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Abstract

By representing a system of budget shares as an approximate factor model we determine its
rank, i.e. the number of common functional forms, or factors and we estimate a base of the
factor space by means of approximate principal components. We assume that the extracted
factors span the same space of basic Engel curves representing the fundamental forces driving
consumers’ behaviour. We identify these curves by imposing statistical independence and
by studying their dependence on total expenditure using local linear regressions. We prove
consistency of the estimates. Using data from the U.K. Family Expenditure Survey from
1977 to 2006, we find strong evidence of two common factors and mixed evidence of a third
factor. These are identified as decreasing, increasing, and almost constant Engel curves. The
household consumption behaviour is therefore driven by two factors respectively related to
necessities (e.g. food), luxuries (e.g. vehicles), and in some cases by a third factor related
to goods to which is allocated the same percentage of total budget both by rich and poor
households (e.g. housing).
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1 Introduction

In his seminal work of 1857, Ernst Engel made already clear that all kinds of household expen-

ditures depend on income, but each type of expenditure depends on income in its own way. The

functional dependence of expenditure on income is traditionally studied by the analysis of Engel

curves. These are regression functions in which the dependent variable is the level or share of

expenses (i.e. the budget share) allocated towards a category of goods or services and the explana-

tory variable is income, usually proxied by total expenditure. Typically, Engel curves estimated

over different samples of households show that budget shares change with income, which implies

that for many types of expenditures the levels grow non-proportionally with income. For example,

the total budget allocated on food tends to decrease with income. This is a very robust empirical

regularity, found in numerous samples of families, and classically referred to as Engel law. Other

types of expenditure follow different patterns, although in a less robust manner. For example, it

is often the case to observe budget shares spent on leisure goods or services which increase with

income.

The various reactions to income changes, showed by different types of expenditures, suggest

the existence of different motives driving consumption decisions. Each motive determines a very

specific reaction to income changes and all observed Engel curves are to be interpreted as a mixture

of these basic reactions. This paper presents a statistical analysis of the variety of expenditure

patterns (across some categories of goods and services) with the aim of capturing the (unobserved)

reactions to income changes caused by the underlying motives.

The literature trying to interpret the various shapes of Engel curves in terms of underlying

motives traces back to Ernst Engel (1857) himself. He suggested that when studying household

consumption we should distinguish and classify expenditure categories according to the wants they

serve (see Chai and Moneta, 2010). He identified particular categories of wants as “nourishment”,

“clothing”, “housing”, “recreation”, “safety”, and several others. To each category of expenditure

it should be assigned one want or an homogeneous set of wants. In this framework, the shape of

the Engel curve for food (that is the Engel law) can be explained by asserting that nourishment is

one of the basic human needs and that the goods which are necessary for their satisfaction have,

in case of deprivation, higher utility than that of any other commodities. Yet, once the want for

nourishment is satiated, the marginal utility of successive increments of the same goods falls (see

Pasinetti, 1981; Witt, 2001). Thus, each family seeks to reach a certain level of expenses on food

(under the constraint of its budget), but once its members are nourished enough, other types of ex-
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penditures will be considered, if there is enough budget left. This would explain why poor families

spend, on average, a higher share of their budget on food than rich families. Other assumptions on

the relationship between single wants and utility and on the existence of a hierarchy of wants may

help explain the structure of Engel curves for higher order goods and services, included luxuries

(see Pasinetti, 1981; Foellmi and Zweimüller, 2008).

It is, however, very problematic to assign to each category of expenditure an homogeneous set

of motives. Food expenditure and consumption may well be predominantly driven by need of calo-

ries intake, which is genetically determined and therefore shared (with the usual genetic variance)

among all humans (see Witt, 1999). But other motives, of very different nature, may concur in

influencing the decision about the budget share to be allocated on food, like, for example, the need

of social recognition, health, etc. Categories like clothing, housing, leisure goods and services,

travel, etc. appear even more problematic to be assigned to a class of homogeneous wants. Travel

expenditures, for instance, may be driven by very different kinds of motives, like leisure, health

and social recognition. Moreover, the existence of a hierarchy of wants is empirically controversial

(see Banerjee and Duflo, 2011).

In this paper we assume that there are different motives driving consumption decisions. We

conjecture that each of these motives determines a specific reaction to income changes and we

estimate and identify each of these reactions, which are interpreted as basic (latent) independent

Engel curves. The assumption of statistical independence is grounded on an argument about the

specific nature of each of the underlying motives. The observed Engel curves are then mod-

elled as mixtures, i.e. linear combinations, of the basic curves. This means that in each category

of expenditure all motives can in principle concur in driving the reaction of consumption to the

income–stimulus. By means of factor analysis, combined with independent component analysis,

we estimate and identify the shape of the basic Engel curves, their number, and the coefficients of

the linear combinations that give rise to the observed Engel curves.

Following Lewbel (1991), we consider a system of budget shares that are linearly driven by

few latent variables, which in turn are functions of total expenditure. This system can be viewed

as a latent factor model for the observed budget shares. We estimate, in particular, an approximate

factor model, which allows idiosyncratic terms to be mildly correlated. These models deal with

panel of data which are large in both dimensions (number of variables and observations). In this

manner, they overcome the problem of non-zero correlation among idiosyncratic terms (see e.g.

Stock and Watson, 1989; Forni et al., 2000; Bai and Ng, 2002; Doz et al., 2012, 2011, among
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others).

We use deflated expenditure data of the U.K. Family Expenditure Survey and the Expendi-

ture and Food Survey relative to 13 expenditure categories and based on surveys conducted on

different households between 1977 and 2006. In order to estimate an approximate factor model,

we need to build a large panel, in terms of both the number of types of budget shares (expendi-

ture categories) and the dimension over which the same budget shares are repeatedly observed.

This second dimension is not, in our case, time, as in the typical factor-model setting (1977–2006

would be a too short time series), but total expenditure. We obtain a panel with large dimensions

by pooling the budget shares relative to the 13 categories over different 10 years windows. The

second dimension does not consist of time points but of 100, income determined, representative

households. Depending on the number of household members, we consider different datasets built

in this way and on each of them the analysis is repeated. This approach is similar to Kneip (1994)

and further technical details and and empirical justifications are given below.

Exploiting this large dataset, we determine the number of basic Engel curves, i.e. the rank

of the system, using the criteria for the number of common factors by Bai and Ng (2002) and

by Alessi et al. (2010), and the test by Onatski (2010). We then estimate the factors by means

of principal component analysis. The determination of the rank of systems of Engel curves has

concerned much literature on empirical analysis of consumption (see Gorman, 1981; Lewbel,

1991; Kneip, 1994; Donald, 1997; Banks et al., 1997, among others).

Since factor analysis is not sufficient to identify the latent Engel curves, we need to apply

an additional technique which allows us to study their functional form. This technique, referred

to as independent component analysis (see Comon, 1994; Hyvärinen et al., 2001), exploits the

observed non–Gaussianity of the estimated factors and the assumption of statistical independence

of the basic Engel curves, in order to obtain the appropriate orthogonal transformation of estimated

factors. Having identified the correct factors, we investigate what kind of functional dependencies

on total expenditure they convey. These functional dependencies are the basic Engel curves, which

we estimate and interpret by means of parametric and non–parametric methods (see Lewbel, 1991,

for the parametric approach).

In our data we find clear evidence of two common factors driving the household consumption

choices with in some case also a third factor playing a role. The first two factors correspond to

different functions of total expenditure related to the standard classification of goods: i) a decreas-

ing function capturing consumption necessities (e.g. food), ii) an increasing function related to
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luxuries (e.g. vehicles). Finally, the third factor when present is associated to an almost constant

function corresponding to the expenditure for goods to which is allocated the same percentage of

total budget both in rich and in poor households (e.g. housing).

In section 2, we outline the budget shares model considered in this paper. In sections 3 and 4,

we describe the way in which we build the dataset and we give empirical motivations for the as-

sumptions made. In section 5, we represent the system as an approximate factor model, we explain

the approximate principal components estimation method, the related criterion for the number of

common factors, and the identification via independent component analysis. In section 6, we give

two consistency results for the estimated basic Engel curves. In section 7, we show results on the

number of factors and their interpretation as non–linear functions of total expenditure. Finally, in

section 7, we conclude. Data description, and additional results related to other samples not con-

sidered in the paper are available in a complementary appendix available on–line from the authors

webpages.

2 The model for budget shares

A system of Engel curves describes how expenditures on a set of categories of goods and services

change as the household’s budget increases in a particular price regime, i.e. holding prices fixed.

Let wgh be the budget share of a category of goods or services g that the household h buys.

Considering G categories of expenditure and a sample of H households, holding prices fixed, a

system of Engel curves can be written as

wgh = mg(xh) + egh, g = 1, . . . , G, h = 1, . . . ,H,

where xh is total expenditure (income for short). The term mg(xh) describes the dependence of

each budget share on the total budget. It is a regression function (conditional expectation function),

while egh is an independent error term. Thus,mg(xh) can be directly estimated with parametric or

non–parametric methods. However, based on the idea of basic Engel curves driving the observed

household behaviour, we write each observed Engel curve as a linear combination ofR < G latent

independent Engel curves:

wgh =

R∑
r=1

agrfr(xh) + egh = agf(xh) + egh, g = 1, . . . , G, h = 1, . . . ,H. (1)
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In this framework, R is the rank of the matrix A = (a′1 . . .a
′
G)′ and it determines the dimension

of the space spanned by the basic Engel curves f1(xh), . . . , fR(xh). Gorman (1981) and Lew-

bel (1991) prove that the knowledge of R can provide us with important implications about the

functional form, separability, and aggregability of consumer preferences. In particular, if R = 1

and the adding–up condition holds, then budget shares are constant across income. If R = 2,

then the underlying demand functions are generalized linear. For example the Almost Ideal and

Translog models of Deaton and Muellbauer (1980) and Jorgensen and Stoker (1982) are rank-two

models. If the system of equations (1) is an exactly aggregable class of demand, and if the under-

lying utility functions are restricted to be consistent with the exactly aggregable class, then utility

maximization requires R ≤ 3.1

In general, however, utility maximization does not require demand systems to have R ≤ 3,

nor the finding of R ≤ 3 implies the presence utility–maximizer consumers.2 Indeed, Aversi et al.

