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Abstract

We consider a noisy rational expectations equilibrium in a multi-asset economy populated
by informed and uninformed investors, and noise traders. Informed investors privately
observe an aggregate risk factor affecting the probabilities of different states of the econ-
omy. Uninformed investors attempt to extract that information from asset prices, but full
revelation is prevented by noise traders. We relax the usual assumption of normally dis-
tributed asset payoffs and allow for assets with more general payoff distributions, including
contingent claims, such as options and other derivatives. We show that assets reveal infor-
mation about the risk factor only if they help span the exposure of probabilities of states
to the risk factor. When the market is complete, we provide equilibrium asset prices and
optimal portfolios of investors in closed form. In incomplete markets, we derive prices and
portfolios in terms of easily computable inverse functions.
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1. Introduction

The informational role of prices has been in the forefront of the economic literature since
the seminal work of Hayek (1945). Investors in financial markets use their private informa-
tion to extract gains from trading financial securities. Their trades impound information
into the prices of assets, from which the information can be partially recovered by other in-
vestors. Informed investors often trade in a multitude of correlated securities, which creates
a diffusion of information across securities and makes their prices interdependent because
the price of each security can assist in inferring the payoff distribution of any other. The
economic literature typically studies the informational role of prices in restrictive settings
with normally distributed asset payoffs, which do not allow studying markets for assets
with positive payoffs and for derivative securities with contingent payoffs, such as stock
options. In this paper, we propose a multi-asset noisy rational expectations equilibrium
(REE) model where private information can be contained in the prices of all securities and
where payoffs of securities can be positive and contingent on the payoffs of other securities.

We consider a single-period multi-asset economy with a finite but arbitrary number
of discrete states. The assets can have positive payoffs, and can be derivative securities,
such as options. The probabilities of states are functions of an aggregate risk factor. The
economy is populated by three groups of investors, informed and uninformed investors with
constant relative risk aversion (CARA) preferences over terminal wealth, and noise traders
with exogenous random asset demands drawn from a multivariate normal distribution.
The informed investors observe the realization of the risk factor, whereas the uninformed
investors use asset prices to update their initial prior on the risk factor. The presence of
noise traders is a friction that prevents prices from being fully revealing. In this economy,
we solve for equilibrium asset prices and investors’ portfolios, and establish conditions
under which asset prices reveal information about the risk factor. Our solution approach
differs from the long-standing tradition of solving noisy REE models by ‘guessing and
verifying’. Instead, we employ a direct computation of equilibria.

The tractability of our analysis stems from two innovations. First, we define the prob-
ability measure directly over the states of the economy rather than over asset payoffs.
Second, we use a specific structure for the probabilities of states conditional on observing
the risk factor. This structure is inspired by multinomial logit models, widely employed in
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econometrics, and is such that the log-likelihood ratios of different states are linear func-
tions of the risk factor. The loadings on the risk factor in the structure of probabilities
are interpreted as the economy’s exposure to risk, and the distributions of asset payoffs
are implied by the probabilities of states. The logit-like conditional probabilities can be
chosen in such a way that our conditional multinomial payoff distributions converge to
various continuous-state distributions from the exponential family, including the normal
distribution and distributions with positive support, as the number of states increases.
We also allow for non-redundant derivative securities with contingent payoffs that have
even more complex payoff distributions, which are implied by the payoff distributions of
underlying securities. Furthermore, for a fixed realization of aggregate risk, the conditional
probabilities can be calibrated to approximate any continuous-space distribution.

The structure of probabilities of states makes the informed investor’s portfolio a linear
function of the risk factor. This linear function is then combined with noise traders’
demands in the market clearing conditions. As a result, the prices of assets reveal a linear
combination of the risk factor and noise traders’ demands, which allows us to solve the
information filtering problem of the uninformed investor. Consequently, when the number
of traded non-redundant securities equals the number of states, that is, the financial market
is complete, we find equilibrium prices and portfolios in terms of elementary functions for
some tractable probability density functions of the aggregate risk factor. We also extend
our baseline analysis to the case of general probabilities of states and general distributions
of the risk factor and noise trader demands, and obtain the equilibrium in closed form in
terms of easily computable integrals.

When the number of traded assets is less than the number of states, so that the finan-
cial market is incomplete, we obtain the equilibrium in terms of easily computable inverse
functions. We solve the incomplete market model under the assumption that the traded
assets span the exposure of the probabilities of states to the risk factor. We show that
this assumption is satisfied in many realistic economies, such as CARA-normal economies
with one risky asset, CARA-normal economies with options, and in economies with risky
corporate debt and equity. Our spanning condition has an important economic interpre-
tation. It reveals that the tractability of our model stems not from market completeness
but from the ability to use private information to span the exposure to the risk factor.
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We find a surprising result: only those assets that help span the economy’s exposure to
the aggregate risk factor have trading volumes that depend on the realization of that factor.
All other securities are informationally redundant in the sense that their trading volumes
and prices do not reveal new information despite the fact that they are non-redundant
from the perspective of completing the market. Using our condition for informational
redundancy, we demonstrate that adding derivatives to standard CARA-normal models
with one risky asset, such as the model of Grossman and Stiglitz (1980), does not reveal
more information about the realization of the risk factor.

Our intuition is as follows. The informed investors have incentives to allocate more
wealth to states with higher probabilities. Therefore, they invest part of their wealth in
a portfolio that replicates the exposure to the aggregate risk because this risk determines
the probabilities of states. Moreover, asset holdings in the replicating portfolio are propor-
tional to the size of the observed risk factor due to the logit-like structure of probabilities.
Therefore, in general, trading volumes reveal private information to uninformed investors.
The assets that do not span the exposure to the risk factor are still held by the investors
because they are non-redundant from the perspective of completing the market. However,
the latter assets do not have demand components that depend on the risk factor, and
hence their trading volumes do not reveal new information.

The conditions for informational non-redundancy of assets allow us to study price
discovery in derivates markets. One standard textbook narrative is that call options are
preferred by traders who expect the price of the underlying to go up while put options by
those who expect it to drop. This narrative is however done in the context of standard
derivatives pricing models in which information is symmetric and options are redundant
[e.g., Black and Scholes (1973)]. In contrast, our model offers a rationale for information
driven trades on derivatives and demonstrates that if derivatives help span the exposure
to risk, then their prices and trading volumes reveal new information in addition to that
revealed by the underlying asset, consistent with the empirical literature on price discovery
in option markets [e.g., Easley, O’Hara, and Srinivas (1998); Chan, Chung, and Fong
(2002); Chakravarty, Gulen, and Mayhew (2004); Pan and Poteshman (2006)].

In the case of complete markets we derive comparative statics for asset prices and
investors’ portfolios, which help us disentangle the information and substitution effects.
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The comparative statics are derived in closed form in terms of risk-neutral covariances of
asset payoffs with the exposure to risk, and the risk-neutral variance-covariance matrix of
asset payoffs. The presence of asymmetric information makes asset prices more sensitive
to the variations in the risk factor and noise traders’ demand. We demonstrate that
informed investor’s demand for an asset is a downward sloping function of that asset’s
own price, holding the prices of all other assets fixed. In contrast, the demand of the
uninformed investor can be upward sloping in an asset’s own price when the information
effect dominates. The latter effect arises because high asset prices may signal positive
information received by the informed investor, which may increase asset demands.

Our paper is related to large literature on noisy REE models, which were pioneered by
Grossman (1976), Grossman and Stiglitz (1980) and Hellwig (1980). These works and their
various extensions typically consider economies with CARA investors and one risky asset
with normally distributed payoffs. Admati (1985) extends these CARA-normal models to
the case of multiple securities and shows that many insights from the single asset model
cannot be extrapolated to the multi-asset case. The latter work also provides comparative
statics and demonstrates that asset demands can be upward sloping, similarly to this
paper. Brennan and Cao (1996) consider an economy with a risky asset with normally
distributed payoff and a power derivative written on it. Other related works include
Diamond and Verrecchia (1981), Maŕın and Rahi (2000), Vives (2008), and Kurlat and
Veldkamp (2013). In contrast to the above literature, we allow for assets with more general
payoff distributions, including derivative securities, and provide new results regarding price
discovery in securities markets.

There is a growing literature that departs from CARA-normal frameworks. Yuan
(2005) studies a two-state non-linear REE where cash flows are normally distributed but
the states are endogenously determined by prices, leading to truncated normal payoffs.
Breon-Drish (2010) considers an economy with non-normal payoffs and demonstrates that
observing the trading volume of informed and noise traders provides valuable information,
and non-normality may give rise to jumps in asset prices. Breon-Drish (2012) provides
closed-form solutions and proves existence and uniqueness of REE in economies with asset
payoffs that have distributions from the exponential family. Other related works include
Vanden (2008), Bernardo and Judd (2000), and Barlevy and Veronesi (2000). The main
difference of our paper from the above literature is that we allow for multiple assets,
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general payoff distributions, and contingent claims. Albagli, Hellwig, and Tsyvinski (2013)
consider an REE with risk-neutral investors and limits to arbitrage in the form of position
limits, and hence their work is different from our no-arbitrage model.

Our paper is also related to the literature that studies the informational role of non-
redundant derivatives. Back (1993) provides a micro-foundation on stochastic volatility
based on asymmetric information in a dynamic Kyle (1985) model where a single informed
investor trades in the stock and a single call option. Biais and Hillion (1994) have a static
model with a stock and show that the introduction of a single option can have ambiguous
effects on the dissemination of information. Malamud (2014) studies an REE with options
in a continuous-space complete-markets economy in a paper concurrent with ours. He
characterizes REE in terms of fixed points of operators and finds conditions for price
discovery under general preferences.

Our paper differs from the above literature in that we consider multi-asset economies
both with complete and incomplete markets, provide closed-form solutions not only for
options but also for general contingent claims, and our framework is easily extendable to
economies with multiple risk factors. Furthermore, considering incomplete markets allows
us to disentangle two effects of adding assets to the economy: the effects of completing
the markets and revealing information. We also provide new conditions for informational
redundancy of assets in terms of the exposures of the probabilities of states to risk factors.

The structure of the paper is as follows. Section 2 describes the model, investors’
optimizations, and distributional assumptions. Section 3 solves for equilibria both in
economies with complete and incomplete financial markets. Section 4 provides the analysis
of equilibrium. Section 5 extends the model to the case of general distributions and
probabilities of states. Section 6 concludes. Appendix A provides the proofs for all results
reported in the main text. Appendix B contains some benchmark cases. Appendix C
contains auxiliary results.
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2. Model

2.1. Securities Markets and Information Structure

We consider a single-period exchange economy with two dates t = 0 and t = T , and
N states ω1,. . . , ωN at the terminal date, where N ≥ 2. The economy is populated by
three representative investors, informed and uninformed investors, labeled I and U , and
noise traders. Each representative investor stands for a group of a continuum of identical
investors with unit mass. Investors I and U have CARA preferences over terminal wealth
and risk aversions γI and γU . The investors can trade M ≥ 2 zero net supply securities:
one riskless bond paying $1 at T , and M − 1 risky assets with state-contingent terminal
payoff Cm(ωn) in state ωn, where m = 1, . . . ,M − 1 and n = 1, . . . , N . These assets can
be Arrow-Debreu securities, options, or other derivative securities, and are assumed to be
non-redundant in the sense that no asset has payoffs that can be replicated by trading
other assets. The investors are competitive and do not have impact on prices.

The probabilities of states ωn are functions of a shock ε ∈ R, and are denoted by
πn(ε). Shock ε has a prior probability density function (PDF) ϕε(x). We think of ε as an
aggregate risk factor that affects the probabilities of the states of the economy and hence
the payoff distributions of all securities in the economy. Before the markets open (i.e., at
time t = −1), the informed investors observe ε. The uninformed investors have only public
information. Noise traders have exogenous random demands ν = (ν1, . . . , νM−1)> with joint
normal distribution N(0,Σν), where Σν is a (M−1)× (M−1) symmetric positive-definite
matrix. Random demands ν prevent asset prices from being fully revealing.

