≤ 10 mm
2 >10 to ≤ 30 mm
3 >30 mm

Irritability 0 Behavior as usual
1 Crying more than usual/no effect on normal activities
2 Crying more than usual/interferes with normal activities
3 Crying that cannot be comforted/interferes with normal

activities
∗at injection site.

presenting results for each day or overall will be introduced in Section 2, where the difficulties
caused by the fact that we have dependencies in the data due to the repeated measurements
are outlined. To overcome these difficulties, Linear Categorical Marginal Models (LCMMs),
which take these dependencies into account, will be proposed in Section 3. For the ease of
presentation, we will first consider the analysis of the occurrence of any event regardless of
the intensity. Analyses taking into account the several intensities will only be dealt with in
Section 4. Results from simulated data evaluating the Linear Categorical Marginal Models
will be presented in Section 5. Finally, the advantages and drawbacks of Linear Categorical
Marginal Models obtained via a Maximum Likelihood estimation procedure will be discussed.

2 Case Study

The data analyzed in this manuscript is coming from a Phase III trial of a meningococcal
vaccine in children. For confidentiality reasons only partial data of the trial are used to
illustrate our methods. In this study, children at age 12 to 15 months are randomly assigned
3:1 to 2 groups to be either vaccinated by the candidate vaccine or by a control. The candidate
vaccine should offer a broader protection to meningococcal infection, so the safety question
of interest is whether the safety profile of the vaccine is or is not worse than the control. The
information collected for the solicited local symptoms is summarized in the first six columns
of Table 2. The vaccine is injected in the upper left thigh at day 1, and the parents of the
subjects are asked to fill in diary cards indicating whether or not the vaccinee experienced
either pain, redness, or irritability during the follow-up period of 4 days.

Below, we first present some simple classical analyses involving Bonferroni-Holm corrections,
and highlight the difficulties that arise due to the dependencies in the data as the measure-
ments on the different days involve the same subjects.

In order to have an indication of the difference between the 2 groups, it is possible, for each
day to test whether the difference in occurrence of the symptom is statistically significant.
For example, Table 2 presents results from exact tests comparing the percentage of subjects
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Table 2: Differences between groups in percentage of subjects reporting a specified solicited
local symptom during the 4-day post vaccination period.

Control Active Control - Active
(N=499) (N=1381) 95%CI p-value

Symptom Day n % n % % LL UL Raw B-H

Pain 1 333 66.7 929 67.3 -0.54 -5.80 4.39 0.824 1.000
2 252 50.5 613 44.4 6.11 1.00 11.41 0.021 0.084
3 116 23.2 264 19.1 4.13 -0.31 9.05 0.051 0.154
4 49 9.8 102 7.4 2.43 -0.80 6.35 0.102 0.204
Any 366 73.3 1025 74.2 -0.87 -5.98 3.80 0.721 –

Redness 1 310 62.1 797 57.7 4.41 -0.70 9.59 0.090 0.090
2 312 62.5 769 55.7 6.84 1.73 12.01 0.008 0.025
3 214 42.9 504 36.5 6.39 1.30 11.69 0.013 0.027
4 115 23.0 236 17.1 5.96 1.57 10.83 0.004 0.016
Any 382 76.6 979 70.9 5.66 0.83 10.67 0.017 –

Irritability 1 221 44.3 570 41.3 3.01 -2.10 8.32 0.245 0.703
2 218 43.7 587 42.5 1.18 -3.93 6.50 0.675 0.703
3 164 32.9 413 29.9 2.96 -1.94 8.20 0.234 0.703
4 115 23.0 246 17.8 5.23 0.83 10.12 0.012 0.047
Any 279 55.9 763 55.2 0.66 -4.46 5.85 0.834 –

