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SUMMARY

1. There are increasing demands to predict ecohydrological responses to future changes

in catchments but such predictions will be inevitably uncertain because of natural variability and

different sources of knowledge (epistemic) uncertainty.

2. Policy setting and decision-making should therefore reflect these inherent uncertainties in both

model predictions and potential consequences.

3. This is the focus of a U.K. Natural Environment Research Council knowledge exchange project

called the Catchment Change Network (CCN). The aim is to bring academics and practitioners

together to define Guidelines for Good Practice in incorporating risk and uncertainty into

assessments of the impacts of change.

4. Here, we assess the development of such Guidelines in the context of having catchment models

of everywhere.
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Introduction

Ecohydrological processes in catchments are complex.

They are forced by inputs that are not always well known

that induce a response in a system of which characteristics

are difficult to measure, changing over time, and difficult

to estimate (particularly in the subsurface). The hydro-

logical processes driving transport processes are both

non-stationary and not that well understood. The biogeo-

chemical processes affecting water quality in surface

waters are not that well understood. The impact of those

processes on biodiversity and ecological systems is also

not well understood. Faced with such a range of uncer-

tainties in knowledge and the natural randomness of

environmental forcing, there is a real question as to

whether the predictions made by models of catchment

processes, and the way in which they might change in the

future, might be useful in informing management deci-

sions about future investment to effect improvements in

water quality and ecological status.

Indeed, it has been argued (for example in the post-

normal science perspective of Funtowicz & Ravetz, 1990)

that sensible management for sustainability in an uncer-

tain world should not be based on prediction but on

consensus about action. Faced with the very real uncer-

tainties about catchment responses, management should

be treated as a social and political process. The scientific

evidence simply cannot be sufficiently convincing in the

context of so much uncertainty. It is therefore a better

strategy to try to get consensus about robust and adaptive

management strategies without resort to model predic-

tions.

We think that this argument will generally fail on two

counts. First, it will be very difficult to get a consensus (or

even compromise) between the many stakeholders in the

catchment ecohydrological system; second, sensible

investment strategies (including robust, adaptive and

precautionary strategies) require some sense of the effects

of a given management input. In general, the more the

investment, the more the effect will be, but how much

input will be required to have the required effect and over

what time scale? These questions are current given the

financial constraints in developing the river basin man-

agement plans required to achieve good chemical and

ecological status in the implementation of the Water

Framework Directive (WFD) across the European Union.
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Models might then still have a role to play in policy

setting by providing a means to predict the impact

resulting from a management or investment decision.

They do not necessarily have to be complex models of all

the various processes involved but they do have to allow

for the uncertainty in the modelling process. In fact, as

will become more apparent later, the very process of

discussing the assumptions of a predictive tool, and the

assumptions about the uncertainties involved, can in itself

become a useful component of the social and political

process that is catchment management. What is required

is a framework for making this happen. Here, we will

suggest that an appropriate framework is provided by the

creation of models of everywhere and the development of

Guidelines for Good Practice to shape that process.

Models of everywhere and everything

We now have the computer power to be able to model the

hydrology and water quality of the whole of the United

Kingdom. The Grid to Grid (G2G) model is being applied

nationally in the United Kingdom for flood risk assess-

ment (Bell et al., 2007). The PSYCHIC model is being used

to identify the risk of high phosphorus loads from

agricultural land in a number of U.K. catchments for

WFD planning (Davison et al., 2008). The hydrology of

Denmark is being modelled (Henriksen et al., 2008).

Spatial data sets are becoming more commonly available

(including projections of future meteorological variables

at the 5-km scale in U.K. Climate Predictions 2009

(UKCP09), see Kilsby et al., 2007). Models of everywhere

are becoming more and more computationally feasible.

On the other hand, it is a hydrological modelling

aphorism that every catchment is unique, making region-

alisation or the prediction of the responses of ungauged

catchments difficult (for an extended discussion, see

Beven, 2000). That is for the water: it is even more so for

water quality and ecological variables. So, given this

uniqueness, is it even useful to think in terms of models of

everywhere and everything in catchment management

when such models will inevitably be wrong in some

places or some of the time?

