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Georgy Chabakauri∗
London School of Economics

Abstract

Portfolio constraints are widespread and have significant effects on asset prices. This paper studies the
effects of constraints in a dynamic economy populated by investors with different risk aversions and
beliefs about the rate of economic growth. The paper provides a comparison of various constraints and
conditions under which these constraints help match certain empirical facts about asset prices. Under
these conditions, borrowing and short-sale constraints decrease stock return volatilities, whereas limited
stock market participation constraints amplify them. Moreover, borrowing constraints generate spikes in
interest rates and volatilities and have stronger effects on asset prices than short-sale constraints.
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1. Introduction

Portfolio constraints have long been considered among the key factors that affect investment decisions and
asset prices. Moreover, the tightening of borrowing and short-sale constraints during the recent financial
crisis sparked further interest in the effects of constraints on financial markets. The main objective of
this paper is to provide a comparison of the effects of borrowing, short-sale, and limited stock market
participation constraints on asset prices in a dynamic economy in which investors have different risk
aversions and beliefs about the rate of economic growth. The paper shows that constraints and preferences
interplay in complex ways, giving rise to spikes in interest rates and stock return volatilities. Furthermore,
by relaxing the assumption of logarithmic constrained investors, popular in the literature, this paper
demonstrates that investors’ elasticities of intertemporal substitution (EIS) play a key role in matching
certain empirical facts about asset prices and determining whether constraints increase or decrease asset
prices and the volatilities of their returns.

The paper considers a pure-exchange Lucas (1978) economy with one tree populated by two investors
with heterogeneous constant relative risk aversion (CRRA) preferences and heterogeneous beliefs about
the mean growth rate of aggregate output. The investors trade in a riskless bond and a stock, representing
a claim to the stream of dividends produced by the tree. One investor is unconstrained, whereas the other
may face borrowing, short-sale, or limited stock market participation portfolio constraints. The paper
studies the market prices of risk, interest rates, stock return volatilities and stock price-dividend ratios
and derives them as functions of the constrained investor’s share of the aggregate consumption, which
acts as a state variable in the model.

The main results on the effects of borrowing constraints are as follows. First, under these constraints,
interest rates and stock return volatilities are complex non-monotone functions of the state variable with
spikes. The spikes are due to a kink in the constrained investor’s portfolio weight at a time when constraints
start to bind. Second, in economies where stock return volatilities are countercyclical (i.e., negatively
correlated with the aggregate output) and exceed dividend volatilities, as in the data, constraints decrease
volatilities and destroy their countercyclicality. The intuition is that constraints homogenize investors’
portfolios, and hence, the volatility decreases toward that in a homogeneous-investor economy, in which
stock and aggregate output volatilities coincide. Third, constraints lead to higher market prices of risk,
compensating the unconstrained investor for holding more stocks to clear the market, and to lower interest
rates because the constrained investor borrows less.

The effects of constraints on investors’ wealth-consumption (W/C) and price-dividend (P/D) ratios
depend on investors’ EIS, which determine the relative strength of income and substitution effects.1 When
the substitution effect dominates, borrowing constraints tend to decrease W/C ratios because of the low
opportunity cost of consumption. This is due to low interest rates and the fact that investors cannot
take full advantage of investing in stocks because in the model the unconstrained investor is pessimistic,
whereas the other investor is constrained. The opposite happens for the income effect. The paper shows
that the P/D ratio is a weighted average of investors’ W/C ratios and, hence, responds to constraints in a
similar way. The paper formalizes the intuition by deriving closed-form approximations for W/C and P/D
ratios, which capture the interaction between constraints and EIS. The intuition for other constraints is
analyzed similarly.

Next, the paper contributes to the debate on the economic effects of short-sale bans. It shows that
in economies where stock return volatilities are countercyclical and exceed dividend volatilities, short-sale
bans decrease volatilities, in line with the anticipations of policymakers during the recent financial crisis
[e.g., Beber and Pagano (2013)]. Moreover, short-sale bans preserve the countercyclicality of volatilities,
decrease market prices of risk and increase interest rates. However, the effect of these constraints on asset
prices and volatilities is small, in line with the empirical studies on short-sale bans during the 2007-2009
crisis [e.g., Beber and Pagano (2013); Boehmer, Jones, and Zhang (2013)].

1When the investment opportunities worsen, the substitution effect induces investors to consume more and save less
because of the lower opportunity cost of consumption. The income effect induces them to do the opposite in order to have
higher consumption in the future. For CRRA preferences with risk aversion γ, EIS = 1/γ. The substitution effect dominates
for EIS > 1, and the income effect dominates for EIS < 1.
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Finally, to isolate the pure effects of constraints, the paper considers an economy where both investors
are identical except that one of them faces a limited participation constraint, that is, invests only a
small fraction of wealth in stocks. This constraint is typical for pension funds, retail investors, and
some mutual fund families. The main finding is that when the substitution effect dominates, the model
generates countercyclical market prices of risk and stock return volatilities, procyclical interest rates and
price-dividend ratios, excess volatility, and a negative correlation between risk premia and price-dividend
ratios, consistent with the empirical literature. The effects on market prices of risk and interest rates are
similar to those for borrowing constraints.

The paper offers a new tractable characterization of equilibrium for comparing the effects of different
constraints. This characterization does not rely on a restrictive assumption of logarithmic constrained
investors, as commonly employed in the literature. The derivation of equilibrium proceeds in two steps.
First, all processes are derived in terms of the shadow costs of constraints from the first order conditions for
consumption. Then, the shadow costs are found from the Kuhn-Tucker conditions of optimality. Finding
the equilibrium reduces to solving a system of ordinary differential equations (ODEs) for investors’ W/C
ratios. In the unconstrained benchmark, the paper provides a new closed-form solution of the model.

There is a large body of literature on economies with constrained logarithmic investors. The results
in the current paper on whether constraints increase or decrease market prices of risk and interest rates
do not strongly depend on preferences and are consistent with this literature. Nevertheless, the results on
the spiky non-monotone dynamics of interest rates and volatilities and the analysis of the cyclicality of
P/D ratios and volatilities are new even for economies with logarithmic investors. Moreover, as shown in
this paper, models with general preferences and models with logarithmic preferences may have opposite
predictions regarding the effects of constraints on P/D ratios and stock return volatilities.

Below, we review the most closely related works. Detemple and Murthy (1997) and Basak and Croitoru
(2000, 2006) study economies with various constraints where all investors are logarithmic. Coen-Pirani
(2005) studies margin requirements in an economy with Epstein-Zin investors who have EIS = 1. In
those papers, constraints do not affect stock prices because income and substitution effects cancel each
other when investors have EIS = 1. Pavlova and Rigobon (2008) study a three-country economy with
constrained logarithmic investors, but they use home bias as the source of investor heterogeneity.