(1999) simulate micro–founded models of consumption expenditure which generate rank-three

systems of demand despite the fact that the simulated individual behaviours are designed by the

authors to be at odds with those postulated by the standard utility–based model of rational choice.

If we could observe household expenditures over different time periods, the underlying system

of Engel curves, (1), would become

w∗gh t =

Rt∑
r=1

agr tfr t(x
∗
h t,pt) + egh t, g = 1, . . . , G, h = 1, . . . ,H, t = 1, . . . , T. (2)

Since we deal with different time periods, we assume that at each point in time t, there is a

particular price regime, determined by a vector of prices pt and we denote by x∗h t nominal total

expenditure and by w∗gh t nominal budget shares, i.e. the ratio of a nominal expenditure on x∗h t.

Notice that in principle in (2) also the number of basic Engel curves, Rt, could change with time.

A possible specification for model (2) is based on deflated data:

w∗gh t
p̄t
pgt

=

Rt∑
r=1

agr tfr t

(
x∗h t
p̄t

)
+ egh t, g = 1, . . . , G, h = 1, . . . ,H, t = 1, . . . , T, (3)

where p̄t is the aggregate price index, and pgt is the price index for the category of expenditure

g. We deflate both the budget share and nominal total expenditure by a price index. The budget

share, being equal to a ratio where the numerator is the (nominal) level of expenditure and the
1In an exactly aggregable class of demand the aggregate (across households) demand depends only on the means

of the individual demands and individual heterogeneity can be neglected. For a discussion see Kirman (1992), Stoker
(1993), Hildenbrand (2008)

2We thank one referee for having clarified this.

6



denominator is the (nominal) total budget, is divided by a price index for the particular expenditure

and multiplied (in order to deflate the denominator) by the total price index. Total expenditure on

the right hand side is deflated by dividing it by the total price index. Hereafter, real budget shares

and real total expenditure are denoted as wgh t and xh t respectively. Model (3) belongs to the class

of Deflated Income Demand models which have been studied by Lewbel (2003), who shows that

they can have rank four without violating the hypothesis of utility maximization.

We could estimate (3) only if we had a balanced panel of budget shares, but this is not possible

with the data at hand as we cannot monitor the same household across different years. Thus we

modify (3) by intervals of total expenditure which define representative households that keep total

expenditure constant over time. Technical details are given in the next section. In this way, we can

pool the budget shares of representative households across years and further simplify the model.

In particular, by letting j = 1, . . . , J correspond to the pooled categories of expenditures over

time with J = GT , we consider the model

wjh =
R∑
r=1

ajrfr(xh) + ejh, j = 1, . . . , J, h = 1, . . . ,H. (4)

When comparing model (4) with (3), it has to be noticed that the coefficients ajr are still taking

into account changes over time. Indeed, if G = 13 (as in our empirical application) then, for

example, a1 r and a14 r correspond to observations of the budget shares w1h, w14h which refer

to the same category of expenditure (g = 1) but observed at different points of time (t = 1 and

t = 2). On the other hand model (4) is based on three new assumptions: i) the distribution of real

total expenditure is stable across the considered years; ii) the structure and number of latent Engel

curves is not changing over time; iii) there exist representative households, which implies that in

given intervals of total expenditure demands are exactly aggregable. While the first two hypothesis

are empirically justified in section 4, the latter can be considered reasonable if the chosen intervals

are small enough. The question as to what restrictions such hypothesis imposes on the rank of the

system of Engel curves is clearly of interest but we do not investigate it here. We just notice that

model (4) is closely related to the Deflated Income Demand model.

We then follow another direction of research and focus on the estimation of the functional

form of the basic latent Engel curves. As suggested by Bai and Ng (2002), we consider the R

basic Engel curves as common factors which in turn can be thought as non–linear functions of
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total expenditure gr(xh) plus an error term zrh. Thus the model we empirically estimate is

wjh =

R∑
r=1

ajrfr(xh) + ejh = (5)

=

R∑
r=1

ajrgr(xh) +

R∑
r=1

ajrzrh + ejh, j = 1, . . . , J, h = 1, . . . ,H. (6)

In this setting, the term (
∑R

r=1 ajrzrh) contains those factors that for each household are common

across goods but do not depend on total expenditure, that is those forces other than income that

affect households in their own way. Some studies have investigated the restrictions that consumer

theory imposes not only on the shape of Engel curves but also on the structure of errors (Lewbel,

2001; Blundell et al., 1998, 2003, 2007). In particular, although the class of compatible demand

models is very flexible in terms of functional forms, still for any curve gr(xh) we cannot interpret

the error terms zrh as random preference parameters or individual location shifts. Therefore,

we must allow for correlation across households in zrh. In sections 5 and 6, we make specific

hypotheses about the statistical properties of these error terms, proposing some intuitive economic

interpretations, but remaining agnostic about its possible interpretation on the basis of consumer

theory.

3 Building the dataset

In order to estimate model (4), we need data on how a sample of families has allocated the budget

across different categories of expenditures. This dataset has to fulfil some specific requirements

which permit us to apply factor and independent components analysis (the statistical reason behind

these requirements will be apparent in the next section). First of all, we need to deal with a large

panel: both dimensions — in our case the number of households and the number of categories of

expenditure — have to be high. Moreover, the panel has to be perfectly balanced, that is we want

to know how each household allocates its budget for each selected category of expenditure.

These two requirements are not easy to be simultaneously fulfilled in standard expenditure

national surveys because usually we have complete information as to how a large sample of house-

holds allocated their expenditures towards a limited number of categories of expenditure. In order

to get a large number of expenditures, one option could be to look at numerous disaggregated

categories; expenditure surveys often keep track of these values. However, these values are not as

reliable as the macro–categories and that there is the problem of zero expenditures, since for each
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micro–category there is always a number of households whose corresponding expenditure is zero

or missing.

Considering that expenditure surveys are regularly repeated on an annual basis, another option

is to pool together data collected in different years. In this manner we can keep using macro–

categories, but at the same time we can considerably increase the number of expenditure cate-

gories, since we have a set of macro-categories for each year. This is the route we take. There

are, however, some issues related to this approach. First, when considering expenditure data over

different years, we have to control for the fact that prices for each category of expenditure have

changed. We tackle this problem by converting nominal values to real values of expenditures

using category–specific price indices. Second, we cannot keep track of single households. We

address this problem by examining average allocations among groups of income–homogeneous

households. For each year, we divide the data in 100 intervals based on the average percentiles

of the distribution of total expenditure. By averaging expenditures within each interval we obtain

for each year a class of H = 100 representative households. In this way, for each representa-

tive household, we are able to observe its expenditure allocations over several years. Thus, for

example, corresponding to the household representative of the hth interval we can observe its ex-

penditure allocation towards the category of expenditure g at time t, t + 1, etc. This procedure

relies on the assumption that individual demands are exactly aggregable within each interval and

that total expenditure is constant over time.

We use data from the U.K. Family Expenditure Survey (FES) 1977–2001 jointly with the

Expenditure and Food Survey (EFS) 2002–2006. We have data about household expenditures

on various categories of goods and services. Each year approximately 7000 households were

randomly selected, and each of them recorded expenditures for two weeks. We are able to re-

cover information about total expenditures and expenditures on fourteen aggregated categories:

(1) housing (net); (2) fuel, light, and power; (3) food; (4) alcoholic drinks; (5) tobacco; (6) cloth-

ing and footwear; (7) household goods; (8) household services; (9) personal goods and services;

(10) motoring, fares and other travel; (11) leisure goods; (13) leisure services; and (14) miscella-

neous and other goods. The 14 categories add up to total expenditure. We omit from our analysis

the last category of expenditure and we restrict therefore to G = 13 categories. A description

of the disaggregated categories of expenditure included in each of the 13 classes is available in

the complementary appendix. In order to have samples of households which are demographi-

cally homogeneous, we control for the number of members of each household and we consider
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four different possibilities: 1 member, 2 members, 2 or 3 members, and 2 to 4 members.3 The

sizes of these samples range from 1700 (1 member group in 1997) to 4844 (2–4 members group

in 2002). Finally, we pool together budget shares over different years, choosing three different

waves of T = 10 years each: 1977–1986, 1987–1996, and 1997–2006. Thus, we are able to get

J = GT = 130 budget shares for each wave considered. The procedure to build the data set,

which is similar to the one adopted by Kneip (1994), is described in detail in table 1.

The approach followed to build the dataset allows us to estimate model (4), which in turn is

justified if: i) the distribution of real total expenditure is stable across the considered years; and ii)

the structure and number of latent Engel curves is not changing over time. In the next section we

address both these stability issues.

4 Preliminary data analysis

In this section, we analyze data separately for each year considered. We perform three analysis:

first we study the distribution of total expenditure, second we determine the number of common

factors in each year, and third we compare the estimated basic Engel curves or common factors,

across years.