Note: Since the measurements on the four days and of the three symptoms are done on the same
subjects, the differences between groups are correlated but this specific correlation is not taken into
account here.
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with the solicited symptom (p-values correspond to Fisher’s exact test p-values). As sev-
eral comparisons have been made, the p-values have been adjusted by symptom using the
Bonferroni-Holm method, denoted the B-H p-value (see Holm, 1979). Note that, because
within each subject the several p-values are likely to be correlated, this correction method
may not be optimal. However, as it does not require any assumptions (model or distribu-
tion related) and its family-wise error rate does not exceed 5%, this test could be used here
although it may be too conservative which may be problematic as it might mask a possible
difference. For more complex settings with multiple doses or when several symptoms have to
be considered simultaneously, other multiplicity correction methods such as the double false
discovery rate (Mehrotra & Heyse, 2004) could be considered. Considering the unadjusted
tests (regardless of intensity, i.e., the ‘All’ rows in Table 3), we would find statistically signif-
icant differences in the occurrence of pain (day 2), redness (days 2, 3 and 4) and irritability
(day 4). However, when taking into account the multiplicity of the tests within a symptom
via the B-H method, no statistically significant difference would be found for pain. Hence,
as this example illustrates, it may not be uncommon to be in a situation in which several
tests are significant when not adjusting for multiplicity, but no or fewer tests are significant
if adjusted with an adjustment method that does not use all information in the data, leav-
ing the user in doubt of which conclusion to draw especially as the B-H method is likely
to overcorrect for multiplicity here. The problem magnifies if the intensities of the solicited
symptoms experienced have to be taken into account such as in Table 3. There, as the B-H
correction is applied per symptom, no B-H p-value is significant anymore for irritability, and
only one out of the 6 significant p-values for redness remain significant when corrected for
multiplicity.

An alternative analysis disregards intensity and only considers whether or not the symptom
occurred on any of the four days. Here, a statistically significant difference would only be
observed for redness (see Table 2). However, although this method is perfectly valid and
circumvents the problem of repeated measures, substantial information may be lost. Indeed,
it is possible that certain effects are visible during certain days but not during others, which
could be the case for pain and irritability.

3 Linear Categorical Marginal Models

Table 2 shows the percentage differences of occurrence of various solicited symptoms between
control and active groups are reported. In this section, we discuss some models for these
data, using which we can answer various questions of interest, such as whether or not there
are statistically significant differences between the responses on the four days. Since we have
repeated measurements, i.e., measurements on different days involving the same subjects,
dependencies arise which need to be taken into account. This can be done naturally using
marginal modeling techniques.

3.1 Definition of the marginal proportions

Let the variable G denote the group a respondent is in (G = 1 for the active group and G = 2
for the control group), let S denote whether or not the solicited symptom occurred (S = 1
if the symptom occurred, S = 2 if it didn’t), and let T denote the time after intervention in
days (T = 1, 2, 3, 4). The proportion of respondents who are in group G = g with solicited
symptom S = s given time T = t is denoted by πSs

G
g
|T
t . We should note that these πSs

G
g
|T
t

are not proportions of an ordinary contingency table, but marginal proportions of a larger
contingency table. Since for each solicited symptom, each subject in each group has four
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Table 3: Differences between groups in percentage of subjects reporting a specified solicited
local symptom during the 4-day post vaccination period.

Control Active Control - Active
(N=499) (N=1381) 95% CI p-value

Symptoms Intensity n % n % % LL UL Raw B-H

Day 1
Pain All 333 66.7 929 67.3 -0.54 -5.8 4.39 0.824 1.000

2 or 3 143 28.7 300 21.7 6.93 2.25 12.02 0.002 0.021
3 33 6.6 31 2.2 4.37 1.83 7.63 <0.001 0.001

Redness All 310 62.1 797 57.7 4.41 -0.7 9.59 0.090 0.538
2 or 3 39 7.8 80 5.8 2.02 -0.93 5.69 0.133 0.626
3 2 0.4 18 1.3 -0.9 -3.22 1 0.125 0.626

Irritability All 221 44.3 570 41.3 3.01 -2.1 8.32 0.25 1.000
2 or 3 31 6.2 88 6.4 -0.16 -3.86 3.17 1.000 1.000
3 4 0.8 19 1.4 -0.57 -3.07 1.49 0.476 1.000

Day 2
Pain All 252 50.5 613 44.4 6.11 1 11.41 0.021 0.169

2 or 3 93 18.6 153 11.1 7.56 3.55 12.11 <0.001 0.001
3 14 2.8 14 1 1.79 -0.03 4.42 0.008 0.075

Redness All 312 62.5 769 55.7 6.84 1.73 12.01 0.008 0.091
2 or 3 91 18.2 189 13.7 4.55 0.48 9.17 0.016 0.125
3 16 3.2 42 3 0.17 -2.01 3.13 0.880 1.000

Irritability All 218 43.7 587 42.5 1.18 -3.93 6.5 0.673 1.000
2 or 3 67 13.4 149 10.8 2.64 -1.03 6.93 0.120 0.958
3 15 3 34 2.5 0.54 -1.53 3.41 0.514 1.000

Day 3
Pain All 116 23.2 264 19.1 4.13 -0.31 9.05 0.051 0.358

2 or 3 25 5 43 3.1 1.9 -0.53 5.08 0.068 0.407
3 2 0.4 7 0.5 -0.11 -2.22 1.74 1.000 1.000