Kogan, Makarov, and Uppal (2007) consider a model with one unconstrained CRRA investor and one
logarithmic investor who cannot borrow. Their processes are deterministic, and there is no excess volatility.
Gallmeyer and Hollifield (2008) study short-sale bans in a model with heterogeneous preferences and beliefs
and a logarithmic constrained investor. They find that constraints increase (decrease) volatilities when
the unconstrained investor has EIS > 1 (EIS < 1). In contrast to the above papers, this paper handles
looser constraints and non-logarithmic preferences, and the volatility can go either way for any fixed EIS,
depending on the constrained investor’s consumption share.

Basak and Cuoco (1998) study market prices of risk and interest rates in an economy with limited
participation and a logarithmic constrained investor. Hugonnier (2012) studies endogenous bubbles in
the model of Basak and Cuoco (1998). Guvenen (2006, 2009) resolves several asset pricing anomalies
in a production economy with limited participation, labor income, and investors with heterogeneous low
EIS. The model in this paper generates qualitatively similar results when investors have homogeneous
preferences and high EIS. The economy in Guvenen (2006, 2009) is more realistic than the extension of
Basak and Cuoco (1998) in this paper. However, Guvenen (2009) notes that the mechanism in Basak and
Cuoco (1998) is also important, although less significant quantitatively.

The current paper is related to the literature on margin constraints. Gârleanu and Pedersen (2011)
focus on the mispricing of securities under margin constraints but do not study volatilities. Chabakauri
(2013) employs the methodology of the current paper to study the effects of margin constraints on volatil-
ities and correlations in an economy with two stocks and two heterogeneous CRRA investors but does not
study the effects of short-sale bans, limited participation, and differences in beliefs. Because of complicated
boundary conditions, the model with limited participation in the current paper is solved using techniques
that are not covered in Chabakauri (2013). Prieto (2013) and Rytchkov (2014) consider related models
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but with time-varying margins and find similar effects.2

The paper also contributes to the literature on economies with heterogeneous unconstrained investors.
Longstaff and Wang (2012) provide closed-form solutions for equilibrium when one investor is twice as risk
averse as the other. This paper extends their solutions in terms of hypergeometric functions to general
risk aversions and beliefs. Bhamra and Uppal (2014) provide solutions in terms of series expansions in a
model with habit and demonstrate that the heterogeneity in preferences gives rise to excess volatility.

This paper is organized as follows. Section 2 presents the economic setup and defines the equilibrium.
Section 3 solves for equilibrium and discusses its properties. Section 4 provides the analysis of equilibrium,
and Section 5 concludes. Online Appendices A, B, C and D provide the proofs, details of the numerical
method, evaluation of the quality of approximations, and additional results for the case of logarithmic
investors, respectively.

2. Economic setup

Consider a continuous-time infinite-horizon Lucas (1978) economy with one consumption good and two
investors A and B with heterogeneous CRRA preferences. The uncertainty is represented by a filtered
probability space (Ω, {Ft},P) on which a Brownian motion w is defined. The stochastic processes are
adapted to filtration {Ft, t ∈ [0,∞)} generated by w, where sigma-field Ft represents the time-t informa-
tion.

The investors trade continuously in a riskless bond in zero net supply and a stock in net supply of one
unit. The stock is a claim to an exogenous stream of dividends Dt, which follows a geometric Brownian
motion (GBM):

dDt = Dt

[
µDdt+ σDdwt

]
, (1)

where mean growth rate µD and volatility σD are constants. Dividend Dt is equal to the aggregate output
in the economy at date t, and its growth rate µD can be interpreted as the rate of economic growth.

Investors observe Dt but disagree about mean growth rate µD. They have their own probability spaces
(Ω, {F it},Pi) with subjective probability measures Pi, which are equivalent to the true measure P. Under
investor i’s beliefs dividends Dt evolve as follows:

dDt = Dt

[
µiDdt+ σDdw

i
t

]
, i = A,B, (2)

where wi is a Brownian motion under investor i’s measure Pi. Because investors agree on dividend growth
dDt/Dt, Equations (2) imply µADdt+ σDdw

A
t = µBDdt+ σDdw

B
t , and hence,

dwBt = dwAt −∆Ddt, (3)

where ∆D = (µBD − µAD)/σD. The heterogeneity of beliefs is needed to make short-sale constraints binding,
whereas the other constraints in the paper bind even with identical beliefs. For simplicity, investors do
not update their beliefs [e.g., Yan (2008)].

The paper looks for equilibria in which bond Bt and stock St prices follow the processes:

dBt = Btrtdt, (4)
dSt +Dtdt = St

[
µtdt+ σtdwt

]
,

= St
[
µitdt+ σtdw

i
t

]
, i = A,B, (5)

where interest rate rt, stock mean return µt and volatility σt are determined in equilibrium and are
adapted to Ft, and the bond price at time 0 is normalized to B0 = 1. The investors agree on asset prices

2Other related works in discrete time include Kiyotaki and Moore (1997), Brunnermeier and Pedersen (2009), Gromb
and Vayanos (2002, 2010), Brumm et al (2013), who study margin and collateral constraints, and Buss et al (2013), who
consider a model with habit and several regulatory measures.

3



but disagree on stock mean return. Similarly to Basak (2000, 2005), from Equations (3) and (5) it can
be easily shown that Equation (3) for Brownian motions wBt and wAt imposes the following consistency
condition:

µBt − µAt
σt

= µBD − µAD
σD

≡ ∆D, (6)

where ∆D is called a disagreement process.

2.1. Portfolio constraints and investors’ optimization

The investors choose consumption cit and an investment policy {αit, θit}, where αit and θit denote the
fractions of wealth invested in bonds and stocks, respectively, and hence, αit + θit = 1. Processes cit,
αit, θit are adapted to time-t information. The investors maximize expected discounted utilities over
consumption with discount ρ > 0

max
cit, θit

Ei
[∫ ∞

0
e−ρt

c1−γiit

1− γi
dt
]
, (7)

where Ei[·] is expectation under measure Pi, subject to a self-financing budget constraint

dWit =
[
Wit

(
rt + θit(µit − rt)

)
− cit

]
dt+Witθitσtdw

i
t, i = A,B, (8)

and subject to portfolio θi ∈ Θi and wealth Wit > 0 constraints. For γi = 1, the utility in (7) is replaced
with ln(cit). At t = 0, investor B is endowed with s units of stock and −b units of bond, and investor A
is endowed with 1− s units of stock and b units of bond.