We denote the vector of observed time t = 0 prices of the risky assets by p =
(p1, . . . , pM−1)>, the vector of risky assets’ payoffs in state ωn by Πn = (C1(ωn), . . . ,
CM−1(ωn))>, and the vector of asset m’s payoffs in different states by Cm = (Cm(ω1), . . .,
Cm(ωN))>. The price of the riskless asset is set to p0 = e−rT , where r is an exogenously
set risk-free rate of return.1 The prices of risky assets are endogenously determined in
equilibrium. Finally, by P (ε, ν) ∈ RM−1 we denote the vector of equilibrium prices as
functions of shock ε and noise ν.

1In models with utility over terminal wealth risk-free rate r is indeterminate and is set exogenously.
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2.2. Investors’ Optimization and Definition of Equilibrium

Each investor i = I, U is endowed with initial wealth Wi,0, and allocates it to buy αi

units of the riskless asset and θi,m units of risky asset m. By θi = (θi,1, . . . , θi,M−1)> we
denote the vector of units of risky assets purchased by investor i. The budget constraints
of investors I and U at time t = 0 are given by Wi,0 = αip0 + p>θi. Investor i’s wealth at
time t = T and state n is then given by Wi,T ,n = αi + Π>n θi. In what follows, the subscript
n will be dropped to denote a random variable in an uncertain state. Substituting out αi
we obtain the budget constraint in the following form: Wi,T = Wi,0e

rT +(Π−erTp)>θi. The
informed and the uninformed investors solve the following utility maximization problems

max
θI

E
[
−e−γIWI,T

∣∣∣ε, p], (1)

max
θU

E
[
−e−γUWU,T

∣∣∣P (ε, ν) = p, p
]
, (2)

respectively, subject to each investors’ self-financing budget constraint

Wi,T = Wi,0e
rT + (Π− erTp)>θi, i = I, U. (3)

The solutions to the above optimization problems give investors’ optimal portfolios of risky
assets θ∗I (p; ε) and θ∗U(p). The prices p should be such that all the markets for the risky
securities clear. More formally, the definition of equilibrium is as follows.

Definition 1. A competitive noisy rational expectations equilibrium is a set of asset prices
P (ε; ν) and investor asset holdings θ∗I (p; ε) and θ∗U(p) such that θ∗I and θ∗U solve optimization
problems (1) and (2) subject to self-financing budget constraints (3), taking asset prices as
given, and the market clearing conditions are satisfied:

θ∗I (P (ε, ν); ε) + θ∗U(P (ε, ν)) + ν = 0. (4)

2.3. Probability Distributions

To solve the model in closed form, we consider probabilities of states πn(ε) given by:

πn(ε) = ean+bnε∑
N

k=1 e
ak+bkε

, n = 1, . . . , N. (5)
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The structure of probabilities is similar to that of probabilities in multinomial logit models,
widely used in econometrics. When ε = 0, by properly choosing parameters an, states ωn
can have a multinomial distribution that approximates a particular desired continuous
distribution in the limit as N → ∞. We label vector b = (b1, . . . , bN)> as economy’s
exposure to the aggregate risk factor, because it determines the deviations of probabilities
πn(ε) from benchmark probabilities πn(0) in response to shock ε. We choose to work with
a discrete state-space because it gives rise to easily invertible matrix operators, rather than
less tractable integral operators when the state-space is continuous.

Shock ε is a scalar random variable with generalized normal distribution N̂(µε, σ2
ε),

mean E[ε] = µε and variance var[ε] = σ2
ε , which has PDF ϕε(x) given by:

ϕε(x) =

(∑
N

k=1 e
ak+bkx

)
e−0.5(x−µ0)2/σ2

0∫∞
−∞

(∑
N

k=1 e
ak+bkx

)
e−0.5(x−µ0)2/σ2

0dx
. (6)

PDF (6) allows us to obtain the equilibrium in terms of elementary functions. Distribution
(6) is given in terms of vectors a = (a1, . . . , aN)> and b = (b1, . . . , bN)>, and scalars µ0 and
σ2

0. For fixed a and b we can pick µ0 and σ2
0 so that ε has any desired mean µε and variance

σ2
ε . The relationship between (µ0, σ

2
0) and (µε, σ2

ε) is given by Equations (C.1) and (C.2) in
Appendix C. In Section 5 we extend the analysis to general probabilities πn(ε) and PDFs
ϕε(x) and ϕν(x) for shock ε and noisy demands ν.

By varying vectors a and b, πn(ε) have flexible shapes. Figure 1 shows probabilities
πn(ε) and PDF function ϕε(x) for an example with N = 100. The probabilities are plotted
against the risky asset payoff C(ωn) = 300(n−1)/(N−1). Vectors a and b are calibrated in
such a way that πn(1) and πn(−1) are discrete approximations of gamma distributions with
shape and scale parameter pairs (1,2) and (5,1), respectively. Panel (b) shows function
ϕε(x) along with the PDF of a normal distribution N(µε, σ2

ε) for µε = 0, σε = 1. We note
that the two PDFs are very close to each other.

An important special limiting case (i.e., when N → ∞) of our model is the standard
CARA-normal model with one risky asset with random payoff C(ω) ∼ N(ε, σ2

C), an in-
formed investor who observes mean E[C(ω)] = ε, and an uninformed investor with prior
distribution ε ∼ N(µε, σ2

ε). This is the Grossman and Stiglitz (1980) model without costs
of information acquisition.

Such an economy can be approximated in our framework as follows. Let M = 2 and
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consider the following form for the payoff of the single risky asset and parameters a and
b: C(ωn) = −A + nh, where h = 2A/N , an = −0.5C(ωn)2/σ2

C and bn = C(ωn)/σ2
C,

all for n = 1, . . . , N . For large A and N we observe that (∑N

k=1 e
ak+bkεh)e−0.5ε2/σ2

C ≈∫∞
−∞ e

−0.5(C−ε)2/σ2
CdC =

√
2πσ2

C. Therefore, as A,N →∞, using Equations (5) and (6) and
some algebra, we obtain point-wise convergences

πn(ε) = e−0.5(C(ωn)−ε)2/σ2
Ch∑

N

k=1 e
−0.5(C(ωk)−ε)2/σ2

Ch
−→e−0.5(C−ε)2/σ2

CdC√
2πσ2

C

, ϕε(x) −→ e−0.5(x−µε)2/σ2
ε√

2πσ2
ε

. (7)

Consequently, our multinomial model is approximately CARA-normal for large A and N .

More generally, our model includes as special limiting cases economies with an asset
with payoff C(ω), which has PDF conditional on observing ε given by exp{a(C) + b(C)ε+
c(ε)}. The latter function can be obtained in the limit as in the case of the CARA-normal
model. We can solve such models also with added options and other derivatives written
on payoff C(ω). We note that conditional PDF exp{a(C) + b(C)ε+ c(ε)} is more general
than the one in Breon-Drish (2012), where coefficient b(C) is linear. Furthermore, the
distribution of asset payoffs such as (C −K)+ is even more complex than the latter PDF.
Our paper is the first to allow for such complex distributions in asymmetric information
economies.

One of the disadvantages of CARA-normal models, popular in the literature, is that
asset payoffs can be negative. Moreover, it is very difficult to include assets with nonlinear
payoffs, such as put and call options. Our model is free from these disadvantages, and
allows extra flexibility in modeling probability distributions and asset payoffs. To the best
of our knowledge ours is the first noisy REE model that admits closed form solutions in
the multi-asset case and where joint normality of assets’ payoffs is not required.

Remark 1 (Multi-dimensional Shock ε). Our model can be easily generalized to the
case of multi-dimensional shocks ε. In this case, the probabilities of states ωn are given
by πn(ε) = exp(an + b>n ε)/

∑
N

k=1 exp(an + b>n ε), where bn are now vectors. This model
includes a CARA-normal model with multiple correlated assets as a special case, which
can be demonstrated similarly to the case of a scalar shock ε. Therefore, the model with
multi-dimensional shock ε can approximate the multi-asset CARA-normal model with
asset payoffs as in Admati (1985).
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(a) Probabilities πn(ε) (b) Distribution of ε
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Figure 1: Probabilities πn(ε) and Distribution of ε
Panel (a) shows probabilities πn(ε) for different ε for asset payoffs C(ωn). Panel (b) shows the
PDF functions of distributions N̂(µε, σ2

ε) and N(µε, σ2
ε) with µε = 0 and σε = 1. In this example,

N = 100, C(ωn) = 300(n − 1)/(N − 1) and vectors a and b are calibrated so that πn(−1) and
πn(1) are discrete approximations of gamma distributions with shape and scale parameter pairs
(1,2) and (5,1), respectively.

3. Characterization of Equilibrium

In this section, we first consider an economy with M = N securities, which we call a
complete-markets economy, and characterize the equilibrium in closed form. Then, we
consider a general economy with M ≤ N securities, which includes the case of incomplete
markets, and under an additional assumption characterize asset prices in terms of easily
computable multivariate inverse functions.

3.1. Complete-Market Economy with M = N Securities

We start with a complete-markets economy with M = N . For example, the market
can be completed by issuing a sufficient number of non-redundant derivative securities,
as demonstrated in Ross (1976). In our model, derivative securities can reveal additional
information about the underlying asset, which in turn can be used for more accurate pricing
of derivatives. Therefore, prices p of all risky assets should be found simultaneously. Due
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to market completeness, we look for equilibrium prices p in the following form:

pm =
[
πRN

1 Cm(ω1) + πRN
2 Cm(ω2) + . . .+ πRN

N Cm(ωN)
]
e−rT , (8)

where m = 1, . . . , N − 1, and πRN
n is the risk-neutral probability of state ωn. The risk-

neutral valuation in our model is possible because any arising arbitrage opportunities will
be eliminated by investors I and U .

All investors agree on risk-neutral probabilities, because they are uniquely determined
from Equations (8) as functions of prices p. However, because of asymmetric information,
investors I and U have different real probabilities of states ωn. In particular, investor I’s
probabilities of states ωn are given by πn(ε) because investor I observes ε. Investor U
observes only prices, and filters out shock ε from the market clearing condition (4). Con-
sequently, investor U ’s real probabilities of states ωn are given by conditional expectations.
To see this, we rewrite the expected utility of investor U as

E
[
−e−γUWU,T |P (ε, ν) = p, p

]
= −

N∑
n=1

(
E
[
πn(ε)|P (ε, ν) = p, p

]
e−γUWU,T ,n

)
. (9)

Then, by πUn (p; θ∗U(p)) = E
[
πn(ε)|P (ε, ν) = p, p

]
we denote investor U ’s posterior proba-

bilities of states ωn. The probabilities, in general, depend on equilibrium portfolios θ∗U(p)
through the market clearing conditions, as demonstrated below.

Investor U faces a continuum of states of the economy because of the uncertainty
about shock ε. However, objective function (9) demonstrates that because asset payoffs
can take only N values that do not depend on shock ε and noise ν investor U ’s optimization
can be solved as a complete-markets problem with N states and N securities, in which
real probabilities πUn (p; θ∗U(p)) are taken as given. Because investors have different real
probabilities, the model is similar to models with heterogeneous beliefs in which investors
are endowed with different probability measures [e.g., Basak (2000), Basak (2005)]. In
contrast to the latter models, in our model the beliefs are endogenous and investor U does
not observe probabilities πn(ε) of investor I.

We obtain investors’ portfolios θ∗i from the first order conditions (FOC), which equate
marginal utilities and state price densities (SPD). Because investors have different proba-
bilities of states ωn, they also have different SPDs, given by [e.g., Duffie (2001)]:

ξI(ωn) = πRN
n e−rT

πn(ε) , ξU(ωn) = πRN
n e−rT

πUn (p; θ∗U(p)) . (10)
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Consequently, the FOCs equating marginal utilities and SPDs are given by:

γIe
−γIWI,T ,n = `I

πRN
n e−rT

πn(ε) , γUe
−γUWU,T ,n = `U

πRN
n e−rT

πUn (p; θ∗U(p)) , (11)

where `i denote Lagrange multipliers for investors’ budget constraints. From the FOCs in
(11) and Equation (3) for wealth Wi,T , after some algebra, we obtain investors’ portfolios,
which are reported in Lemma 1 below.

Lemma 1 (Investors’ optimal portfolios).