Redness All 214 42.9 504 36.5 6.39 1.3 11.69 0.013 0.121
2 or 3 54 10.8 102 7.4 3.44 0.11 7.42 0.023 0.159
3 11 2.2 19 1.4 0.83 -0.95 3.43 0.214 0.641

Irritability All 164 32.9 413 29.9 2.96 -1.94 8.2 0.234 1.000
2 or 3 54 10.8 115 8.3 2.49 -0.88 6.52 0.101 0.905
3 14 2.8 21 1.5 1.28 -0.62 4 0.081 0.813

Day 4
Pain All 49 9.8 102 7.4 2.43 -0.8 6.35 0.102 0.509

2 or 3 10 2 14 1 0.99 -0.68 3.49 0.104 0.509
3 2 0.4 4 0.3 0.11 -0.98 2.08 0.659 1.000

Redness All 115 23 236 17.1 5.96 1.57 10.83 0.004 0.047
2 or 3 23 4.6 31 2.2 2.36 0.09 5.41 0.011 0.114
3 0 0 2 0.1 -0.14 -1.49 1.42 1.000 1.000

Irritability All 115 23 246 17.8 5.23 0.83 10.12 0.012 0.142
2 or 3 38 7.6 69 5 2.62 -0.26 6.21 0.042 0.459
3 4 0.8 8 0.6 0.22 -1.09 2.39 0.530 1.000
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measurements taken on the four days, the full contingency table for a solicited symptom
involves five variables: G, the group the subject is in, S1, whether a solicited symptom
occurred on day 1, S2, whether a solicited symptom occurred on day 2, and so on. Denote by
πGg

S1
s1

S2
s2

S3
s3

S4
s4 the proportion of subjects in group G = g with symptom Si = si on day i (Si = 1

if the symptom occurred on day i and Si = 0 if the symptom did not occur on day i). Then,
with a ‘+’ in the subscript denoting summation over that subscript,

πSs
G
g
|T
1 = πGg

S1
s

S2
+

S3
+

S4
+

πSs
G
g
|T
2 = πGg

S1
+

S2
s

S3
+

S4
+

πSs
G
g
|T
3 = πGg

S1
+

S2
+

S3
s

S4
+

πSs
G
g
|T
4 = πGg

S1
+

S2
+

S3
+

S4
s

That is, the πSs
G
g
|T
t are marginal proportions. We next discuss some models for these marginal

proportions.

3.2 Modeling the differences in marginal proportions

Various questions can be asked about the data in Table 2 concerning changes in the response
patterns over the four days. The conditional probability that S = s given G = g and T = t
is denoted

πSs
|G
g
T
t =

πSs
G
g
|T
t

πSs
|T
t

The differences in the marginal proportions for active and control group at time t are denoted

δTt = πS1
|G
1
T
t − πS1

|G
2
T
t

and can be estimated by different models. The saturated model, later called varying differ-
ence model, which does not impose any restrictions but whose parameters can be useful for
interpretation, is denoted by

δTt = α+ βt for all t, (1)

for some unknown parameters α and βt. Here, the β parameters are not identified but can be
identified by imposing a restriction such as

∑
t βt = 0 (cf. effect coding in ANOVA). Various

other models of interest are obtained by imposing restrictions on the α and β parameters.

The most parsimonious model asserting no differences between active and control is obtained
by setting α = 0 and βt = 0, i.e.,

δTt = 0 for all t. (2)

We will refer to this model as the no difference model. The presence of a difference but one
which does not change over time is

δTt = α for all t. (3)

We will refer to this model as the constant difference model. Finally, a difference between
active and control which changes linearly over time is formulated as

δTt = α+ β.t for all t. (4)

We will refer to this model as the linear difference model.

Since the πSs
|G
g
T
t are marginal proportions, and the aforementioned models are linear in these,

we will call them Linear Categorical Marginal Models (LCMMs)
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3.3 Fitting Linear Categorical Marginal Models

Before we describe the fitting procedure, we first formulate the model in matrix notation.
Denote the vector of proportions for the full table, i.e., the πGg

S1
s1

S2
s2

S3
s3

S4
s4 , by π. The vector of

marginal proportions of interest are a linear combination of the elements of π and can thus
be written as

Mπ

where M is an appropriate matrix of zeroes and ones (for more details see Bergsma, Croon, &
Hagenaars, 2009). Let δ be the vector of δTt . We can use the generalized exp-log notation of
Kritzer (1977) and Bergsma et al. (2009) to represent δ, which we denote δ(Mπ) to indicate
the dependence on the marginal proportions:

δ(Mπ) = C′ expB′ logA′Mπ

A linear model for this vector of coefficients, i.e., a LCMM, can then be denoted as

δ(Mπ) = Xβ (5)

for an appropriate design matrix X and a parameter vector β. With the columns of U
spanning the orthogonal complement of the space spanned by the columns of X, we can give
the equivalent representation

U′δ(Mπ) = 0 (6)

With n a vector of frequencies, the kernel of the multinomial log likelihood is given as

L(π|n) = n′ logπ −N1′π (7)

where N is the sample size. The problem now is to find an estimator of π subject to the
constraint (6), or of β subject to (5), when the data vector n follows a multinomial likelihood.
Two different estimation procedures have been developed for models of this type and more
general models: the weighted least squares (WLS) method (Grizzle, Starmer, & Koch, 1969)
and the maximum likelihood (ML) method (Lang & Agresti, 1994; Bergsma, 1997; Lang,
2004; Bergsma et al., 2009).

WLS is based on the the asymptotic covariance matrix of the sample value of θ(Mπ). Using
the delta method this leads to the WLS estimator

β̃ =
(
X′ (JMDpM

′J′)−1
X
)−1

X′ (JMDpM
′J′)−1

JMp.

where J is the Jacobian of δ, p is the vector of observed probabilities, and Dp is the diagonal
matrix with p on the main diagonal (see also, e.g., Koch, Landis, Freeman, & Lehnen, 1977).

The ML method is computationally more complex and based on maximizing the multinomial
log likelihood (7) subject to the constraint (6). The constrained ML solution is a stationary
point of the Lagrangian expression

L(π|n)− λ′U′δ(Mπ)

where λ is a vector of Lagrange multipliers. A scoring type algorithm which works well in
practice is given in Bergsma et al. (2009) (see also Bergsma, 1997). The algorithm assumes
the regularity conditions that U has full column rank and the Jacobian J has full row rank,
which are normally satisfied in practice.
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Once the estimates π̂ have been obtained, marginal models can be tested by means of two
well-known test statistics: the likelihood ratio test statistic

G2 = −2N
∑
i

pi log
π̂i
pi

and Pearson’s chi-square test statistic

X2 = N
∑
i

(pi − π̂i)
2

π̂i
.

If the postulated model is true, these test statistics have an asymptotic chi-square distribution
with degrees of freedom (df) equal to the number of independent constraints on the cell
probabilities. Assuming the aforementioned regularity conditions, df equals the row rank
of U.

Both ML and WLS share the same desirable asymptotic properties. The advantage of WLS
is the ease of computation, in particular, closed form expressions for the estimators exist.
However, the WLS method is very sensitive to sparseness in the data, while the ML method
can be used for much smaller data sets (see Berkson, 1980, and the discussion of that paper).
An alternative method is Generalized Estimating Equations (GEE) (Liang & Zeger, 1986).
Here, unlike for the ML method, a predefined correlation structure has to be assumed, which
may be arbitrary. For more details about this method, the reader is referred to Skrondal and
Rabe-Hesketh (2004, Section 6.9), Molenberghs and Verbeke (2005), or Bergsma et al. (2009,
Section 7.2.1).

3.4 Application to the Case Study

The models described in previous section were applied to the data from our case study.
Results of several different LCMMs for pain, redness and irritability are presented in Table 4.
For all three symptoms, the no difference model fit the data poorly, indicating that there
could be a difference between groups, either constant across all 4 days or not.

For redness (resp. irritability), the hypothesis of a constant difference is acceptable as the
estimated values from the constant difference model are not statistically significantly different
from the observed ones (p = 0.849 and p = 0.344, respectively). The estimated value for the
difference overall per day is 5.60% (resp. 4.21%) and it is statistically significant (p = 0.001
and p = 0.022, respectively).

For pain, even if the data does not show strong evidence that the differences vary among time
(fit of the constant difference model is p = 0.106), we could consider to evaluate differences
between group by day. Considering the varying difference model, we see that the active
group has a statistically lower incidence of pain than the control group only for day 2 if not
controlled for multiplicity (p = 0.019, pB−H = 0.076). For the other days, no statistically
significant difference was found. Hence, looking per day here, does not seems to bring much
additional information to the evaluation of the difference between group. In addition, there
does not seem to be a strong evidence for an overall difference between the groups (overall
effect p-value is p = 0.140).