Investor A is unconstrained, that is, ΘA = R, whereas investor B faces constraint

θB ∈ ΘB = {θ : θ ≤ θ ≤ θ}. (9)

The paper focuses on three special cases of constraint (9): 1) borrowing constraint θB ≤ θ̃, with θ̃ ≥ 1; 2)
short-sale constraint θB ≥ θ̃, with θ̃ ≤ 0; and 3) limited participation constraint θB ≤ θ̃, with 0 ≤ θ̃ < 1.

2.2. Equilibrium

Definition. An equilibrium is a set of processes {rt, µit, σt}i∈{A,B} and of consumption and investment
policies {c∗it, α∗it, θ∗it}i∈{A,B} such that consumption and investment policies solve dynamic optimization
problem (7) for each investor, given processes {rt, µit, σt}i∈{A,B}, and consumption and securities markets
clear, that is,

c∗At + c∗Bt = Dt, θ∗AtW
∗
At + θ∗BtW

∗
Bt = St, α∗AtW

∗
At + α∗BtW

∗
Bt = 0, (10)

where W ∗At and W ∗Bt denote wealths under optimal strategies.
Instead of stock mean return µ, the paper reports the market price of risk κ = (µ− r)/σ, from which

µ can be easily recovered. The paper also studies stock P/D and investors’ W/C ratios Ψ = S/D and
Φi = W ∗i /c

∗
i , respectively. Throughout the paper, i = A,B is used as a superscript for processes on which

the investors disagree (e.g., µiD, µit, κit, wit) and as a subscript for processes on which they agree (e.g., θit,
Wit, Φit, etc).

All processes are derived as functions of investor B’s share of aggregate consumption, y = c∗B/D,
similarly to the related literature [e.g., Detemple and Murthy (1997); Gârleanu and Pedersen (2011)]. The
paper studies Markovian equilibria in which state variable y follows a Markovian Itô process (under true
probability measure P):

dyt = −yt[µytdt+ σytdwt], (11)

where the drift µy and volatility σy are determined in equilibrium as functions of y.
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3. Characterization of equilibrium

This section derives the equilibrium in economies with constraints in two steps. The first step solves for
investors’ optimal consumptions in a partial equilibrium setting in which investment opportunities are
taken as given. The second step derives the equilibrium processes from the market clearing conditions in
terms of shadow costs of constraints, which are found from Kuhn-Tucker conditions of optimality.

Following Cvitanić and Karatzas (1992), the constrained investor’s optimization is solved in a fictitious
unconstrained economy, in which prices Bt and St follow the dynamics:

dBt = Bt

(
rt + δ(ν∗t )

)
dt, (12)

dSt +Dtdt = St

[(
µBt + ν∗t + δ(ν∗t )

)
dt+ σtdw

B

t

]
, (13)

where adjustment ν∗ can be interpreted as the shadow cost of a constraint, and δ(·) is the support function
for the set of admissible portfolio weights ΘB, defined as

δ(ν) = sup
θ∈ΘB

(−νθ). (14)

Adjustments ν∗ belong to the support function’s effective domain, given by Υ = {ν ∈ R : δ(ν) <∞},
and can be obtained from complementary slackness condition ν∗θ∗B+δ(ν∗) = 0 [e.g., Cvitanić and Karatzas
(1992); Karatzas and Shreve (1998)]. Table 1 provides effective domains Υ and support functions δ(·) for
different constraints.

The advantage of the fictitious-economy approach is that investor B’s optimization can be solved using
the results from complete-market portfolio choice literature [e.g., Liu (2007)]. To understand the intuition,
suppose that B faces constraint θBt ≤ θ̃, where θ̃ > 1, and hence holds less wealth in stocks than in the
unconstrained economy. Investor B’s portfolio choice can be replicated in an unconstrained economy with
lower risk premia and higher interest rates by properly choosing adjustment ν∗ so that δ(ν∗) ≥ 0 and
ν∗ ≤ 0.

[Table 1 about here]

Suppose adjustment ν∗ is given. Then, investor B’s problem can be solved in the fictitious complete-
market economy. The state price densities of investors in their respective unconstrained real and fictitious
economies follow the dynamics below [e.g., Duffie (2001)]:

dξAt = −ξAt[rtdt+ κAt dw
A

t ], dξBt = −ξBt[(rt + δ(ν∗t ))dt+ (κBt + ν∗t /σt)dwBt ], (15)

where κi = (µi − r)/σ. The investors’ first-order conditions (FOC) equate their marginal utilities and
state price densities and are given by:

e−ρt(c∗it)−γi = ψiξit, i = A,B. (16)

Substituting optimal consumptions c∗it = (ψieρtξit)−1/γi into consumption clearing condition c∗At+c∗Bt = Dt,
applying Itô’s lemma to both sides and then matching the dt and dwt terms gives the equilibrium processes
for κ and r in terms of investor B’s consumption share y and adjustment ν∗. Lemma 1 reports the results.

Lemma 1 (Equilibrium processes in terms of shadow costs of constraints).
1) If there exists a Markovian equilibrium described by the FOC in Equations (16), then market price of
risk κ = (µ−r)/σ, interest rate r, volatility σy and drift µy of consumption share y = c∗B/D, and volatility
σ of stock returns are functions of y and ν∗, given by:

κt = ΓtσD + µD − µ̄Dt
σD

− Γt
yt
γB

ν∗t
σt
, (17)
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rt = ρ+ Γtµ̄Dt −
ΓtΠt

2 σ2
D − Γt

yt
γB
δ(ν∗t ) (18)

+Γ3
t

yt(1− yt)
γ2
Bγ

2
A

[(
(γB − γA)σD −∆D

)(
∆D + ν∗t

σt

)
+ 1

2

(
1 + γBγA

Γt

)(
∆2
D −

(ν∗t
σt

)2)]
,

σyt = Γt
1− yt
γBγA

(
(γB − γA)σD −∆D −

ν∗t
σt

)
, (19)

µyt = µD − σytσD −
rt + δ(ν∗t )− ρ

γB
− µD − µBD

σD
(σD − σyt)−

1 + γB
2 (σD − σyt)2, (20)

σt = σD − ytσyt
Ψ′(yt)
Ψ(y) , (21)

where µ̄D = (Γtyt/γB)µBD + (Γt(1− yt)/γA)µAD is the average subjective growth rate, Γt and Πt are the risk
aversion and prudence parameters of a representative investor, given by:

Γt = γBγA
γB(1− yt) + γAyt

, Πt = Γ2
t

(1 + γB
γ2
B

yt + 1 + γA
γ2
A

(1− yt)
)
. (22)

2) The equilibrium processes for κi and µiy under investors’ subjective beliefs are given by:

κBt = Γt
(
σD −

yt
γB

ν∗t
σt

+ 1− yt
γA

∆D

)
, κAt = κBt −∆D, (23)

µByt = µBD − σytσD −
rt + δ(ν∗t )− ρ

γB
− 1 + γB

2 (σD − σyt)2, µAyt = µByt −∆Dσyt, (24)

and processes rt, σy, and σ do not depend on subjective beliefs.
Table 1 gives the signs of ν∗. For example, for the borrowing constraint [case (c) in Table 1] ν∗ ≤ 0.