1) Suppose, probabilities πn(ε) and PDF ϕε(x) are general functions (not necessarily as
in Section 2.3) such that the equilibrium exists. Then, optimal portfolios of informed and
uninformed investors, θ∗I (p; ε) and θ∗U(p), are given by:

θ∗I (p; ε) = 1
γI

Ω−1


(

ln
( π1(ε)
πN(ε)

)
, . . . , ln

(πN−1(ε)
πN(ε)

))>
− v

 , (12)

θ∗U(p) = 1
γU

Ω−1


(

ln
(πU1 (p; θ∗U(p))
πUN(p; θ∗U(p))

)
, . . . , ln

(πUN−1(p; θ∗U(p))
πUN(p; θ∗U(p))

))>
− v

 , (13)

where the uninformed investor’s posterior probabilities are given by

πUn (p; θ∗U(p)) = E[πn(ε)|P (ε, ν) = p, p], n = 1, . . . , N, (14)

Ω is a (N−1)×(N−1) matrix with rows (Πn−ΠN)> and elements Ωn,k = Ck(ωn)−Ck(ωN),
where k, n = 1, . . . , N − 1, and v =

(
ln
(
πRN

1 /πRN
N

)
, . . . , ln

(
πRN
N−1/π

RN
N

))>
.

2) If probabilities πn(ε) are given by Equation (5) and ϕε(x) is an arbitrary PDF, then
investor I’s optimal portfolio is a linear function of shock ε, given by:

θ∗I (p; ε) = λε

γI
− 1
γI

Ω−1
(
v − ã

)
, (15)

where ã = (a1−aN , . . . , aN−1−aN)> ∈ RN−1 and λ = Ω−1(b1−bN , . . . , bN−1−bN)> ∈ RN−1.

Lemma 1 determines optimal portfolios of investors in terms of real and risk-neutral prob-
abilities due to market completeness, which guarantees that matrix Ω is invertible. It also
provides further insight into the filtering problem of investor U . In particular, it demon-
strates that investor U ’s portfolio θ∗U(p) solves a fixed-point problem. This is because on
one hand, the demand for assets affects prices p and the filtering problem via the mar-
ket clearing condition, and on the other hand, prices p determine the demand for assets.

12



Lemma 1 also demonstrates that portfolio θ∗I (p; ε) is a linear function of shock ε when
probabilities πn(ε) are given by Equation (5) and ϕε(x) is an arbitrary PDF. This result
can be easily demonstrated by substituting probabilities (5) into portfolio (12).

The intuition for the linear term in Equation (15) is as follows. FOC of investor I in
(11) demonstrates that, holding risk-neutral probabilities fixed, investor I has incentive
to allocate more wealth to states with higher probabilities πn(ε), that is, to states with
higher an + bnε. From the definition of λ in Lemma 1 it can be easily observed that it
solves a system of equations bn = λ0 + Π>nλ, where Πn is the vector of risky asset payoffs
in state ωn, and λ0 is a constant. Consequently, portfolio λ replicates risk exposures bn
in states ωn, up to a constant λ0, and hence λε replicates bε. Similarly, portfolio Ω−1ã

replicates exposures an. Investing in the latter two replicating portfolios gives investor I
more wealth in states with high πn(ε). The demand for these portfolios is inversely related
to risk aversion γI because more risk averse investors are less willing to shift wealth from
bad states to good states, which gives rise to terms λε/γI and Ω−1ã/γI in portfolio (15).

The intuition for term Ω−1v/γI in investor I’s portfolio (15) is as follows. FOCs (11)
demonstrate that investors have incentive to allocate less wealth to states with high risk-
neutral probabilities πRN

n . This incentive reflects the price level effect because πRN
n e−rT can

be interpreted as the value of $1 in state ωn. The price effect gives rise to term Ω−1v/γI

in portfolio (15), which can be demonstrated along the same lines as above. Portfolio (15)
then reflects the relative strength of the effects of probabilities πn(ε) and πRN

n .

The linearity of portfolio (15) simplifies the filtering problem of investor U . In partic-
ular, substituting θ∗I (p; ε) and θ∗U(p) into the market clearing condition (4), we find that

λε

γI
+ ν +H(p) = 0, (16)

where H(p) is a function of prices p, which is given by

H(p) = θ∗U(p)− 1
γI

Ω−1
(
v − ã

)
, (17)

where ã and v are defined in Lemma 1. Vector v is a function of risk-neutral probabilities
πRN
n , which in turn are functions of asset prices p, as argued above. Therefore, vector v,

and hence also H(·), are functions of p.

Equation (16) demonstrates that observing prices p allows investor U to infer a linear
combination of shocks λε/γI + ν. We restrict attention to equilibria in which asset prices

13



are continuous functions of shock ε and noisy demand ν. In such equilibria, λε/γI + ν

is the only information that will be revealed by asset prices, which can be demonstrated
similarly to Breon-Drish (2012). The posterior distribution of ε after observing λε/γI + ν

is available in closed form when ε ∼ N̂(µε, σ2
ε), which allows us to compute investor U ’s

posterior probabilities πUn (p; θ∗U(p)) also in closed form. Lemma 2 reports the results.

Lemma 2 (Conditional distributions). Suppose, probabilities πn(ε) of states ωn are
given by Equation (5), and shock ε has generalized normal distribution N̂(µε, σ2

ε) with PDF
function given by (6). Let ε̃ = λε/γI + ν +H(p), i.e. the left-hand side of (16). Then, the
posterior PDF ϕε|ε̃(x|y) of shock ε, conditional on observing vector ε̃, and the probabilities
πUn (p; θ∗U(p)) of investor U are given by:

ϕε|ε̃(x|y) =
exp

{
−0.5

(
y − λx/γI −H(p)

)>
Σ−1
ν

(
y − λx/γI −H(p)

)}
ϕε(x)

G1(y; p) , (18)

πUn (p; θ∗U(p)) = 1
G2(p) exp

an + 1
2
b2
n − 2bn

(
λ>Σ−1

ν H(p)/γI − µ0/σ
2
0

)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

 , (19)

where function H(p) is given by Equation (17), and G1(y; p) and G2(p) are some functions
that do not depend on state ωn.

From Lemma 2 we observe that ln
(
πUn (p; θ∗U(p))/πUN(p; θ∗U(p))

)
is a linear function of θ∗U(p),

which allows us to solve the fixed point problem in Equation (13) in closed form and to
obtain θ∗U(p) as a function of vector v. Then, we find vector v, which itself is a function of
the risk-neutral probabilities πRN

n , from the market clearing condition (16). Next, we find
πRN
n in terms of elements of vector v. Finally, we obtain the equilibrium prices in terms of

risk neutral-probabilities using Equation (8). Proposition 1 reports the equilibrium.

Proposition 1 (Unique equilibrium with M = N assets). Suppose, probabilities
πn(ε) of states ωn are given by Equation (5), and shock ε has generalized normal distri-
bution N̂(µε, σ2

ε) with PDF function given by (6). Then, there exists unique equilibrium,
in which investors’ portfolios θ∗I (p; ε) and θ∗U(p), risk-neutral probabilities πRN, and asset
prices P (ε, ν) are given by:

θ∗I (p; ε) = λε

γI
− 1
γI

Ω−1
(
v − ã

)
, (20)

θ∗U(p) =
(
E +Q

)−1
(

1
γI
QΩ−1(v − ã)− 1

γU
Ω−1(v − â) + (µ0/σ

2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)

)
,(21)
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πRN
n = evn

1 +∑
N−1
k=1 e

vk
, πRN

N = 1
1 +∑

N−1
k=1 e

vk
, (22)

Pm(ε, ν) =
[
πRN

1 Cm(ω1) + πRN
2 Cm(ω2) + . . .+ πRN

N Cm(ωN)
]
e−rT , (23)

where m = 1, . . . ,M − 1; v = (v1, . . . , vN−1)> ≡
(
ln(πRN

1 /πRN
N ), . . . , ln(πRN

N−1/π
RN
N )

)>
∈

RN−1and Q ∈ R(N−1)×(N−1) are given by

v = ã+ 1
2

γI
γI + γU

b̃(2) + 2(µ0/σ
2
0)Ωλ

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ γIγU
γI + γU

Ω
(
E +Q

)(λε
γI

+ ν
)
, (24)

Q = λλ>Σ−1
ν

γUγI
(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

) , (25)

E is the (N − 1) × (N − 1) identity matrix, Ω is a (N − 1) × (N − 1) matrix with
rows (Πn − ΠN)>, ã = (a1 − aN , . . . , aN−1 − aN)>, â = ã + 0.5b̃(2)/(λ>Σ−1

ν λ/γ2
I + 1/σ2

0),
b̃(2) = (b2

1 − b2
N , . . . , b

2
N−1 − b2

N)>, λ = Ω−1(b1 − bN , . . . , bN−1 − bN)>.2

Proposition 1 provides a fully closed-form characterization of equilibrium with multiple
assets in terms of elementary functions. From the results in Proposition 1 we observe
that prices are non-linear functions of shock ε and noise ν, in contrast to previous noisy
REE models [e.g., Grossman and Stiglitz (1980); Admati (1985), among others]. However,
linearity is preserved for vector v, which determines the risk-neutral probabilities and hence
also the prices. In particular, v is a linear function of λε/γI + ν, which summarizes the
information impounded into the market prices from I’s trading strategy.3 Furthermore,
the tractability of our analysis allows us to study comparative statics for asset prices and
investors’ portfolios. These comparative statics are reported in Proposition 2 below.

Proposition 2 (Comparative statics). The comparative statics for price Pm(ε, ν) of
asset m with respect to shock ε and noisy demands ν are as follows:

∂Pm(ε, ν)
∂ε

= γU
γU + γI

(
1 + λ>Σ−1

ν λ/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
covRN(b, Cm)e−rT , (26)

2Inverse matrix (E +Q)−1 in Equation (21) can be computed in closed form, and is given by:

(E +Q)−1 = E − λλ>Σ−1
ν

γUγI

(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
+ λ>Σ−1

ν λ
.

The latter result can be either directly verified or obtained from Lemma A.1 in Appendix A in which we
set u = λ and w = Σ−1

ν λ/(γUγI(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)).

3For comparison, in Appendix B we additionally provide equilibrium prices and portfolios in three
benchmark cases: 1) when both investors are fully informed; 2) when both investors are fully uninformed;
3) when investor U is uninformed and naive, i.e., does not learn from prices.
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∂Pm(ε, ν)
∂νl

= γUγI
γU + γI

(
covRN(Cl, Cm) + λ>Σ−1

ν λ/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
covRN(b, Cm)

)
e−rT . (27)

The comparative statics for investors’ portfolios with respect to prices p are as follows:
∂θ∗I (p; ε)
∂p

=− 1
γI

(
varRN[Π]

)−1
erT , (28)

∂θ∗U(p)
∂p

=
− 1

γU
E + γU + γI

γUγI

λλ>Σ−1
ν

γUγI
(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
+ λ>Σ−1

ν λ

(varRN[Π]
)−1

erT ,(29)

where covRN(·, ·) and varRN(·) are covariance and variance-covariance matrices under the
risk-neutral probability measure, and Π is the vector of risky assets payoffs in random
state ω. Furthermore, informed investor’s demand for risky asset m is a downward-sloping
function of that asset’s price pm, holding the prices of other assets fixed.

Proposition 2 provides closed-form comparative statics for asset prices and investors’ port-
folios. The comparative statics for prices are reminiscent of demand-pressure effects in
Gârleanu, Pedersen and Poteshman (2008). These demand pressures in our setting arise
due to the fact that all assets are non-redundant, and are driven by the covariances of
the economy’s risk exposure b and asset payoffs Cm. The covariances arise because, as
demonstrated above, investor I has an incentive to replicate risk exposure bε in order to
shift wealth to states with higher probability πn(ε).

Proposition 2 decomposes derivatives of prices and portfolio θ∗U(p) into two types of
terms, which are shown inside the brackets. First terms capture classic substitution effects
and are present even without asymmetric information. Second terms, which depend on
vector λ, capture the information effects. The latter terms are absent in Equation (28) for
∂θ∗I (p; ε)/∂p because the informed investor has perfect information.