In a recent paper looking ahead to the availability of

models of everywhere (Beven, 2007), it was argued that it

is indeed useful, and even necessary, to think in terms of

models of everywhere. It will change the nature of the

modelling process, from one in which general model

structures are used in particular catchment applications to

one in which modelling becomes a learning process about

places. In particular, if a model is obviously wrong in its

predictions about a place, then this will be an important

driver to do better. This has already been seen in

Denmark, where the national hydrology model is already

in its fourth generation (in almost as many years) because it

was deemed to be wrong in its implementation in some

parts of the groundwater system. Every successive gen-

eration should be an improvement. The uncertainties in

the modelling process will not, of course, disappear

(particular with respect to future boundary conditions)

but they may be gradually constrained. If, in the words of

George Box, all models are wrong but some might be

useful, then we would hope that models of everywhere

would become increasingly useful to the management

process as the representation of processes in particular

places is improved.

In fact, this learning process about place is a way of

doing science in a complex system. Models can be treated

as hypotheses about how the catchment system functions

(Beven, 2002, 2009, 2010). Those hypotheses can be tested

within the limitations of the uncertainties in available data

and either survive locally or be rejected. As new data

become available, further tests can be carried out as part

of the learning process. If the models survive some agreed

testing process, then they can be retained for use in

prediction. Uncertainty might mean that multiple models

survive. Some of these might be poor models that have

survived by chance (a false-positive or Type I error in

hypothesis testing), while we might also reject good

models because of poor data (a false-negative or Type II

error). Ideally, we wish to minimise both Type I and Type

II errors, but the nature of the epistemic errors in the

modelling process means that this is very difficult to

achieve securely (Beven, 2010). Such hypothesis testing is

well developed within a statistical framework when we

can consider that the sources of uncertainty involved are

fundamentally random in nature (they are aleatory in

nature). This is not, however, the case in environmental

modelling (even if it is often assumed to be the case for

statistical convenience) because so many of the sources of

uncertainty result from a lack of knowledge. Such errors

are often referred to as epistemic errors. They might be

reduced in future by more detailed study, or better

measurement techniques, or a breakthrough in the under-

standing of controlling processes, but they might not be

properly represented by a simple statistical model or

likelihood function. In particular, epistemic errors can

lead to model residuals that have non-stationary charac-

teristics that are not easily handled within a statistical

framework. We can therefore only generally say that those

models that have survived a testing process up to now are

the best we have available for prediction, subject to future

testing as new information becomes available.
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Hypothesis testing, epistemic and aleatory errors

Hypothesis testing is generally treated as a problem in

statistics. Statistical theory including Bayesian methods,

however, depends on being able to assume that all

sources of error are aleatory, or can be treated as if they

were aleatory. Aleatory errors can be considered to be

randomly drawn from some underlying distribution. If

this is the case, then assumptions about the error model

lead to a well-defined likelihood function and a proba-

bilistic interpretation of uncertain predictions of future

behaviour. This is, in the terminology of Beven (2006),

the ideal case. The problem is that ecohydrological

models are not ideal in this sense because they involve

multiple sources of epistemic errors. Epistemic uncer-

tainties result from lack of knowledge about the system

under study, which might involve lack of knowledge

about inputs, processes or observations with which a

model is being compared. Epistemic errors in environ-

mental modelling are not easily treated as if they were

aleatory (see the example in Table 1). This is not just a

difficulty in applying formal statistical methods as

suggested by O’Hagan & Oakley (2004) or more recently

in the reification approach of Goldstein & Rougier (2009);

the list of epistemic errors is long and this is a generic

problem.

Table 1 Sources of uncertainty with random (aleatory) and knowledge (epistemic errors) in the case of flood risk mapping

Source of uncertainty Aleatory errors Epistemic nature

Design flood magnitude What is the range of sampling variability

around underlying distribution

of flood magnitudes?