Therefore, Equation (17) implies that κ increases under the constraint, provided that σ > 0, which can
be verified after computing the equilibrium. Intuitively, constrained investor B holds less stocks than
without constraints, and hence investor A should hold more stocks to clear the market. Consequently, κ
increases to compensate investor A for excessive risk taking. The impact of constraints on r is ambiguous
because it is a quadratic function of adjustment ν∗. On the one hand, under the borrowing constraint r
should go down because investor B borrows less. On the other hand, it should go up because investor A
now holds more stocks and, hence, is less willing to lend. Interestingly, in the unconstrained case [case
(a) in Table 1] ν∗t = 0, and hence, Lemma 1 provides closed-form equilibrium processes, similar to those
in Basak (2000, 2005).

Proposition 1 below completes the characterization of equilibrium. In particular, it provides equations
for W/C and P/D ratios and for adjustment ν∗, which is derived from Kuhn-Tucker conditions of opti-
mality. For simplicity of exposition, the proposition reports the results only for borrowing and short-sale
constraints, and the case of limited stock market participation constraints is discussed in Section 4.3.

Proposition 1 (Equilibrium with borrowing and short-sale constraints).
1) Suppose, there exists a Markovian equilibrium with wealth-consumption ratios Φi(y) ∈ C1[0, 1]∩C2(0, 1).
Then, the stock price-dividend ratio is given by Ψ(y) = (1−y)ΦA(y)+yΦB(y), and investor i’s value function
Ji and portfolio weight θ∗i are given by:

Ji(yt, t) = e−ρt
W 1−γi
it Φi(yt)γi

1− γi
, (25)

θ∗i (yt; ν∗t ) = 1
γiσt

(
κi + 1{i=B}

ν∗t
σt
− γiytσyt

Φ′i(yt)
Φi(yt)

)
, (26)

where i = A,B, 1{i=B} is an indicator function, and wealth-consumption ratios ΦA(y) and ΦB(y) satisfy
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ordinary differential equations (ODEs)

y2σ2
y

2 Φ
′′

A − y
(
µAy + 1− γA

γA
κAσy

)
Φ
′

A +
(1− γA

2γA
(κA)2 + (1− γA)r − ρ

)ΦA
γA

+ 1 = 0, (27)

y2σ2
y

2 Φ
′′

B − y
(
µBy + 1− γB

γB

(
κB + ν∗

σ

)
σy

)
Φ
′

B

+
(1− γB

2γB

(
κB + ν∗

σ

)2
+ (1− γB)(r + δ(ν∗))− ρ

)ΦB
γB

+ 1 = 0, (28)

where r, κi, σy, µiy and σ are given in Lemma 1 and δ(·) is given in Table 1. Boundary values Φi(0) and
Φi(1) are positive and bounded, and are given by

ΦA(0) = γA

ρ− (1− γA)
(
κA(0)2

2γA + r(0)
) , ΦB(0) = γB

ρ− (1− γB)
( (κB(0)+ ν̄∗

σD
)2

2γB + r(0)− θ̃ν̄∗
) ,

ΦA(1) = γA

ρ− (1− γA)
(
κA(1)2

2γA + r(1)
) , ΦB(1) = γB

ρ− (1− γB)
(
κB(1)2

2γB + r(1)
) , (29)

where ν̄∗ = min
(

0, θ̃σ2
D(γB θ̃ − γA − ∆D/σD)

)
/θ̃, κi(0) = γAσD + 1{i=B}∆D, κi(1) = γBσD − 1{i=A}∆D,

r(0) = ρ+ γAµ
A
D − 0.5γA(1 + γA)σ2

D, r(1) = ρ+ γBµ
B
D − 0.5γB(1 + γB)σ2

D.

2) In the above equilibrium, for borrowing constraint θB ≤ θ̃ with θ̃ ≥ 1 and short-sale constraint θB ≥ θ̃
with θ̃ < 0, adjustment ν∗ satisfies Kuhn-Tucker optimality conditions

ν∗t (θ∗(yt; ν∗t )/θ̃ − 1) = 0, ν∗t θ̃ ≤ 0, θ∗B(yt; ν∗t )/θ̃ − 1 ≤ 0, (30)

and is given by the following expression:

ν∗t =


0, if θ∗B(yt; ν∗t )/θ̃ < 1,

(γB − γA)σ2
D −∆DσD

θ̃ + g1(yt)(1− θ̃)
− (1− θ̃)σ2

Dg1(yt)/g2(yt)
(θ̃ + g1(yt)(1− θ̃))2

, if θ∗B(yt; ν∗t )/θ̃ = 1, ν∗t θ̃ < 0,
(31)

where θ∗B is given by Equation (26), g1(y) =
(

1 + yΦ′B(y)/ΦB(y)
)
/
(

1 + yΦ′B(y)/ΦB(y)− yΨ′(y)/Ψ(y)
)

, and

g2(y) =
(

Γ(1− y)/(γAγB)
)(

1 + yΦ′B(y)/ΦB(y)
)

.

3) Suppose there exist bounded and positive functions Φi(y) ∈ C1[0, 1] ∩ C2(0, 1) that satisfy ODEs (27)–
(28) and boundary conditions (29), processes κi, ν∗/σ, σ, and θ∗i are bounded and |σ| > 0. Then, there
exists a Markovian equilibrium in which value functions and portfolio weights are given by equations (25)
and (26), respectively, equilibrium processes κi, r, and σ are as in Lemma 1, and consumptions c∗i satisfy
first-order conditions (16).

The expressions for value functions Ji, optimal portfolio weights θ∗i , and ODEs for wealth-consumption
ratios Φi are derived using dynamic programming in the same way as in the complete-market partial
equilibrium economy in Liu (2007). The main contribution of Proposition 1 is Equation (31) for adjustment
ν∗. This equation reveals that ν∗ is a function of Φi, Ψ and their derivatives, and hence, Equations (27)–
(28) comprise a system of quasilinear ODEs for the W/C ratios.3 Equations (27)–(28) are solved by
finite-difference methods, which are discussed in Appendix B, for parameters γi, ρ, µiD and σD such that
boundary values Φi(0) and Φi(1) are positive and finite.

