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LARGE TIME BEHAVIOR OF SOLUTIONS TO SEMI-LINEAR EQUATIONS
WITH QUADRATIC GROWTH IN THE GRADIENT

SCOTT ROBERTSON AND HAO XING

ABSTRACT. This paper studies the large time behavior of solutions to semi-linear Cauchy problems
with quadratic nonlinearity in gradients. The Cauchy problem considered has a general state space
and may degenerate on the boundary of the state space. Two types of large time behavior are
obtained: i) pointwise convergence of the solution and its gradient; ii) convergence of solutions
to associated backward stochastic differential equations. When the state space is R? or the space
of positive definite matrices, both types of convergence are obtained under growth conditions on
coefficients. These large time convergence results have direct applications in risk sensitive control
and long term portfolio choice problems.

1. INTRODUCTION

Given an open domain E C R? and functions Aij, Zij, B;,V,i,j=1,--- .d, from E to R, define
the differential operator

d d d
1 1 _
ij—=1 ij=1 i—1

where D; = 0, and D;; = 85%" We consider the following Cauchy problem:
(1.2) O =Fv], (t,x) € (0,00) x E, v(0,2) = vo(x).

Precise conditions on F, the coefficients, and the initial condition vg will be presented later. In
particular, these conditions allow for general domains E and for A = (A;j)i<ij<a to be both
unbounded and degenerate on the boundary of E. Our goal is to study the large time asymptotic
behavior of solutions v(¢,) to (1.2).

The asymptotic behavior of v(¢,-) is closely related to the following ergodic analogue of (1.2):

(1.3) A=3F], ze€kE,

whose solution is a pair (v, A) with A € R. In our main result, we prove the existence of (7, 5\)
solving (1.3) such that h(t,x) := v(t,x) — At — 0(x), x € E, satisfies

(1.4) h(t,) = C  and  Vh(t,-) >0 in C(E) ast— oo

Here C is a constant, V = (D1, ..., Dy) is the gradient, and convergence in C'(E) stands for locally
uniform convergence in E. In addition to the previous pointwise convergence, we also obtain the
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following probabilistic type of convergence: for any fixed ¢ > 0, as functions of z € F,

t
(L5) EF'” [ / Vh’AVh(T—s,XS)ds] —~0 and EF” [sup \W(T,z) — (T — 5,X3)|] -0,
0 0<s<t
in C(E) as T — oo. Here, VI is the transpose of Vh and (P%%),cx are probability measures under
which the coordinate process X is ergodic (cf. Proposition 2.3 below).
The Cauchy problem (1.2) and its ergodic analog (1.3) are closely related to risk sensitive control
problems of both finite and infinite horizon: see [12, 1, 31, 27] among others. Indeed, consider

(1.6) rzneaécélog <IE [exp (0 <U0(XT) + /0 " x. zs)ds»b ,

where T' > 0 represents the horizon, § € R\ {0} is the risk-sensitivity parameter, and Z is a set of
acceptable control processes. For a given z € Z, X is an E-valued diffusion with dynamics dX; =
b(Xy, z¢)dt + a(X;)dWy;, Xo = x, where W is a d-dimensional Brownian motion and a is a matrix
such that aa’ = A. With v denoting the value function, the standard dynamical programming
argument yields the following Hamilton-Jacobi-Bellman (HJB) equation for v:

d d d
(1.7) 0w = % Z A;j(z)Djjv 4 sup g Z A;j(x)DjvDjv + Z bi(x, z)Div + c(z, 2)
ij=1 z ij=1 i=1
When z — b(z, z) is linear and z — ¢(z, z) is quadratic the risk-sensitive control problem is called
the linear exponential quadratic problem and the HJB equation reduces to a semilinear equation of
type (1.2), where the pointwise optimizer z in (1.7) is a linear function of Vv and is expected to
yield an optimal control. The long-run analog to (1.6) is obtained by maximizing the growth rate:

T
(1.8) rgle%(l%ioréf% log (E [exp (9/0 c(Xs,zs)ds)}> .
Here, in the linear exponential quadratic case, the solution (4, \) from (1.3) governs both the long-
run optimal control and maximal growth rate for (1.8), while the long-run optimal control is again
a linear function of Vo. Thus, the convergence in (1.4) implies that the optimal control for the
finite horizon problem converges to its long-run analog as the horizon goes to infinity.

The convergence in (1.4) and (1.5) also has direct applications to long-term portfolio choice
problems from Mathematical Finance (cf. [3, 4, 2, 13, 14, 28, 11, 32, 9] amongst many others). In
particular, solutions to (1.2) and (1.3) are the value functions for the Merton problem where the
goal is to maximize expected utility from terminal wealth (finite horizon) or the expected utility
growth rate (infinite horizon) for the constant relative risk aversion (CRRA) utility investor in a
Markovian factor model. As in the risk-sensitive control problem, optimal investment policies are
governed by Vv and Vo respectively and hence (1.4) implies convergence of the optimal trading
strategies as the horizon becomes large. In fact, through the lens of portfolio turnpikes (see [19]
and references therein), which state that as the horizon T' becomes large, the optimal polices for
a generic utility function over any finite window [0,¢] converge to that of a CRRA utility, the
convergence in (1.4) identifies optimal policies for a wide class of utilities in the presence of a long
horizon. Here, however, the validity of turnpike results rely upon the convergence in (1.5) instead
of (1.4) (cf. [19]). As such, (1.5) is essential for proving turnpike results.

In addition to portfolio turnpikes, the convergence in (1.5) implies convergence of solutions to
backwards stochastic differential equations (BSDE) associated to (1.2) and (1.3). This connection
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is made precise in Remark 2.10, but the basic idea is that given solutions v to (1.2) and (9, ;\) to
(1.3), for any T > 0, one can construct BSDE solutions (Y7, ZT) and (Y, Z) to (2.14) and (2.15)
below, respectively. Then, with Y7 := Y7 — ¥ — \(T — Yand 2T =27 — Z, (1.5) implies

¢
lim EF"” U ||Z;F|]2ds] =0 and lim EF"” [Sup A —yoT\] =0, foranyt> 0.
T—00 0 T—o0 0<s<t

In the aforementioned applications, several models for X are widely used. In particular, the
Wishart process (cf. [5] and Example 3.8 below) has been used for option pricing (cf. [17, 18, 7, 8])
and portfolio optimization (cf. [6, 22]) in multi-variate stochastic volatility models. Wishart pro-
cesses, taking values in the space of positive definite matrices S‘j_ 1, are multivariate generalizations
of the square root Bessel diffusion. They offer modeling flexibility, by allowing stochastic correla-
tions between factors, while still maintaining analytical tractability, by keeping the affine structure.
However, the volatility of the Wishart process degenerates on the boundary of Sjl_ 1. Therefore, to
include this case, our convergence results need to treat domains other than R¢ and diffusions with
coefficients degenerating on the boundary of the state space.

The convergence (1.4) has been obtained via stochastic analysis techniques. [31] and [32] study
large time asymptotics when the state space is R? and A may degenerate for large |x|, proving a
weak form of the convergence in (1.4), i.e., lim;_,o0 h(¢,-)/t = 0. In [26], the convergence in (1.4)
has been obtained when the state space is R? and A is the identity matrix. Even though [26]
considers uniformly parabolic equations, by appropriately localizing their arguments, we are able
to treat degeneracy on the boundary and replace R% by a general domain E. This allows us, in
Section 2, to develop a general framework to study the large time asymptotics in (1.4) and (1.5).
One crucial difference between our treatment and [26] lies in proving the comparison result for
solutions to (1.2). The uniform parabolic assumption is explicitly used in [26], and their arguments
cannot be extended to the locally parabolic case. We replace the uniform parabolic assumption with
an assumption on the Lyapunov function (cf. Assumption 2.6 below) used to construct solutions
0 to (1.3). Additionally, while existing results focused on convergence (1.4), the convergence of
type (1.5) was missing in the literature, and in general, does not follow from (1.4) directly without
imposing cumbersome integrability assumptions which are hard to check in general settings.

The general framework presented in Section 2 gives conditions for convergence in terms of two
functions ¢g and 9. Once these two functions satisfy appropriate properties, convergence results
in Theorems 2.9 and 2.11 follow. When the state space is specified, ¢y and 1y provide a channel to
explicit convergence results with assumptions only depending upon the model coefficients. Indeed,
when the state space is R? or Si 4, growth assumptions on model coefficients are presented which
imply the existence of ¢¢ and 1y, hence the main results (cf. Theorems 3.3 and 3.9) readily follow.
Though the choice of ¢y and vy depends upon the state space and model coefficients, the procedures
to verify their properties are similar. Therefore the general framework developed in Section 2 could
be applied to other domains as well.

In the rest of the paper, Section 4 proves convergence results in Section 2. Section 5 verifies
results specific to R? and Sfl|r +. Lastly, Appendix A identifies Sfl|r . as a subset of RAA+D/2 which
allows us to consider equations with Si ,-valued spatial variables as special cases of (1.2) and (1.3).

Finally, we summarize several notations used throughout the paper:

e M: the space of d x d real matrices. For z € M%, let 2’ be the transpose of z, Tr(x) be the
trace of z, and ||z| = \/Tr(2'z). For M, N € M?, the Kronecker product of M and N is
denoted by M ® N € M.
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e S the space of d x d symmetric matrices. Si 4+ the space of d x d strictly positive definite
symmetric matrices. For M, N € Si +, M > N when M — N is positive semi-definite. Given
M e SEIH, denote by v/M the unique m € SEIH such that m? = M.

e For regions £ C R? and F C R¥ and v € (0, 1] denote by C*7(E, F) the space of k times
differentiable functions whose k" derivative is locally Holder continuous with exponent ~.
Write C*7(E) for C*7(E;R).