The distribution of total expenditure. According to our approach each representative household

refers to an interval of total expenditure whose boundaries are obtained by taking the average of

percentiles over time. Thus we have to study the distribution of total expenditure. In figure 1, we

show the Box–plots for this distribution in each year from 1997 to 2006 and for the four samples

considered. It can be appreciated that the median, the 25th and 75th percentile, and the maximum

and minimum values are fairly stable during the whole period.

Number of factors. For each year t considered, the deflated model (5), is

wgh t = a′g tfh t + egh t, g = 1, . . . , G; h = 1, . . . ,H, t = 1, . . . , T, (7)

where ag t and fh t are Rt–dimensional vectors of loadings and latent factors respectively and

egh t, is a G dimensional vector of mean zero errors that are assumed to be independent of total

expenditure xh t. For any t, we then define theG×H budget shares matrix wt, theG×Rt loadings

matrix At, the Rt ×H factor matrix ft, and the G×H errors matrix et.

In order to determineRt we cannot make use of the approximate principal component analysis
3Controlling for the age of the head of household would reduce too much the number of available observations.
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outlined in the next section as such estimators deliver consistent estimates only if both the sample

size and the cross–sectional dimensions are large. This is not the case here, since for each year we

have observations only for G = 13 categories of expenditure. Moreover, tests for the number of

factors in classical factor analysis cannot be used as the error terms are likely to be correlated.

Following Lewbel (1991), in order to estimate Rt, we can exploit the fact that the factors

are all functions of total expenditure while errors are independent of the factors and therefore are

independent of total expenditure. For each t and h, let q(xh t) = (q1(xh t), . . . , qG(xh t))
′ be a G–

dimensional vector of functions of total expenditure having finite means and denote by Q(xt) the

corresponding G×H matrix containing the G functions of total expenditure for every household.

Then, from (7) we define the G×G matrix

wtQ(xt)
′ = AtftQ(xt)

′ + etQ(xt)
′, t = 1, . . . , T. (8)

Then, since by assumption E[etQ(xt)
′] = 0 at any t, we have that Yt = E[wtQ(xt)

′] =

AtE[ftQ(xt)
′] has rank Rt, unless by coincidence some component of the factors is orthogonal to

all the elements of Q(xt), in which case we would have a smaller rank.

Thus, in order to determine Rt we can test for the rank of Yt at each point in time. Lewbel

(1991) proposes a way to test for the rank of Yt based on the LDU decomposition of its sample

counterpart Ŷt which has generic (i, j)–th entry Ŷij t = 1
H

∑H
h=1wih tqj(xh t). The test is for

the null–hypothesis of a rank equal to Rt against the alternative of a rank greater than Rt and has

an asymptotic distribution which is χ2
(G−Rt). We refer to the original paper for details on how to

build the test. Results for all datasets considered are in table 2.4 Results for this test are in table 2

and denote an almost constant number of common factors across time which is between two and

three on average in agreement with the benchmark case considered below where we set Rt = 3.

A similar result is obtained also by Lewbel (1991) for the period 1970–1984. The conclusion is

that the number of basic Engel curves has remained almost constant during the period considered.

Factors’ space. In order to justify the pooling of different waves of budget shares, we have to

show that factors did not change over time. Here we have two difficulties when dealing with

small cross–sections. First, we cannot estimate factors consistently unless we assume a diagonal

covariance matrix of the residuals. Second, even when an estimate of the factors is available,

single factors are not identified. Concerning estimation we build a covariance matrix which has

non–zero elements only on the T diagonal blocks of size G×G, and we denote it by Σw
b t. This is

4The 13 functions qj(xh) considered are: xah, log xah, with a = ±1,±2,±3, and xh log xh.
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like imposing zero covariance across budget shares of different years. In this way, we can estimate

Rt factors for each year by estimating the largest TRt principal components of Σw
b t.

In particular, for j = 1, . . . , Rt, the first Rt factors of block t are obtained by projecting wt

onto the space spanned by the (j− 1)T + t largest eigenvectors of Σw
b t. We denote such estimated

factors as f̂b t which is an Rt ×H matrix and for any t we compare them with those estimated on

the pooled dataset and denoted as f̂ which is an R × H . Since factors are not identified we can

only compare the space they span and this is done by means of the following statistics (see e.g.

Doz et al., 2012):

τt =

trace
(

f̂ f̂ ′b t

(
f̂b t f̂ ′b t

)−1
f̂b t f̂ ′

)
trace

(
f̂ f̂ ′
) ,

which is a multivariate version of the R2 coefficient of the regression of f̂ on f̂b t. We compute

this measure for any block t and since in the pooled case the number of factors R does not depend

on t we have to fix R = Rt and we compute the measure for different values of R. Results for

R = 1, . . . , 4 are in table 3. In most of the cases considered, the value of τt is about 0.90 and it

is even higher for the benchmark case. This result indicates that the estimated factors on single

blocks (years) span always the same space as those estimated on the pooled data.

5 An approximate factor model for budget shares

As suggested by Bai and Ng (2002), we can consider equation (4) as a factor model withR factors

common to the J = GT = 130 budget shares, where R < J . Thus, for every household h we can

write the budget share for expenditure category j as in (5):

wjh = a′jfh + ejh, j = 1, . . . , J ; h = 1, . . . ,H, (9)

where aj and fh are R–dimensional vectors of loadings and latent factors respectively. In matrix

notation

w = Af + e, (10)

where w and e are J×H , A is J×R, and f isR×H . We call the term Af the common component

and the term e the idiosyncratic component orthogonal to the factors. While an exact factor model

would require that idiosyncratic components are uncorrelated across expenditure categories, this is

here an unreasonable restriction. We cannot exclude correlated idiosyncratic components because

budget shares as this a direct consequence of the adding up condition in a system of Engel curves
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(Lewbel, 1991). Although we have omitted in our study the category “miscellaneous goods”,

so that budget shares do not exactly add up to T , still budget shares for this category have a

negligible contribute to the total budget. Therefore, even if adding up is not exactly fulfilled, we

cannot exclude the existence of non–zero covariances in the idiosyncratic components. More in

general, idiosyncratic components are likely to be correlated because they capture good–specific

influences other than income and nothing excludes dependencies among them.

On the other hand, in approximate factor models a large J allows for mildly correlated id-

iosyncratic terms. In fact, a large cross–section of budget shares is what allows us to choose a

different modelling and estimation strategy with respect to Lewbel (1991). Namely, we can apply

the theory by Bai and Ng (2002) in this paper. The necessity of having a large number of items is

the practical reason for pooling expenditures of different years together when building the dataset

as described in section 3 while the empirical justification for this approach is provided in section 4.

The complete details and assumptions for the approximate factor model are in Bai and Ng (2002)

and we recall here just the three main assumptions:

1. factors: limH→∞
1
H

∑H
h=1 fhf

′
h = Σf , for some positive definite and diagonalR×Rmatrix

Σf ;

2. loadings: limJ→∞ ||A′A/J −D|| = 0, for some positive definite R×R matrix D5;

3. idiosyncratic components: define Σe = E[ehe
′
h] then there existsM > 0 s.t.

∑J
k=1 |(Σe)jk| ≤

M for any j = 1, . . . , J .

Assumption 1 implies the existence of the covariance matrix of the factors which being diagonal

implies that the factors are orthogonal. Assumption 2 is sufficient for identification of the loadings

and implies that, when J goes to infinity, A′A is O(J). Assumption 3 defines an approximate

factor model by allowing for some correlation across goods in the idiosyncratic components, this

is equivalent to require the largest eigenvalue of Σe to be bounded as J goes to infinity (see also

Chamberlain and Rothschild, 1983).

The rank of the considered system of budget shares, is therefore the smallest integer R such

that equation (9) holds. While Lewbel (1991) proposes a test based on LDU decomposition to

determine R, both Kneip (1994) and Donald (1997) propose non–parametric estimation methods.

We instead adopt here the estimation method proposed by Bai and Ng (2002), based on approx-

imate principal component analysis. This approach provides a consistent estimate of R and the
5We use the Froboenius norm for a matrix, i.e. ||B|| =

√
tr(BB′).
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space spanned by the factors when both H and J go to infinity. In the rest of this section we first

briefly review how to estimate factors via principal components and how to determine R. We then

provide an identification strategy based on statistical independence. Finally, from (5) and (6), we

see that the elements of the R-dimensional vector of basic Engel curves g(xh) may be recovered

by regressing each identified factors on total expenditure.

Estimation. First let us assume that R is known, then the estimated factors and loadings are

obtained by solving

(f̂ , Â) = arg min
(f ,A)

V (R,A, f) = arg min
(f ,A)

1

JH

J∑
j=1

H∑
h=1

(wjh − a′jfh)2, (11)

subject to an additional identification condition which consistently with assumption 2, we require

to be Â′Â/J = IR, where IR is the R-dimensional identity matrix. With this choice, the columns

of Â are given by
√
J-times the eigenvectors corresponding to the R largest eigenvalues of the

sample covariance matrix of the observed budget shares 1
H

∑H
h=1 whw

′
h, where wh is the J-

dimensional vector of budget shares of household h. In the limit J,H →∞ the estimated loadings

Â are a consistent estimate of A and the factors can be consistently estimated as the R largest

principal components: f̂ = Â′w/J (see Theorem 1 in Bai and Ng, 2002, for a proof).

Following Bai and Ng (2002), we can use the above estimation method to estimate the number

of factorsR. This can be done by estimating the factors and their loadings for different values k of

the number of factors and by solving each time (11). Define Âk and f̂k as the approximate prin-

cipal components estimates of loadings and factors when assuming the existence of k common

factors. The estimated number of factors is the value of k that minimizes this function, conve-

niently penalized with a penalty function p(k, J,H) that depends both on J and on H . We thus

look for minima of the ICs criteria proposed by Bai and Ng (2002), i.e.