3Remark A.1 in Appendix A provides conditions under which there can be multiple ν∗. However, these conditions do
not hold in the calibrations in Section 4. The multiplicity of equilibria remains an open question. Furthermore, Lemma 1
and Proposition 1 remain valid for time-varying bounds θ̃t = θ̃(yt, σt).
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To provide the intuition for the effect of constraints on equilibrium, from Equation (26) for portfolio
weights θ∗A and θ∗B and Equations (19) and (23) for σy and κi, after simple algebra, we obtain the following
expression for consumption share volatility σy:

σyt = (θ∗At − θ∗Bt)σt
1

1− yt
− yt

Φ′A(yt)
ΦA(yt)

+ yt
Φ′B(yt)
ΦB(yt)

. (32)

Equation (32) shows that volatility σy quantifies portfolio heterogeneity and, therefore, it decreases with
tighter constraints because the constraints homogenize portfolio weights θ∗A and θ∗B . Equation (21) for
volatility σ demonstrates that smaller σy decreases the distance |σ − σD|. As a result, the constraints
decrease (increase) volatility σ when volatility σ in the unconstrained model is higher (lower) than the
dividend volatility σD.

In the case of no-borrowing constraint with θ̃ = 1, investors cannot lever up and invest all their wealth
in stock. Therefore, their portfolios become homogeneous so that θ∗A = θ∗B = 1, and hence, Equation
(32) implies that σy = 0. Then, Equation (21) for σ implies that σ = σD, as in Kogan, Makarov, and
Uppal (2007). Moreover, Equation (31) for ν∗ gives ν∗t = (γB − γA)σ2

D −∆DσD, and hence, the equilibrium
processes in Lemma 1 and Proposition 1 can be obtained in closed form, although they are not reported
for brevity.

The unconstrained economy is a convenient benchmark for a model with constraints. Proposition
2 below provides closed-form expressions for equilibrium processes in the unconstrained economy for
arbitrary risk aversions γA and γB. This proposition generalizes the results of Longstaff and Wang (2012)
for an economy with γA = 2γB. Proposition 2 also provides the probability density function (PDF) of
consumption share y in closed form.

Proposition 2 (Equilibrium in unconstrained economy).
1) In the unconstrained economy, the equilibrium processes κ, r, σy, µy and σ are given by Equations
(17)–(21) with ν∗ = 0, and the price-dividend ratio is given by:

Ψt = 1
|a2|
√

2b

[
− 1
γB + ϕ−

2F1

((
1− γA

γB

)
ϕ− − γA, 1, 1− γA −

γA
γB
ϕ−; 1− yt

)
+
(

1− γA
γB

) 1− yt
1− γA − γA

γB
ϕ−

2F1

((
1− γA

γB

)
ϕ− + 1− γA, 1, 2− γA −

γA
γB
ϕ−; 1− yt

)
+γA
γB

1
ϕ+

2F1

((
1− γA

γB

)
ϕ+ − γA, 1, 1 + ϕ+; yt

)
+
(

1− γA
γB

)1− yt
ϕ+

2F1

((
1− γA

γB

)
ϕ+ + 1− γA, 1, 1 + ϕ+; yt

)]
,

(33)

where 2F1(x1, x2, x3; y) is a hypergeometric function given by Equation (A.35) in Appendix A, ϕ± =
(a1 ± |a2|

√
2b)/a2

2, a1 =
[
(γA − γB)

(
µAD − 0.5σ2

D

)
− 0.5∆2

D−
(

(γB − γA)σD − ∆D

)
(1 − γA)σD

]
/γB, a2 =

−
(

(γB − γA)σD −∆D

)
/γB, b = ρ− (1− γA)µAD + 0.5γA(1− γA)σ2

D + 0.5a2
1/a

2
2.

2) If (γB−γA)σD−∆D 6= 0 the probability density function of consumption share yτ at time τ > t conditional
on consumption share yt at time t is given by:

p(y, τ ; yt, t) = 1√
2χ2

2(τ − t)π

(γB
y

+ γA
1− y

)
exp
{
−

(
γB ln y

yt
− γA ln 1−y

1−yt − χ1(τ − t)
)2

2χ2
2(τ − t)

}
, (34)

and χ1 = (γA − γB)
(
µD − 0.5σ2

D

)
+ 0.5

[(
(µAD − µD)/σD

)2
−
(

(µBD − µD)/σD
)2]

, χ2 = (γB − γA)σD −∆D.
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Moreover, the equilibrium is Markovian in Dt, and yt is given by

yt = 1− f
(

y0

(1− y0)γA/γB

(
Dt

D0

)−χ2/(γBσD)
exp

{
−
(

∆2
D

2γB
+ ∆D

γB

µAD − 0.5σ2
D

σD

)
t

})
, (35)

where function f(z) satisfies equation zf(z)γB/γA + f(z) = 1.
The distribution of consumption share (34) is non-stationary. Parameter χ1 is a survival index in-

troduced in Yan (2008), who derives the distribution of y by Monte Carlo simulations in a model with
γA = γB. As τ → ∞, only investor B survives if χ1 > 0, only investor A survives if χ1 < 0, and each
investor survives with probability 0.5 when χ1 = 0.

The non-stationarity of y gives rise to policy implications of constraints. Suppose γB = γA, investor
A has correct beliefs and investor B is irrationally pessimistic. Consider a policymaker who knows the
true value of µD and believes that investor B will perfectly learn µD from an unanticipated event at a
random date T . Proposition 2 implies that χ1 < 0, and hence, with high probability, investor B arrives at
date T with low consumption share y. Intuitively, pessimist B shorts stocks. However, shorting turns out
to be sub-optimal ex post at date T . Imposing short-sale bans restricts trading on incorrect beliefs and
slows down the extinction of B. Therefore, imposing constraints can be an important tool for improving
welfare and for bringing asset prices closer to their fare values, provided that policymakers know economic
conditions better than market participants.

4. Analysis of equilibrium

This section studies the equilibrium processes and shows that the effects of constraints depend on the
elasticities of intertemporal substitutions of investors A and B, given by 1/γA and 1/γB, respectively. The
section also discusses which constraints help explain 1) the countercyclicality of market prices of risk, risk
premia and volatilities, 2) the procyclicality of price-dividend ratios, and 3) excess stock return volatilities,
observed in the data [e.g., Ferson and Harvey (1991); Shiller (1981); Campbell and Shiller (1988); Schwert
(1989); Campbell and Cochrane (1999)]. For brevity, the economic intuition is provided only for borrowing
constraints because for the other constraints it can be analyzed in a similar way. In the main analysis,
process X is called countercyclical (procyclical) if covt(dXt, dDt) < 0 (covt(dXt, dDt) > 0) [e.g., Longstaff
and Wang (2012)]. Throughout this Section, ρ = 2%, µD = 1.8% and σD = 3.2% [e.g., Basak and Cuoco
(1998); Cambell (2003)].