Are floods generated by different types of events?

What frequency distribution should be used for each type

of event?

Are frequencies stationary?

Will frequencies be stationary into the future?

Conveyance estimates What is the random sampling variability

around estimates of conveyance at

different flood levels?

Is channel geometry stationary over time?

Do conveyance estimates properly represent changes in

momentum losses and scour at high discharges?

Are there seasonal changes in vegetation in channel and

on floodplain?

Is flood plain infrastructure, walls, hedges, culverts etc.

taken into account?

Rating curve interpolation

and extrapolation

What is standard error of estimating

the magnitude of discharge

from measured levels?

Is channel geometry stationary over time?

What is estimation error in extrapolating rating curve

beyond the range of measured discharges?

Does extrapolation properly represent changes in momentum

losses and scour at high discharges?

Flood plain topography What is the standard error of

survey errors for flood plain topography?

Are there epistemic uncertainties in correction algorithms

in preparing digital terrain map?

Model structure How far do results depend on choice of model structure,

dimensions, discretisation and numerical approximations?

Flood plain infrastructure What is the random error in specifying

the positions of elements, including

elevations of flood defences?

How should storage characteristics of buildings, tall

vegetation, walls and hedges in geometry be treated?

Are there missing features in the terrain map

(e.g. walls, culverts)?

Observations used in model

calibration ⁄ conditioning

What is the standard error of estimating

a flood level given post-event

survey of wrack marks or gauging station

observations?

Is there some potential for the misinterpretation of

wrack marks surveyed after past events?

Are there any systematic survey errors?

Future catchment change – What process representations for effects of land

management should be used?

What future scenarios of future change should be used?

Are some scenarios more likely than others?

Future climate change What is the variability in outcomes

owing to random weather generator

realisations?

What process representations in weather generators

should be used?

What future scenarios of future change should be used?

Are some scenarios more likely?

Fragility of defences What are the probabilities of failure

under different boundary conditions?

What are the expectations about failure modes and

parameters?

Consequences ⁄ Vulnerability What is the standard error of estimation

for losses in different loss classes?

What knowledge about uncertainty in loss classes and

vulnerability is available?
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So what are these epistemic errors in the case of

ecohydrological models in assessing the impacts of

catchment change? They include the following:

1. Non-stationarity in the errors of estimates of inputs to

the catchment system.

2. Unknown temporal variability in the system charac-

teristics as represented by the model parameters.

3. Unknown temporal and spatial variability in control-

ling processes.

4. Indecision about how some processes should be

represented mathematically.

5. Non-stationarity in the errors associated with obser-

vations with which model predictions are compared.

6. Lack of commensurability between observed and

predicted variables because of scale issues or simple

difference in meaning.

The recognition of such errors is not new. They are

analogous to what Knight, 1921 called the real uncertain-

ties, not readily amenable to a statistical analysis (or in

his case, what an insurance broker would be prepared to

take odds on). Epistemic uncertainties are an inherent

part of modelling environmental systems and result in

what Beven (2006) called non-ideal cases. Experience

suggests that treating epistemic errors as if they were

aleatory will generally lead to over-confidence and bias

in how well a model represents a system (Beven, Smith

& Freer, 2008). In some cases, lack of knowledge of the

boundary conditions for the catchment system (rainfalls,

discharges, nutrient inputs, species migration etc.)

might mean that information for some periods or events

might not be informative about whether a model is a

good representation or not. Such effects can also persist

for some time (such as when a poor rainfall estimate for

an event affects how well a hydrological model can

predict discharges for that event and subsequent

events). This is not an uncommon situation in hydro-

logical data. This then suggests that some alternative

approach is required to test models as hypotheses in a

way that reflects more properly the sources and nature

of non-statistical error.