R̂ = arg min
1≤k≤kmax

log V (k, Âk, f̂k) + p(k, J,H) (12)

where

p(k, J,H) = k

(
J +H

JH

)
log

(
JH

J +H

)
or (13)

p(k, J,H) = k

(
J +H

JH

)
log
(

min
(√

J,
√
H
))2

.

Provided that we have a consistent estimate of the factors and their loadings, Bai and Ng (2002)

prove consistency of R̂ as J,H →∞. In the following sections we also apply three other methods:
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i) a refinement of the above information criteria proposed by Alessi et al. (2010) where a fine–

tuning parameter in the penalty function is introduced; ii) test by Onatski (2010) which is instead

based on the asymptotic distribution of the eigenvalues of the sample covariance matrix; iii) the

test based on conditional correlations and presented in section 4 but applied to the pooled dataset.

Identification. Factor models have an indeterminacy which they cannot solve: both the estimated

loading matrix Â and factors f̂ are asymptotically consistent estimates of the true ones only up

to an orthogonal transformation. We have, therefore, an identification problem which makes dif-

ficult the economic interpretation of the estimated factors. In order to identify the model, we use

independent component analysis (ICA) which requires two further assumptions on the R latent

factors:

4. the components of the factor vector fh are mutually independent, i.e. the joint probability

density of the factors is given by

D(fh) =
R∏
r=1

dr(frh), h = 1 . . . , H,

where dr is the marginal probability density of the r-th factor;

5. the marginal densities dr are non–Gaussian, for all i = 1, . . . , R, with the exception of at

most one.

Assumption 4 is justified on the basis of the fact that the latent factors represent the basic latent

Engel curves generating the observed system of Engel curves. These basic functions, in turn, have

characteristics which reflect fundamental aspects of human behaviours driving consumption deci-

sions. As argued by Witt (2001), consumption decisions are ultimately driven by basic needs and

acquired wants. Therefore, assuming that latent factors are independent amounts to claim that the

set of needs and wants associated with each factor is of fundamental different nature, i.e. generates

an independent pattern, from the set of needs and wants associated with the other factors. For ex-

ample, if a factor reflects a pattern associated with necessities and another factor reflects a pattern

associated with luxuries, these two factors can be seen as statistical independent, because neces-

sities mainly reflect physiological needs, while luxuries reflect culturally acquired wants such as

social recognition and status. The drivers underlying consumption decisions about necessities and

luxuries react in an independent way to changes in income: for example, physiological needs tend

rapidly to satiate, as income gives the possibility to satisfy these needs, whereas acquired wants

such as social recognition and status may be even increasingly reinforced, as income increases.
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Nevertheless, it has to be stressed that while basic Engel curves reflect independent motives for

consumption, the observed Engel curves can be seen as a mixture of these needs and thus their

joint distribution may have a non–trivial dependence structure.

Assumption 5 is justified by testing for normality in the data and also by noticing that often data

on consumption expenditures are non-Gaussian (see e.g. Fagiolo et al., 2010) and, moreover, being

budget shares defined on the unit interval, they must have a distribution with bounded support (e.g.

a beta distribution) hence not a Gaussian distribution. As a consequence also the joint distribution

of the factors is non–Gaussian.

ICA can been seen as an extension or a strengthening of principal component analysis (PCA)

(see Comon, 1994; Hyvärinen et al., 2001; Bonhomme and Robin, 2009). Indeed, while PCA

gives a transformation of the original space such that the computed latent factors are linearly un-

correlated, ICA goes further by attempting to minimize all statistical dependencies between the

resulting components. One can show that if there exists a representation with non-Gaussian, statis-

tically independent components, then the representation is essentially unique (up to a permutation,

a sign, and a scaling factor) (Comon, 1994). There exist a number of computationally efficient

algorithms for consistent estimation (Hyvärinen et al., 2001). This identification method is partic-

ularly appealing since it is purely data–driven and not based on economic assumptions which in

turn would require micro–funded models of consumption behavior.

The most popular ICA algorithms are: Joint Approximate Diagonalization of Eigen-matrices

(JADE by Cardoso and Souloumiac, 1993), Fast Fixed-Point Algorithm (FastICA by Hyvärinen

and Oja, 2000). Both methods are based on two steps: i) a whitening step achieved by PCA, in

which the data are transformed so that the covariance matrix is diagonal and has reduced rank,

i.e. we get rid of the idiosyncratic component; ii) a source separation step in which the orthogonal

transformation necessary for achieving identification is determined.

When data usually tend to exhibit fat-tailed distributions and poor serial correlation (in our

framework we have no correlation at all across households), JADE and FastICA which are based

on non-Gaussianity of the data, hence on higher order moments, are the most used algorithms.6

We present here results obtained with JADE, the results obtained with FastICA being similar.

Once estimation of the common component is accomplished via approximate PCA, we are left
6Another algorithm is Second-Order Blind Identification (SOBI Belouchrani et al., 1997), which, although usu-

ally applied in time-series analysis, could be extended to cross-sectional data with correlations among observations.
However, this is not the case for us, as we assume no correlations across households.

16



with a first estimate of the factors f̂h for any household h. JADE looks for an orthogonal J × R

matrix Û such that the identified factors f̃h = Û′f̂h are maximally non-Gaussian distributed. A

set of random vectors is mutually independent if all the cross-cumulants (i.e. the coefficients of

the Taylor series expansion of the log of the moment generating function) of order higher than

two are equal to zero. In particular, Cardoso and Souloumiac (1993) prove that the factors f̃h are

maximally independent if their associated fourth-order cumulant tensor which is a R × R matrix

is maximally diagonal.7 JADE is a very efficient algorithm in low dimensional problems as the

one treated here (we have few factors), while a higher computational cost is required when the

dimension increases.

Once we apply JADE the estimated and identified factors, f̃h, are identified up to a permutation,

a sign, and a scaling factor. The order of the factor is irrelevant for our purposes. Moreover, given

that independent components are nothing else but weighted averages of the data, the sign is chosen

to be consistent with the average of budget shares across goods. Finally, the scale is determined in

such a way that the identified loadings Ã satisfy Ã′Ã/J = IR.

6 Estimation of the basic Engel curves

As shown in section 2, for each latent factor we consider the following model

frh = gr(xh) + zrh, r = 1, . . . , R, (14)

where we introduced an error term in the specification of the latent factors. We make the following

assumption on the vector zr = (zr1 . . . zrH)′:

6. for any h, ` = 1 . . . H , E[zhr] = 0, E[z2hr] = σ2h, and there exist a constant ζ > 1 and a

function ρ(·) such that Corr(zrh, zr`) = ρ(|xh − x`|) ∼ |xh − x`|−ζ .

Assumption 6 implies that the correlation between errors of two households depends on the dif-

ference between their total expenditure, and such dependence decreases at a rate given by ζ (see

e.g. Härdle, 1990). The zhr terms captures measurement errors and expenditure influences that

are both other than income and common across goods. Such influences are likely to be correlated

across households (the other–than income influence affecting household h can be correlated with
7While the cumulant depends on four indexes the cumulant tensor depends on two indexes, the other two being

canceled by means of an additional arbitrary matrix. We thus have to consider several cumulant matrices which have to
be jointly diagonalized. See the appendix for a short description of the JADE algorithm.
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the other–than income influence affecting household `), but we assume here that this dependence

wanes out as the income difference between households becomes big enough. This is consistent

with the intuition that other-than income influences such as fashions or technical change affect

“distant” income classes of households in their particular manner. This assumption is necessary in

the non–parametric setting but it can be relaxed in the parametric case.

The aim of this section is to provide consistent estimators of the basic Engel curves gr(xh). In

what follows we propose a non–parametric and a parametric estimator of these curves. While the

former is appealing since it is purely data driven, the latter allows us to relate our results with the

existing literature on functional forms of Engel curves (see e.g. Lewbel, 1991; Banks et al., 1997).

Proposition 1. The estimator for the basic Engel curve gr(xh) is defined as γ̃∗r (xh), such that

γ̃∗r (xh) = arg max
γr

H∑
k=1

[
f̃rk − γr − δr(xk − xh)

]2
KbH (xk − xh) , r = 1, . . . , R, (15)

where KbH (·) is a suitable kernel function depending on a bandwidth bH (see assumption K in the
appendix). Then, under assumptions 1–6,

p- lim
J,H→∞

|γ̃∗r (xh)− gr(xh)|2 = 0,

with a rate of convergence given by min
(
J−1, H−1b−1H , bHH

−1).
Proof: see the appendix.

Few remarks are necessary. First, since frh are unobserved and must be replaced by their

estimates f̃rh, we have to use lemma 1 in the appendix and consistency is achieved provided that

both H and J tend to infinity. Second, the proposed estimator is a local linear estimator as defined

for example in Fan and Gijbels (1992) and Fan (1993). An alternative estimator is represented by

the local constant fit defined as,

γ̃∗r (xh) = arg max
γr

H∑
k=1

[
f̃rk − γr

]2
wk(bH), r = 1, . . . , R. (16)

From (16), we can have either the Nadaraya–Watson estimator when wk(bH) = KbH (xk − xh)

or the Gasser–Müller estimator when wk(bH) =
∫

KbH (u − xh)du (see Watson, 1964; Gasser

and Müller, 1984, respectively). Both (15) and (16) would satisfy Proposition 1. However, it can

be proved that the local linear estimator (15) has a smaller finite sample bias, is asymptotically

efficient, and has a better behavior at the extremes of the sample (see Fan and Gijbels, 2003, for

a comparison). Moroever, by solving the maximization in (15), we obtain also a local estimate of

the slope δ̃∗r (xh) which is an estimate of the first derivative of the basic Engle curves. Consistency
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of the latter in our framework is proved exactly in the same way as in Proposition 1. Finally, the

presence of correlation in the error terms does not affect the rate of consistency as long as we have

weak dependence as given by assumption 6.