4.1. Equilibrium with borrowing constraints

Consider an economy with borrowing constraint θB ≤ θ̃, where θ̃ ≥ 1, in which investor A is pessimistic
and believes that µAD = 0.65µD, and investor B has correct belief µBD = µD. Figure 1 shows equilibrium
processes as functions of y for different upper bounds θ̃. To disentangle the effects of EIS and heterogeneity
in preferences, Panels (a.i)-(d.i), (a.ii)-(d.ii), (a.iii)-(d.iii) show the results for three cases: i) γA = γB = 0.8;
ii) γA = γB = 3; and iii) γA = 3, γB = 1.5, respectively. The heterogeneity of beliefs is crucial for studying
the role of EIS because without it the constraints do not bind in cases i and ii.

Investor B’s consumption share y is procyclical because investor B is (weakly) less risk averse and more
optimistic than investor A and, hence, holds more stocks in equilibrium. Therefore, positive (negative)
dividend shocks shift consumption to investor B (investor A), and hence, covt(dyt, dDt) > 0. Conse-
quently, the periods with high (low) yt correspond to good times (bad times). In equilibrium, investor B
borrows from the pessimistic and risk averse investor A. Therefore, the constraints bind when investor
B’s share y is below a certain threshold ȳ, in which case share 1 − y of credit provider A is sufficiently
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high, so that investor B can easily lever up until the constraints become binding.4

Panels (a.i)-(a.iii) show the market price of risk κ in cases i-iii. In all cases, κ increases when the
constraints bind, consistent with the intuition in Section 3. Moreover, κ is a decreasing function of
procyclical variable y and, hence, is countercyclical. Equity premium µ−r is also countercyclical, although
it is not reported for brevity. Intuitively, in bad times κ is high because investor A dominates in the
economy (i.e., y is low) and requires higher compensation for risk to clear the market because A is
pessimistic and weakly more risk averse than B. Similarly, in good times, κ is low because optimist B
dominates.

Panels (b.i)-(b.iii) show that interest rate r decreases with tighter constraints because of lower de-
mand for borrowing. Panel (b.iii) demonstrates that the heterogeneity in risk aversions gives rise to a
non-monotone dependence of r on state variable y even without constraints. This is because increasing
consumption share y of investor B has two opposite effects. On the one hand, r increases because in-
vestor B has a high expectation of economic growth and low precautionary savings. On the other hand, r
decreases because B has higher EIS than investor A and, hence, is more willing to save for consumption
smoothing.

Imposing borrowing constraints gives rise to a complex non-monotone pattern in r with a spike in case
iii, which is due to a kink in investor B’s portfolio strategy when the constraint starts to bind. Intuitively,
as discussed above, r decreases in times with low y when the constraint binds. Then, r reverts upward
to the unconstrained rate as y increases because the constraint stops binding; it then coincides with the
downward sloping unconstrained rate. As a result, r increases before and decreases after the constraint
stops binding, giving rise to a spike.

Another economic implication of the non-monotonicity of r is that it cannot be forecast by P/D ratios
Ψ because Ψ is a monotone function of y. In contrast to r, there is a negative correlation between κ and
Ψ in cases i and iii.5 These findings are consistent with empirical results from a vector autoregressive
model in Campbell and Ammer (1993). In particular, their results imply that P/D ratios do not forecast
interest rates but forecast stock excess returns, and stock excess returns are negatively correlated with
P/D ratios.

[Figure 1 about here]

Panels (c.i)-(c.iii) reveal the effect of EIS on P/D ratio Ψ. In particular, Ψ decreases with tighter
constraints when EIS > 1 [Panel (c.i)], and vice versa, when EIS < 1 [Panels (c.ii) and (c.iii)]. The
intuition is as follows. Tightening the access to credit has two opposite effects. On the one hand, the
investment opportunities improve because κ increases. On the other hand, they become worse because
r decreases. The second effect is stronger for both investors because A is pessimistic and weakly more
risk averse and, as a result, invests small fraction of wealth in stocks, whereas B is constrained and,
hence, cannot take full advantage of the high κ. Therefore, when the substitution effect dominates
(i.e., γi < 1), the wealth-consumption ratios Φi tend to decrease because of low opportunity costs of
consumption. The opposite happens when the income effect dominates (i.e., γi > 1). From Proposition
1, Ψ = (1− y)ΦA + yΦB, and hence, Ψ behaves similarly to Φi.

The above intuition can be formalized by noting that because the coefficients in front of derivatives
Φ′i(y) and Φ′′i (y) in ODEs (27)–(28) are small, Φi are approximately given by [Appendix C evaluates the
quality of these approximations]:

ΦA ≈
γA

ρ− (1− γA)
(

(κAt )2

2γA + rt

) , ΦB ≈
γB

ρ− (1− γB)
(

(κBt +ν̄∗t /σt)2

2γB + rt − θ̃ν̄∗t
) . (36)

4Thresholds ȳ in Figure 1 appear relatively high. For example, ȳ ≈ 0.6 for a constraint with θ̃ = 1.8. However, investor
B’s share y tends to increase over time because investor A is irrationally pessimistic and loses wealth, as argued in Section
3. Therefore, a high ȳ does not indicate that a constraint is tight at all times, and periods of loose and binding constraints
frequently alternate when share y approaches ȳ.

5Because the model is non-stationary, predictability regressions for κ and Ψ are not considered here.
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Equations (36) demonstrate that the effect of constraints on investment opportunities is quantified by
(κAt )2/(2γA) + rt for investor A and by (κBt + ν̄∗t /σD)2/(2γB) + rt − θ̃ν̄∗t for investor B. It can be verified
that these quantities decrease with tighter constraints for wide ranges of consumption share y. Coefficients
1− γA and 1− γB in approximations (36) explain why the effects of constraints flip depending on whether
γi < 1 or γi > 1.

The P/D ratio Ψ appears to be procyclical (i.e., an increasing function of y) over large intervals in
the case of high EIS when γA = γB = 0.8 [Panel (c.i)] and is countercyclical in the case of low EIS when
γA = γB = 3 [Panel (c.ii)]. Interestingly, Ψ is procyclical in the case of heterogeneous preferences, even
for low EIS, when γA = 3, γB = 1.5 [Panel (c.iii)]. The intuition can be analyzed similarly as above by
invoking Equations (36). The procyclicality (countercyclicality) of Ψ makes σt higher [Panels (d.i) and
(d.iii)] (lower [Panel (d.ii)]) than the dividend volatility σD. This is because the stock price is given by
St = ΨtDt, and hence, the volatility goes up (down) when Ψ and D move in the same direction (opposite
directions).