Importantly, we find that investor I’s demand for risky asset m is a downward sloping
function of price pm of that security. However, the latter result cannot be guaranteed for
investor U . The reason is that, from investor U ’s perspective, high asset prices might
convey positive information about shock ε, in which case the demand for asset m may go
up despite high price pm. To demonstrate this, assume for simplicity that noisy demands
are i.i.d., and hence Σν = σ2

νE. Consequently, matrix λλ>Σ−1
ν is positive semi-definite,

and hence has non-negative elements on the main diagonal.4 If these elements are positive
4Element i on the diagonal of matrix A is given by e>i Aei, where ei = (0, 0, . . . , 1, . . . , 0)> is a vector

with 1 on i’s place and all other components equal to zero. If A is positive semi-definite, then e>i Aei ≥ 0,
and hence the diagonal elements are non-negative.
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and large, the matrix on the right-hand side of Equation (29) may have positive elements
on the diagonal.

We verify the above intuition for substitution and information effects in a simple econ-
omy with two risky assets in which we set r = 0, T = 1, a = (−5.37,−4.11,−5.7)> and
b = (1.19, 2.44, 3.69)>, where a and b are calibrated from gamma distributions, similarly
to the example in Section 2. The risk aversions of investors are given by γI = 0.004 and
γU = 0.04 [see Paravisini, Rappoport, and Ravina (2010)]. We consider two risky assets
with payoffs C1 = (0, 75, 300)> and C2 = (0, 0, 225)>. In this economy, investor U ’s de-
mand for the first asset increases with the increase in its price, whereas the demand for
the second security decreases with the increase in its price, holding other prices fixed.

3.2. General Economy with M ≤ N Securities

In this section, we study a general economy with M securities, where M ≤ N , which
subsumes complete and incomplete market economies as special cases. For tractability, we
impose the following assumption.

Assumption 1. Factor b is spanned by the traded assets in the economy. That is, there
exist unique constant λ0 and vector λ = (λ1, . . . , λM−1)> ∈ RM−1 such that

b = λ0IN + λ1C1 + . . . λM−1CM−1, (30)

or equivalently, bn = λ0 + Π>nλ, where IN ∈ RN is a vector of ones, Cm are payoffs of the
risky assets, and Πn is the vector of risky asset payoffs in state n.

Assumption 1 implies that the financial market is informationally complete in the sense
that the information contained in asset payoffs is sufficient for replicating the risk exposure
b, which determines the shifts in probabilities πn(ε). We provide several realistic economies
that satisfy this assumption. First example, is the complete market economy, where M =
N , and hence there always exist constant λ0 and vector λ satisfying Equation (30). Second
example is an incomplete-market economy with only one risky asset with payoff C1 = b.
As discussed in Section 2.3, a CARA-normal model with one risky asset is a special case
of the latter economy. Third example is an economy with asset C1 = b, and call options
with payoffs C2 = (b −K2)+,. . . , CM−1 = (b −KM−1)+ written on asset 1, in which case
λ0 = 0, λ1 = 1, λ2 = 0, . . . , λM−1 = 0. A CARA-normal model with a risky asset C1 and
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several call options written on it, is a special case of the latter economy. Fourth example is
an economy with firms that have cash flows b and issue risky debt and equity with payoffs
min(b,K) and (b−K)+, where K is the face value of debt.

Next, we demonstrate that if Assumption 1 is satisfied, then the optimal portfolio of
investor I is a linear function of signal ε. From Assumption 1 we have that bn = λ0 +Π>nλ,
which we substitute into the objective function (1) of the informed investor. After some
algebra, we rewrite investor I’s objective function as follows:

E
[
−e−γIWI,T |ε, p

]
=−

∑
N

k=1 exp{ak + bkε− γI(Πk − erTp)>θ}∑
N

k=1 exp{ak + bkε}

=− exp{(λ0 + erTp>λ)ε− erTp>(λε− γIθ)}

×
∑

N

k=1 exp{ak + Π>k (λε− γIθ)}∑
N

k=1 exp{ak + bkε}

=− exp{(λ0 + erTp>λ)ε− erTp>θ̂}
∑

N

k=1 exp{ak + Π>k θ̂}∑
N

k=1 exp{ak + bkε}
,

(31)

where θ̂ = λε − γIθ. From the last line in (31) we observe that finding optimal portfolio
θ∗I (p; ε) reduces to finding optimal θ̂∗I , which solves the optimization problem

max
θ̂
erTp>θ̂ − gI(θ̂), (32)

where gI(θ̂) = ln
(∑N

i=1 exp{ai + Π>i θ̂}
)
. From the optimization problem (32), we see that

θ̂∗I does not depend on shock ε. Therefore, investor I’s optimal portfolio is given by

θ∗I (p; ε) = λε

γI
− θ̂∗I (p)

γI
. (33)

From Equation (33) we conclude that the optimal portfolio of investor I is a linear function
of shock ε, as in the complete-markets case in Section 3.2. Furthermore, similarly to
Lemma 1, we point out that linearity holds for general PDF ϕε(x). Substituting portfolio
θ∗I (p; ε) into the market clearing condition we obtain equation

λε

γI
+ ν + Ĥ(p) = 0, (34)

where Ĥ(p) = θ∗U(p)−θ̂∗I (p)/γI, which has similar structure to the market clearing condition
(16) in the complete-markets economy. The probabilities πUn of the uninformed investor
are then found as in Lemma 2, assuming that shock ε is distributed according to N̂(µε, σ2

ε).
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The optimal portfolio θ∗U(p) of the uninformed investor is then found similarly to that of
investor I. The vector of prices is found from the market clearing conditions, as in the
complete-markets economy. Proposition 3 summarizes the main results.

Proposition 3 (Unique equilibrium with M ≤ N assets). Suppose probabilities πn(ε)
are given by Equation (5), shock ε has generalized normal distribution N̂(µε, σ2

ε) with PDF
function given by (6), and Assumption 1 is satisfied. If there exists an equilibrium in the
economy, then the investors’ optimal portfolios are given by

θ∗I (p; ε) = λε

γI
− 1
γI
f−1
I

(
erTp

)
, (35)

θ∗U(p) =
(
E +Q

)−1
(

1
γI
Qf−1

I

(
erTp

)
− 1
γU
f−1
U

(
erTp

)
+ (µ0/σ

2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)

)
. (36)

Price vector P (ε, ν) is a function of λε/γI + ν and is the unique solution of equations

1
γU
f−1
U

(
erTP (ε, ν)

)
+ 1
γI
f−1
I

(
erTP (ε, ν)

)
=
(
E +Q

)(λε
γI

+ ν
)

+ (µ0/σ
2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0) ,

(37)
where E is the (M−1)×(M−1) identity matrix; the (M−1)×(M−1) matrix Q is given by
Equation (25). Equation (37) has at most one solution, such that λε1/γI +ν1 6= λε2/γI +ν2

implies P (ε1, ν1) 6= P (ε2, ν2). Functions fI, fU : RM−1 → RM−1 are uniquely invertible on
their ranges, and for x ∈ RM−1 are given by

fI(x) =
∑N
n=1 Πn exp {an + Π>nx}∑N
n=1 exp {an + Π>nx}

, (38)

fU(x) =
∑N
n=1 Πn exp {an + 1

2
b2
n

λ>Σ−1
ν λ/γ2

I+1/σ2
0

+ Π>nx}∑N
n=1 exp {an + 1

2
b2
n

λ>Σ−1
ν λ/γ2

I+1/σ2
0

+ Π>nx}
, (39)

and f−1
I and f−1

U denote the corresponding inverse functions.

Optimal portfolios (35) and (36) have the same structure as portfolios (20) and (21)
in the complete-markets economy. However, risky asset prices are no longer available
in closed form, and solve a system of non-linear algebraic equations (37). The latter
system of equations reveals that prices are functions of a linear combination of shocks,
λε/γI + ν, similarly to the complete-markets case. Although the function on the left-
hand side of Equation (37) is invertible on its range, we do not have a proof that its
range coincides with RM−1, which is required for the existence of price P (ε, ν). However,
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we note, that in the economy with a single risky asset it is easy to verify that function
f−1
U

(
erTP (ε, ν)

)
/γU + f−1

I

(
erTP (ε, ν)

)
/γU is strictly monotone and has range R, which

guarantees the existence and uniqueness of price P (ε, ν).

The inverse functions x = f−1
i (y) can be found by solving M − 1 equations with M − 1

unknowns y = fi(x). When the markets are complete the latter equation can be solved in
closed form. For example, when M = N solving equation y = fI(x) reduces to solving a
system with M−1 linear equations with M−1 unknowns yn = exp{an−aN+(Πn−ΠN)>x}.
Then, the vector of unknowns x can be found by solving another system of M − 1 linear
equations and unknowns, given by ln(yn) = an − aN + (Πn − ΠN)>x. Note that the
equilibrium in Proposition 1 can be derived as a special case of that in Proposition 3.

To find equilibrium prices, we note that solving Equation (37) is equivalent to solving
the following system of equations for xI and xU , which does not involve inverse functions:

xI
γI

+ xU
γU

=
(
E +Q

)(λε
γI

+ ν
)

+ (µ0/σ
2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0) , (40)

erTp = fI(xI), erTp = fU(xU). (41)

Furthermore, solving the above system reduces to finding xI, which satisfies equation
fI(xI) = fU

(
γUR(ε, ν)− (γU/γI)xI

)
, where R(ε, ν) denotes the right-hand side of Equation

(40). The latter equation can be solved using Newton’s method [e.g., Judd (1998)], and
then the equilibrium prices can be found from Equations (41).

4. Information Revelation and Market Transparency

The empirical literature demonstrates that derivatives markets play important role in the
process of price discovery by revealing new information about asset prices [e.g., Chan,
Chung, and Fong (2002); Chakravarty, Gulen, and Mayhew (2004); Pan and Poteshman
(2006), among others]. Our results provide new insights about the informational role of
derivatives. As demonstrated in Section 2 both for complete- and incomplete-markets
economies, investor I’s optimal portfolio is a linear function of shock ε given by θ∗I (p; ε) =
λε/γI − θ̂∗I (p)/γI, where θ̂∗I (p) is some function of prices p. Moreover, as demonstrated in
Lemma 1, the latter result does not depend on the distributional assumptions about shock
ε. Thus, the trading volume of the informed investor reveals information about shock ε.
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We find a surprising result that not all derivatives play role in price discovery. Whether
or not the trading volume of asset m releases new information about ε depends on whether
this asset has a corresponding non-zero element λm in vector λ, which is the portfolio
of risky assets that replicates the risk exposure b. If λm = 0, then Equation (30) for
portfolio θ∗I (p; ε) reveals that the trading volume of asset m does not depend on ε. We call
such assets informationally redundant. Hence, derivatives may not be redundant from a
spanning perspective but can be redundant from an informational perspective.

The trading volume of asset m reveals new information about ε iff this asset helps
replicate risk exposure b, that is, λm 6= 0, as can be seen from Equation (30) for vector
b. The intuition is that, as demonstrated in Section 3.1, investor I has incentives to shift
wealth to states with higher probabilities πn(ε), which gives rise to linear term λε/γI in
investor I’s portfolio, where λε is a portfolio that replicates risk exposures bε. As a result,
only assets that help replicate exposure b have demands which are sensitive to shock ε,
and hence transmit the information to the financial market.

As demonstrated in Section 3.2, a CARA-normal model with risky asset C1 = b and
options (b − K2)+, . . . , (b − KM−1)+ is a special case of our model. Moreover, it can be
easily observed that only the underlying asset C1 suffices for replicating vector b, so that
λ = (1, 0, . . . , 0)>. Therefore, we arrive at the second surprising conclusion that in a
standard CARA-normal setting options or other derivatives do not play any role in price
discovery. For derivatives to release information about ε the underlying asset should not
span vector b, so that b 6= λ0 + λ1C1 for any λ0 and λ1.

When the market is complete, a condition for informational redundancy can be derived
for general probability functions πn(ε). In particular, Equation (12) for the portfolio
θ∗I (p; ε) demonstrates that investor I’s holding of asset m does not depend on shock ε iff
vector Ω−1

(
ln
(
(π1(ε)/πN(ε), . . . , ln(πN−1(ε)/πN(ε)

))>
has zero mth element.