Comparing the results produced here and the ones obtained by standard analysis techniques,
several remarks can be made. For pain, using the LCMM allows to see that although there
might be some variability of the difference between groups across days, this variability is
rather small, and the overall difference between the group also seems negligible. For redness,
using the LCMM provides similar information as we would have found considering differences
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Table 4: Fit and effect estimates of different Linear Categorical Marginal Models with ML
Estimation for the solicited symptoms observed during the 4-day post vaccination period.

Expected difference Model-based
Model Fit Control - Active p-value

Model Symptoms G2 df p-value Day Diff se Unadjusted B-H

No difference Pain 8.46 4 0.076 1, 2, 3 or 4 0 - - -
Redness 8.82 4 0.066 1, 2, 3 or 4 0 - - -
Irritability 11.46 4 0.022 1, 2, 3 or 4 0 - - -

Constant Pain 6.16 3 0.106 1, 2, 3 or 4 1.95 1.32 0.140 -
difference Redness 0.84 3 0.849 1, 2, 3 or 4 5.60 1.74 0.001 -

Irritability 3.32 3 0.344 1, 2, 3 or 4 4.21 1.85 0.022 -

Varying Pain 0.00 0 1.000 1 -0.54 2.46 0.827 0.827
difference - 2 6.11 2.61 0.019 0.076

- 3 4.13 2.17 0.057 0.171
- 4 2.43 1.51 0.106 0.212

Redness 0.00 0 1.000 1 4.41 2.55 0.083 0.083
- 2 6.84 2.55 0.007 0.021
- 3 6.39 2.57 0.013 0.026
- 4 5.96 2.14 0.005 0.020

Irritability 0.00 0 1.000 1 3.01 2.59 0.244 0.675
- 2 1.18 2.59 0.648 0.675
- 3 2.96 2.43 0.224 0.675
- 4 5.23 2.14 0.015 0.060
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overall: a statistically significant difference is found overall between the two groups, and this
difference seems to be constant across time. Further this difference is very close using the 2
approaches: 5.7% for the differences and 5.6% for the LCMM. However, using the LCMM
allows us to show that this is a correct strategy to describe the result overall as the constant
difference model fits the data well. For irritability, using the LCMM, a statistically significant
difference is found between the two groups (4.2%), and seems to be constant along time
between the two groups (Constant difference model p = 0.344)). However, this difference is
not really seen when considering the differences overall per subject (0.7%), or within each
day independently except for day 4 where the difference is statistically significant even after
correction for multiplicity. In this case, it might make more sense to conclude that there is a
small but constant difference between the two groups, rather than no difference until day 3
and a difference at day 4.

We also fitted the same model using WLS and found little differences in p-values obtained
compared to the ML procedure. For example, the only difference, in terms of unadjusted
p-values, were for pain (p = 0.138 instead of 0.140 for the constant difference model), and
irritability (p = 0.024 instead of 0.022 for the constant difference model, and 0.225 instead
of 0.224 for the difference on day 3 for the varying difference model).

4 Use of Linear Categorical Marginal Models for the Analysis
of Several Intensities

In Section 3, we have tested for differences between the two groups regarding the occurrence
of symptoms at a specific intensity. In this section, we extend this approach by formulating
models that take into account the full scale at which the intensities were measured, rather
than the simple dichotomy used in the previous section. We will treat the scale of intensity
as ordinal; subjects are considered to have answered three successive dichotomous questions:
were there any symptoms? were they least of moderate intensity? were they of severe inten-
sity? Thus, we treat the data as truly categorical rather than as a realization of an underlying
continuum (see Hagenaars, 2010, for an extensive discussion of the history and philosophy
of this approach). Therefore, in the present setup we not only have the dependencies over
time which we already encountered in Section 3, but also, at each time point, we have several
dependent dichotomous variables. Below, we show how marginal models can also be used to
handle these more complex dependence relations.

4.1 Modeling the difference of multivariate marginal proportions

In Section 3 we have not taken the fact that symptoms were measured on a four point
scale into account, that is we only compared proportions of having no symptoms (S = 0)
versus having a symptom with a certain intensity (S = 1, 2, 3). To make use of the intensity
information, we can also look at the differences in proportions of those who had S = 0, 1 vs.
S = 2, 3 and those who had S = 0, 1, 2 vs S = 3. Introduce the new variable R, which takes
the following values: R = 1 if S ≤ 1, R = 2 if S ≤ 2, and R = 3 if S = 3. Let

πRr
|G
g
T
t

be the proportion of respondents from group g given time t who experience the symptom with
an intensity of at most r. Then we can define the two-way table of differences in proportions
for active and control by

δTt
R
r = πRr

|G
1
T
t − πRr

|G
2
T
t
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The saturated model, which does not impose any restrictions, is denoted as

δTt
R
r = α+ βT

t + βR
r + βTt

R
r for all r and t

for some unknown α and β parameters. The β parameters can be identified by imposing
restrictions such as

∑
t β

T
t = 0,

∑
r β

R
r = 0, and

∑
t β

T
t
R
r =

∑
r β

T
t
R
r = 0.