Panels (d.i)-(d.iii) show that |σt − σD| decreases with tighter constraints and that σt reaches the
maximum or minimum when the constraints start to bind. That is, σt decreases (increases) if in the
unconstrained benchmark σt > σD (σt < σD), consistent with the discussion in Section 3. Therefore, the
unconstrained benchmark helps predict the direction of the effect of constraints without computing the
equilibrium with constraints.

Our analysis generates three additional surprising results. First, the model with low risk aversions
γA = γB = 0.8 (i.e., high homogeneous EIS) generates the dynamics of asset prices consistent with the data,
as discussed above. Second, the latter model also generates high κ and low r despite low risk aversions.
Third, the effects on Panels (a.i)-(d.i) for γA = γB = 0.8 and on Panels (a.iii)-(d.iii) for γA = 3, γB = 1.5 are
qualitatively similar, and hence, cases i and iii are competing models for explaining the dynamics of asset
prices. However, cases i and iii make opposite predictions on whether constraints increase or decrease Ψ,
which can be used to disentangle them empirically.

Cases i and iii generate the following testable predictions about the tightening of constraints: 1) σt
becomes less countercyclical; 2) σt and rt have spikes around the time when the constraints start to bind;
and 3) σt decreases. Hardouvelis and Perestiani (1992) and Hardouvelis and Theodossiou (2002) provide
empirical evidence showing that tighter access to credit decreases σt, consistent with the last prediction.

Making investor B logarithmic has significant qualitative effects on equilibrium. For example, increas-
ing γB in case i by a mere 0.2 to γB = 1 makes Ψ countercyclical and decreases σt below σD [see Panels
(c.i)-(d.i), Figure 5 in Appendix D], in contrast to empirical findings. Similarly, making γA = 3 and γB = 1
reverses the results for Ψ and σ in case ii in Panels (c.ii)-(d.ii) of Figure 1 [see Panels (c.ii)-(d.ii), Figure 5
in Appendix D]. Furthermore, when both investors are logarithmic, constraints have no effects on Ψ and σ
[see Panels (a.iii)-(d.iii), Figure 5 in Appendix D]. Finally, in case i of Figure 1, the effect of constraints on
σt depends on consumption share y [Panel (d.i)]. In particular, holding the EIS fixed, constraints decrease
σt when y is large and increase σt when y is small. This new effect disappears when B is logarithmic
because then σt becomes uniformly higher (lower) than σD when γA < 1 (γA > 1).

4.2. Equilibrium with short-sale constraints

This section studies the short-sale constraint θB ≥ θ̃, where θ̃ ≤ 0. For this constraint to bind, investor B
is now pessimistic and investor A has correct beliefs, so that µBD = 0.65µD and µAD = µD. Figure 2 shows
the equilibrium for three cases: i) γA = γB = 0.8 [Panels (a.i)-(d.i)]; ii) γA = γB = 3 [Panels (a.ii)-(d.ii)]; iii)
γA = 1.5, γB = 3 [Panels (a.iii)-(d.iii)]. Variable y is countercyclical because B is pessimistic and weakly
more risk averse than A.

[Figure 2 about here]

Panels (a.i)-(a.iii) show that κ decreases with tighter constraints because unconstrained investor A
holds a smaller fraction of wealth in stocks and, as a result, requires smaller compensation for risk.

11



Panels (b.i)-(b.iii) show that r increases because investor A increases investment in bonds. Moreover, κ
is countercyclical, whereas r has a rich non-monotone pattern and spikes downward.

Similarly to the borrowing constraints, the short-sale bans generate plausible dynamics of asset prices
in cases i and iii. Furthermore, volatilities σ decrease for all y in case iii and for y from a large interval in
case i. However, in contrast to the borrowing constraints, the model predicts that short-sale bans do not
destroy the countercyclicality of σ.

The model further predicts that the effects of short-sale bans on volatilities [Panels (d.i)-(d.iii)] and
P/D ratios [Panels (c.i)-(c.iii)] are small because these bans cannot suppress trading on incorrect beliefs
completely, and hence, investors’ portfolios remain substantially heterogeneous. In contrast to short-sale
bans, borrowing constraints have stronger asset pricing effects because they significantly curb the bilateral
trades. For example, borrowing constraints with θ̃ = 1 make portfolios perfectly homogeneous, as shown
in Section 3. Empirical studies by Beber and Pagano (2013) and Boehmer, Jones, and Zhang (2013)
demonstrate that short-sale bans during the 2007-2009 financial crisis did not have any significant effects
on asset prices. Although there can be multiple explanations for their findings, the above effects might
have been contributing factors.

Making investor B logarithmic confounds the effects of EIS and reverses some of the results for the
general case. For example, in a model with γB = 1, the short-sale ban increases (decreases) σt when
γA > 1 (γA < 1) [e.g., Gallmeyer and Hollifield (2008)]. However, in the general case, the effects critically
depend on consumption share y. For example, Panel (d.i) shows that the constraint can either increase
or decrease σt depending on the value of y when γA = γB = 0.8.6 The non-monotone pattern in interest
rate r is preserved when investor B is logarithmic and γA < 1.

4.3. Equilibrium with limited stock market participation

Finally, consider an economy with limited stock market participation constraint θB ≤ θ̃, where θ̃ ≤ 1. The
latter constraint binds even when the investors have identical preferences and beliefs. Therefore, this con-
straint helps evaluate the pure effects of constraints, which are not confounded by investor heterogeneity.
To focus on the effects of EIS, both investors are assumed to have identical beliefs. Figure 3 shows the
results for the following cases: i) γA = γB = 0.8 [Panels (a.i)-(d.i)]; ii) γA = γB = 3 [Panels (a.ii)-(d.ii)]; and
iii) γA = 3, γB = 1.5 [Panels (a.iii)-(d.iii)]. Consumption share yt is now countercyclical because investor
B holds less stocks than A. Therefore, negative (positive) dividend shocks shift relative consumption to
investor B (investor A), and hence, covt(dyt, dDt) < 0.