To quantify the informational contents and transparency of asset markets we suggest
looking at the posterior precision of shock ε, as estimated by investor U , which is given
by 1/σ̂2

ε , where σ̂2
ε = var[ε|p]. To reflect the important economic role of precision 1/σ̂2

ε we
call it the transparency index. For simplicity, we derive the posterior variance σ̂2

ε assuming
that shock ε has prior distribution ε ∼ N(µε, σ2

ε), which yields a more tractable expression
for σ̂2

ε than the generalized normal distribution (6). As demonstrated on Figure 1, the
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normal distribution ε ∼ N(µε, σ2
ε) is a good approximation for distribution (6), and hence

the posterior variances of ε implied by the two distributions are also close. Lemma 3 below
provides a closed-form expression for the transparency index.

Lemma 3 (Market transparency). Let shock ε be normally distributed, ε ∼ N(µε, σ2
ε).

Then, the transparency index 1/σ̂2
ε , where σ̂2

ε = var[ε|p], is given by

1
σ̂2
ε

= 1
σ2
ε

+ λ>Σ−1
ν λ

γ2
I

. (42)

Equation (42) implies that 1/σ̂2
ε > 1/σ2

ε . Intuitively, the presence of informed traders
reduces the uncertainty about ε by releasing new information via asset prices. More for-
mally, the quantity of the released information can be measured as the difference between
the entropies of posterior and prior distributions of ε.5 In the case of normally distributed
ε the latter measure is given by ln(σ̂ε)− ln(σε), and hence is a monotone function of σ̂ε.

Furthermore, transparency does not depend on the number of traded assets even when
all the assets are correlated. Consistent with the above intuition on price discovery, 1/σ̂2

ε

is determined only by assets that replicate the risk exposure b. Assume, for simplicity,
that Σν = σ2

νE, where E is the identity matrix. If asset C1 = b is traded, we obtain that
λ = (1, 0, . . . , 0)>, and hence 1/σ̂2

ε = 1/σ2
ε +1/(γ2

I σ
2
ν). Therefore, 1/σ̂2

ε does not depend on
the number of traded derivatives because they do not help span risk exposure b. If there
are two risky assets with payoffs (b−K)+ and min(b,K), interpreted as equity and debt,
then λ = (1, 1, 0, . . . , 0)>. Therefore, 1/σ̂2

ε = 1/σ2
ε +2/(γ2

I σ
2
ν), and transparency increases.6

Transparency also depends on the variance-covariance matrix of noise trader demands
ν. In particular, higher correlations make the market more transparent by allowing infer-
ring more information by comparing the market clearing conditions across securities. For
example, consider a model with two risky assets and assume that ν1 = ν2, so that noisy
demands are perfectly correlated. Taking the difference of the market clearing conditions
(16) for the two markets we find that (λ1 − λ2)ε/γI + (ν1 − ν2) + (1,−1)>H(p) = 0, and
hence shock ε can be perfectly learned from prices if λ1 6= λ2. More formally, matrix Σν

5Entropy of variable ε is defined as −
∫∞
−∞ ϕε(x) lnϕε(x)dx. When ε is normally distributed, its entropy

is given by 0.5 ln(2πeσ2
ε).

6The results on the informational role of derivatives explain why in Brennan and Cao (1996) investors
do not learn from the derivative asset. In particular, they consider a CARA-normal framework with a stock
and a power derivative. In our terminology, the stock’s payoff linearly spans b. Therefore, λ = (1, 0)>,
and hence the derivative does not reveal any useful information.
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becomes close to singular when noisy demands cross-correlations become closer to one.
Therefore, the determinant of Σ−1

ν becomes large, and hence transparency 1/σ̂2
ε increases.

Finally, transparency 1/σ̂2
ε is a decreasing function of the informed investor’s risk aver-

sion γI. Intuitively, investors with higher risk aversions have smaller demand for risky
assets. Therefore, their private information is more difficult to filter out from the market
clearing conditions, and hence the market becomes less transparent.

5. Extension to Economies with General Probabili-
ties and Distributions

In this section, we consider a complete-markets economy with M = N assets and extend
our analysis to general probabilities πn(ε) and probability densities ϕε(x) of signal ε and
ϕν(x) of noise ν. We obtain prices P (ε, ν) and investor I’s portfolio θ∗I (p; ε) in closed form,
and characterize investor U ’s portfolio θ∗U(p) as a solution to a fixed-point problem.

In the economy with general distributions, portfolio θ∗I (p; ε) is no longer a linear func-
tion of ε. However, this portfolio remains separable in risk ε and prices p. In particu-
lar, from Equation (12) we find that portfolio θ∗I (p; ε) is given by θ∗I (p; ε) = η(ε)/γI −
(1/γI)Ω−1v, where v is a function of risk-neutral probabilities, and η(ε) is defined as

η(ε) = Ω−1
(

ln
( π1(ε)
πN(ε)

)
, . . . , ln

(πN−1(ε)
πN(ε)

))>
. (43)

Substituting investors’ portfolios into market clearing conditions we obtain:

η(ε)
γI

+ ν + H̃(p) = 0, (44)

where H̃(p) = θ∗U(p)− Ω−1v/γI. The derivation of the equilibrium follows the same steps
as in Section 2. First, we calculate investor U ’s posterior probabilities πUn conditional on
observing prices p. Then, we use πUn to derive the optimal portfolio of investor U from
Equation (12) in Lemma 1. Next, we demonstrate that portfolio θ∗U(p) solves a fixed point
problem. Finally, we obtain closed-form prices P (ε, ν) from the market clearing condition
(4). Proposition 4 reports the equilibrium.

Proposition 4 (Equilibrium with M = N and general probabilities and distri-
butions). Let probabilities πn(ε) and probability density functions ϕε(x) and ψν(x) of
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risk ε and noise ν be general smooth functions defined on R and RM−1, respectively, and
πn(ε) > 0 for n = 1, . . . , N . We show that:
1) If there exists an REE then investors’ portfolios θ∗I (p; ε) and θ∗U(p), risk-neutral proba-
bilities πRN

n and asset prices P (ε, ν) are given by:

θ∗I (p; ε) = η(ε)
γI
− 1
γI

Ω−1v, (45)

θ∗U(p) = − 1
γU

Ω−1
(
v −Ψ

(
H̃(p)

))
, (46)

πRN
n = evn

1 +∑
N−1
k=1 e

vk
, πRN

N = 1
1 +∑

N−1
k=1 e

vk
, (47)

Pm(ε, ν) =
[
πRN

1 Cm(ω1) + πRN
2 Cm(ω2) + . . .+ πRN

N Cm(ωN)
]
e−rT , (48)

where m = 1, . . . ,M − 1, η(ε) is given by (43), matrix Ω is as in Proposition 1, and
v = (v1, . . . , vN−1)> ≡

(
ln(πRN

1 /πRN
N ), . . . , ln(πRN

N−1/π
RN
N )

)>
is a function of prices p, which

in equilibrium is given by

v = γUγI
γU + γI

(
1
γU

Ψ
(
−η(ε)

γI
− ν

)
+ Ω

(η(ε)
γI

+ ν
))

, (49)

function H̃(p) : RM−1 → RM−1 for each p solves a system of equations

1
γU

Ψ
(
H̃(p)

)
− ΩH̃(p) = γU + γI

γUγI
v, (50)

and vector-valued function Ψ(·) : R→ RM−1 is given by

Ψ(z) =
(
Ψ1(z)−ΨN(z), . . . ,ΨN−1(z)−ΨN(z)

)>
. (51)

Ψn(z) = ln
(∫ +∞

−∞
ϕν
(
−η(x)

γI
− z

)
πn(x)ϕε(x)dx

)
. (52)

2)There exists an REE iff system (50) has a unique solution belonging to the support of
the distribution of random variable η(ε)/γI + ν. If it exists, the REE is unique.

Proposition 4 provides a fully closed-form characterization of asset prices as functions
of η(ε)/γI + ν for general probabilities and distributions. Our equilibrium asset prices
Pm(ε, ν) do not involve inverse functions, in contrast to the incomplete-markets economies
in Section 3.2 and in Breon-Drish (2012). The equilibrium is derived in terms of functions
Ψn(z), which are related to posterior probabilities. In particular, as shown in Appendix A,
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ln(πUn/πUN) = Ψn(H̃(p))−ΨN(H̃(p)), where H̃(p) = θ∗U(p)− Ω−1v/γI. Therefore, the com-
ponents of vector Ψ(z) can be interpreted as log-likelihood ratios of posterior probabilities.
We note, that Proposition 1 is a special case of Proposition 4.

By definition of vector v in Proposition 4, it depends on observed prices p via the
risk-neutral probabilities, which can be obtained in terms of prices p from Equation (8)
for the risk-neutral valuation of securities. Consequently, optimal portfolios (45) and (46)
are functions of prices via vector v and have similar structure to those in Proposition 1.

The existence and uniqueness of the solution of Equation (50) are essential for the
existence of the REE. As demonstrated in the proof of Proposition 4 in Appendix A, if
Equation (50) has multiple solutions, then there exist pairs (ε1, ν1) and (ε2, ν2) such that
η(ε1)/γI + ν1 6= η(ε2)/γI + ν2, and yet P (ε1, ν1) = P (ε2, ν2). Therefore, observing price
P does not reveal the realization of η(ε)/γI + ν, which contradicts the market clearing
condition (44), and hence cannot happen in equilibrium.

Note that if we allow the uninformed investor to observe both prices p and aggregate
demand of noise traders and informed investors θ∗I (p; ε) + ν, as in Breon-Drish (2010,
Sec. 4.2), then there exists unique REE even if Equation (50) has multiple solutions.
The reason is that investor U can now directly infer η(ε)/γI + ν because θ∗I (p; ε) + ν =
η(ε)/γI+ν−Ω−1v/γI. Therefore, observing prices p and demand θ∗I (p; ε)+ν allows inferring
η(ε)/γI + ν. In the new REE equilibrium with conditioning on demands, portfolio θ∗I (p; ε)
and price P (ε, ν) remain the same as in Proposition 4. The only difference is that investor
U ’s portfolio now directly depends on η(ε)/γI + ν and is given by:

θ∗U
(
p; η(ε)

γI
+ ν

)
= − 1

γU
Ω−1

(
v −Ψ

(
−η(ε)

γI
− ν

))
. (53)

The latter equation can be derived similarly to Equation (46). Consequently, under the
new concept of equilibrium, the REE exists, is unique, and is available in closed form.

Remark 2 (Normal ν). If ν ∼ N(0,Σν), probabilities πn(ε) are given by Equation (5)
and ϕε(x) remains general, then solving Equation (50) reduces to solving one equation
with one unknown. In particular, it can be shown that Ψn(z) = Fn(λ>Σ−1

ν z), where λ is
the same as in Section 3, and Fn(w) is a function of one variable, given by:

Fn(w) = ln
(∫ +∞

−∞
exp

{
−λ

>Σ−1
ν λ

2γ2
I

x2 − w · x
γI

}
πn(x)ϕε(x)dx

)
.
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Then, multiplying both sides of Equation (50) by λ>Σ−1
ν Ω−1 we obtain that w∗(p) =

λ>Σ−1
ν H̃(p) satisfies the following one equation with one unknown:

1
γU
λ>Σ−1

ν Ω−1F (w∗)− w∗ = γU + γI
γUγI

λ>Σ−1
ν Ω−1v. (54)

It can be shown that Equation (50) has a unique solution iff Equation (54) has unique
solution w∗ for any v. From the latter equation we obtain that H̃(p) = (1/γU)Ω−1F (w∗(p))
−(γU + γI)/(γUγI)Ω−1v, where F (w) = (F1(w)− FN(w), . . . , FN−1(w)− FN(w))>.