A limits-of-acceptability approach to testing models

as hypotheses

However, although epistemic errors are endemic to

environmental models, there is no formal theory for

dealing with them. Effectively, there can be no formal

theory for dealing with epistemic error, because we do not

have adequate knowledge of the nature of the errors. If we

had adequate knowledge, we would have a better idea of

how to deal with them and they would no longer be

epistemic (but still would not necessarily be simply

aleatory). This is the core dilemma in modelling catch-

ment systems for decision-making. Will ignoring episte-

mic errors lead to too many Type I errors of accepting

poor models based on the available data, so that future

predictions will be compromised and might lead to poor

decisions? In such a situation, would it not be better to

formulate decision-making in a way that does not depend

on model predictions?

We do not know the answer to these questions because

we have not traditionally considered them in this way.

There has been no framework for doing so, and no way of

deciding when model predictions might be informative

and when they might not. Both Frequentist and Bayesian

statistical methods depend on formulation of a model of

the prediction errors as if they were, at base, aleatory. Part

of such a model might be a structured transformation

(such as the removal of a constant bias or other model

discrepancy function, e.g. Kennedy & O’Hagan, 2001), but

both forms of statistical analysis assume that the model is

correct and that every prediction error will be informative

in the model conditioning process. This may not be the

case: in these complex systems with poorly defined

inputs, epistemic errors may mean that some prediction

errors might be disinformative (see Beven et al., 2008). A

new approach is required.

The first steps are just being taken to provide such a

framework and working methodology. The first stage is to

evaluate model performance against past data in a way

that reflects the sources of uncertainty in the modelling

process when the uncertainties are not always probabilis-

tic. Beven (2006) suggested an approach based on spec-

ifying the limits of acceptability around some

observational data within which we would wish model

predictions to lie (see Liu et al., 2009; for a case study in

rainfall-runoff modelling; Dean et al., 2009 for a case study

in water quality modelling; and Blazkova & Beven, 2009,

for a case study in flood frequency estimation). Any

models that are acceptable in this sense would be used in

prediction; those that do not would be rejected. One nice

feature of this approach is that the limits of acceptability

can be applied to every available observation (or only

those of greatest interest), so that models are not evalu-

ated purely in terms of some global performance or

likelihood measure which can obscure relatively poor

performance about important features of the behaviour.

However, in setting such limits of acceptability, it is

important that we do not expect a model to perform better

than the limitations of the forcing data and the observa-

tions with which it is being compared, including potential

epistemic errors, so as to minimise Type II errors of
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rejecting models that might be useful in future prediction.

We will never be sure, of course, that in doing so we are

not also making Type I errors, but we will only be able to

make such an assessment as new observations become

available.

Setting limits of acceptability

Setting the limits of acceptability to reflect the potential for

epistemic uncertainties is clearly critical in this frame-

work. This means making decisions about the nature of

different sources of uncertainty while lacking sufficient

information to do so. That is the essence of epistemic

uncertainties. Setting limits of acceptability is therefore

difficult, but not one that should be ignored. In analogy

with statistical methodologies for uncertainty estimation,

there will be information about the nature of the relevant

uncertainties in the model residuals available from eval-

uations against calibration data. In statistical estimation,

these residuals are used to formulate a model of the errors

that is assumed to hold into the future for making

predictions. It is not generally necessary to try to disag-

gregate different sources of error but, as noted earlier,

there is a danger that future uncertainties will be under-

estimated by treating the model errors as if they are

simply aleatory.

This recognition does not, however, provide a means as

to what to do instead. Some assumptions about sources of

uncertainty will be necessary in setting appropriate limits

of acceptability in model evaluation, but the way in which

epistemic (non-stationary) errors in model inputs get

propagated in some nonlinear way through a non-error

free model and then compared with non-error free

observations means that the disaggregation of the contri-

bution of different sources of error is a poorly posed

problem and may be impossible (see, e.g. Beven, 2005). So

how should such assumptions be decided and later used

in model prediction when, even given some knowledge of

model residuals, there can be no unique to the charac-

terisation of sources of uncertainty?