The most parsimonious model is that all differences are zero,

δTt
R
r = 0

We will refer to this model as the no difference model. It has here twelve independent
restrictions on the probability distribution, so there are 12 degrees of freedom. The model
asserting constant differences between active and control groups across time and intensities
is

δTt
R
r = α

We will refer to this model as the constant difference model. It has 11 degrees of freedom.
The model asserting constant differences between active and control groups for each level of
intensity R is

δTt
R
r = α+ βRr

We will refer to this model as the constant difference model by intensity. It has 9 degrees
of freedom. The model asserting an independent effect of both time and intensity between
active and control groups is

δTt
R
r = α+ βRr + βTt

We will refer to this model as the independent intensity and time effect model. For this model,
the difference between active and control group for each level of intensity R is different, but
the effect of time on this difference is the same for all intensities. It has 6 degrees of freedom.

Here also, the likelihood ratio test statistic G2 and X2 have an asymptotic chi-square dis-
tribution if the postulated model is true, with degrees of freedom equal to the number of
independent constraints on the cell probabilities.

Several other models for modeling repeated ordered categorical variables have been developed
but will not be discussed here (see, e.g. Molenberghs & Verbeke, 2005).

4.2 Application to the Case Study

Considering results by day from Table 3, significant differences not taking into account mul-
tiplicity, are noted for pain at day 1 (for intensity higher than 2 or intensity 3), at day 2 (for
all 3 categories), for redness at days 2, 3 and 4 (for any intensity or intensity higher than 2),
and for irritability at day 4 (for any intensity or intensity higher than 2). However, when
correcting for multiplicity via the Bonferroni-Holm procedure, only 4 significant differences
are found: for pain at day 1 (for intensity higher than 2 or intensity 3), at day 2 (for intensity
higher than 2), and for redness at day 4 (for any intensity)

Analysis of this data by LCMMs may provide more insight in the data. Results of the fit of
LCMMs taking into account the several intensities are shown in Table 5 (intensity 0 vs. 1, 2
and 3, or 0 and 1 vs. 2 and 3, or 0, 1 and 2 vs. 3 are simultaneously tested).

For irritability, as the no difference model yields a good fit to the data (p = 0.221), we
find no evidence for a difference between the 2 groups in terms of any intensity at any time
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Table 5: Fit of different marginal models of the solicited symptoms of several intensities
observed during the 4-day post vaccination period by either ML or WLS estimation procedures

Estimation No difference Constant difference Constant difference Independent intensity
procedure Symptom model model model by intensity & time effect model

ML G2 df p-value G2 df p-value G2 df p-value G2 df p-value
Pain 33.8 12 <0.001 32.5 11 <0.001 29.9 9 <0.001 16.1 6 0.013
Redness 22.5 12 0.032 21.7 11 0.027 7.11 9 0.625 1.8 6 0.938
Irritability 15.3 12 0.221 15.4 11 0.166 10.75 9 0.293 7.6 6 0.269

WLS W 2 df p-value W 2 df p-value W 2 df p-value W 2 df p-value
Pain 27.6 12 0.006 27.5 11 0.004 26.4 9 0.002 15.4 6 0.017
Redness 22.7 12 0.031 20.2 11 0.043 7.34 9 0.602 1.7 6 0.941
Irritability 14.3 12 0.283 14.1 11 0.225 10.17 9 0.337 7.6 6 0.267

Table 6: Differences between the groups and the different intensities for the solicited symptom
pain overall days post vaccination. Results of the constant difference model by intensity

Control - Active
0 vs 1,2,3 0,1 vs 2,3 0,1,2 vs 3

Symptoms Day Diff (%) p-value Diff (%) p-value Diff (%) p-value
Redness 1,2,3,4 4.93 0.003 2.18 0.009 -0.17 0.124
Pain 1,2,3,4 1.22 0.325 1.59 0.025 0.814 0.041

points. It can be observed that this result is not supported by the conclusions obtained in
Section 3.4, in which a significant effect was found. This is may be attributed to the fact
that extra comparisons are taken into account here that may mask a specific effect, which
can also occur, e.g., when considering the effect of factors in ANOVA models.