6. Conclusion

This paper studies an REE equilibrium in a multi-asset economy with asymmetric informa-
tion. In contrast to previous works, our model allows for general payoffs of assets, which do
not need to be normally distributed. We provide a tractable closed-form characterization
of equilibrium for a large class of probabilities of states of the economy and probability
density functions of signals. We derive exact conditions under which the trading volumes
for risky assets reveal information about the signal. The tractability of the model allows
us to obtain simple comparative statics for optimal portfolios and asset prices.
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Appendix A: Proofs

Proof of Lemma 1. We derive portfolio (12) of the informed investor, whereas the
proof for the uninformed is similar. Taking log on both sides of investor I’s FOC (11),
and substituting wealth WI,T ,n from the budget constraint (3), we obtain:

(θ∗I )>(Πn − erTp) = 1
γI

(
ln
(
πn(ε)

)
− ln

(
πRN
n

))
+ const, n = 1, . . . , N, (A.1)

where const is a constant that does not depend on n. Writing down Equation (A.1) for
n = N and subtracting it from the other equations in (A.1), we obtain the following system
of N − 1 equations with N − 1 unknown components of vector θ∗I :

(θ∗I )>(Πn − ΠN) = 1
γI

(
ln
(πn(ε)
πN(ε)

)
− ln

(πRN
n

πRN
N

))
, n = 1, . . . , N, (A.2)

where Πn − ΠN = (C1(ωn) − C1(ωN), . . . , CN−1(ωn) − CN−1(ωN))>. Solving the system of
equations (A.2), we obtain investor I’s optimal portfolio

θ∗I (p; ε) = 1
γI

Ω−1
{(

ln
( π1(ε)
πN(ε)

)
, . . . , ln

(πN−1(ε)
πN(ε)

)>
−
(
ln
(πRN

1
πRN
N

)
, . . . , ln

(πRN
N−1
πRN
N

))>}
.

Finally, substituting probabilities πn(ε) from Equation (5) into the above equation, we
obtain investor I’s portfolio weight (15). �

Proof of Lemma 2. From Bayes rule we have that

ϕε|ε̃(x|y) = ϕε̃|ε(y|x)ϕε(x)∫∞
−∞ ϕε̃|ε(y|x)ϕε(x)dx.

Note that, since ν ∼ N(0,Σν), ε̃ = λε/γI + ν + H(p) conditional on ε has multivariate
normal distribution N(λε/γI +H(p),Σν). Hence substituting for ϕε̃|ε above, we have

ϕε|ε̃(x|y) =
exp

{
−0.5

(
y − λx/γI −H(p)

)>
Σ−1
ν

(
y − λx/γI −H(p)

)}
ϕε(x)

G1(y; p) , (A.3)

where G1(y; p) is a function that does not depend on state ωn and normalizes the density.
Next, to find probability πUn , from the market clearing condition (16), we note that by
observing price p the uninformed investor can only learn that shock ε and noise trader
demand ν satisfy Equation (16). Therefore, from Equation (14) for πUn we obtain:

πUn = E[πn(ε)|λε/γI + ν +H(p) = 0]

=
∫ ∞
−∞

ean+bnx∑
N

i=1 e
ai+bix

ϕε|ε̃(x|0)dx = 1
G1(y; p)

∫ ∞
−∞

ek(x)dx,
(A.4)
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where k(x) is a quadratic function of x given by:

k(x) = an + bnx− 0.5
(
λx/γI +H(p)

)>
Σ−1
ν

(
λx/γI +H(p)

)
− 0.5(x− µ0)2/σ2

0

=− λ
>Σ−1

ν λ/γ2
I + 1/σ2

0
2

(
x− µ0/σ

2
0 + bn − λ>Σ−1

ν H(p)/γI
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)2

+ an + 1
2
b2
n − 2bn

(
λ>Σ−1

ν H(p)/γI − µ0/σ
2
0

)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
+ g(p),

(A.5)

where g(p) is some function which only depends on p, and not on x or n. Substituting
Equation (A.5) back into integral (A.4), after integrating, we obtain Equation (19) for πUn ,

πUn (p; θ∗U(p)) = 1
G2(p) exp

an + 1
2
b2
n − 2bn

(
λ>Σ−1

ν H(p)/γI − µ0/σ
2
0

)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

 ,
where G2(p) is a function, which does not depend on ωn and is not needed later. �

Proof of Proposition 1. Let v =
(
ln(πRN

1 /πRN
N ), . . . , ln(πRN

N−1/π
RN
N )

)>
. Then, the risk-

neutral probabilities are given by πRN
n = evn/(1 +∑

N−1
i=1 evi) for n = 1, . . . , N − 1 and

πRN
N = 1/(1 +∑

N−1
i=1 evi). Therefore, from Equation (8) for prices p we obtain that the

prices are given by Equation (23).

Investor I’s portfolio (20) is the same as in Equation (15) in Lemma 1. To find investor
U ’s portfolio θ∗U(p), we use Equation (13) in Lemma 1, which gives θ∗U(p) in terms of
investor U ’s probabilities πUn (p; θ∗U(p)). Substituting probabilities πUn (p; θ∗U(p)) from (19)
into portfolio (13) we obtain:

θ∗U(p) = 1
γU

Ω−1


(

ln
(πU1 (p; θ∗U(p))
πUN(p; θ∗U(p))

)
, . . . , ln

(πUN−1(p; θ∗U(p))
πUN(p; θ∗U(p))

))>
− v


= 1
γU

Ω−1

ã+ 1
2
b̃(2) − 2b̃

(
λ>Σ−1

ν H(p)/γI − µ0/σ
2
0

)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− v

 ,
(A.6)

where b̃(2) = (b2
1 − b2

N , . . . , b
2
N−1 − b2

N) and b̃ = (b1 − bN , . . . , bN−1 − bN). Recalling that
λ = Ω−1b̃, and rearranging terms in Equation (A.6), we obtain:

θ∗U(p) = 1
γU

Ω−1â+ 1
γU

(µ0/σ
2
0)λ

λ>Σ−1
ν λ/γ2

I + 1/σ2
0
−QH(p)− 1

γU
Ω−1v, (A.7)

where â and matrix Q are are given by:

â = ã+ 1
2

b̃(2)

(λ>Σ−1
ν λ/γ2

I + 1/σ2
0) , Q = λλ>Σ−1

ν

γUγI
(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

) . (A.8)
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Next, we substitute H(p) = θ∗U − Ω−1
(
v − ã

)
/γI from Equation (17) into Equation (A.7),

and after some algebra, we obtain a system of linear equations for portfolio θ∗U(p):

θ∗U(p) = 1
γU

Ω−1â+ 1
γU

(µ0/σ
2
0)λ

λ>Σ−1
ν λ/γ2

I + 1/σ2
0
−Qθ∗U + 1

γI
QΩ−1

(
v − ã

)
− 1
γU

Ω−1v.

Solving this system of equations, we obtain θ∗U(p) in Proposition 1, given by

θ∗U(p) =
(
E +Q

)−1
(

1
γI
QΩ−1(v − ã)− 1

γU
Ω−1(v − â) + (µ0/σ

2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)

)
.

Next, we find equilibrium prices. Substituting optimal portfolios θ∗I (p; ε) and θ∗U(p)
from Equations (20) and (21) into the market clearing condition θ∗I (p; ε) + θ∗U(p) + ν = 0,
after rearranging terms, we obtain the following equation for vector v:

(
E +Q

)−1
(

1
γI
QΩ−1(v − ã)− 1

γU
Ω−1(v − â) + (µ0/σ

2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)

)

− 1
γI

Ω−1
(
v − ã

)
+ λε

γI
+ ν = 0.

(A.9)

We observe that the above equation can be further simplified by noting that

(E +Q)−1 1
γI
QΩ−1(v − ã) = (E +Q)−1(E +Q− E) 1

γI
Ω−1(v − ã)

= 1
γI

Ω−1(v − ã)− (E +Q)−1 1
γI

Ω−1(v − ã).

Substituting the latter expression into Equation (A.9), canceling like terms, substituting
â from Equation (A.8) into Equation (A.9), and solving it for v − ã we obtain

v = ã+ 1
2

γI
γI + γU

b̃(2) + 2(µ0/σ
2
0)Ωλ

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ γIγU
γI + γU

Ω
(
E +Q

)(λε
γI

+ ν
)
,

which gives v in Equation (24). The equilibrium asset prices are then given by Equation
(23) in terms of vector v. Because v is a linear function of λε/γI + ν, function P (ε, ν) is
a one-to-one mapping between λε/γI + ν and prices p. Therefore, observing asset prices
indeed reveals λε/γI + ν, which completes the proof. �

Proof of Proposition 2. Although vector v in Proposition 1 is (N−1)-dimensional, for
convenience we set vN = 0. First, we find comparative statics for prices. Differentiating
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risk-neutral probability πRN
n given by (22) with respect to ε we obtain:

∂πRN
n

∂ε
= πRN

n

∂vn
∂ε
− πRN

n∑N
k=1 e

vk

N∑
k=1

∂vk
∂ε

evk

= πRN
n

∂vn
∂ε
− πRN

n ERN
[∂v(ω)
∂ε

]
,

(A.10)

where v(ω) now denotes a random variable that takes value vn in state ωn. Next, differ-
entiating price (23) with respect to ε, and using Equation (A.10), we obtain:

∂Pm(ε, ν)
∂ε

= ERN
[∂v(ω)
∂ε

Cm(ω)
]
− ERN

[∂v(ω)
∂ε

]
ERN

[
Cm(ω)

]
= covRN

(∂v(ω)
∂ε

, Cm(ω)
)
.

(A.11)

Differentiating Equation (24) for vector v, substituting matrix Q from Equation (25),
and denoting by ek = (0, . . . , 1, . . . 0)> ∈ RN−1 a vector with kth element equal to 1 and
other elements equal to 0, we obtain:

∂vk
∂ε

= γU
γU + γI

e>k
(
Ωλ+ Ωλλ>Σ−1

ν λ/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)

= γU
γU + γI

(bk − bN)
(
1 + λ>Σ−1

ν λ/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
,

(A.12)

where to derive the second line we used the fact that e>k Ωλ = e>k (b1−bN , . . . , bN−1−bN)> =
bk − bN , when k < N . Equation (A.12) also holds for k = N , in which case ∂vN/∂ε = 0
because bk − bN = 0. Therefore, using Equation (A.12) we compute the covariance in
Equation (A.11), and obtain:

∂Pm(ε, ν)
∂ε

= γU
γU + γI

(
1 + λ>Σ−1

ν λ/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
covRN(b, Cm)e−rT , (A.13)

where we eliminated bN because subtracting a constant does not affect covariances.

To find the derivative with respect to νl, following the same steps as above, we obtain:

∂Pm(ε, ν)
∂νl

= covRN
(∂v(ω)
∂νl

, Cm(ω)
)
, (A.14)

where l = 1, . . . ,M−1. Then, differentiating Equation (24) for vector v and recalling that
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we additionally set vN = 0, similarly to Equation (A.12) we obtain:

∂vk
∂νl

= γU
γU + γI

e>k Ω
(
E +Q)el

= γU
γU + γI

(
e>k Ωel + e>k Ωλλ>Σ−1

ν el/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
,

= γU
γU + γI

(
Ck(ωl)− Ck(ωN) + (bk − bN)λ>Σ−1

ν el/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
,

(A.15)

where to derive the last line we used the fact that by the definition of matrix Ω and vector
λ, e>k Ωel = Ck(ωl)− Ck(ωN) and e>k Ωλ = bk − bN . Clearly, Equation (A.15) also holds for
k = N , because then it implies that ∂vk/∂νl = 0. Therefore, from Equations (A.15) and
(A.14), we obtain the result in Proposition 2:

∂Pm(ε, ν)
∂νl

= γUγI
γU + γI

(
covRN

(
Cl, Cm

)
+ λ>Σ−1

ν el/(γUγI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

(
b, Cm

))
e−rT .