The choice of the bandwidth can be based on different methods. In our estimations below,

we choose the bandwidth on the basis of the minimization of a polynomial approximation of the

mean integrated square error (of γ̃∗r (xh)), following the approach proposed by Fan and Gijbels

(2003, Section 4.2). The presence of correlation in the errors has also to be taken into account

when selecting the bandwidth as proposed in Altman (1990).

In order to compare our results with the literature (Lewbel, 1991; Banks et al., 1997), we

also investigate which functional form of total expenditure better fits each identified factor. Thus

instead of (15) we can think of a parametric model for the basic Engel curves:

gr(xh) = αr + βrm(xh), r = 1, . . . , R; h = 1, . . . ,H. (17)

We estimate the following functions m(xh) of total expenditure: xh, x2h, x−1h , x−2h , log xh,

(log xh)2, xh log xh. These are are the functional forms also considered by Lewbel (1991) and

Donald (1997). By substituting (17) into (14) we have

frh = αr + βrm(xh) + zrh, r = 1, . . . , R; h = 1, . . . ,H. (18)

The unknown parameters can be estimated by ordinary least squares with the caveat that, since

zrh are non–Gaussian by assumption 5, robust standard errors must be computed. If the factors

frh were observed, consistency of the estimated parameters would follow from Quasi Maximum

Likelihood theory. However, since frh are unobserved and must be replaced by their estimates

f̃rh, we have to use lemma 1 and consistency is achieved provided that both H and J tend to

infinity. We have the following result.

Proposition 2. Define the matrix of explanatory variables and the vector of unknown parameters

X = (1H ,m(x)), θr =

(
αr
βr

)
, r = 1, . . . , R,

where 1H is an H-dimensional column vector of ones and x = (x1 . . . xH)′. The estimated vector
parameters for the r-th basic Engel curve is given by

θ̃∗r = (X ′X )−1X ′f̃r,

such that, under assumptions 1–5,

p- lim
J,H→∞

|θ̃∗r − θr| = 0, r = 1, . . . , R,
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with a rate of convergence given by min
(
J−1, H−1

)
.

Proof: see the appendix.

Notice that assumption 6 of weak dependence is not necessary for the parametric estimates.

Both in the (15) and in the parametric (17) case consistency of the estimated conditional means is

not affected by the correlation across errors, however their standard errors are affected. In what

follows we compute standard errors from a distribution of 1000 fits obtained by estimating and

identifying the factors on boostrapped samples of the observed budget shares. In this way we

account also for the error made in estimating the factors and moreover we do not need to compute

the analytical form of the errors of the estimated parameters.

7 Results

Average budget shares. In table 4, we report the average (across households) budget shares for

all 13 considered expenditure categories and the four different demographic groups. The majority

of the budget (about 20%) is spent for food and housing followed by motoring and leisure services

(about 10%). A smaller fraction of budget is allocated to all other goods with percentages that

do not reach the 10%. We notice that the average food budget share remains constant across

demographic groups, while there is some heterogeneity in housing and motoring expenditure:

single member households allocate a higher proportion of household budget towards housing,

and a lower proportion of budget toward motoring in comparison in comparison with the other

demographic groups. Also poorer households spend 10% more for food than rich ones, while

motoring expenditure is 5% higher for richer households. These across–income differences is what

we want to model and estimate in this paper by means of latent Engel curves. Indeed, already from

such descriptive analysis we can tentatively classify goods according to their budget shares into

three broad classes: necessities (budget shares decreasing with total expenditure), luxuries (budget

shares increasing with total expenditure), and goods for which the budget share is constant with

respect to total expenditure.

Number of factors. Table 5 displays the estimates of the number of factors. Beside the time

window 1997-2006, we report here, for the sake of comparison, also results for the time windows

1977-1986 and 1987-1996. We find between 2 and 4 common factors, the average of the criteria

being always about 3. In the following analysis the main role is played by the first two largest

factors, while a third plays a minor although theoretical important role. Adding more factors does
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not change the interpretation and therefore we present results forR = 3. In the last 3 rows of table

5 we also show the proportion of variance explained by each factor. The first factor explains, for

most of the samples considered, between 50% and 70% of total variance, being clearly the most

important, while the second explains about 10%.

Factor models are identified under a specific condition on diverging eigenvalues of the covari-

ance matrix of the data (see assumption 3). This is precisely the assumption tested by the Bai and

Ng (2002) and Alessi et al. (2010) criteria. It has to be noticed that often in the literature it is found

that the Bai and Ng (2002) criterion tends to overestimate the number of factors, while the one

by Alessi et al. (2010) being based on the tuning of the penalty tends to perform better. We find

evidence of one or two additional factors less important, but still common and explaining a much

lower proportion of variance, in fact lower than 5%. We must stress the fact that not recognizing

the existence of such factors would imply the existence of common features in the idiosyncratic

components. Indeed, in order to be truly common the factors do not have to be necessarily large

(a relative concept) in terms of explained variance, but they have to be pervasive, a well defined

feature that can be measured by studying the asymptotic behaviour of eigenvalues. This is exactly

what the employed criteria do. Similar results are obtained by employing the criterion by Onatski

(2010). Finally, a higher number of factors is obtained when using the test based on canonical

correlations and described in section 4.8

Factor identification and estimates of basic Engel curves. Hereafter, we present results only

for the last 10 years window considered, i.e. from 1997 to 2006 and for households with 2 to 4

members.9 The identification of the factors is based on the independent component analysis, as

explained in section 5. This method can be applied only if the underlying independent compo-

nents, and, consequently, the estimated (non–identified) factors are non-Gaussian. Figure 2 shows

the quantiles of first two estimated factors vs. Gaussian quantiles: a non–linear relation clearly

appears. This suggests that at least two out of three estimated factors do not follow a Gaussian

distribution and this is enough to allow for identification via JADE. We also test directly for Gaus-

sianity. The Shapiro-Wilk test rejects the hypothesis of Gaussianity at the 5% level of significance

for both the three factors estimated via PCA and for the identified factors.

As a preliminary analysis of the meaning of the identified factors, we report in table 6 the

estimated factor loadings for each category of budget shares averaged over 10 years. These are
8In this case since we deal with the large dataset we cannot compute the LDU decomposition and the related test

due to computational reasons.
9Additional results regarding other samples are available in the complementary appendix.
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a measure of the correlation between the observed budget shares and the identified factor. As

explained above, the scale of the loadings vector is fixed according to the normalization Ã′Ã/J =

IR. We find that the first factor is highly correlated with food and fuel, light and power budget

shares. This again suggests that the first factor captures consumption patterns typically associated

with the Engel’s law: as total expenditure rises, budget shares decrease, the downward trend being

more dramatic for the lowest levels of income. On the other hand the second factor is mostly

correlated with luxuries as motoring and leisure services, while the third displays the highest

correlation with food and housing expenditures.

We then consider regressions in order to estimate the basic Engel curves. Figure 3 (a-c-e) dis-

plays the three factors f̃rh (represented by circles) as functions of total expenditure together with

their estimated fits γ̃∗r (xh), as obtained by means of the local linear kernel regression, as described

in section 6. Estimates are reported together with their 68% and 90% confidence intervals based on

the standard errors of a distribution of 1000 fits obtained by estimating and identifying the factors

on boostrapped samples of the observed budget shares. In this way we account for the error made

in the estimation both of the factor and of the regression. The first function γ̃∗1(xh) decreases for

small values of total expenditure and then remains stable. This pattern is very similar to the pattern

of food and fuel budget shares, as evidenced from figure 4 (a-b). The second function, γ̃∗2(xh) is

increasing with total expenditure, apart from the first portion of total expenditure. It is associated

with categories of expenditure which are more likely to include luxuries as clothing and footwear,

motoring, and leisure services. Indeed, from figures 4 (c-d) we see that the second factor displays

a pattern similar to leisure service and motoring budget shares. Finally, the third function, γ̃∗3(xh),

is slightly increasing in the first quarter of total expenditure and then slightly decreasing, remain-

ing on average approximately constant. This pattern is similar to the one displayed by housing and

alcoholic drinks (see figure 4 (e-f)).

As explained in section 6, we also investigate which functional form of total expenditure better

fits each identified factor. Following Lewbel (1991) and Donald (1997), we consider the following

functions of total expenditure: xh, x2h, x−1h , x−2h , log xh, log2 xh, xh log xh. In this way, we

can compare our results with the literature. In table 7, we show the adjusted R2 coefficient for

the different functional forms. The first Engel curve captures most of the variation in budget

shares of poor households while the second captures most of the variation in budget shares of rich

households. Notice, however, that, the R2 coefficient for the third factor, is quite small for most

of the functional forms considered, so that a constant relation constitutes a good approximation as
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also shown by figure 3 (e).

Moreover, by inspecting the estimated coefficients in table 8, we see that first Engel curve

is best represented by the an inverse or a logarithmic form with negative slope, i.e. by a mono-

tonically decreasing curve. In particular, the logarithmic functional form is incorporated in the

Working–Leser model. The best representation of the second Engel curve is given by a quadratic

form either x2h or xh log xh, thus increasing for large values of total expenditure. Finally, we no-

tice that the first factor is the most important when considering only poor households, while the

second prevails when considering households with medium–high levels of income.