2. MAIN RESULTS

2.1. Setup. We begin by precisely stating assumptions on the region E as well as the regularity
of the coefficients in (1.1). As for E, assume i) E C R? is an open connected domain star shaped
with respect to some zg € E ; ii) there exist a sequence (Ej)nen of open, bounded, connected
domains, each star shaped with respect to xg and with C*? boundary for some v € (0, 1] such that
E,, C E,1 for each n; and iii) E = U, E,.

Regarding regularity, for A;;, A;j, B;,V, i,j = 1,..,d, in (1.1), set A = (Aij)ij=1,. ., A =
(Aij)i,jZL...,d) and B := (Bi)i:17...,d- Assume A,A S 02’7(E,Sd), B e Cl”y(E,Rd) and V € Cl”y(E)
for some v € (0,1].

A classical solution to (1.2) is a function v € C12((0,00) x E) N C([0,00) x E) which satisfies
(1.2). A classical solution to (1.3) is a pair (v, \) such that v € C?(E), A € R, and (1.3) is satisfied.?

The following local ellipticity assumptions are imposed on (1.2) and (1.3):

Assumption 2.1. The functions A and A satisfy

i) Forany n € N, z € E,, and £ € R?, ¢'A(2)€ > ¢, |€|?, for some constant ¢, > 0;
ii) There exist constants & > k > 0 such that

kA(z) < A(z) <RA(z), forall ze€E.

Let us introduce some more notation which will be used throughout the article. For a fixed ¢ €
C?7(E), under the aforementioned domain, regularity and ellipticity assumptions, the generalized
martingale problem (cf. [36]) on E for

d d d
1 _
(2.1) [,d) = 5 E AijDij + E B; + E Aiijqb D;,
i—1 =1

ij=1

has a unique solution, denoted by (P?®),cp. Here, the probability space is the continuous path
space = C'([0,00); E). The coordinate process is denoted by X so that X (w); = w; for w € Q.
The filtration F = (F3)¢>0 is the right-continuous enlargement of the filtration generated by X.
When ¢ = 0 denote £ for £°. Additionally, as a slight abuse of notation, for a given function
v e CH2((0,00) x E) and T > 0, define

d d d
1 _
(2.2) L£oT=t .= 3 Y AyDii+> | Bi+ ) AiDju(T—t,) | Diy, 0<t<T.
i,j=1 i=1 j=1

1A domain E ¢ R? is star shaped for some zo € E if for each € E the segment {axo + (1 — a)z;0 < a < 1} is
contained in E. A convex set is star shaped with respect to any of its points.

2Note that §[¢] = F[¢ + C] for any constant C. Hence the first component in solutions to (1.3) is only determined
up to additive constants.
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As with the time-homogeneous case, there exists a unique solution (P7")zcp on (€, Fr) to the

generalized martingale problem for £%7~". Both (P*%),cp and (P7:"),cp satisfy the strong Markov
property. The martingale problem for £? (resp. £¥T ) is well-posed if the coordinate process does
not explode P?® a.s. (resp. before T, P7:" a.s) for any z € E.

In preparation for the convergence results, let us first establish existence and uniqueness of
classical solutions to (1.2) and (1.3). For (1.3), as in [27, 25, 20, 26|, the following assumption on
the Lyapunov function helps to construct its solution.

Assumption 2.2. There exists a non-negative ¢y € C3(E) such that

(2.3) lim sup Floo)(z) = —oc.
nTOOzEE\En

Given the Lyapunov function ¢y, the following proposition is a collection of results in [27, 25, 26,
20], whose proofs will be discussed briefly in Section 4.

Proposition 2.3. Let Assumption 2.1 and 2.2 hold. There exists a unique X € R such that the
following statements hold:

i) There exists a unique (up to an additive constant) © € C2(E) solving (1.3) with X such that
) (]P;v,a:)IEAE
i1) SUp,p (6 — 60) (@) < o0;
iii) e~50=0) ¢ LY(E,m), for any ¢ € C*(E) with lima SUPgep\ g, §|4)(7) = —oc.

is ergodic with an invariant density m;

The following assumption enables construction of both super and sub-solutions to (1.2), which
in turn establishes existence of solutions to (1.2).

Assumption 2.4. For ¢ as in Assumption 2.2, the martingale problem for £% is well-posed.

Proposition 2.5. Let Assumptions 2.1, 2.2, and 2.4 hold. For any vy satisfying

(2.4) sup(vo — ¢o)(x) < oo,
el

there exists at least one solution v € C12((0,00) x E) N C([0,00) x E) solving (1.2) such that

(2.5) sup  (v(t,x) — ¢o(x)) < oo,  for each T > 0.
(t,2)€[0,T|x E

The uniqueness of classical solutions to (1.2) in the class of functions satisfying (2.5) follows from
the following comparison result, which requires a strengthening of Assumption 2.2.

Assumption 2.6. For the ¢g as in Assumption 2.2,

(2.6) ii%?o $€%1\fEn ¢o(z) =oco and 34 > 1 such that %rglo Ies;\pEnS[éqbo](:c) = —o0.

Proposition 2.7. Let Assumptions 2.1, 2.2, 2.4 and 2.6 hold. Let vy, 0y satisfy (2.4) and denote
by v, v the respective solutions to (1.2) from Proposition 2.5. Then vy < ¥y on E implies

v<0v, onl0,00)XE.
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2.2. Convergence. To study the large time behavior of v(¢,-), we restrict the initial condition vgy
in (1.2) from the larger class of functions satisfying (2.4) to the class of functions satisfying

(2.7) sup (|vo| — ¢o) () < 0.
zeFE

Note that vy = 0 satisfies the above bound since ¢y > 0. For vg satisfying (2.7), let v be the unique
classical solution to (1.2) from Proposition 2.5.
We define the difference between v and A - +0, where (0, ) comes from Proposition 2.3, as

(2.8) ht,z) == v(t,x) — M —0(z),  (t,z)€[0,00) x E.
Hence h € C12((0,00) x E) N C([0,00) x E) and a direct calculation using (1.2) and (1.3) yields
(2.9) duh = L'+ JYWAVA, on (0,00) x B, h(0,2) = (to— )(x).

Using (2.9) and Assumption 2.1, it follows (cf. equation (4.7), Lemma 4.3, and Remark 4.2
below) that the functions {A(t,-)},; are bounded from below by an 7 integrable function. To
obtain a corresponding upper bound, crucial for proving convergence, the following assumption is
made.

Assumption 2.8. There exists ¢g € C3(E) such that

(2.10) TlllTI;lO xEIE{l\fEn Fltho](x) = oo, }LITI?O xeiél\fEn(% — o) (z) = 00;
(2.11) 12]{3 (vo + K¢g) > —o0, SUE(S[MO] + a(d¢o(r) —1o)) < o0,
€z xe

for some a, K > 0 and § from (2.6).

As shown in [26, Lemma 4.5], (2.10) provides a lower bound for ¢ in that
(2.12) irElf(@ —1bp) > —oo.
Furthermore, (2.11) provides an upper bound on h(t,-) for ¢ > 0 (cf. Lemma 4.5 below), which

is key for establishing convergence of h. With all the assumptions in place, we now state first
convergence result.

Theorem 2.9. Let Assumptions 2.1, 2.2, 2.4, 2.6, and 2.8 hold. Then, for vy satisfying (2.7) and
any t >0, as functions of x € F,

i) lime_ oo EP™ [ JEVRYAVI(T — 5, X,) ds} — 0 in C(E);

ii) imp—_ oo BF"” [supg<s<t [R(T,2) — W(T — 5, X,)|] =0 in C(E).
Remark 2.10. As mentioned in the introduction, convergence in Theorem 2.9 can be understood in
the context of BSDEs. As generalizations of the Feynman-Kac formula, solutions to BSDEs provide

stochastic representations to solutions of semi-linear PDEs (cf. [33]). Given T > 0, a solution v to
(1.2) and a solution (X, d) to (1.3) define (Y7, ZT) and (Y, Z) by

Y1,z = (T —t,Xy),dVo(T —t,Xy)), t<T,
Vi, Z4) = (0(X1),d'VO(Xy),  t>0,
where a = V/A. Then, (YT, ZT) solves the quadratic BSDE:

(2.13)

(2.14) Y, = vo(Xr) + /t ' <V<Xu) - %(ZE ) M(Xu)Z,, ) du — /t T(Z{{ ydw,l, t<T.
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Here, W7 is a P —Brownian motion and M(z) := a~'Aa~!(z) ®. In a similar manner, (Y, 2)
solves the ergodic BSDE:

N N $ 14 A - S N
(2.15) Vi =Y+ / <V(Xu) - §Z;M(XH)ZU — )\> du — / ZhdW,, for any t < s,
t t

where W is a P?*—Brownian motion. This type of ergodic BSDE has been introduced in [16] and
studied in [37], [10]. Now set Y7 := YT —Y — \(T — ) and Z7 := ZT — Z. A direct calculation
using (2.8) and (2.13) shows

/ 1272 ds—/ VHAVK(T — 5, X,)ds; Y — VI = WT —t,X,) — h(T, ).
Thus, Theorem 2.9 and Assumption 2.1 47) imply

A t .
lim EF"™* UO ||ZST||2ds] =0 and lim EF"” [Sup A —yoT\] =0, foranyt>0.