Guidelines for good practice and stakeholder

involvement

One way forward in this situation, which presents some

advantages, is to agree upon assumptions by consensus of

the parties involved, both those setting up the model and

those who will use the model results. The advantage in

such an approach comes from the use of a simple,

transparent decision process as a communication tool

with users and stakeholders. If decisions about different

sources of uncertainty have to be agreed upon (or at least

be open to scrutiny and discussion), then a greater

understanding will develop on both sides about the

uncertainties essential to making a particular decision.

The resulting assumptions might well be quite wrong but

this might only become apparent in hindsight when

reviewing the process. Because of the nature of epistemic

uncertainties, some sources might also be left out of the

analysis but again this might only be evident in hindsight.

The essence of such a consensus would be not to

knowingly underestimate the potential uncertainties in

making a decision.

Clearly, however, we can use experience to do so,

experience that might be encapsulated in sets of rules or

Guidelines for Good Practice. Such Guidelines might set

out the decisions needed in considering sources of

uncertainty to be considered for different types of appli-

cation and provide advice on how they have been

handled previously. Those decisions can provide a useful

structure for interaction with stakeholders and users,

serving to structure the translationary discourse advocated

by Faulkner et al. (2007).

What does being robust mean in the face of epistemic

uncertainties?

Agreeing on assumptions about different sources of

uncertainty is a heuristic approach to allow for uncer-

tainty in model predictions. Any resulting assessment of

uncertainties in model predictions that might be used in

decision-making will be necessarily approximate since we

cannot be sure that all sources of uncertainty have been

considered, nor if those that have been considered are

properly represented. In fact, just like the model struc-

tures themselves, we will be pretty certain that we do not

know how to properly represent different types of

uncertainties. However, the very process of defining and

debating the assumptions within some Guidelines for

Good Practice produces an agreed-upon working tool. As

a heuristic process, it is implicit that the assumptions

should be evaluated and refined in the future as more

information about system responses becomes available.

This is all part of the learning process.

Applying the Guidelines will produce a range, possibly

a wide range, of potential outcomes (or else, where the

model predictions can be evaluated, possibly a conclusion

that all the models tried can be rejected, and decisions will

have to be made in some other way). Consideration of

these outcomes in decision-making should reveal the

range of conditions under which a potential future

decision might not satisfy the decision criteria. This is
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already a more robust heuristic than relying on some ‘best

estimate’ prediction. Ideally, a decision would be taken

that satisfies the decision criteria over all potential

outcomes, at reasonable cost, without compromising

future decisions.

There is quite a lot in common in this view with the Info-

Gap methodology of Ben-Haim (2006; Hine & Hall, 2010).

Info-Gap was designed to handle decision-making under

high uncertainty, looking at the trade-off of robustness and

opportuneness functions as a system departs from some

baseline condition or simulation (see also Beven, 2009; for a

summary but note also the suggestion of Sniedovich (2010

and references therein) that Info-Gap is a specific case of

Wald’s max–min decision theory). However, by consider-

ing the uncertainty in the predictions more explicitly, the

possibility for failure of a decision, conditional on the

potential outcomes, can be assessed directly and judge-

ments made as to whether the resulting risk is acceptable

or not (see also Beven, 2011). Such a judgement is likely to

be highly dependent on the context, particularly where

extremes in the potential outcomes might involve cata-

strophic failures.

Traditionally, of course, engineers and others have had

agreed-upon heuristics for dealing with uncertainties

(factors of safety; freeboard; …) which would err in the

direction of more robust design, while involving signif-

icant subjectivity in the choice of appropriate values that

has not stopped them from being incorporated into

standards and codes of practice (and, without doubt,

preventing many engineering failures). The type of

Guidelines for Good Practice argued for here represents

a formal extension of this approach.

Does it matter to robustness that the underlying model

structure or the assumptions about the relevant sources of

uncertainty might be quite wrong? This would suggest

that, for whatever reason, we have not (yet) been able to

detect a Type I error in choosing a model representation.