In contrast to borrowing constraints, the limit y → 1 does not correspond to a one-investor economy
because B cannot clear the market. The market is cleared by investor A with very small consumption
share 1− y ≈ 0, and hence, κ and r have a singularity at y = 1. As a result, the boundary conditions for
ODEs (27)–(28) are now different from those in Proposition 1 and are derived in Section B.2 in Appendix
B.7

[Figure 3 about here]

Limited participation constraints increase κ [Panels (a.i)-(a.iii)] and decrease r [Panels (b.i)-(b.iii)],
decrease Ψ and make it procyclical when EIS > 1 [Panel (c.i)] and vice versa when EIS < 1 [Panels
(c.ii)-(c.iii)]. A new and surprising result is that volatility σt increases, is countercyclical, and σt > σD
when EIS > 1 [Panel (c.i)] even without investor heterogeneity. The opposite happens when EIS < 1
[Panels (d.ii)-(d.iii)]. The conclusion from Figure 3 is that the economy with γA = γB = 0.8 better matches
the dynamics of asset prices. The intuition for the results is similar to the case of borrowing constraints.

6The range of y for which the constraint increases the volatility becomes significantly wider when γA = 0.8 and γB = 0.7.
However, these results are not reported for brevity.

7The verification of optimality of θ∗i and c∗i in Proposition 1 requires all processes to be bounded, which is violated for
κ and r. Therefore, the verification of optimality remains an open question.
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Guvenen (2009, 2011) notes similarities between models with limited participation and the external
habit model of Campbell and Cochrane (1999) (CC’99). In particular, using the consumption clearing
c∗At + c∗Bt = Dt, the FOC of investor A in Equation (16) can be rewritten as e−ρt(Dt − c∗Bt)−γA = ψAξt.
Therefore, c∗Bt is analogous to an external habit, and Dt is analogous to the consumption of a representative
agent. Moreover, surplus-consumption ratio s = (Dt − c∗Bt)/Dt of CC’99 is given by s = 1− y, and, as a
result, is procyclical, as in CC’99. Similarly to CC’99, our model gives rise to a large countercyclical κ,
although the procyclicality of Ψ requires high EIS in our model. An important difference from CC’99 is
that their model is stationary and r is constant, in contrast to this paper.

5. Conclusion

The main conclusion of the paper is that constraints have significant economic effects. In particular, the
paper presents new conditions under which constraints increase or decrease market prices of risk, interest
rates, stock return volatilities and price-dividend ratios and make them countercyclical or procyclical. The
paper finds that borrowing and short-sale constraints decrease the stock return volatility and generate
rich non-monotone patterns in equilibrium processes. Finally, the paper demonstrates that the limited
participation constraint generates excess volatilities and dynamics of equilibrium processes consistent with
the data even when investors have identical preferences and beliefs.
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Case Constraint Υ δ(ν|ν ∈ Υ)
(a) θ ∈ R 0 0
(b) θ = 0 R 0
(c) θ ≤ θ̃, θ̃ > 0 ν ≤ 0 −νθ̃
(d) θ ≥ θ̃, θ̃ < 0 ν ≥ 0 −νθ̃
(e) θ ≤ θ ≤ θ, θ ≤ 0 R max(−ν, 0)θ −max(ν, 0)θ

Table 1
Effective domains and support functions
This table shows effective domains Υ and support functions δ(ν) for various portfolio constraints θ ∈ Θ, which are
defined as Υ = {ν ∈ R : δ(ν) <∞} and δ(ν) = sup

θ∈Θ
(−νθ), respectively.

16



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

(a.i) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

(a.ii) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

(a.iii) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

(b.i) Interest Rates

y

r,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
4.5

5

5.5

6

6.5

7

(b.ii) Interest Rates

y

r,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

(b.iii) Interest Rates

y

r,
%

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
56

57

58

59

60

61

62

(c.i) P/D Ratios

y

Ψ

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
18

19

20

21

22

23

24

25

(c.ii) P/D Ratios

y

Ψ

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
24

26

28

30

32

34

36

(c.iii) P/D Ratios

y

Ψ

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

1.15

1.2

1.25

(d.i) Volatilities

y

σ
/
σ
D

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

(d.ii) Volatilities

y

σ
/
σ
D

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

(d.iii) Volatilities

y

σ
/
σ
D

 

 

θ̃ = +∞
θ̃ = 1.8

θ̃ = 1.4

θ̃ = 1

Figure 1
Equilibrium with borrowing constraint θBt ≤ θ̃, θ̃ ≥ 1
Panels (a.i)–(d.i): γA = γB = 0.8 (high EIS); Panels (a.ii)–(d.ii): γA = γB = 3 (low EIS); Panels (a.iii)–(d.iii):
γA = 3, γB = 1.5 (low EIS). Other parameters: µAD = 0.65µD, µBD = µD, µD = 1.8%, σD = 3.2%, ρ = 0.02.
Processes are functions of y = c∗B/D, and covt(dyt, dDt) > 0.

17



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

(a.i) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1

10

15

20

25

30

(a.ii) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

(a.iii) Market Prices of Risk

y

(µ
−

r
)/
σ
,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
2.8

3

3.2

3.4

3.6

3.8

(b.i) Interest Rates

y

r,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1

5

5.5

6

6.5

7

(b.ii) Interest Rates

y

r,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

(b.iii) Interest Rates

y

r,
%

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
56

57

58

59

60

61

62

(c.i) P/D Ratios

y

Ψ

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
18

19

20

21

22

23

24

25

(c.ii) P/D Ratios

y

Ψ

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
24

26

28

30

32

34

(c.iii) P/D Ratios

y

Ψ

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

(d.i) Volatilities

y

σ
/
σ
D

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

(d.ii) Volatilities

y

σ
/
σ
D

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

(d.iii) Volatilities

y

σ
/
σ
D

 

 

θ̃ = −∞
θ̃ = −0.5

θ̃ = −0.25

θ̃ = 0

Figure 2
Equilibrium with short-sale constraint θBt ≥ θ̃, θ̃ ≤ 0
Panels (a.i)–(d.i): γA = γB = 0.8 (high EIS); Panels (a.ii)–(d.ii): γA = γB = 3 (low EIS); Panels (a.iii)–(d.iii):
γA = 1.5, γB = 3 (low EIS). Other parameters: µAD = µD, µBD = 0.65µD, µD = 1.8%, σD = 3.2%, ρ = 0.02.
Processes are functions of y = c∗B/D, and covt(dyt, dDt) < 0.
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Figure 3
Equilibrium with limited stock market participation θBt ≤ θ̃, θ̃ ≤ 1
Panels (a.i)–(d.i): γA = γB = 0.8 (high EIS); Panels (a.ii)–(d.ii): γA = γB = 3 (low EIS); Panels (a.iii)–(d.iii):
γA = 3, γB = 1.5 (low EIS). Other parameters: µAD = µBD = µD = 1.8%, σD = 3.2%, ρ = 0.02. Processes are
functions of y = c∗B/D, and covt(dyt, dDt) < 0.

19


	Chabakauri_Asset pricing heterogeneous preferences_2015_cover
	Chabakauri_Asset pricing heterogeneous preferences_2015_author