T—o0 T—o00 0<s<t

In addition to the convergence in Theorem 2.9, the function h(¢,-) and its gradient also converge
pointwise as ¢ — oo. Such result has been proved in [26] when £ = R? and A = I;.

Theorem 2.11. Let Assumptions 2.1, 2.2, 2.4, 2.6, and 2.8 hold. Then, for vy satisfying (2.7),

i) limy_00 h(t,-) = C in C(E) for some constant C;
i) limy_y00 VA(t,+) = 0 in C(E).

In the next section, Theorems 2.9 and 2.11 are applied to domains R?% and Si 4 Tespectively.
There, easy-to-verify growth conditions on coefficients are given so that ¢g and g satisfying all
requirements are constructed, thus implying the conclusions in Theorems 2.9 and 2.11.

3. CONVERGENCE RESULTS WHEN THE STATE SPACE 1S R? OR S

3.1. The R? case. This case has been studied in [26] when A(z) = I;. Here, we present an
extension when A is locally elliptic. Other than the regularity assumptions at the beginning of
Section 2, and Assumption 2.1, the coefficients in § satisfy the following growth conditions:

Assumption 3.1.

i) A is bounded and B has at most linear growth. In particular, there exists an a1 > 0 such that
2’ A(x)x < oy (1 + |z]?), for z € RY.
ii) There exist 51 € R and C7 > 0 such that

B(z)z < —fi|z|> +C1, xR
iii) There exist 71,72 € R and Cy > 0 such that
—yolz|? = Co < V(z) < =z’ + Cy, z € R

iv) max {f1,71} > 0. Additionally
a) When f; <0 and v; > 0 there exist ag, C3 > 0 such that

' A(x)z > aglz* — C, x eR%
b) When 1 > 0 and v; < 0, for the a; of part i),
B? 4 2y1Ray > 0.

3Note that Assumption 2.1 4i) implies klq < M < Klg4, hence the generator of (2.14) has quadratic growth in Z.
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However, when 81 > 0 and v; > 0, no additional conditions are needed.
Remark 3.2. To understand Assumption 3.1 iv), consider a R?-valued diffusion X with dynamics
(3.1) dX; = B(Xy)dt + a(Xy)dW;, Xo=z € R,

where W is a d dimensional Brownian motion and a = v/A. By Assumption 3.1 i) and the regularity
assumptions on A and B, (3.1) admits a global strong solution (X¢)¢>o. If 81 > 0 then X is mean-
reverting. On the other hand, if 3 > 0, V' decays to —oo on the boundary. Thus, part iv) requires
either mean reversion or a decaying potential. If both happen, then no additional parameter
restrictions are necessary. However, if mean reversion fails we require uniform ellipticity for A(z)
in the direction of . If 1 < 0 then a delicate relationship between the growth and degeneracy of
A, mean reversion of B and the growth of V is needed to ensure convergence results.

Under these growth assumptions on model coefficients, it follows that with ¢o(z) = (c¢/2)|z|* and
Yo(z) = —(&/2)|x|? for some ¢, ¢ > 0, Assumptions 2.2, 2.4, 2.6, and 2.8 hold; see Section 5.1 below.
In this case, the main convergence result reads:

Theorem 3.3. Suppose that Assumptions 2.1 and 3.1 are satisfied. Then, for any vy satisfying
(2.7), the statements of Theorems 2.9 and 2.11 hold.

3.2. The Sﬁlr 4 case. Though Sﬁlr 4 cannot be set as E directly, it can be identified with an open

set £ C RUHD/2 which is filled up by subregions E, satisfying the given assumptions. This

identification, discussed in detail in Appendix A, allows one to freely go back and forth between F

and Si + and hence results are presented in this section using matrix, rather than vector, notation.
To define § in (1.1) using matrix notation, note that § takes the form

d
1 _
i,j=1
where the linear operator £ is given in (2.1) with ¢ = 0 and is the generator associated to (3.1).

To define £ in the matrix setting, we follow the notation used in [30, Section 3]. Let B : S, — §4
be locally Lipschitz and F, G : S%, — M¢ be such that G’ ® F(x) * is locally Lipschitz. Consider

3.3 dX; = B(Xy)dt + F(Xy)dW;G(X¢) + G(Xy) dW,F(Xy)'; Xo=2¢€$%,,
++

where W = (W% Ji<ij<d is a M¢-valued Brownian motion. Defining the functions a* : Sjl_ L=
M?4,5=1,..,d by

(3.4) .= F*GYU 4 FI*GY k=1, ,d,

the system in (3.3) takes the form

(3.5) dX} = Byj(Xp)dt 4+ Tr(a (Xp)dW)), i,j=1,...d.
Thus L is set as the generator associated to X:
1 3 d
(3.6) L=3 > T <a”(akl)/) Dy + D BiiDay),
i,k =1 ij=1

4Here ® is the Kronecker product between two matrices whose definition is recalled at the end of Section 1.
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i; and D?

which are symmetric (in an analogous manner to A;; = Aj; in the RY case):

where D(;j) = O, ), (k) = 890” w- Now, let A( ), (k1)» & Js Ky L =1,...,d be functions on SEIH

(3.7) Aty = Ao,y = Ay, = Ay for g ki l=1,-+- ,d.
Given such an A and V : Si 4+ — R the operator § is defined by
1 <& _
(38) §i=L+5 >, DapAu.enDan +V.
i,5.k,l=1

As in Section 2, we assume that Tr(a¥(a*)) € C?7(S1,,R), Ayj ) € C*7(S1,R), B €
CI’W(S‘LF,Sd), and V € C’LV(S1+,R), for some v € (0,1] and any 4, j,k,l =1,--- ,d. The analogue
of (1.2) and (1.3) are:

(3.9) v = g, (t,z) e (0,00) % Si-&-’ v(0,x) = vo(x);
(3.10) A= Fl), zesi,

The notion of classical solutions to the above equations is defined in the same manner as in Section
2. Appendix A below shows that equations (3.9) and (3.10) can be treated as special cases of (1.2)
and (1.3). Hence existence and uniqueness of classical solutions to (3.9) and (3.10) follow from
Propositions 2.3, 2.5, and 2.7, provided the requisite assumptions are met.

We now specify Assumption 2.1 to the matrix setting. In particular, the first item below implies
that § in (3.8) is locally elliptic; cf. Lemma 5.1 below. Before stating the assumptions, define

(3.11) f(z) = FF/(.CC) and g(z) := G'G(z), zeSt,.

Calculation shows that Tr ( ) = fikgily filgiky fikgil 4 £il gtk To keep the notation compact,
the assumption giving bounds on /_1 be low uses the matrices a¥ while all other assumptions use the
functions f and g.

Assumption 3.4. The functions f, g, and A satisfy

i) Foranyn € N,z € E, C S%,, and € € RY, ¢ f(2)€ > c,[€]? and € g(z)€ > ¢, [€|%, for some
constant ¢, > 0;
ii) There exist & > k > 0 such that, for any x € S‘fH and 0 € S¢,

d d d
E Y 05Te(@?(@))(@)0 < Y 05 Ay a)(@)0n <F Y 05Te(a (aM)) (2)0).
i,5,k,l=1 1,7,k,l=1 i,5,k,l=1

As in the R? case, growth assumptions on the coefficients are needed to construct the Lyapunov
function. However, unlike R%, there are two types of boundaries to S, : {||z|| = co} and {det(z) =
0}. Therefore separate growth assumptions are needed as x approaches each boundary. Let us first
present growth assumptions when ||z|| is large. Here, the assumptions are similar to those in
Assumption 3.1 : cf. Remark 3.2 for a qualitative explanation of the restriction in part iv).

Assumption 3.5. There exists ng > 0 such that for ||z| > ng the following conditions hold:

i) B has at most linear growth and there exist oy > 0 such that Tr(f(x))Tr(g(x)) < a1 ||z].
ii) There exist 51 € R and C7 > 0 such that

Tr(B(z)'z) < =B =] + C1.
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iii) There exist constants 71,72 € R and Cy > 0 such that
—ellz| — C2 < V(z) < —mllz| + Co.

Furthermore, V() is uniformly bounded from above for ||z| < no.
iv) max{f1,71} > 0. Additionally
a) When f; <0 and v; > 0, there exists ag, C3 > 0 such that

Tr(f(z)zg(z)z) > as|lz|® — Cs.
b) When 51 > 0 and v, < 0, for ay of part 7)
,8% + 16ka1v1 > 0.

However, when 81 > 0 and v; > 0, no additional conditions are needed.

For small det(z), different growth assumptions are needed. To precisely state them, for § € R
and z € S‘j_ . define

(3.12) Hs(z) := Tr(B(z)z™) — (1 + 6) Te(f(z)z tg(z)z™) — Tr(f(z)z™t) Tr(g(z)z™1).

The function Hy controls the explosion of solutions to (3.5). Indeed, as shown in [30, Theorem 3.4],
(3.5) admits a global strong solution when Hy(z) is uniformly bounded from below on S% .

Assumption 3.6. There exits ¢, ¢, c; > 0 such that
i) infgcesﬁr+ H.(x) > —o0.

ii) lim infgeq ()0 (He(7) + colog(det(x))) > —oo.

iii) limgeg(z)y0 (Ho(w) + 1V (x)) = oo.

Remark 3.7. Lemma 5.1 below shows that Hy is decreasing in ¢ and hence part i) of Assumption
3.6 implies infwegd+ . Hy(z) > —oo so that [30, Theorem 3.4] yields the existence of global strong
solution (X¢)ier, to (3.5). Part i7) implies that ¢ can be chosen (up to additive and multiplicative
constants) as —log(det(x)) when det(x) is small. Since part 4i) implies limge(y)y0 Ho(z) = 0o, part
i7i) allows for the potential to decay to —oo as det(x) | 0 but at a rate slower than the rate at
which Hy goes to oo.