So we would not therefore have a good reason to know

that the model is wrong – until some information came

along to question that conclusion. This might be the

collection of more observations that reveal the deficiencies

of the model; it might be that an evaluation of the

predictions of potential future outcomes does not seem to

produce sensible results; it could be that specific exper-

iments are carried out with a view to testing a model as

hypothesis about how a particular part of the system

functions. In either case, a continuing review of the

heuristic assumptions on which the analysis is based will

be justified as part of an adaptive management strategy. If

neither case is evident, then we have no evidence to

question the assumptions.

Heuristics for change: the Catchment Change

Network

If the Guidelines for Good Practice methodology is to be

useful in robust decision-making, then these need to be

developed for different types of application. Although

each decision-support situation is unique in terms of

context, elements and location etc., guiding principles as

heuristics, are a valuable means to define and summarise

a collective consensus body of expert knowledge. They

represent efficient frameworks to guide decision-makers

by helping them simplify choices.

Developing Guidelines is one of the aims of the

Catchment Change Network (CCN), a U.K. Natural

Environment Research Council (NERC) Knowledge

Transfer project being led by Lancaster University. The

Network – made up of three discrete but interlinked

Focus Areas covering flood risk, water quality and water

scarcity – will exchange knowledge across a wide range of

project partners about how best to handle uncertainties in

integrated catchment management. A key aim is to

integrate modern methods of uncertainty estimation to

improve decision-making for adaptive management

across catchments. Workshop activities in each of the

Network Focus Areas have recently explored the form,

scope and content of such Guidance with debate centring

on sources of uncertainty, the range and composition of

audiences for the guidance produced and the communi-

cation and transparency of the underlying assumptions

made.

Progressively updated Guides to Good Practice will be

produced for each of the three Focus Areas with content

defined and developed via workshop activities and

interactive web-based involvement across a range of

stakeholders. The web site http://www.catchment-

change.net acts as both an information hub and knowl-

edge exchange portal to communicate and interact across

our project partners both in the United Kingdom and in

Europe. The intention is that these guides will ultimately

become embedded across a wide range of catchment

management professionals with the intention they will

help practitioners and decision-makers in problem fram-

ing by focussing on key variables while clarifying the

strength of available evidence. These will be living

documents that with broad user input will be able to

both refine the heuristics and add new ones as the concept

of ‘good practice’ continues to evolve.

Systematic guidelines may prove very helpful and

consistent for decision-making in the face of uncertainty,

particularly in terms of agreeing and communicating the

assumptions of any risk and uncertainty analysis that
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feeds into a decision-making process. Relying on pre-

defined aids to good practice also needs to recognise that

heuristics are fallible and have limitations. A range of

biases may be buried within them, contingent on per-

ceived past experience. In particular, confirmation biases

may result from choices that reinforce past preconcep-

tions. That is why it is important that the Guidelines for

Good Practice should be living documents, evolving over

time as experience of applying them increases. One way

of ensuring this is to structure the Guidelines in terms of a

set of decisions about options that have to be agreed upon

between analysts, stakeholders and users. Such a decision

structure allows such evolution over time while making

the assumptions of any analysis to be defined explicitly.

The overall framework for one set of Guidelines for the

preparation of flood risk maps reflecting the uncertainties

outlined in Table 1 is shown in Fig. 1. Such flood risk

maps, and associated uncertainties, might have an impact

on the ecohydrological management of floodplain habi-

tats. Lower levels in the decision framework are defined

by decision trees for specific sources of uncertainty. In

addition, sections on how to condition the uncertainty

estimates on observational data, how to visualise the

outputs of the analysis and how to take action to manage

and reduce the uncertainties are included in the frame-

work. The conditioning process includes the concepts of

hypothesis testing that might take the form of a limits-of-

acceptability evaluation of models as outlined earlier.