Now, we find the derivatives of optimal portfolios with respect to prices p. First, we
need to compute ∂v/∂p. To do this, we find the Jacobian Jp = ∂p/∂v and then by the
inverse function theorem we have ∂v/∂p = J−1

p . Substituting πRN
N = 1− πRN

1 − . . .− πRN
N−1

into Equation (8) for prices p in terms of risk-neutral probabilities, we obtain:

pm =
[
πRN

1

(
Cm(ω1)−Cm(ωN)

)
+ . . .+πRN

N−1

(
Cm(ωN−1)−Cm(ωN)

)
+Cm(ωN)

]
e−rT , (A.16)

where m = 1, . . . , N − 1. Let Jπ be the Jacobian of vector (πRN
1 , . . . , πRN

N−1)>, that is, a
matrix with (n, k) element given by ∂πRN

n /∂vk. Differentiating Equation (A.16) we find
that Jp = Ω>Jπe−rT , and hence

JpΩ erT = Ω>JπΩ. (A.17)

To find Jπ we first calculate ∂πRN
n /∂vk, where πRN

n is given by the first equation in (22):

∂πRN
n

∂vk
=


−πRN

n πRN
k , if n 6= k,

πRN
n − (πRN

n )2, if n = k.
(A.18)

From Equation (A.18) we find Jπ = diag{πRN
1 , . . . , πRN

N−1}−(πRN
1 , . . . , πRN

N−1)>(πRN
1 , . . . , πRN

N−1),
where diag{. . .} is a diagonal matrix. Substituting Jπ into Equation (A.17) we obtain:

JpΩ erT = Ω>
(
diag{πRN

1 , . . . , πRN
N−1} − (πRN

1 , . . . , πRN
N−1)>(πRN

1 , . . . , πRN
N−1)

)
Ω. (A.19)
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Recalling that Ω is a matrix with rows (Πn−ΠN)>, where Πn =
(
C1(ωn), . . . , CM−1(ωn)

)>
and denoting C̃n =

(
Cn(ω1) − Cn(ωN), . . . , Cn(ωN−1) − Cn(ωN)

)>
, we find that the (n, k)

element of matrix JpΩerT is given by:

{JpΩ erT}n,k = C̃>n diag{πRN
1 , . . . , πRN

N−1}C̃k − C̃>n (πRN
1 , . . . , πRN

N−1)>(πRN
1 , . . . , πRN

N−1)C̃k

= ∑
N

i=1

(
Cn(ωi)− Cn(ωN)

)(
Ck(ωi)− Ck(ωN)

)
πRN
i

−
(∑

N

i=1

(
Cn(ωi)− Cn(ωN)

)
πRN
i

) (∑
N

i=1

(
Ck(ωi)− Ck(ωN)

)
πRN
i

)
= covRN(Cn, Ck),

where to derive the second equality we added zero terms
(
Cn(ωN) − Cn(ωN)

)(
Ck(ωN) −

Ck(ωN)
)
πRN
N ,

(
Cn(ωN)−Cn(ωN)

)
πRN
N and

(
Ck(ωN)−Ck(ωN)

)
πRN
N to summations, and then

removed constants Cn(ωN) and Ck(ωN), because they do not affect covariances.

Therefore, we conclude that JpΩ erT = varRN[Π]. Then, by the inverse function the-
orem, we now find that Ω−1∂v/∂p =

(
varRN[Π]

)−1
erT . Using the latter equality and

differentiating optimal portfolios (20) and (21) with respect to p we obtain that the first
of these two partial derivatives is given by (28) and the second is given by:

∂θ∗U(p)
∂p

=
(

1
γI
E − γI + γU

γIγU
(E +Q)−1

)(
varRN[Π]

)−1
erT . (A.20)

Using Lemma A.1 below, we find that

(E +Q)−1 = E − λλ>Σ−1
ν

γUγI
(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

)
+ λ>Σ−1

ν λ
.

Substituting (E+Q)−1 above into Equation (A.20), we obtain Equation (29) for ∂θ∗U(p)/∂p>.

Finally, we demonstrate that ∂θ∗I,m(p; ε)/∂pm < 0, i.e. investor I’s demand for asset
m is downward sloping in asset mth price. This result follows from the fact that matrix
(varRN[Π])−1 is positive-definite (as the inverse of a positive-definite matrix), and its ele-
ment m of the diagonal is given by e>m(varRN[Π])−1em > 0, where em = (0, 0, . . . , 1, . . . , 0)>

is a vector with mth element equal to 1 and other elements equal to zero. Then, from
Equation (28) it follows that ∂θ∗I,m(p; ε)/∂pm < 0. �

Proof of Proposition 3. Investor I’s optimization problem (32) yields the FOC for the
optimal θ̂∗I = λε− γIθ∗I :

g′I
(
θ̂∗I
)

= erTp, (A.21)
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where gI(x) = ln
(∑N

n=1 exp
{
an + Π>nx

})
and g′I(x) = ∂gI(x)/∂x> is a column vector

for x ∈ RM−1. Assuming that g′I(·) is invertible (which we prove below), we find that
θ̂∗I = f−1

I (erTp). Then, from equation θ̂∗I = λε− γIθ∗I , which defines θ̂∗I , we obtain portfolio
θ∗I (p, ε) in Equation (35).

Now, we find the portfolio of investor U . Let ε̃ = λε/γI + ν + Ĥ(p), i.e., the left hand
side of the market clearing condition (34), where Ĥ(p) = −θ̂∗I (p)/γI +θ∗U(p). The inference
problem of investor U is similar to that in the complete-markets economy. Following
exactly the same steps as in Lemma 1, we obtain:

ϕε|ε̃(x|y) = exp
{
−0.5

(
y − λx/γI − Ĥ(p)

)>
Σ−1
ν

(
y − λx/γI − Ĥ(p)

)} ϕε(x)
G1(y; p) ,

πUn (p; θ∗U(p)) = exp
{
an + 1

2
b2
n − 2bn(λ>Σ−1

ν Ĥ(p)/γI − µ0/σ
2
0)

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

} 1
G2(p) ,

where G1(y; p) and G2(p) are some functions, irrelevant for subsequent derivations. More-
over, using that, by Assumption 1, bn = λ0 + Π>nλ, from the last equation we obtain:

πUn (p; θ∗U(p)) = exp
{
an + 1

2
b2
n + 2Π>n (λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

}
×

× exp
{
λ0

(µ0/σ
2
0 − λ>Σ−1

ν Ĥ(p)/γI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

} 1
G2(p)

= exp
{
an + 1

2
b2
n + 2Π>n (λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

} 1
G3(p) ,

where G3(p) is a function that does not depend on n and is not needed for the proofs.
Using probabilities πUn we rewrite investor U ’s objective function (9) as follows:

−∑N
n=1 π

U
n (p; θU) exp{−γU

(
WU,0e

rT + θ>U
(
Πn − erTp

))
} = −exp{−γUWU,0e

rT}
G3(p) ×

exp{γUerTp>θU}
∑N
n=1 exp

{
an + 1

2
b2
n + 2Π>n (λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUΠ>n θU

}
.

(A.22)
Factoring out Π>n in the term in the curly brackets in the last line above we have

an + 1
2
b2
n + 2Π>n (λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI)
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUΠ>n θU =

an + 1
2

b2
n

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ Π>n
(
λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUθU

)
.
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Now, similarly to gI(·), we define function gU : RM−1 → R for x ∈ RM−1:

gU(x) = ln
( N∑
n=1

exp
{
an + 1

2
b2
n

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

+ Π>nx
})
.

Then, investor U ’s optimization problem from Equation (A.22), becomes

min
θU

γUe
rTp>θU + gU

(λµ0/σ
2
0 − λλ>Σ−1

ν Ĥ(p)/γI
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUθU

)
.

Let fU = g′U , then the FOC for the uniformed’s optimal portfolio, θ∗U is,

fU
(λµ0/σ

2
0 − λλ>Σ−1

ν Ĥ(p)/γI
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUθ∗U

)
= erTp.

Assuming that fU is invertible, as shown below, and erTp belongs to its range, we obtain

λµ0/σ
2
0 − λλ>Σ−1

ν Ĥ(p)/γI
λ>Σ−1

ν λ/γ2
I + 1/σ2

0
− γUθ∗U = f−1

U (erTp) .

Substituting for Ĥ(p) = −f−1
I (erT ) /γI + θ∗U and factoring out γUθ∗

U
we have

λµ0/σ
2
0 + λλ>Σ−1

ν f−1
I (erTp) /γ2

I

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

− γUθ∗U (E +Q) = f−1
U (erTp) ,

where, as before, E is the (M − 1)× (M − 1) identity matrix and matrix Q is given by

Q = λλ>Σ−1
ν

γUγI
(
λ>Σ−1

ν λ/γ2
I + 1/σ2

0

) ,
as in Proposition 1. Solving for θ∗U yields

θ∗U(p) = 1
γU

(E +Q)−1
(
λµ0/σ

2
0 + λλ>Σ−1

ν f−1
I (erTp) /γ2

I

λ>Σ−1
ν λ/γ2

I + 1/σ2
0

− f−1
U (erTp)

)

= (E +Q)−1
(

1
γI
Qf−1

I

(
erTp

)
− 1
γU
f−1
U (erTp) + (µ0/σ

2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0)

)
.

(A.23)

Now, we verify that function fI(x) is invertible. The invertibility of fU(x) is demon-
strated along the same lines. Recalling that by definition exp (gI(x)) = ∑N

n=1 exp
{
an + Π>nx

}
and then differentiating both sides of the latter equation twice, we obtain:

∂gI(x)
∂x>

exp (gI(x)) =
N∑
n=1

Πn exp
{
an + Π>nx

}
, (A.24)

(
∂2gI(x)
∂x>x

+ ∂gI(x)
∂x>

∂gI(x)
∂x

)
exp (gI(x)) =

N∑
n=1

ΠnΠ>n exp
{
an + Π>nx

}
. (A.25)
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Next, we introduce a new probability measure qn(x) = exp {an + Π>nx}/
∑

N

k=1 exp {ak + Π>k x}.
Dividing both sides of Equations (A.24) and (A.25) by exp (gI(x)) = ∑N

n=1 exp
{
an + Π>nx

}
,

respectively, we observe that the derivatives can be rewritten as

∂gI(x)
∂x>

= Eq(x)[Π], ∂2gI(x)
∂x>x

= varq(x)[Π],

where Eq(x)[Π] and varq(x)[Π] are the mean and the variance of the risky assets payoffs
vector Π under probability measure q(x). Because all assets are non-redundant, matrix
varq(x)[Π] is positive definite, and hence is invertible. Then, function fI(x) = ∂gI(x)/∂x>

is invertible on its range by Theorem 6 in Gale and Nikaidô (1965).

Finally, we derive the equation for prices. Substituting θ∗I and θ∗U from Equations (35)
and (36) into the market clearing condition θ∗I (p; ε) + θ∗U(p) + ν = 0 yields, after some
algebra, the following system of nonlinear algebraic equations for prices,

1
γU
f−1
U

(
erTP (ε, ν)

)
+ 1
γI
f−1
I

(
erTP (ε, ν)

)
=
(
E +Q

)(λε
γI

+ ν
)

+ (µ0/σ
2
0)λ

γU(λ>Σ−1
ν λ/γ2

I + 1/σ2
0) .