Ezample 3.8. The primary example for (3.5) is when X follows a Wishart process:
(3.13) dX; = (LL + KX¢ + X K') dt + / Xe dW AN + AdW/\/ Xy,

where K, L, A € M? with A invertible. Here, f and g from (3.11) specify to f(z) = = and g(z) = AA’.
Thus, part i) of Assumption 3.4 as well as parts i), i7) of Assumption 3.5 readily follow. Hj from
(3.12) takes the form Hs(z) = Tr((LL' — (d+ 1+ §)AAN )2~ 1) + 2Tr(K). Then LL' > (d + 1)AA
ensures that Hy is uniformly bounded from below on Sﬂlr +, and hence (3.13) admits a unique global
strong solution. However, the slightly stronger assumption: LL" > (d + 1)AA’, is needed to satisfy
Assumption 3.6. Indeed, for LL' > (d + 1)AA’, part i) of Assumption 3.6 is evident, and part i)
holds because, as det(z) | 0, Tr(Cz~1) + log(det(z)) — oo for any C € S, . Lastly, any potential
V which is bounded from below by —Tr((LL' — (d + § + 1)AA")z~!), for some § > 0 and small
det(x) satisfies part iii).

Let ng be from Assumption 3.5 and let ¢, ¢, C > 0 be constants. Under Assumptions 3.5 and 3.6
a candidate Lyapunov function ¢q is given by

(3.14) ¢o(x) := —clog(det(z)) +¢llz[n(llz|) + C,
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where the cutoff function n € C°°(0,00) is such that 0 < n < 1, n(z) = 1 when & > ng + 2, and
n(z) = 0 for < ng + 1. Furthermore, for k, k > 0, 1 is chosen as

Yo(z) := klog(det(z)) — Kl|z[ln(|z]), = €S,

Section 5.2 proves that, under Assumptions 3.4 - 3.6, there exist ¢, ¢, C, k, and k such that
Assumptions 2.2, 2.4, 2.6, and 2.8 are satisfied. Then the main convergence result in the Si 4 case
readily follows:

Theorem 3.9. Suppose that Assumptions 3.4, 3.5, and 3.6 are satisfied. Then, for any vo satisfying
(2.7), the statements of Theorems 2.9 and 2.11 hold.

4. PROOFS IN SECTION 2

4.1. Proofs in Section 2.1. Let us first briefly discuss proofs for Propositions 2.3 and 2.5. Propo-
sition 2.3 i) essentially follows from [20, Theorems 13, 18], with only the following minor modifi-
cations. First, in [20] it is assumed that sup,cp V(z) < co and that A(z) takes a particular form.
However, sup,cp V(z) < oo is not actually necessary in the presence of Assumption 2.2 and the
only essential fact used regarding A (labeled A therein) is that Assumption 2.1 holds: see equation
(91) therein. To see this, when repeating the proof of Theorem 13 on page 272 of [20] note that
since sup,cg §lPo](x) < 0o, it follows that F[po] — A < 0 on E for sufficient large A\. Then, since the
generalized principal eigenfunction for the operator L¢ therein with ¢ = k is finite (as can be seen
by repeating the argument on page 272), it follows again that for A large enough there exist strictly
positive solutions g of L°g = \g, at which point setting f = (1/¢)log(g) and using Assumption 2.1
it follows that §[f] —A > 0 on E. From here the result follows exactly as in [20, Theorem 13]. The
proof of [20, Theorem 18] follows with only notational modifications.

To prove Proposition 2.3 ii), calculation shows that under Assumption 2.1, for any two ¢, €
C?(E), the function w := e #(¥~%) satisfies

(4.1) LY < sw(F[¢] - F[¢]) on E,

where £¥ is defined in (2.1). This is exactly [25, Lemma 4.2 (b)]> with ¢ = 0 in (A5) therein.
Then repeating remaining arguments in [25, Section 4], the statement follows from [25, Theorem
2.2 (i) = (iv)].

Define the stopping times {7,,}, o as the first exit time of X from E,:

(4.2) T = inf{t>0: Xy € E,}.

Proposition 2.3 #ii) essentially follows from [26, Proposition 2.4]. To connect to the proof therein,
note that (4.1) with ¢ = ¢ and < max{z + 1,0} combined yield:

Lo < sw(Fle] — \) < sw <max{$[¢] —A+1, 0}) .

Since F[p)(x) — —oo as x — OE there is a constant M so that L% < M on E. Thus, by
first stopping at 7, and then using Fatou’s lemma, there is a constant C = C(z) such that
EP** [e_ﬁ(@_@(xt)] < C+ Mt. The result now follows by repeating the argument in [26, Proposition
2.4] starting right after equation (2.4) therein.

Proposition 2.5 is proved by first constructing super- and sub-solutions ¢ and 9 to (1.2) and
then repeating the arguments in [26, Theorems 3.8, 3.9]. Even though the equation is uniformly

5Note a negative sign needs to added to ¢ and % in [25] to fit our context.
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parabolic in [26], the solution v is constructed, using the given super- and sub-solutions, via a
sequence of localized problems, each of which is uniformly parabolic, cf. [26, Equation (3.6)]. Here,
the sequence of localized problems can be considered on (Ey,),cn, where A is uniformly elliptic in
each E, due to Assumption 2.1 7). To construct the super- and sub-solutions ¢ and v, for ¢ > 0,
define

$(t.050) = on(w) + ¢1og (B [exp (gtun sy + ¢ [ t slanlx)as )| ).

In view of Assumptions 2.2, 2.4 and equation (2.4) it follows that 1 (t, x; () is well-defined and finite
for (t,z) € [0,00) x E. With ¢ = ¢(;%) and 92 = 9(-; k), Holder’s inequality implies 1y < 1.
Moreover, one can check that ; and 19 are super- and sub-solutions of (1.2) respectively. This
fact follows from the extension of the classical Feynman-Kac formula to the current, locally elliptic,
setup; see [23, 19]. Thus, Proposition 2.5 holds.

Now we prove Proposition 2.7 which does not follow from [26, Theorem 3.6]. Let us first prepare
a prerequisite result.

Lemma 4.1. Let Assumptions 2.1, 2.2, and 2.4 and 2.6 hold. Let v be a classical solution to (1.2)
in Proposition 2.5 with initial condition vy satisfying (2.4). Then, for any T > 0, the martingale
problem for L%T~ on E is well-posed. Hence the coordinate process does not hit the boundary of E
before T, P7* a.s., for any x € E.

Proof. Set v(t,x) = v(t,x) — d¢o(x) for (t,z) € [0,T] x E, where ¢ is from (2.6). It follows from
(2.5) and (2.6) that

(4.3) lim sup 0(t,x) = lim sup (v(t,z) — do(x) — (6 — 1)go(x)) = —o0.
nToo (t.4)€[0,T]) x B\ En nToo (t,4)€[0,T]x B\ En,

A direct calculation shows (note: 9,0 = dyv)

L0 = 9y — F[d¢o] + % (Vv —6Vego) A (Vo —6Vg) > 810 — F[0¢bo].
Since (2.6) assumes limy oo SUPzc p\ g, $[0¢0] = —00, there exists a constant C' such that
(4.4) —00+ LT >C, on (0,T] x E.

The well-posedness of the martingale problem for £~ on E now follows from [38, Theorem
10.2.1], by defining ¢r(t,z) := —0(T —t,z)+ K for some K so that ¢r(t,z) > 1,(t,x) € [0,T] x E.
Such a K exists in view of (4.3). Note also that the coefficients a,, b, in [38, Theorem 10.2.1] can
easily be constructed in the present setup, cf. [38, p.250], and A there can be chosen as any positive

constant larger than —C.
O

Proof of Proposition 2.7. For the given vy > vy and associated solutions ¥, v in Proposition 2.5, fix
aT > 0 and set w(t,z) = (T — t,x) —v(T — t,z), for t < T and x € E. Since v,v solve the
differential expression in (1.2) it follows that

ow + LT~ w = —(1/2)Vuw' AVw.

Then under IP’%’QC, which is the solution to the martingale problem for £¥7~ in Lemma 4.1, we have

T 1 T
& (w(T, X7) —w(0,2)) < Ii/ Vuw'a(s, Xs)dWY — 2!62/ Vuw' AVuw(s, Xs)dz,
0 0



LARGE TIME BEHAVIOR OF SOLUTIONS TO SEMI-LINEAR EQUATIONS 13

where W? is a P2"-Brownian Motion and the inequality follows from A > kA. Exponentiating
both sides of the previous inequality and taking }P’ij’m—expectations, we obtain

e*ﬁw(o,x)Eﬂmg;“ [eﬁw(T,XT)] < EIPE’;“ [5 (K/ Vw’a(s,Xs)dW;’> :| <1.
0 T

Plugging in for w = v — v and using 9y > v gives

1 > e B@(Ta)~v(T.0) gPr" {eﬁwwo)(}m} > ¢~ uO(T2)—u(T.2))
which confirms the assertion since x > 0. Il

4.2. Proofs in Section 2.2. Theorems 2.9 and 2.11 are proved in this section. For © in Proposition
2.3 and x € F, to simplify notation, we denote

pT.— P¥®  and KT .= EP".