Back to models of everywhere

So how is this relevant to models of everywhere? We

noted earlier that models of everywhere allow a learning

process to develop in the representation of place (here,

Decisions on source uncertainties (Sect. C1)

Decisions on pathway uncertainties (Sect. C2)

Decisions on receptor uncertainties (Sect. C3)

Decisions on implementation (Sect. C4)

Conditioning uncertainty on observations (Sect. C5)

Managing and reducing uncertainty (Sect. C7)

Interactions amongst uncertainties (C4.1)
Uncertainty propagation (C4.2)

Observation uncertainty (C5.1)

Improve topographic representation (C7.1)
Design additional observations (C7.2)

Conditioning process (C5.2)

Design flood magnitude

Model structure (C2.1)
Conveyance/rating curve (C2.2)
Flood plain infrastructure (C2.3)
Performance of defences (C2.4)

vulnerability/consequences (C3.1)

Decide on a presentation/
visualisation method (C6)

Climate change (C1.1)
Catchment change (C1.3)

Fig. 1 High-level decision structure for Guidelines for Good Practice in uncertain flood risk mapping (after Beven, Leedal & McCarthy, 2010);

each of the bulleted items represents a decision tree about assumptions at a lower level as indicated by the Section labels. The return arrows in

the figure represent the pathways for review of the assumptions that might result from additional information being made available, e.g. from

adding additional observations.
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places within catchments in integrated water manage-

ment). This learning process should be powerful exactly

because everywhere is represented. This means that local

results should be available to local stakeholders in visual

form, such as on-line maps, animations and graphs of

observations in real time. Local stakeholders will have

(often qualitative) knowledge of the system response that

will be valuable in the evaluation of local model predic-

tions. Thus, if there are local deficiencies, they will be

closely scrutinised and local stakeholders will be only too

pleased to point out such deficiencies to the modeller (or

agency providing the predictions). The nature of those

deficiencies will then be a guide to how to make local

improvements (which is not necessarily the same as

saying making the model locally more complex; simpler

approaches may be sensible for some purposes).

This will also provide a strong incentive for the

modeller to anticipate the issues that might be raised by

local stakeholders beforehand. One way of doing so is to

involve stakeholders from the very beginning of an

implementation, including in the decisions framed in the

type of Guidelines for Good Practice discussed earlier.

Agreeing on such decisions and making the assumptions

inherent in the decisions explicitly allows and provides a

useful framework for such interactions (see for example,

Ryedale Flood Research Group, 2008).

Models of Everywhere can also provide the basis for

local adaptive management strategies. Once imple-

mented, what-if strategies can be played out to explore

decision options (see, for example, Olsson & Berg, 2005;

Olsson & Andersson, 2007). In doing so, it is worth noting

that models can be useful guides in adaptive manage-

ment, particularly in estimating the time scale of a

response to a management decision. Adaptive manage-

ment requires a signal to be observed in response to an

action. Yet we know that for some of the problems

intrinsic to integrated catchment management, the time

scales of the response might be long (perhaps decades)

and uncertain (if only because the nature of the response

might depend on the particular sequence of wet and dry

years to come). Evaluating the uncertainty in the response

might then be a useful guide to stakeholders as to what

outcomes might be expected, what action might be

enough to show benefit and what might be the most

robust or least regret strategy given the uncertainty.

In hydrology and water quality, there is a long tradition

of making predictions with inadequate data, without

recognising their limitations and uncertainties. This has

resulted in expectations of reduced performance in

prediction as being normal. This is not surprising, given

the epistemic nature of the different sources of uncertainty

in the modelling process. What is unsatisfactory is that so

little has been done about the problem until very recently.

The heuristic has been to ignore the problems because

they are perceived as being too difficult; there is still no

theory of how to deal with epistemic uncertainties since,

by definition, they are poorly known. Yet they may have

an effect on what decision might be made, particularly if

we are interested in decisions that are robust to uncer-

tainty. Once more ‘models of everywhere’ are imple-

mented and the need for Guidelines for Good Practice

involving local stakeholders in decisions about assump-

tions is accepted, then perhaps this will change.
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