For redness, the assumption of no difference cannot be sustained (p = 0.032) and it seems
further that the difference between the groups is not the same for all intensities (p = 0.027),
but when considering each intensity this difference seems constant along time (p = 0.625). In
fact, it seems that for redness, the differences between the groups is much more pronounced
for symptoms with low intensity than for symptoms with high intensity (see Table 6).

Contrary to the analyses of irritability or redness, the fit of the different models shown in
Table 5 seems to indicate that the analysis of pain should be handled by intensity and time
point. The independent intensity and time model does not fit the data very well either (p =
0.013) providing some evidence for an interaction between the two factors. From Table 3, we
see indeed that for the highest intensities, a difference between the groups appears earlier and
disappears also earlier, than when considering any intensity. Hence, for pain, summarizing
the results across intensity and/or time may lead to substantial loss of information.

Using the LCMMs in this setting allows us to easily confirm that, there are no marked
differences for irritability, that for redness differences seems to occur rather constantly per
day for low to moderate intensity symptoms, and that for pain a more complex pattern has
to be taken into account to analyze the differences as they are not only depending on the
intensities, but also on the days and on their interaction.

The results obtained with ML and WLS estimation procedures can be compared. Results
were similar when considering only one intensity comparison by solicited symptom, but are
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somewhat more different though the differences remain quite small than when the intensity
was not taken into account (see Table 5). Here, all p-values are different with a maximal
difference of 0.06 (p = 0.28 for WLS versus p = 0.22 for ML for the no difference model for
irritability). This is probably due to larger and more sparse tables used when considering all
intensities at once. Different behaviors of the WLS and of the ML estimation procedure are
indeed likely to occur on sparse tables. Note that here the estimation problem of the WLS
procedure due to the sparseness of the table is more likely to happen, which makes the use
of the ML procedure more attractive here.

5 Simulation studies

We now compare the performance of the marginal modeling approach with two classical
approaches commonly used in clinical trials using a simulation study of 3 different types of
models with different correlation between the days. The data are simulated as follows. We
use n = 300 for both the control and the active groups and simulate from (i) the no difference
model,

δTt = 0.00 for t = 1, . . . , 4

(ii) the constant difference model

δTt = 0.025 for t = 1, . . . , 4

(iii) the constant difference model

δTt = 0.05 for t = 1, . . . , 4

(iv) the varying difference model

δT1 = δT2 = 0.05 δT3 = δT4 = 0 (8)

(v) the varying difference model

δT1 = δT2 = 0.1 δT3 = δT4 = 0 (9)

and (vi) the varying difference model

δT1 = δT2 = 0 δT3 = δT4 = 0.05 . (10)

In all cases, we set the proportions experiencing a symptom for the control group equal to
0.65, 0.50, 0.25 and 0.15.

To simulate correlated data we need a model for the nuisance parameters as well. For this we
use two loglinear models. The first is a naive model that the occurrence of symptoms at the
different time points are independent given treatment, denoted in loglinear model notation
as

{GS1, GS2, GS3, GS4} (11)

The second model adds conditional associations between symptom occurrence at the different
time points, and is denoted in loglinear model terms as

{GS1, GS2, GS3, GS4, S1S2, S2S3, S3S4}
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This model requires specification of an association parameter in marginal tables S1S2, S2S3,
and S3S4. We take a constant difference in proportions,

δS = π
St+1

1
|St
1 − π

St+1

1
|St
2 = 0.2

For the model (11), δS = 0. For both approaches, and each case, 20,000 simulated samples
are produced.

For each simulated sample, the first classical approach, called here the ‘any day’ approach,
considers subjects who experienced the symptom at least once during any day of the follow
up, and tests differences between groups using the Fisher’s exact test. The second classical
approach entails computing the Fisher’s exact p-value for the hypotheses H0t : δTt = 0 for
all t with the Bonferroni-Holm (B-H) correction. For the marginal modeling approach, the
strategy followed to detect an effect is similar to the one used in Section 3. First, the
constant difference model is tested, the alternative being the varying difference model which
is the saturated model. If the constant difference model is not rejected (model fit p-value
≥ 0.05), then the constant difference across all 4 days is tested for significance. If the constant
difference model is rejected, the varying difference model is used and the estimated differences
for each day are tested for significance using the B-H correction. The overall probability of
obtaining significant differences between the groups by the marginal approach, denoted as
Pdiff in the following, is thus obtained as the weighted average of the 2 types of difference
tests previously estimated.