Throughout this section C' is a universal constant which may be different in different places and the
assumptions of Theorem 2.9 are enforced. In particular, vy is chosen to satisfy (2.7). The following
facts regarding ergodic diffusions are used repeatedly throughout the sequel:

Remark 4.2 (Ergodic results). Recall from Proposition 2.3 i) yields that X is ergodic under (P%),cp
with invariant density 772. Given a continuous non-negative function f such that f € L'(E,m), [34]
and [35, Corollary 5.2 prove

i) E*[f(X;)] < oo for any z € E and t > 0;
ii) sup;>s supzeEn Ez [f(Xt)] < 00 for any ¢ > 0 and integer n;
i) limy_ o0 ]Ex = [ f( z)dx in C(E).

To prove Theorems 2.9 and 2.11, we first prepare several results.
Lemma 4.3. For ¢ in Assumption 2.2 and 1 in Proposition 2.8 i), ¢g € L*(E,m).

Proof. Set ¢¢ := d¢. From Proposition 2.3 ii), k(0 — 1)y = ﬁ(éo — ¢o) < @((50 —0) + kC =
—k(0 — ¢g) + wC for some C > 0. Then e£0~1% ¢ LY(E, 1) follows Proposition 2.3 iii) and
Assumption 2.6. Since ¢ is non-negative, then the statement is confirmed. O

Corollary 4.4. Letx € E, 0 <t < T and {1,}, oy be as in (4.2). Then the family of random
variables

{h(T —t A1y, Xinr,); n € N},
18 I@’m—uniformly integrable.

Proof. Applying Ito’s formula to h(t — -, X.) and utilizing both (2.9) and A > kA, we obtain, for
any stopping time 7 for which 7 <,

2 T T
rh(t — 1, X;) < kh(t,x) — % / Vh AVh(t — u, X,,) du + / &VH a(t —u, X,) dW,,
0 0

where W is a P®—Brownian motion. Exponentiating both sides of the previous inequality and
taking expectations gives

(45) Em [eﬁh(t—T,X-,-)] < enhtx)Ex |: < / Vh/ ,Xu)qu> :| < eﬁh(t,m)7



14 LARGE TIME BEHAVIOR OF SOLUTIONS TO SEMI-LINEAR EQUATIONS

and thus, at 7 = s for the fixed time s < t:
1 N

(4.6) = log B [eﬁh@—s’xs)} < h(t, z).
K

Proposition 2.3 ii) and (2.7) imply both ¢ < ¢g+ C and vg > —¢9 — C. Thus, (4.6) with s = ¢ and
Jensen’s inequality combined imply

(@7 h(t,2) >~ Tog? [es00-9X0] > &7 [(0g — 0)(X0)] > ~2E [60(X)] - C,

for some constant C. Therefore, with h_ := max{—h,0}, the Markov property and ¢9 > 0
combined yield

he (T =t ATy Xing,) < C 4 2EX [60(X7in7,)] = C + 2E7[0(X7) | Finr, ),

By Lemma 4.3 and Remark 4.2 4), we have E® [¢o(X7)] < oo. Thus, the random variables {h_ (T —
t A Tn, Xinr, );n = 1,2, ...} are uniformly integrable under P,

As for the positive part, set hy := max{h,0}. Since for any constant k > 0, e*+ < 1 + kb,
(4.5) implies there is a C' = C(T,z) > 0 so that

E® | (T=thmnXinm)+ | < C) for any n.
The uniform integrability of {h(T" —t A 7, X¢ar, );n € N} now follows, finishing the proof. O

The next result identifies an upper bound on h(t, -), uniformly in ¢ > 0. The statement and proof
are similar to [26, Lemma 4.7].

Lemma 4.5. Let J(z) = J(1+ ¢o(x) +0_(x)), for x € E. Here v_ := max{—0,0}. Then
J € C(E,R)NLY(E,m) and there exists a sufficiently large constant J such that
(4.8) suph(t,z) < J(z), x¢€E.

>0
Proof. Due to (2.12) and the first inequality in (2.11), 9 < C'—g < C+ K¢y, hence J € LY(E, m)
follows from Lemma 4.3. Moreover it is clear that J € C(E,R).

Let us prove (4.8). Since vy satisfies (2.7), vg < ¢¢ + C for some constant C. Thus, by the
comparison principle in Proposition 2.7 it suffices to prove (4.8) when vy = ¢ + C. Additionally,
since §[v 4+ C] = §[v] for any constant C, one can set vg = ¢p without loss of generality. Thus, let
v be the solution of (1.2) with initial condition ¢o and let h(t,z) = v(t,z) — At — O (x).

Set w(t,z) := ddo(x) + M — v(t, ). We first derive upper and lower bounds for w. On the one
hand, note that w(t, ) = d¢o(x) — 0(z) + (6(x) + At —v(t, z)) and that d(z) + Mt satisfies (1.2) with
the initial condition ©. Proposition 2.3 ii) and ¢g = vy give 0(x) < vo(x) + C' and hence a second
application of Proposition 2.7 yields o(x) + M < v(t,z) + C on [0,T] x E. Thus

(4.9) w(t,z) < dpo(x) —0(x)+C, on[0,T] x E.

On the other hand, (2.5) implies the existence of constant Cr, which may depend on T, such that
v(t,x) < ¢o(z) + Cr on [0,T] x E. Then

(4.10) w(t,z) > (6 —1)¢o(z) + A\t — Cp > Cp,  on[0,T] x E,

for some constant Cp, where the second inequality follows from § > 1 and ¢y > 0.
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A direct calculation shows £97~w = F[6po] + wr — A — (1/2)Vw AVw, which implies —w; +
L0T=w < F[6éo] — A. For the given « in (2.11), applying Ito’s formula to e w(T — -, X.) and
utilizing the previous inequality, we obtain for each n (recall 7, from (4.2)):

TNy, R
EFT [ea(T/\T”)w(T —T N\ Ty, XTM")} < w(T,z)+EFT [/ e (Flopo] — A + aw)(T — s, Xs)ds} ,
0
Since w is bounded from below (cf. (4.10)), applying Fatou’s lemma on the left-hand-side yields

T ATy,
e TEPE” [w(0, X1)] < w(T) ) + lim inf <EP [ / " 3 (§1600] — A+ aw)(T 5, Xs>dsD .
0

ntoo

On the right-hand-side, (2.11) implies M := sup,¢g(F[0¢o] + a(dpo(x) —1bg)) < co. Therefore (4.9)
and (2.12) combined yield

3[60] — A+ aw < F[oo] — A + (S — 0+ C) < o] — A+ a(Sbo — 1hg) + C < M — A+ C.

Set M = max{M — A + C,0}/a. Combining the previous two inequalities and using w(0,z) =
0po(z) —vo(z) = (0 — 1)¢o(x), we obtain

(6 = DeTETT [go(Xp)] < w(T, ) + M(e™T = 1) < e (S60(2) + 0 () + C + A1),
where the second inequality follows from (4.9). Thus, by taking C' > 0 sufficiently large,
(4.11) EPT" [¢o(X7)] < C(1 + ¢o(2) + 0_(z)), forallz € E and T > 0.

Calculation shows that h satisfies hy = L%T~h — (1/2)VW AVh < L%T—h — (1/2)kVH AV,
since A > kA. Applying Ito’s formula to kh(T — -, X.) yields

T@2

K (EP?z[h(o, Xr)] — T, x)) > EFr’ [/0 5 (V) AVA(T — s, X,) ds + n/OT(Vh)’adWST]

> —log EFT" [5 <—/€ / (Vh) adW?T > ] > 0,

T

where W7 is a P2 —Brownian motion and the second inequality follows from Jensen’s inequality.
Thus, since h(0,z) = ¢o(x) — 0(x), for any T > 0 and = € F,

h(T,z) < EFT" [go(X7) — 8(X7)] < C+ (K + 1EFT [9o(X7)] < C+ (K +1)C(1+ do(a) + 0 (),

where the second inequality uses the first inequality in (2.11) and (2.12), the third inequality uses
(4.11). Hence (4.8) now holds by taking J large enough, finishing the proof. O

For 0 <t<T and z € F set
Lo [ [ —
(4.12) () = 51@’” [ / (VR) AVA(T — s, X,) ds| .
0
The next result gives a weak form of the convergence in Theorem 2.9 7).

Proposition 4.6. For allt > 0,

T—o00

(4.13) lim [ f5T(x)m(z)dx = 0.
E



16 LARGE TIME BEHAVIOR OF SOLUTIONS TO SEMI-LINEAR EQUATIONS

Proof. Corollary 4.4 and Ito’s formula applied to h(T — -, X.) imply that
(4.14) T (x) = M(T, 2) — B [W(T — t, X;)] .
Let p(t,x,y) denote the transition density of X under P*. Recall from [36, pp. 179] that

(4.15) m(y) = / p(t,xz,y)m(x)dz, foranyt>0andyec E.
E

/E T (@) do = /E BT, )i () de — / /E Bt ) h(T — £, )i () dyda
_ [E W(T, 2)in(x)da — /E BT — t, )iy dy.

Set [(T) == [ h( (x)dz. Tt then follows from (4.16) and f“T(x) > 0 that I(T) > (T —t)
for all 0 <t<T. Therefore I(T) is 1ncreasmg in T and hence limp_,o I(T) exists. Furthermore,

Thus

(4.16)

by (4.8) we know that suppso (1) < [, J(z)m(z)dr < oo, hence limr_,o [(T) = | < co. Sending
T — oo on both sides of (4.16), we have

lim/ftT r)dr = lim ((T) - UT —t))=1—-1=0.

T—o00 T—o00

g

In order to remove the integral with respect to the invariant density in (4.13), we need the
following result.