Summing up, among all the possible parametric form considered, our findings are for example

consistent with the following parametric specification:

wjh = c1j + c2j log xh + c3jxh log xh + ηjh, j = 1, . . . , J, h = 1, . . . ,H, (19)

where crj are combinations of the loadings ajr and the coefficients αr and βr and ηjh contains both

the idiosyncratic components ejh and the terms ajrzrh representing common features of budget

shares not due to total expenditure. The constant term represents the third factor. The functional

form (19) is consistent with the one proposed by Lewbel (1997):

wjh = c1j + c2j log xh + c3jψ(xh) + ηjh, j = 1, . . . , J, h = 1, . . . ,H, (20)

where ψ is some non–linear function of total expenditure. In particular, Banks et al. (1997), using

1980-1982 U.K. FES data, found that Engel curves have indeed the form of equation (20), with

ψ(xh) = log2 xh. In this latter respect, our results slightly differ from previous findings, since

here the second Engel curve increases more rapidly for large levels of expenditure.

Derivatives of basic Engel curves. A final way to interpret the factors is based on the estimation

of the derivatives of the basic Engel curves. Indeed, the sign of these functions is strictly connected

to whether a category of expenditure should be classified as luxury or necessity. In figure 3 (b-

d-f) we show the derivatives of the basic Engel curves δ̃∗r (xh), estimated with a local–linear fit

as explained in Proposition 1 together with 68% and 90% boostrapped confidence intervals. In

agreement with the findings above, the first derivative of the first basic Engel curve is negative for

families with income below the median, i.e. the poorest ones, as predicted from the Engel law

for necessary goods. The derivative of the second Engel curve captures luxuries being positive

for medium–high income households, while the derivative of the third curve is zero for most

households indicating a constant Engel curve.
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The total expenditure elasticity εj of good j has a direct connection with the double log model,

since for any category of expenditure j we can write (see Deaton and Muellbauer, 1980, p. 17):

logwjh = (εj − 1) log xh + νjh, j = 1, . . . , J, h = 1, . . . ,H, (21)

where νjh is an error term. In our framework, the latent factors are weighted averages of budget

shares thus we can think of a model analogous to (21) for the factors themselves:

log frh = (ρr − 1) log xh + vrh, r = 1, . . . , R, h = 1, . . . ,H.

Thus, if a factor is supposed to represent necessities, we should expect that the derivative of the

log–factor with respect to log xh is less than zero, i.e. it has elasticity ρr < 1 (and ρr > 1 if it

represents luxuries). After rescaling the estimated and identified factor in such a way that f̃rh > 0,

we estimate the average (over households) derivative ∂f̃rh
∂xh

, since it has the same sign as ∂ log f̃rh
∂ log xh

,

being in this case both f̃rh and xh greater than zero. In particular, we estimate average derivatives

in a way, using the method proposed by Härdle and Stoker (1989), which being based on kernel

density estimates does not require to assume any functional form of the factors. Table 9 displays

the estimated average derivatives together with results from the Wald test for zero derivative. The

null hypothesis is rejected at the 5% significance level for the first factor when considering only

poor households and for the second factor when considering only rich households. This result

together with the signs of the derivatives confirm that the first factor captures expenditures for

necessities which are more related to low income families, while the second factor captures mainly

expenditure for luxuries which are a feature of the behavior of higher income families. The third

factor captures goods with income elasticity close to unit, i.e. zero derivative.

8 Conclusions

In this paper, we propose a method to determine the rank of a system of Engel curves for different

categories of expenditures expressed in budget shares form. The rank of such a system determines

the maximum number of functions of total expenditure, which we call basic Engel curves, that

drive consumers’ behaviour. We frame the problem of finding the rank as the problem of deter-

mining the number of latent common factors explaining variations of the system of budget shares.

Herein, we identify the maximum number of common factors by means of the criterion proposed

by Bai and Ng (2002). The factors can be estimated via approximate principal components and

then identified by independent component analysis.
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We apply this method to U.K. Family Expenditure Survey annual data. In order to apply factor

analysis, we build a large dimension panel of data, in which the budget shares, which are relative

to 13 categories of expenditures, of 100 representative households are pooled over different years.

The way this dataset is built is based on the method proposed by Kneip (1994). This large di-

mensional dataset permits us to eschew any assumption of non–correlation among idiosyncratic

shocks. The departure from the Gaussian distribution that budget shares display and a hypothesis

about the nature of the fundamental drivers of consumption decisions permit us to apply indepen-

dent component analysis to achieve identification.

Once the common latent factors are identified, we study their properties by means of non–

parametric regressions which are consistent estimates of the basic Engel curves. To compare our

results with the existing literature we also estimate parametric models for the factors as non–

linear functions of total expenditure. Finally, we estimate the first derivatives of the basic Engel

curves by applying local–linear regressions and the method proposed by Härdle and Stoker (1989).

All results show that the observed system of budget shares is well represented by the sum of a

logarithmic, log–quadratic, and constant basic Engel curves, in a form which is consistent with

the model suggested by Lewbel (1997). Moreover, the three sources of consumption variation

reflect those consumption behaviours typical of expenditures for necessities, luxuries, and unity

elasticity goods.
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A Description of the JADE algorithm

Assume to know the R-dimensional vector of factors fh, then its cumulant generating function is

defined as

K(ξ) = log E
[
exp(ξ′f)

]
.

We are interested in the fourth–order cumulants which are the the coefficients of the fourth–order

terms in the Taylor approximation of K(ξ) in a neighborhood of ξ = 0, thus if E[f ] = 0 we have

κijk` = E[fifjfhf`].

There are R4 fourth order cumulants. All these cumulants can be collected into a single R2 ×R2

matrix, which in turn hasR2 eigenvectors of sizeR2×1 and each of them can be transformed into

a matrix Vi containing only R×R. The JADE algorithm look for the R×R matrix Û such that

Û = arg min
V

R2∑
i=1

off
(
V′ViV

)
= arg min

V
φ(f̂), (A-1)

where off(A) takes the off–diagonal elements of the matrix A.

B Technical appendix

B.1 Preliminary results

We first need to prove consistency of the estimated and identified factors f̃rh.

Lemma 1. Given assumptions 1-5, the estimated and identified factors f̃rh are consistent estima-
tors of the true factors, i.e. for any h = 1, . . . H

(f̃rh − frh)2 = Op
(
min

(
H−1, J−1

))
, r = 1, . . . R,

as J,H →∞.

Proof. First consider the estimated factors f̂krh as the k largest approximate principal components

for a generic number of factors k, i.e. obtained by solving (11). Then the estimated number of

factors obtained from (12) is such that (see Theorem 2 in Bai and Ng, 2002):

p- lim
J,H→∞

R̂ = R.

The estimated factors are then the R̂ largest principal components: f̂rh = 1
J

∑J
j=1wjhâjr, where

âjr is the entry j of the normalized eigenvector corresponding to the r-th eigenvalue of the sample
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covariance matrix of wh. From a corollary of Theorem 1 in Bai and Ng (2002) we have∣∣∣∣∣∣f̂h −Ufh

∣∣∣∣∣∣2 = Op
(
min

(
J−1, H−1

))
, for any h = 1, . . . ,H, (B-1)

where U is a matrix of rank r.

If we assume statistical independence among the R components of the factors fh (see assump-

tions 4 and 5) then U is uniquely identifiable. For example from JADE we obtain an estimate Û

such that Û′f̂h has R statistically independent components. Moreover, since from (A-1) and the

fact that sample cumulants are continuous function of the factors, and by virtue of (B-1), we have

(φ(f̂)− φ(Uf))2 = Op
(
min

(
J−1, H−1

))
,

which implies ∣∣∣∣∣∣Ûf̂
− ÛUf

∣∣∣∣∣∣2 = Op
(
min

(
J−1, H−1

))
. (B-2)

where Û
f̂

is the maximizer of (A-1) when using the fourth–order cumulants of f̂ and analogously

we define ÛUf .

Since for any vector x, JADE determines Ûx in order to make the components of the vector

Û′xx statistically independent, then Û′UfUfh has statistically independent components. Given that

the ICA problem has a unique solution up to a sign, a scale, and a permutation, and given that by

assumption fh has already independent components, then we must have Û′UfU = Ir. Indeed we

can fix the sign, scale, and permutation indeterminacy by adding assumptions on the true factors

as described in the main text.

By multiplying both terms in (B-1) by Û
f̂

we have∣∣∣∣∣∣Ûf̂
f̂h − Û

f̂
Ufh

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣Ûf̂
f̂h − ÛUfUfh

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ÛUfUfh − Û

f̂
Ufh

∣∣∣∣∣∣2 , h = 1, . . . ,H,

From (B-2) we have that the second term on the right–hand–side is Op
(
min

(
J−1, H−1

))
. More-

over, from (B-1) also the term on the left–hand–side is Op
(
min

(
J−1, H−1

))
, therefore also the

first term on the right–hand–side must be Op
(
min

(
J−1, H−1

))
. If we define f̃h = Û

f̂
f̂h and

recalling that Û′UfU = Ir, this latter term becomes∣∣∣∣∣∣Ûf̂
f̂h − ÛUfUfh

∣∣∣∣∣∣2 =
∣∣∣∣∣∣f̃h − fh

∣∣∣∣∣∣2 = Op
(
min

(
J−1, H−1

))
, for any h = 1, . . . ,H,

or equivalently∣∣∣f̃rh − frh∣∣∣2 = Op
(
min

(
J−1, H−1

))
, for any h = 1, . . . ,H, r = 1, . . . R, (B-3)
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which proves Lemma 1. �

We make the following assumption on the kernel function and the bandwidth.