Table 7: Simulation results: Type I error and power of the different models (H1 being the
constant difference model)

Classical LCMM
Model for approaches approach

Simulation nuisance ‘any day’ B-H H1 accepted H1 rejected Overall
model for δTt

R
r parameters Pdiff P(accept H1) Pdiff Pdiff Pdiff

No difference δS = 0 0.032 0.038 0.948 0.050 0.314 0.063
(δTt = 0) δS = .2 0.058 0.038 0.948 0.051 0.261 0.063

Constant diff. δS = 0 0.323 0.196 0.951 0.306 0.703 0.326
(δTt = 0.025) δS = .2 0.535 0.304 0.947 0.401 0.765 0.420

Constant diff. δS = 0 0.831 0.587 0.948 0.837 0.948 0.844
(δTt = 0.05) δS = .2 0.967 0.835 0.938 0.946 0.989 0.948

Varying diff. δS = 0 0.325 0.273 0.818 0.190 0.726 0.287
(Eq. (8)) δS = .2 0.488 0.354 0.800 0.245 0.789 0.354

Varying diff. δS = 0 0.823 0.810 0.371 0.584 0.950 0.815
(Eq. (9)) δS = .2 0.929 0.903 0.346 0.717 0.982 0.890

Varying diff. δS = 0 0.322 0.452 0.799 0.478 0.803 0.544
(Eq. (10)) δS = .2 0.619 0.659 0.762 0.629 0.911 0.696

The simulation results are shown in Table 7. We first see that the classical ‘any day’ approach
can be either conservative or liberal according to the strength of the association between
the different days. Then we see that the classical B-H approach is slightly conservative,
with too small probabilities corresponding to the type I error, while the marginal modeling
approach using LCMMs as applied with the above strategy is slightly liberal. However,
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this shortcoming should not really penalize the marginal modeling approach in the context
of analyses of solicited and unsolicited symptoms as the priority is often put on detecting
differences rather than confirming them. In this respect, the simulations show that the
marginal modeling approach is significantly more powerful than the B-H approach when
simulations are done from the constant difference models. For simulations done from the
varying difference models the two approaches yield comparable power. Compared to the
‘any day’ approach, the marginal modeling approach yields similar or better results (data
corresponding to Equation (10)) in terms of power when there is no association between the
days. Whenever there is some association between the days, the ‘any day’ approach can be
more powerful than the marginal modeling one for the constant difference models, while for
the varying effect models, which model is the most powerful seems to depend on the structure
of the differences.

In addition, the marginal modeling approach is more flexible than the classical approaches,
as a wider range of hypotheses can be tested and corresponding parameter estimates can
be obtained. As shown in Table 7, using LCMMs the marginal modeling approach can also
help to find the correct structure of the differences. For example, in the varying difference
simulated data corresponding to Equation (9), in more than 60% of the cases it can be
concluded that there is a significant effect and that this effect differs among days, and in the
constant difference simulated data δTt = 0.05 it can be concluded in more than 80% of the
cases that there is a significant effect and that this effect is constant among days, and only
in less than 7% of the cases that there is a significant effect differing among days.

6 Conclusions

Without making unnecessary assumptions, LCMMs have been shown to take into account
the dependencies that arise due to the repeated measurements of the solicited symptoms
experienced after vaccination. They allow a better understanding of the relative safety profile
of the several groups considered by testing correctly global hypotheses rather than looking at
a list of p-values. In addition, interpretation is easy, the effect parameters derived from these
models being expressed in terms of difference of percentages. The use of this method has the
potential to improve the quality of global evaluation of the occurrence of solicited symptoms
especially when several intensities, observation days, and/or doses are considered. Further,
it is not limited to solicited symptoms and could also be applied to unsolicited symptoms,
or even non safety data, provided that the occurrence of the event of interest is sufficiently
frequent. Use of the ML estimation procedure will also bring some added value compared to
the WLS procedure especially for complex models.

However, use of the ML estimation method presented above will not be straightforward in a
clinical standard setting. Indeed, the estimation procedure, although available in an R pack-
age, is still not yet present in an ISO validated software. Furthermore, satisfactory strategies
for the handling of missing data have not been yet been developed for this procedure. Hence,
further developments in terms of handling missing data and accessibility of the method are
still needed to be able to be used by a broader audience. Current work of the authors of this
article is aimed at tackling these shortcomings.
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