Lemma 4.7. For any fizred t > 0 and n € N, the family of functions on E given by {ft’T(-);T > t}
s uniformly bounded and equicontinuous on E,.

Proof. Define k4T'(s,z) := E*[W(T —t,X,)], for s <t < T and = € E, so that (4.14) becomes
o7 (z) = MT,z) — k"7 (t,z). We will prove, for any E,, C E,, and t > 0,
a) {kbT(s,-);T >t t > s >t/2} is uniformly bounded on E,,.
b) {h(T,-);T > t/2} is uniformly bounded on E,,.
c) both {k%T(t,-); T >t} and {h(T,-); T >t} are equicontinuous in F,,.
Let us first handle k%7. We have from (4.7) and (4.8) that

~C — 2B [go(Xr—11)] = ~C — 267 [B¥[go(Xr—0)]| < K7 (5, 2) < B [T(X,)],

for T —t>0and ¢t > s >t/2. Since ¢9,J € L'(E,m) from Lemmas 4.3 and 4.5, it then follows
from Remark 4.2 ii) that both sup,>,/, E*[J(X,)] and SUPT>¢ s>t)2 E*[¢o(X1_s45)] are bounded in
E,,. Therefore, assertion a) is verified. Similarly, (4.7) and (4.8) imply that

—C — 2B® [po(X7)] < h(T,z) < J(x), for T >1t/2.
Then again, assertion b) follows from ¢ € L'(E,7) and Remark 4.2 ).
To prove {k*T(t,-); T >t} is equicontinuous in E,,, one can show that k%7 € C12((0,t) x E,) N
C([0,t] x E,) and satisfies
sk = L% in (0,t) x E,.
This result essentially follows from [23], and its proof is carried out in [21, Lemma A.3]. It then

follows from the interior Schauder estimates (cf. [15, Theorem 2.15]) that, for any E, C E,,
with n < m, maxE\th’T(t, -)| is bounded from above by a constant which only depend on the
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dimension of the problem, max, , ;. 7~ |kbT|) maximum and minimum of eigenvalues of A in E,,,
the distance from the boundary of F,, to the boundary of F,,, and finally ¢. In particular, the
uniform bounds in a) implies that this upper bound on maxE\th’T(t, -)| is independent of T'.
Therefore {kb7'(t,-); T > t} is equicontinuous in E,,.

Now, h satisfies (2.9) for all ' > 0 and = € E,,. Moreover, we have seen from b) that {h(T,-); T >
t/2} is uniformly bounded in E,,. It then follows from [29, Theorem V.3.1] that, for any E,, C E,,
with n < m and T > t, maxz—|VA(T,)| is bounded by a constant which only depends on the
dimension of the problem, uniform bounds for A in b), the minimum and maximum eigenvalue of A
in E,,, distance from boundary of E,, to boundary of E,,, and finally t. Therefore, {h(T\,-); T >t}
is equicontinuous in FE,, as well. Il

Remark 4.8. For later development, we record from the previous proof that {h(T,-);T > t} is
uniformly bounded and equicontinuous on FE,, for any n.

With these preparations we are able to prove Theorems 2.9 and 2.11.

Proof of Theorem 2.9. Suppose that the convergence in i) does not hold, then there exist € > 0, F,,,
and a sequence (1;); such that supp_ f57i(2) > € for all i. Owing to Lemma 4.7, the Arzela-Ascoli
theorem implies, taking a subsequence if necessary, ¢ converge to some continuous function f
uniformly in E,. Note that supg_ | foTs — f| +supg f > supp, ftTi. Sending T; — oo, the uniform
convergence and the choice of f“¢ implies sup B, f (x) > €. Since f is continuous, there exists a
subdomain of D C FE, such that f > €¢/2 on D. However, this contradicts with Proposition 4.6
when the bounded convergence theorem is applied to the family of functions (f%7'Ip)sen.

To prove the statement i), utilizing (2.9) and applying Ito’s formula to h(T — -, X.), we obtain

t u
sup |h(T,z) — h(T — u, Xy,)| < ;/ (VR)Y' AVK(T — s, Xs)ds + sup / (Vh) adW,
0 0

0<u<t 0<u<t

Taking the I@’I—expectation on both sides and using Burkholder-Davis-Gundy inequality, we obtain

sup B* [ sup |h(T,z) — h(T — u,Xu)|]
En 0<u<t

2

t t
< % sup E* {/ (VR)Y' AVIT — s, Xs) ds} +c (sup E® [/ (Vh) AVR(T — s, X5) ds])

— 0, asT — oo, for any E,,
where the last convergence follows from i) and A < A/k. O

Proof of Theorem 2.11. The proof of Theorem 2.11 follows a similar argument as those presented in
the proofs of [26, Proposition 4.3 and Theorems 1.3, 1.4, 4.1], and hence only connections to those
proofs are given. Regarding [26, Proposition 4.3], for constants S,T > 0, using (4.5) at t =S+ T

and 7 = S it follows that
fe [eﬁh(T,XS)} < tMT+52).

Furthermore, (2.4) implies, for any fixed T > 0 that (T, z) < ¢o(x) — 0(x) + Cr for some Cr > 0.
This, combined with Proposition 2.3 iii) (with ¢ = ¢g) imply that e£*(T) € L1(E, ) for any fixed
T > 0 and hence Remark 4.2 7i7) implies

im i [oER(TXs)] / SBT) 5 () dy.
e o] - |
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Thus, the conclusions of [26, Proposition 4.3] follow by repeating their proof, noting that the role
of —kjw(t, ) therein is now played by sh(t,z) here. Now, i) in Theorem 2.11 follows by repeating
the argument of [26, Theorem 4.1] and using Remark 4.8.

As for part 4i) in Theorem 2.11, we essentially repeat the steps within the proof of [26, Theorem
1.4]. Namely, using interior estimates for quasi-linear parabolic equations in [29, Theorem V.3.1]
and Remark 4.8 it follows that there are constants C,, > 0 and v € (0, 1) such that for x,y € E,
and s,5 > t: |Vh(s,y) — Vh(5,2)| < Cpls — §|7. Now, define

(4.17) f(n,T) ::/ (Vh) AVR(T,y)m(y) dy.

It thus follows that f(n,T) is uniformly continuous in (¢, 00). Next we claim that lim7t f(n,T) = 0
for any n. Indeed, recall from Proposition 4.6 that

T—oo

t
0= lim | E* [/ (VR)Y' AVK(T — s, Xs) ds] m(x)dx =0, foranyt> 0.
E 0
Applying Fubini’s theorem and (4.15) to the previous convergence yields

(4.18) lim /t f(n, T —s)ds = 0.
0

T—o0

Therefore, as shown in the proof of [26, Theorem 1.4], that f(n,T) — 0 follows by the uniform
continuity of f(n,-). The remaining steps of the proof are identical to those in [26, Theorem 1.4]. O

5. PROOFS FROM SECTION 3

5.1. Proof of Theorem 3.3. Theorem 2.11 has been proved in [26] when E = R? and A =
I;. When A and A are local elliptic satisfying Assumption 2.1, the same calculation as in [26,
Proposition 5.1] shows, when Assumption 3.1 holds, there exist ¢y, C' > 0 and 0 < ¢ < ¢ such that
¢o = (c/2)|z|? for any ¢ € (c,¢) satisfies

1 1 - K
Slool(z) = §cTr(A) + 50256//11‘ +cx’'B+V <C+ (galcz — pic — 71> 1z < C —eolz’, zeRY

Indeed, for 1 > 0 one can take 0 < ¢ < ¢ for ¢ sufficiently small, while for v; < 0,3; > 0 one can
use part iv — b) of Assumption 3.1 to find 0 < ¢ < ¢. Therefore, Assumption 2.2 is satisfied and
Assumption 2.6 holds when 6 > 1 satisfies ¢d < ¢. On the other hand, Assumption 3.1 i) implies
that A is bounded and B + AV¢q has at most linear growth. Thus the coordinate process does
not explode P?0%-as. for any = € R?, implying that Assumption 2.4 holds. As for Assumption
2.8, take g (x) = —(¢/2)|z|? for & > 0, the second convergence in (2.10) and the first inequality in
(2.11) clearly hold. For the second inequality in (2.11),

§l060] + a(dg0 — o) < C — (€0 — (/2) (3¢ + )|z,
which is bounded from above by C' when « is sufficiently small. Finally, it remains to find ¢ such
that the first convergence in (2.10) is verified. To this end,

1 1 —
§lto)(2) = —5Te(A) + 50" Ar — @' B+ V = O + 5 & Ax + (81 — y)lal,

where the inequality is a result of A > kA and Assumption 3.1 i)-iii). When £; > 0, choose

¢ sufficiently large such that ¢8; > 2. When ;3 > 0 and f; < 0, Assumption 3.1 iv-a) yields
(k/2)E2' Az > (k/2)E(az|r|*—Cs3). Thus choose ¢ sufficiently large such that (k/2)&as+EB1—v2 >
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0. In conclusion, all assumptions of Theorem 2.9 are satisfied, hence statements of Theorems 2.9
and 2.11 follow.