Assumption K. The kernel function is such that:∫ 1

−1
KbH (u)du = 1,∫ 1

−1
uKbH (u)du = 0,∫ 1

−1
u2KbH (u)du < ∞.

The bandwidth bH is such that bH → 0, HbH → ∞, and Hb2H → 0 as H → ∞. Moreover it

satisfies bH = O(H−d) with d < 1 when H →∞.

B.2 Proof of Proposition 1

For any xh and any r = 1, . . . , R we have the following local linear estimators for the basic Engel

curves γ̃∗r (xh) and their first–derivative δ̃∗r (xh): γ̃∗r (xh)

δ̃∗r (xh)

 = arg max
γr,δr

H∑
k=1

[
f̃rk − γr − δr(xk − xh)

]2
KbH (xk − xh) , r = 1, . . . , R.

If we define

Zk(xh) =

 1

xk − xh


the closed form expression for the estimators is given by γ̃∗r (xh)

δ̃∗r (xh)

 =

(
H∑
k=1

Zk(xh)Z′k(xh)KbH (xk − xh)

)−1( H∑
k=1

Zk(xh)f̃rkKbH (xk − xh)

)
.

With respect to the main text and assumption 6 we consider here the case E[z2rh] = σ2 for any h.

The generalization to the heteroskedastic case is straightforward. The, from e.g. Fan and Gijbels

(2003) and Härdle (1990) we know that γ̃∗r (xh) is an estimator of γ̃r(xh) = E[f̃rh|xh] such that,

for any xh,

|γ̃∗r (xh)− γ̃r(xh)|2 = Op(H
−1b−1H ) + κBOp(H

−1b−1H ) + σ2C(1 + 2S)Op(H
−1b−1H ). (B-4)
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In the expression above κ depends on the second derivative of γ̃r(xh), σ2 is the variance of the

errors, while

B =

∫ 1

−1
u2KbH (u)du,

C =

∫ 1

−1
K2
bH

(u)du,

S = lim
k→∞

k∑
j=1

ρ(j).

where ρ(j) ∼ |j|−ζ . The third term in (B-4) is due to the correlation in the errors. Since by

assumption 6, ζ > 1, we have S <∞, and this term is also Op(H−1b−1H ). Therefore,

|γ̃∗r (xh)− γ̃r(xh)|2 = Op(H
−1b−1H ) +Op(b

2
HH

−1b−1H ). (B-5)

Now consider the following decomposition, which holds for any r = 1, . . . R and any h =

1, . . . H

|γ̃∗r (xh)− gr(xh)|2 = |γ̃∗r (xh)− γ̃r(xh) + γ̃r(xh)− gr(xh)|2 ≤

≤ |γ̃∗r (xh)− γ̃r(xh)|2 + |γ̃r(xh)− gr(xh)|2.

Given (B-5), the first term in the last inequality is Op(H−1b−1H ) +Op(bHH
−1), while the second

term can be written as∣∣∣E[f̃rh|xh]− E
[
frh|xh

]∣∣∣2 =
∣∣∣E[(f̃rh − frh)|xh

]∣∣∣2 ≤ E
[∣∣∣f̃rh − frh∣∣∣2 |xh] = Op

(
min

(
J−1, H−1

))
.

where the last equality is given by Lemma 1. Therefore,

|γ̃∗r (xh)− gr(xh)|2 ≤ Op(H−1b−1H ) +Op(bHH
−1) +Op

(
min

(
J−1, H−1

))
. (B-6)

Since when H →∞ assumption K implies bH → 0, HbH →∞, and bHH−1 → 0, we have

p- lim
J,H→∞

|γ̃∗r (xh)− gr(xh)|2 = 0,

which proves Proposition 1, the rate of convergence being given by (B-6). An analogous argument

allows us to prove consistency of the first derivative, i.e.

p- lim
J,H→∞

|δ̃∗r (xh)− g′r(xh)|2 = 0.

�
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B.3 Proof of Proposition 2

The proof is based on the same arguments as the proof of Proposition 1. Consider the equation

f̃rh = α̃r + β̃rm(xh) + z̃rh, r = 1, . . . , R; h = 1, . . . ,H, (B-7)

then define

X = (1H ,m(x)), θ̃r =

 α̃r

β̃r

 , r = 1, . . . , R,

where 1H is an H-dimensional column vector of ones and x = (x1 . . . xH)′. The least squares

estimator of (B-7)

θ̃∗r = (X ′X )−1X ′f̃r,

is such that (see e.g. Gourieroux et al., 1984)

p-lim
H→∞

|θ̃∗r − θ̃r| = 0, r = 1, . . . , R, (B-8)

with rate H−1/2. Now consider, for any r = 1, . . . , R,

|θ̃∗r − θr| = |θ̃∗r − θ̃r + θ̃r − θr| ≤ |θ̃∗r − θ̃r|+ |θ̃r − θr| (B-9)

the first term on the right–hand–side is Op(H−1/2). If we multiply the second term by X we have

X|θ̃r − θr| = |X θ̃r −Xθr| = E
[
f̃r − fr|X

]
= Op

(
min

(
J−1/2, H−1/2

))
, (B-10)

by Lemma 1. By combining (B-8), (B-9), and (B-10) we get the required result. �
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Tables and figures

Table 1: Building the dataset

Step 1 Deflation:
Let (Xit, Y

g
it) be the original dataset, where Xit is total expenditure and Y git is expenditure on category g =

1, . . . , 13. The subscript refers to household i surveyed at time (year) t. At year t = 1, . . . , T (T = 10 in the
time wave analysed here), the number of surveyed households is It. Let Pt be the retail price index at year t. Let
P git be the sub-index of the retail price index corresponding to g at year t. Consider the data (X∗it,W

g
it), where

X∗it = Xit/Pit and W g
it = Y git/(P

g
it
X∗it), for each good g = 1, . . . , 13, each household it = 1, . . . , It, and

for each t = 1, . . . , T . We omit the index t when we refer to a fixed year.

Step 2 Remove outliers:
For each year t = 1, . . . , T calculate the sample mean and standard deviation of X∗it. Trim (for each t) data
whoseX∗it values lie outside three standard deviations from the mean. Let min(X∗it) be the smallest value ofX∗it
for each year t, and max(X∗it) the highest value of X∗it for each year t. For each t remove data whose X∗it values
lie beneath the maximum (over time) of min(X∗it) and beyond the minimum of max(X∗it).

Step 3 Segmenting total expenditure:
Consider the percentiles of X∗it, corresponding to 100 values k1,t, . . . , k100,t of X∗it for each t. For each per-
centile, that is for each h = 1, . . . , 100, take the average over time, i.e. κh = 1

T

∑T
t=1 kht. Let κ0 be the

lowest value of X∗it (for each i and t). We let [κ0, κ1], [κ1, κ2] . . . , [κ99, κ100] determine 100 intervals of total
expenditure.

Step 4 Averaging budget shares within intervals:
Separately for each t = 1, . . . , T , each g = 1, . . . , 13 and each h = 1, . . . , 100, let

W g∗
ht =

∑It
i=1W

g
itI[κh−1,κh](X

∗
it)∑It

i=1 I[κh−1,κh](X
∗
it)

,

where I[A](x) = 1 when x ∈ A and 0 otherwise. This corresponds to taking average of budget shares within
each interval. We thus have 100 representative families with 13 · T different budget allocations. Let J = 13 · T .

Step 5 New dataset:
Let the new dataset be (xh, whj), with xh = (κh − κh−1)/2 , and wh1 = W 1∗

h1 ;wh2 = W 2∗
h1 ; . . . ;wh13 =

W 13∗
h1 ;wh14 =W 1∗

h2 ; . . . ;whJ =W 13∗
hT (for each h = 1, . . . , 100).
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Table 2: Determining the number of factors in single years.

household members
years 1 2 2-3 2-4
1997 1 5 1 1
1998 4 4 4 3
1999 3 2 2 1
2000 3 1 1 1
2001 4 3 2 2
2002 1 2 1 1
2003 1 1 1 4
2004 3 2 1 4
2005 1 2 2 2
2006 1 2 3 2
average 2.2 2.4 1.8 2.1

Number of factors based on the LDU decomposition (see Lewbel, 1991) obtained at
5% significance level under the null–distribution which is χ2

(13−Rt)
.

Table 3: Comparison of factor estimates.

household members
1 2 2-3 2-4

num. factors num. factors num. factors num. factors
years 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1997 0.94 0.89 0.87 0.85 0.95 0.93 0.91 0.89 0.96 0.94 0.92 0.90 0.96 0.94 0.93 0.91
1998 0.93 0.88 0.85 0.83 0.95 0.92 0.90 0.88 0.96 0.94 0.92 0.91 0.97 0.95 0.93 0.92
1999 0.91 0.84 0.82 0.79 0.94 0.89 0.88 0.86 0.95 0.92 0.91 0.89 0.97 0.93 0.92 0.91
2000 0.94 0.89 0.85 0.83 0.96 0.91 0.89 0.87 0.97 0.93 0.91 0.90 0.96 0.93 0.91 0.90
2001 0.94 0.90 0.87 0.84 0.95 0.91 0.89 0.87 0.96 0.92 0.90 0.88 0.96 0.92 0.91 0.89
2002 0.94 0.89 0.86 0.84 0.96 0.92 0.89 0.87 0.96 0.93 0.91 0.89 0.97 0.93 0.92 0.90
2003 0.95 0.89 0.85 0.83 0.94 0.90 0.87 0.86 0.96 0.89 0.87 0.87 0.97 0.90 0.89 0.88
2004 0.94 0.87 0.84 0.83 0.94 0.87 0.85 0.84 0.96 0.91 0.90 0.88 0.96 0.92 0.91 0.90
2005 0.93 0.87 0.84 0.82 0.94 0.88 0.86 0.84 0.96 0.92 0.90 0.89 0.97 0.92 0.91 0.89
2006 0.93 0.88 0.84 0.82 0.95 0.91 0.88 0.87 0.97 0.92 0.90 0.89 0.98 0.93 0.92 0.90
average 0.94 0.88 0.85 0.83 0.95 0.90 0.88 0.86 0.96 0.92 0.90 0.89 0.97 0.93 0.91 0.90

Trace statistics τt when regressing the factors estimated on the pooled dataset on the factors estimated on single blocks indicated by the years.