The function of the left-hand side of the latter equation has a positive-definite Jacobian
in each point, which is the sum of positive definite Jacobians of functions f−1

U

(
erTp

)
/γU

and f−1
I

(
erTp

)
/γI. Then, by Theorem 6 in Gale and Nikaidô (1965), the function on the

left-hand side is univalent, and hence invertible on its range. If the range of this function
coincides with RM−1 then price P (ε, ν) exists and is unique. �

Proof of Lemma 3. The proof is similar to that of Lemma 2. Assume that ε ∼
N(µε, σ2

ε), and we observe vector ε̃ = λε+ ν +H(p). From Bayes’ rule

ϕε|ε̃(x|y) = ϕε̃|ε(y|x)ϕε(x)∫∞
−∞ ϕε̃|ε(y|x)ϕε(x)dx, (A.26)

where now ϕε(x) = (1/
√

2πσ2
ε) exp(−0.5(x − µε)2/σ2

ε). Since ν ∼ N(0,Σν), ε̃ = λε/γI +
ν + H(p) conditional on ε has a multivariate normal distribution N(λε/γI + H(p),Σν).
Substituting for ϕε̃|ε and ϕε in the numerator above, we have

ϕε(x) = exp
{
−0.5

(
y − λx/γI −H(p)

)>
Σ−1
ν

(
y − λx/γI −H(p)

)
− 0.5(x− µε)2/σ2

ε

} 1
G1(y, p) ,

= exp
{
−0.5

(
1/σ2

ε + λ>Σ−1
ν λ/γ2

I

)(
x− µε/σ

2
ε + (y −H(p))>Σ−1

ν λ/γI
1/σ2

ε + λ>Σ−1
ν λ/γ2

I

)2} 1
G2(y; p)
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where G1(y; p) and G2(y; p) are some functions that do not depend on x. We observe
that the above equation gives the PDF of a standard normal distribution with mean and
precision parameters given by

µ̂ε = µε/σ
2
ε + (y −H(p))>Σ−1

ν λ/γI
1/σ2

ε + λ>Σ−1
ν λ/γ2

I

,
1
σ̂2
ε

= 1
σ2
ε

+ λ>Σ−1
ν λ

γ2
I

,

which completes the proof. �

Proof of Proposition 4. First, we find posterior probabilities. Let ε̃ = η(ε)/γI + ν +
H̃(p), where H̃(p) = θ∗U(p)− (1/γI)Ω−1v. Then, conditional density ϕε|ε̃(x|y) is given by:

ϕε|ε̃(x|y) =
ϕν
(
y − η(x)/γI − H̃(p)

)
ϕε(x)∫+∞

−∞ ϕν
(
y − η(x)/γI − H̃(p)

)
ϕε(x)dx

. (A.27)

Suppose the equilibrium exists. Portfolio (45) of investor I remains exactly the same as
in Equation (12) in Lemma 1. Now, we find investor U ’s portfolio. Similarly to Equation
(A.4) in the Proof of Lemma 2, we note from the market clearing condition (44) that in
equilibrium ε̃ = 0, and then find investor U ’s probabilities πUn as follows:

πUn =
∫ +∞

−∞
πn(x)ϕε|ε̃(x|0)dx

= 1
G1(p)

∫ +∞

−∞
ϕν
(
−η(x)

γI
− H̃(p)

)
πn(x)ϕε(x)dx,

=
exp

{
Ψn

(
H̃(p)

)}
G2(p) , (A.28)

where G1(p) and G2(p) are some functions that do not depend on n. From Equation (A.28)
we obtain that ln(πUn/πUN) = Ψn

(
H̃(p)

)
− ΨN

(
H̃(p)

)
. Substituting the latter expression

into Equation (13) for investor U ’s portfolio we obtain portfolio θ∗U(p) in (46).

Subtracting (1/γI)Ω−1v from both sides of investor U ’s portfolio (46), multiplying both
sides by Ω, using the definition of H̃(p), and rearranging terms we obtain Equation (50):

1
γU

Ψ
(
H̃(p)

)
− ΩH̃(p) = γU + γI

γUγI
v. (A.29)

Next, we derive vector v. From the market clearing condition (44) we observe that in
equilibrium H̃(p) = −η(ε)/γI− ν. Substituting the latter expression into Equation (A.29)
and solving it for v, we obtain Equation (49) for vector v. Then, risk-neutral probabilities
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and asset prices are given by Equations (47) and (48), respectively, which can be shown
exactly in the same way as in Proposition 1. This completes the derivation of equilibrium
portfolios, risk-neutral probabilities, and prices.

It remains to verify that price P (ε, ν) uniquely reveals combination η(ε)/γI + ν when
Equation (50) has unique solution. Suppose, there exist pairs (ε1, ν1) and (ε2, ν2) such
that η(ε1)/γI+ν1 6= η(ε2)/γI+ν2 and P (ε1, ν1) = P (ε2, ν2). We note, that the equation for
P (ε, ν) is derived from Equation (A.29) by setting H̃(p) = −η(ε)/γI−ν, as discussed above.
Therefore, for fixed p = P (ε1, ν1) = P (ε2, ν2) Equation (A.29) has two solutions: H̃1(p) =
−η(ε1)/γI − ν1 and H̃2(p) = −η(ε2)/γI − ν2, which leads to contradiction. Therefore, the
prices uniquely reveal η(ε)/γI + ν, and hence we have the REE.

Suppose, there exists an REE but Equation (A.29) has multiple solutions. Note that
because v is derived by setting H̃(p) = −η(ε)/γI − ν in Equation (A.29), if the latter
equation has multiple solutions then there exist shocks and noisy demands such that
η(ε1)/γI+ν1 6= η(ε2)/γI+ν2 and P (ε1, ν1) = P (ε2, ν2). However, market clearing condition
(44) implies that if P (ε1, ν1) = P (ε2, ν2) then η(ε1)/γI + ν1 = η(ε2)/γI + ν2, which leads
to contradiction. Therefore, REE exists iff Equation (50) has unique solution. �

Lemma A.1 (Sherman-Morrison formula). Let A ∈ R(M−1)×(M−1) be an invertible
matrix and u,w ∈ RM−1 be two column vectors. Then, matrix (A + uw>) is invertible,
and its inverse is given by:

(A+ uw>)−1 = A−1 − A−1uw>A−1

1 + w>A−1v
. (A.30)

Proof. This Lemma is a special case of binomial inversion theorem and can be directly
verified by multiplying the right-hand side of Equation (A.30) by (A+ uw>). �
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Appendix B: Three Benchmark Economies

Below, we present three benchmark cases: 1) a full information economy where both in-
vestors observe shock ε; 2) an economy where both investors are uniformed; 3) and an
economy with naive uninformed investors that do not learn anything from prices. Propo-
sition B.1 below provides closed-form characterizations of equilibria in all three cases.

Proposition B.1 (Fully Informed, Fully Uninformed and Naive Equilibria).

1) If both investors i = I, U have full information, then optimal portfolios θ∗i are given by

θ∗i (p; ε) = λε

γi
− 1
γi

Ω−1(vFI − ã), (B.1)

and asset prices are given by Equation (23), in which v is replaced with

vFI = ã+ Ωλε+ γIγU
γI + γU

Ων. (B.2)

2) If both investors i = I, U are uninformed and have prior distribution ε ∼ N̂(µε, σ2
ε),

then their optimal portfolios are given by

θ∗i (p) = − 1
γi

Ω−1(vFU − âFU) + 1
γi
µ0λ, (B.3)

where âFU = ã + 0.5b̃(2)σ2
0, and asset prices are given by Equation (23), in which v is

replaced with

vFU = ã+ 1
2
b̃(2) + 2(µ0/σ

2
0)Ωλ

1/σ2
0

+ γIγU
γI + γU

Ων. (B.4)

3) If investor U naively ignores the information provided by prices, then the optimal port-
folios of investors I and U are given by

θ∗I (p; ε) = λε

γI
− 1
γI

Ω−1
(
vNV − ã

)
, (B.5)

θ∗U(p) = λµ0

γU
− 1
γU

Ω−1(vNV − âNV ), (B.6)

where âNV = ã + 0.5b̃(2)σ2
0, and asset prices are given by Equation (23), in which v is

replaced with

vW = ã+ 1
2

γI
γI + γU

b̃(2) + 2(µ0/σ
2
0)Ωλ

1/σ2
0

+ γIγU
γI + γU

Ω
(
λε

γI
+ ν

)
, (B.7)

38



In all cases vectors ã and b̃(2) and matrix Ω are the same as in Proposition 1.

Proof of Proposition B.1. In all cases v, ã, b̃(2) are as in Proposition 1 and b̃ =
(b1 − bN , . . . , bN−1 − bN).

1) In the fully informed case both investors observe ε at t = −1. Similarly to Equation
(15), we can write Equation (B.1) for the optimal portfolio of investors

θ∗i (p; ε) = λε

γi
− 1
γi

Ω−1 (v − ã) , (B.8)

where λ = Ω−1b̃. Substituting Equation (B.8) in the market clearing condition
θ∗I (p; ε) + θ∗U(p; ε) + ν = 0 and solving for v produces Equation (B.2).

2) In the fully uniformed case both U and I investors just have a prior over ε at
t = −1 but do not observe ε. Consequently, they do not learn from prices. Hence,
their posteriors over ε are identical to their common prior. From Equation (C.3) in
Appendix C, πin = exp (an + b2

nσ
2
0/2 + bnµ0) /G2 (i ∈ {I, U}, n = 1, . . . , N), where

G2 is a constant irrelevant for subsequent derivations. Similarly to Equation (13) we
can write Equation (B.3) for their optimal portfolios

θ∗i (p) = 1
γi

Ω−1
(
ã+ b̃(2)σ2

0/2 + b̃µ0 − v
)

= λµ0

γi
− 1
γi

Ω−1(v − â), (B.9)

where in the second equality we substituted â = ã + b̃(2)σ2
0/2, and λ = Ω−1b̃. Sub-

stituting Equation (B.9) in the market clearing condition θ∗I (p) + θ∗U(p) + ν = 0 and
solving for v produces Equation (B.4).

3) In the naive case, investor U ignores information provided by prices and only uses
the prior. Investor I knows ε as before. Hence, similarly to Equations (12) and (13),
and using the prior from Equation (C.3) in Appendix C, we can write Equations
(B.5) and (B.6) for investors’ optimal portfolios

θ∗I (p; ε) = 1
γI

Ω−1
(
ã+ b̃ε− v

)
= λε

γI
− 1
γI

Ω−1 (v − ã) , (B.10)

θ∗U(p) = 1
γU

Ω−1
(
ã+ b̃(2)σ2

0/2 + b̃µ0 − v
)

= λµ0

γU
− 1
γU

Ω−1(v − â), (B.11)

where in the second equalities of both equations we used that λ = Ω−1b̃, and in
the second equality of the second equation we also substituted for â = ã+ b̃(2)σ2

0/2.
Substituting Equations (B.10) and (B.11) in the market clearing condition θ∗I (p; ε) +
θ∗U(p) + ν = 0 and solving for v produces Equation (B.7). �
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Appendix C: Mean and Variance of ε

Lemma C.1 (Prior mean and prior variance of ε and prior probabilities). Assume
that ε follows Distribution (6), then its mean µε and variance σ2

ε are given by the following
expressions in terms of the parameters (µ0, σ

2
0) and the vectors (a, b):

µε =

∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

)
µi

∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

) , (C.1)

σ2
ε = σ2

0 +


∑

N

i=1 exp
(
ai + µ2

i

2σ2
0

)
µ2
i

∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

) −

(∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

)
µi

)2

(∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

))2

 , (C.2)

where µi = (bi + µ0/σ
2
0)/(1/σ2

0). Furthermore, the prior unconditional probabilities of
states ω1, . . . , ωN , defined as πprior

n = E[πn(ε)], are given by:

πprior
n = exp (an + bnµ0 + σ2

0b
2
n/2)∑

N

k=1 exp (ak + bkµ0 + σ2
0b

2
k/2) , n = 1, . . . , N. (C.3)

Proof of Lemma C.1. The PDF of ε is given by

ϕε(x) =
∑

N

i=1 e
ai+bixφ (x;µ0, σ0)∫∞

−∞
∑

N

i=1 e
ai+bixφ (x;µ0, σ0) dx,

where φ(x;µ, σ) denotes the pdf of a random variable distributed N(µ, σ2),

φ(x;µ, σ) = 1√
2πσ2

e−(x−µ)2/2σ2
.

After some algebra, we rewrite ϕε(x) as follows:

ϕε(x) =
∑

N

i=1 e
ai+biµ0+σ2

0b
2
i /2φ (x;σ2

0bi + µ0, σ0)∑
N

i=1 e
ai+biµ0+σ2

0b
2
i /2

,

=

∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

)
φ (x;µi, σ0)

∑
N

i=1 exp
(
ai + µ2

i

2σ2
0

) ,

were by definition we set µi = σ2
0bi+µ0 = (bi + µ0/σ

2
0)/(1/σ2

0). Computing µε and σ2
ε with

distribution ϕε(x), after straightforward algebra, we obtain Equations (C.1) and (C.2).
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For the prior probabilities, employing similar algebra, we have:

πprior
n =

∫ ∞
−∞

πn(x)ϕε(x)dx =
∫∞
−∞ e

an+bnxe−0.5(x−µ0)2/σ2
0dx∑

N

k=1
∫∞
−∞ e

ak+bkxe−0.5(x−µ0)2/σ2
0dx

=
∫∞
−∞ e

an+bnµ0+σ2
0b

2
n/2φ (x;σ2

0bn + µ0, σ0) dx∑
N

k=1
∫∞
−∞ e

ak+bkµ0+σ2
0b

2
k
/2φ (x;σ2

0bk + µ0, σ0) dx

= ean+bnµ0+σ2
0b

2
n/2∑

N

k=1 e
ak+bkµ0+σ2

0b
2
k
/2 ,

which completes the proof. �
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