5.2. Proof of Theorem 3.9.

5.2.1. Preliminaries. The assumptions of Theorems 2.9 and 2.11 are now verified via Assumptions
3.4 — 3.6, which are enforced throughout. To ease notation, the argument x is suppressed when
writing any function f(z); for example, Tr(f(x)zg(z)z) will be written as Tr(fxgx). The following
basic identities and inequalities are used repeatedly. The first one concerns derivatives of the
functions log(det(x)) and ||z|| respectively, and holds for 4,5, k,l =1, ..., d:

Dijlog(det(z)) = x5t Dijy gy log(det(z)) = —(@ ™ alz™)n,

(5.1) T 5 -~
_ g 2 _ OG5, (k) Tij Tkl
Pl = Pepaolel = =™ = e

where d(;5) () = 1 if i = k,j = [ and 0 otherwise. Next, we give an identity, which follows from the
discussion below (3.11):

d
(5.2) Z 0;; Tr <aij(akl)’) Y = 4Tr(f1g0); 0,9 € Sle_,

ik l=1
Now, (5.1), along with the definitions of £ and H; from (3.6) and (3.12) respectively, give
(5.3)
1 2
Llog(det(@)) = Ho:  £(Jal) = 7 (mfcc» +T(f)Te(g) — o Te(fage) + mm)) .
On the other hand, for 8,,7n € S‘Lr:

(5-4) Te(0y) < Te(0)Te(v);  Te(@une) < Te(0) Te(n)l|v|*.

Note that the first inequality in (5.4) also holds for 6 € S‘i L and ) € M¢ with ¢ 4 ¢’ € Si 4
This is because Tr(6v) = (1/2)Tr(0(¢ +¢')) < (1/2)Tr(6)Tr(y + ¢') = Tr(0)Tr(¢)). Lastly for any
constants a,b > 0,

(5.5) lim —alog(det(d)) + b||6]| = oc.

d
9057 ,

This convergence is clear when det(d) | 0. When ||6| 1 oo, since det(d) = Hle Ai and |0 =
\/ Z?Zl AZ, where ();)i=1..q > 0 are the eigenvalues of #, counting multiplicity, then (5.5) follows
from Jensen and Hélder’s inequalities.

5.2.2. Proofs. Let us first show § in (3.8) is locally elliptic.

Lemma 5.1. Let Assumption 3.4 i) hold. Then for each E, C SLF, there exists ¢, > 0 such that

d
Z 0i; Tr(a (a®))(2)0 = ATr(f0g0)(x) > ¢,||0]|?, for any z € E,,0 € S
3,9,k l=1
Proof. Applying (5.2) for = ¢ € S1, gives Z?,j,k,lzl 0;;Tr (a¥ (ak)’) Oy = 4Tr(f6g0). Now,
Tr(f0g0) = (vechd) (f @ g)(vech), cf. [24, Chapter 4, Problem 25], where vec(d) € R? is obtained
by stacking columns of § on top of one another. From [24, Corollary 4.2.13] it follows that f ® g is

positive definite if both f and g are positive definite. Hence Assumption 3.4 i) ensures the existence
of ¢, > 0 such that (vecd)'(f ® g)(vech) > c,|vech|? = c,||0]|* on E,, proving the result. O
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Let us now study the Lyapunov function ¢g. Recall ¢y and the cutoff function 7 from (3 14) and,

for given ¢ > 0 set ¢\ (z) := —clog(det(z)) and ¢\” (z) = el|z||n(||z||) so that ¢ = ¢\" +a )+C’
We first derive an upper bound for §[¢o).

Lemma 5.2. There exists a constant C, depending on ¢ but not on ¢, such that

(5.6) 3[¢0] (.%') < —QH4EQ($) — (’Yl + e — 4%0&162) HxH H{||xH>n0+2} + C, fOT T E Sle_
Proof. By the definition of § and Assumption 3.4 ii):
(5.7)

_ d
K i
Slool < £of) + LoF +5 D (Dié” + Dispyd?)Tr (a¥(a") ) (Dt + Dyl + V.

d
+ Lo + 7 Y Dol T (a¥(@)) Dol +

1,7,k,l=1
In what follows, each term on the right-hand-side will be estimated. First, (5.2), (5.3), and the
definition of Hy in (3.12) yield:

d
(5.8) £6 +7 > Dol T (a(aM)) Dayol) = ~cHe.
1,5,k,1=1

As for ¢, when |lz]| > no + 2, ¢{” (z) = ||z|| and hence by (5.2) and (5.3):

d
Lo +7 > Dot Tr (a7 (a™)') Dynyf”
(5.9) LgkI=1
gom 2 '

Assumption 3.5 is now used to refine the right-hand-side. Since Tr(f’g) < Tr(f)Tr(g) for f,g € SiJr
(cf. (5.4)), Assumption 3.5 7) yields

ol C(Tr(f'g) + Te(f)Te(g)) < 2047, ]l > no +2.

Lemma 5.1 implies Tr(fxgz) > 0. This, and Tr(fzgz) < Tr(f)Tr(g)|x||? (cf. (5.4) again) gives, in
light of Assumption 3.5 i), that

¢ [4cr 2 o
m <||1'H — ||$H2> Tr(frgz) < 46%Roq ||z,  ||z|| > no + 2.
Lastly, Assumption 3.5 ii) gives
_ 016
WTI(B/ x) < —pBicllz|| + p——1 lz|| > no + 2.
Putting previous three estimates back to (5.9) yields
d
2 —_ 2 i 7 _ R

(5.10) Lo +7 > Dyt Tr <a,”( ) ) Dydl? < C — (812 — 4R @) ||,

2,9,k l1=1
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when ||z]| > ng + 2. Here C' is a constant which depends linearly on ¢.

On the other hand, when ||z|| < ng + 2, since (;562) and its derivatives are bounded for bounded
lz||, one can show the left-hand-side of (5.9) is bounded from above by a constant. Combining
previous estimates on different parts of Si . yields

d
2) | — 2 ij 2 o
(511) Loy +F Y. Dyyol Te (a](akl)’> Dyd) < € — (B1e — 47ar@®) ||z Ljoysno-2)-
ij k=1
Now putting (5.8) and (5.11) back into (5.7), and utilizing the upper bound of V' in Assumption
3.5 i), we confirm (5.6). O

The upper bound in (5.6) is then used to identify the Lyapunov function and verify its properties.

Lemma 5.3. For the € of Assumption 3.6, there exist C' > 0 and 0 < ¢; < ¢, such that for any
0 < c < €/(4R) and ¢ < T < ¢, the function ¢o in (3.14) is nonnegative on ST, and satisfies
limp 4o SUP st \E, Slool(x) = —o0. Therefore, Assumption 2.2 holds.

Proof. Since Tr(fzgx) > 0 for x € S¢,, Hy is decreasing in 6. Hence for ¢ < ¢/(4%), (5.6) gives
Flo] < —cHe(z) — (1 + B¢ — 48an@) [|2]| Lgjasnor2y + C-

Assume for now that there exist ¢g > 0 and 0 < ¢; < ¢, such that

(5.12) Y1 4 Bi€ — 4R @ > €y, for any € € (¢, ).

For such ¢ and ¢, the previous two inequalities combined imply

(5.13) Sldo] < —cHe(z) — eollz[| Ijz|>ng+2y + C-

By Assumption 3.6 i), §[¢o] < C — eol|z| Lfjjz|>no+2y — —00, as [[z]| T co. Moreover, Assumption
3.6 74) implies limgeg(y)y0 He(z) = oo and thus §[¢o] < C —cH(v) — —o0 as det(x) | 0. Combining
these two cases, the assertion limy oo SUPesd \B, o] () = —oo is confirmed.

To show (5.12), we use Assumption 3.5 v). When 1 > 0 one can take ¢g = v1/3 and ¢; = ¢;,/2 for
some small enough ¢, > 0. When 73 < 0 and 8, > 0, B% 4+ 16Ra17y1 > 0 holds due to Assumption
3.5 iv — b). Then there exists some sufficiently small €y such that £ — 16Fai(—y1 + €) > 0.

+ > 0 are two roots of

Hence one can take any ¢ < ¢, satisfying ¢~ < ¢ < ¢, < ¢, where ¢
—4Ra1c® + f1e+ 71 —€eo = 0.

Finally, it follows from (5.5) that ¢y can be made nonnegative by adding a sufficiently large
constant C' to gﬁél) + qﬁéQ).

O

Corollary 5.4. The following statements hold.
i) When ¢ < €/(8k), the martingale problem for £% is well-posed on Sle_. Hence, Assumption
2.4 is satisfied.
ii) There exists 6 > 1 such that limp;o SUDesd \B, Sloo](x) = —oo. Hence Assumption 2.6 is
satisfied.

Proof. Part ii) follows from (3.14) and from Lemma 5.3 by taking 6 > 1 such that ¢ < ¢/(4k) and
¢ < T < ¢
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To prove part i), note that £%¢g = Lo + Z?,j,k,l:l D(ij)qﬁozé_l(ij)’(kl)D(kl)gbg, an upper bound
for which is obtained by following (5.7), replacing k by 2k and disregarding V. Then the same
estimates leading to (5.8) and (5.11) yield
(5.14) L% (¢o)(x) < —cHsre(x) — (612 — 8Fon @) ||| Ifjzy>no+2} + C-

From (5.5), ¢o(x) 1 oo as either det(z) | 0 or ||z|| 1 co. If we can find A > 0 such that (£%(¢g) —
Apo)(z) <0,z € S‘i +/En, for some n, then the martingale problem for L% is well-posed; cf. [36,
Theorem 6.7.1]. To find such a A, (5.14) implies
L%y — Ao < —cHsre(x) + Aclog(det(x)) — (81 — 8Fane + Aoz Ifju|>ne+2} + C;
< Aclog(det(x)) — (516 — 8%0&152 + )\E)Hl’” H{Hx||>no+2} +C,
where the second inequality follows from Hgz. > H, for 8kc < €, which is bounded from below

on S‘_Lr by Assumption 3.6 i). For large enough ), 31¢ — 88a1¢? + A¢ > 0. Then, using (5.5), we
conclude that £ ¢y < \¢g outside a sufficiently large FE,,. O

Let us now switch our attention to 1y in Assumption 2.8.