Table 4: Average budget shares.

household members
1 2 2-3 2-4

all poor rich all poor rich all poor rich all poor rich
Housing 0.23 0.22 0.24 0.19 0.19 0.18 0.18 0.19 0.18 0.18 0.19 0.18
Fuel, light and power 0.07 0.10 0.04 0.05 0.07 0.03 0.05 0.06 0.03 0.04 0.06 0.03
Food 0.19 0.24 0.14 0.19 0.23 0.14 0.19 0.23 0.15 0.19 0.23 0.15
Alcoholic drinks 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Tobacco 0.03 0.04 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01
Clothing and footwear 0.03 0.02 0.04 0.04 0.03 0.05 0.04 0.04 0.05 0.05 0.04 0.05
Household goods 0.07 0.06 0.07 0.08 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.08
Household services 0.07 0.08 0.07 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.06
Personal goods and services 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Motoring 0.08 0.04 0.12 0.12 0.10 0.15 0.13 0.10 0.15 0.13 0.10 0.15
Travels 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Leisure goods 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Leisure services 0.11 0.09 0.12 0.12 0.10 0.14 0.12 0.10 0.14 0.12 0.09 0.14

Averages are computed over the 10 years period 1997–2006; poor: households with total expenditure below median; rich: households
with total expenditure above median.
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Table 5: Determining the number of factors and their explained variance on pooled data.

household members
1 2 2-3 2-4

criterion 77–86 87–96 97–06 77–86 87–96 97–06 77–86 87–96 97–06 77–86 87–96 97–06
BN 12 3 2 4 3 2 5 3 2 5 3 2
ABC 2 3 2 4 3 2 4 3 2 4 4 4
O 2 2 2 2 3 2 2 3 2 2 3 2
CC 4 3 4 4 3 3 4 3 4 4 3 3
average 5 2.75 2.5 3.5 3 2.25 3.75 3 2.5 3.5 3.25 2.75
EV
Factor 1 0.41 0.52 0.55 0.56 0.59 0.63 0.64 0.65 0.68 0.70 0.69 0.69
Factor 2 0.18 0.19 0.06 0.09 0.12 0.05 0.09 0.12 0.07 0.08 0.12 0.08
Factor 3 0.04 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01

BN: Bai and Ng (2002) criterion. ABC: Alessi et al. (2010) criterion. O: Onatski (2010) criterion. CC: number of factors based on
the canonical correlations obtained at 10% significance level under the null–distribution which is χ2

(J/2−R)(J/2−R)
. EV: variance

explained by each factor computed with respect to total variance.

Table 6: Factor loadings.

Average Loading
Factor 1 Factor 2 Factor 3

Housing -0.21 -0.28 0.38
Fuel, light and power 0.34 -0.23 0.21
Food 0.70 -0.65 0.61
Alcoholic drinks -0.07 -0.02 0.03
Tobacco 0.16 -0.15 0.14
Clothing and footwear -0.07 0.09 -0.08
Household goods -0.06 0.13 -0.16
Household services 0.04 0.04 0.00
Personal goods and services -0.02 0.03 -0.02
Motoring -0.50 0.33 -0.40
Travels 0.00 0.06 -0.07
Leisure goods -0.03 0.06 -0.08
Leisure services -0.24 0.52 -0.47

Average loadings of the identified factors f̃ are computed over the 10
years period 1997-2006, the scale being fixed such that Ã′Ã/J = Ir .
Results refer to households with 2 to 4 members. Loadings for each
year are available in the complementary appendix.
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Table 7: Parametric estimates of basic Engel curves, goodness–of–fit.

adj.R2

all poor rich
Functional form Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

αr + βrxh 0.18 0.50 0.27 0.85 0.00 0.06 0.76 0.52 0.22

αr + βrx2h 0.04 0.56 0.27 0.71 0.00 0.04 0.73 0.51 0.18

αr + βrx
−1
h 0.78 0.08 0.06 0.91 0.13 0.04 0.69 0.48 0.26

αr + βrx
−2
h 0.70 0.00 0.01 0.69 0.23 0.00 0.63 0.43 0.26

αr + βr log xh 0.50 0.30 0.17 0.95 0.05 0.06 0.74 0.51 0.25

αr + βr log
2 xh 0.43 0.34 0.20 0.94 0.03 0.06 0.75 0.51 0.24

αr + βrxh log xh 0.15 0.52 0.28 0.83 0.00 0.05 0.75 0.52 0.21

Adjusted R2 coefficient for the least squares regressions of the identified factors f̃rh on selected functions of total expenditure; poor:
households with total expenditure below median; rich: households with total expenditure above median. Results refer to households
with 2 to 4 members.

Table 8: Parametric estimates of basic Engel curves, coefficients.

all poor rich
Functional form β̃∗r adj.R2 β̃∗r adj.R2 β̃∗r adj.R2

f̃1h = α1 + β1 log xh −1.18∗ 0.50 −2.89∗∗∗ 0.95 0.86 0.74
(0.92) (1.20) (0.98)

f̃1h = α1 + β1x
−1
h 1.50∗∗ 0.78 5.26∗∗∗ 0.91 −2.58 0.69

(0.89) (2.10) (3.03)

f̃2h = α2 + β2x2h 0.16∗ 0.56 −0.01 0.00 0.11∗∗ 0.51
(0.10) (0.09) (0.06)

f̃2h = α2 + β2xh log xh 0.44∗ 0.56 −0.03 0.00 0.35∗∗ 0.52
(0.29) (0.25) (0.19)

Estimates of the slope coefficient for the regression of the identified factors f̃rh on selected functions
of total expenditure; standard errors in parenthesis are computed by re–estimating the factors and the
Engel curves using 1000 bootstrapped samples of budget share: ∗ significant at 10%; ∗∗ significant at
5%; ∗∗∗ significant at 1%; poor: households with total expenditure below median; rich: households
with total expenditure above median. Estimates for the intercept αr are available upon request. Results
refer to households with 2 to 4 members.
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Table 9: Average derivatives.

all poor rich
Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Derivative -0.26 0.32 -0.19 -0.53 0.00 0.14 0.11 0.32 -0.29

Wald statistic 2.35
(0.13)

8.07
(0.00)

2.71
(0.10)

16.41
(0.00)

0.00
(0.99)

3.32
(0.07)

17.00
(0.00)

7.72
(0.01)

7.03
(0.01)

Derivatives averaged across total expenditure estimated using Härdle and Stoker (1989) method; Wald statistics under the null hypoth-
esis of zero average derivative and computed with standard errors obtained with 1000 bootstrap replications (p-values in parenthesis);
poor: households with total expenditure below median; rich: households with total expenditure above median. Results refer to
households with 2 to 4 members.
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Figure 1: Distribution of total expenditure.
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(b) 2 household members
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(c) 2–3 household members
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(d) 2–4 household members

Box–plots for total expenditure, showing median, 25th, 75th percentiles, minumum and maximum of the distribution.

Figure 2: Non–Gaussianity of the factors.
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(b) Second factor

Quantiles of the two largest principal components, i.e. of the estimated factors f̂rh vs. quantiles of a standard Gaussian

distribution. Results refer to households with 2 to 4 members and the period 1997–2006.
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Figure 3: Estimated basic Engel curves and their first derivatives.
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(b) First factor – first derivative

200 400 600 800 1000 1200

2

1

0

1

2

3

4

5

6

Total expenditure (xh)

γ̃
∗ 2
(x

h
)

(c) Second factor
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(d) Second factor – first derivative
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(e) Third factor
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(f) Third factor – first derivative

Solid line: local linear non–parametric estimates of basic Engel curves γ̃∗r (xh) (left column) and their first derivatives

δ̃∗r (xh) (right column); dashed line: 68% confidence intervals; dotted line: 90% confidence intervals; circles: values

taken by the factors f̃rh (left column). Confidence intervals are obtained with 1000 bootstrap replications. In this graph

factors are re–scaled to have zero mean. Results refer to households with 2 to 4 members and the period 1997–2006.
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Figure 4: Interpreting the basic Engel curves.
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(a) First factor – food BS
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(b) First factor – fuel, light, and power BS
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(c) Second factor – leisure services BS
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(d) Second factor – motoring BS
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(e) Third factor – housing BS
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(f) Third factor – alcoholic drinks BS

Circles: budget shareswjh of selected goods in 2006; solid lines: estimated non–parametric basic Engel curves γ̃∗r (xh);

dashed lines: 90% confidence intervals obtained with 1000 bootstrap replications. In this graph the non–parametric fits

have mean zero and standard deviation one and budget shares are rescaled accordingly. Results refer to households with

2 to 4 members.
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