Lemma 5.5. For k,k > 0 set
do(w) = klog(det(z)) — kl|z[ln(|z]), «eSi,

Recall the constant c¢1 from Assumption 3.6. Then, there exists a 5 > 0 such that for all k > B
and k > c1t, (2.10) is satisfied.

Proof. limx_)agi+ to(xz) = —oo holds by (5.5). Since ¢p > 0, this yields hmx‘—}@Si+ (o — ¢o)(x) =
—o0. Hence it suffices to find k, k > 0 such that limx%6§i+ Slvo)(z) =

Set 1" (x) 1= klog(det(z)) and W(m) :— —k||#|ln(|=||). By Assumption 3.4 i):

o] o8 + £pf? +

5.15 d
o +§ > ( ¥ + Dy (2)> r(a”(a")') (D(kz)%JrD(kz)wéQ))-

iyjykylzl

From (5.3), for ||z|| > no + 2,

(5.16) Ly = <Tr( #'9) + Tr(f)Tr(g) — ——=Tr(frgz) + Tr(B'a:)) .

2
B ]2

For the right-hand-side, Tr(f’g) < Tr(f)Tr(g) for f,g € S%, and Assumption 3.5 i) imply that
Te(f'g) + Tr(f)Tr(g) < 2aq]|z||. Combining the previous inequality with Tr(fzgz) > 0 and As-
sumption 3.5 ii), we obtain

L > C +Epullzl|  for ||z > no + 2.

On the other hand, when ||z| < ng + 2, similar to the discussion before (5.11), one can show
Ew(()Q) > (. Therefore, the previous two estimates combined yield

(5.17) ,Clﬂ(()Q) >C+ EﬁleH H{||a:||>n0+2} for x € SiJr
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Bypassing V for the moment, the quadratic term on the right hand side of (5.15) is estimated. We
only consider {z : ||z|| > ng + 2} since the quadratic term is nonnegative and we are looking for a
lower bound. Here, w(()2) () = —k||z|| and hence (5.1) and (5.2) give

d
Z (D(U % +D 13)1/’0 ) (aij(akl)/) (D(kl)wc()l) + D(kl)w(()z)>

i,5,k,l=1
AR
(5.18) = 42Te(f2 g2 ) — H H (72 gr) + s Tr(frg)
*2
> —8kkay + 4——Tr(frgx),

]2

where the inequality holds due to Tr(fz~tgz=t) > 0, Tr(fo tgz) < Tr(f)Tr(x~tgz) = Tr(f)Tr(g)
(cf. the discussion after (5.4)), and Assumption 3.5 7). Using Ed}(()l) = kHy from (5.3) and putting
(5.17), (5.18) back to (5.15) and utilizing Assumption 3.5 iii), we obtain

o F
2
Consider when ||z|| is large. When $; > 0, Tr(fzgz) > 0 and the uniform lower bound for Hy(x)
on SﬁlrJr in Assumption 3.6 ¢) imply 1imﬂ§“TOO Slbo](x) = oo for E > v9/61. On the othg hand,:zvhen
B1 <0, Assumption 3.5 iv — a) gives 2k" kTr(fzgz)/(||z]|?) + (k1 — Y2)|z|| > C + (2k"kas + kB1 —
¥2)||z||. Then taking k sufficiently large gives lim, 100 §[d0](2) = oo.
Consider now when ||z|| < ng +2 but det(x) } 0. Note kHo+V = (Ho +1V) /e1 + (k— ¢y ') Ho.

It then follows from Assumption 3.6 i) and iii) that limge(y)0 KHo(x) + V(2) = oo when k > et
hence limgeq ()10 §l¢o](z) = 0o. Therefore, the first convergence in (2.10) is confirmed. O

S0l > kHo + Vg <not2 + Tr(frgz) + (kb1 — y2) |zl | Tgjaysno+2y + C-

Finally, it remains to verify (2.11).
Lemma 5.6. For the § from Corollary 5.4 ii), there exists o > 0 such that (2.11) holds.
Proof. Using Lemma 5.5 and the construction of vy, ¢g, for any K > 0

Yo(z) + Ko(z) = C — (Kc — k) log(det(x)) + (Kt — k)||z|In(||=]]).

That the first inequality in (2.11) for large enough K now follows from (5.5). As for the second
inequality in (2.11), the same estimate as in (5.13) yields the existence of ¢y > 0 such that

Flodo)(z) < —dcHe(z) — €ol|||1z)>ner2 + C.

Then choose o > 0 such that «(6¢ + k) < € and a(1 + k/(dc)) < co. It follows from the previous
inequality and Lemma 5.5 that
§lo¢o] + (0o — o) < —dcH () — a(dc + k) log det(w) — (eo — a(d + k))[|2[[ 1}z )>net2 + C
< —dc[He(z) 4 cologdet(z)] + C,
which is bounded from above when det(z) is small, due to Assumption 3.6 7). If det(z) is bounded

away from zero, both H¢(x) and logdet(x) are bounded from below. Combining the previous two
cases, we confirm the second inequality in (2.11). O
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APPENDIX A. GOING BETWEEN Si+ AND F

This appendix shows how to consider (3.9) and (3.10) as special cases of (1.2) and (1.3), respec-
tively. Set d = d(d+1)/2and let I : {1,2,...,d} — {(i,j) : i=1,...,d;j =1i,...,d} be a bijection
such that I(p) = (p,p) for p = 1,...,d. If I(p) = (i,7), we write I'(p) = (j, 7). Define £ : S% — R4
via £(x), = Tr(p), forp=1,... ,d,z € S Thus, ¢ maps upper triangle entries of x to entries in
the vector /(x). Denote by /=1 the inverse of .

Set B = E(Si +)- It can be shown that E is an open, convex subset of R? which can be filled up
by open, bounded sets (F,)nen with smooth boundaries. Such E,, is created by smoothing out the
boundary of the set {y € E : det({"1(y)) > 1/n, |y| < n}.

Given X following (3.5), one can then verify that Y := ¢(X) satisfies

dY, = B(Y;) dt + a(Y;) dvec(Wy),
where, for y € F
By(y) = Bripy(t' (), p=1,....d,
ipg(y) =y W), p=1,..dg=1,...,d"

Here, J : {1,...,d*} — {(i,j);i,j = 1,...,d} is given by J(1) = (1,1),...,J(d) = (d,1),J(d + 1) =
(1,2),...,J(2d) = (d,2),...,J(d,d) = d?.

Define A := ad’ and ﬁpq( ) = ZI( ), 1(q) (£ Ly)) for p,q =1,- ~~dandy € R?. Then Assumption
3.4 for A and A is equivalent to Assumption 2.1 for A and A Indeed, for any £ € Rd denote
0 = ¢71(&). When y = {(z),

d d
1Y ad) e =4 Y &Tr (/P @)) (),

p,q=1 pyq=1
d d d 1-1
=4 Z 0“Tr(a ( kk ekk + 42 Z 9“TI‘ l)/)(x)ek‘l
i,k=1 =1 =1 k=1
d j—1 d d j—1 d I-1
+4Z ZQUTI“ l] 0kk+4z Zzez] )( )le
j=1i=1 k=1 j=11i=1 =1 k=1
d d
= ) (20:)Tr(a” (™)) () (20kx) + > D (205)Tr(a” (a*)) (2)64
ik=1 i=1 k=1
Ik
d d
+ Z Z@ijTr(aij(akk ) 29kk Z GUTI" Zj kl) )( )le
i,j=1 k=1 i,j=1 k,l=1
i i#5, h#l
d
= > 0y (a¥(@Y) (@),
4,9,k 0=1

where the third identity follows from a” = a/%, and P8 € S¢ is obtained by doubling all diagonal
entries of . Note that |02 < [|”8]|* < 2||0||?>. Therefore Assumption 3.4 i) for A is equivalent to
Assumption 2.1 ) for A. The equivalence between Assumption 3.4 i1) and Assumption 2.1 i7) can
be proved similarly.
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Now let us connect operators § in (1.1) and (3.8). Let g be a smooth function on S¢ , and define
g:E — Rby g(y) := g(x) where z = £ (y). Calculations show that d,g(y) = Dy»g(¢~'(y)) when
I(p) is diagonal, or (Dy(,) + Dy (p))g(¢" (y)) when I(p) is off-diagonal. It then follows that

d d d j—1 d j—1
> Byw)di(y) =Y Bii(x)Ding(x) + > Y Bij(z)Dijyg(x) + > Y Bij(x)Djiyg(x)
p=1 i=1 7j=11i=1 7j=11i=1

d
= 3" By(@)Dy9(a).

i.j=1

where the second identity above follows from B;; = Bj;. A similar (but longer) calculation using

aij = aji and A(ZJ%(R

A(ji),(lcl) = A(ij),(lk) (Cf. (37)) shows

=
d d -

> (@d), W)g(y) = > Tr(a”(@"))(@) Dy 9 (@),
p,q=1 i,7,k,[=1

d . d
Z pG(y) Apg(¥)9q9(y) = Z Dij9(x) Ay, iy (2) Dy 9 ().

p,q=1 i,5,k,1=1

Write V(y) = V(z) where & = ¢~!(y). The previous three identities combined yield §[g](x) =
5[g](¢(x)). Therefore, (3.9) and (3.10) can be considered as special cases of (1.2) and (1.3), respec-
tively.
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