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Abstract

Longitudinal data are collected for studying changes across time. We consider multi-
variate longitudinal data where multiple observed variables, measured at each time point,
are used as indicators for theoretical constructs (latent variables) of interest. A common
problem in longitudinal studies is dropout, where subjects exit the study prematurely. Ig-
noring the dropout mechanism can lead to biased estimates, especially when the dropout
is nonrandom. Our proposed approach uses latent variable models to capture the evolution
of the latent phenomenon over time while also accounting for possibly nonrandom dropout.
The dropout mechanism is modeled with a hazard function that depends on the latent vari-
ables and observed covariates. Different relationships among these variables and the dropout
mechanism are studied via two model specifications. The proposed models are used to study
people’s perceptions on women’s work using three questions from five waves from the British
Household Panel Survey.
Keywords: structural equation modeling, ordinal variables,nonignorable dropout, weighted
least squares, response propensity
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1. Introduction

In this article, we consider latent variable modeling of multivariate longitudinal data
subject to nonrandom dropout. Longitudinal data are collected for studying changes across
time. Most of the existing research on longitudinal data focuses on repeated measures for
one variable over time. Good starting points to the extensive literature on such univariate
longitudinal data analysis are Diggle, Heagerty, Liang, and Zeger (2013), who give a thor-
ough overview of different methods, and Verbeke and Molenberghs (2000), who provide a
comprehensive treatment of linear mixed models for continuous longitudinal data.

However, in social science applications, including educational testing and psychomet-
rics, the main interest is often in theoretical constructs, such as attitudes, behaviour or
abilities, which cannot be directly measured. In that case, multiple observed variables
(‘items’), for example survey questions or items in an ability test, are used as indicators
for the constructs, which are themselves treated as unobservable (latent) variables. The ob-
served items and the latent variables are linked together by statistical latent variable models
(see e.g. Skrondal and Rabe-Hesketh (2004) and Bartholomew, Knott, and Moustaki (2011)
for overviews). In particular, in this paper we consider models which treat the items as
ordinal, because such variables are often met in social surveys.

When the interest lies in how the latent constructs change across time, the same
items are measured at different time points, thus resulting in multivariate longitudinal data.
Models for such data have been proposed by, for example, Fieuws and Verbeke (2004, 2006),
Dunson (2003), and Cagnone, Moustaki, and Vasdekis (2009), who model the associations of
the latent and observed variables across time using random effects and/or latent variables.

A common problem in longitudinal studies is dropout, where subjects exit the study
prematurely. A crucial question for the analysis is whether or not those who drop out
are systematically different from the ones who remain till the end of the study. In the
widely used terminology due to Rubin (1976), data are considered missing completely at
random (MCAR) if the missingness (in our case dropout) is independent of both observed
and unobserved data, missing at random (MAR) if the missingness depends on the observed
data but not on the unobserved, and missing not at random (MNAR) if it depends on
unobserved data. When modeling longitudinal data, the joint density function of both the
measurement and dropout processes is considered. If the dropout is at random (i.e. MAR),
and the parameters of the dropout process are distinct from those of the models for the
latent variables and their measurements (an assumption we make throughout), the dropout
is said to be ignorable and a valid analysis can be based on a likelihood that ignores the
dropout mechanism. However, it is not always easy to justify the assumption of random
dropout. If it does not hold, the dropout mechanism should be incorporated in the analysis
of the data, as ignoring it may lead to biased estimates of the parameters of interest.

There are three general approaches for modeling univariate longitudinal data subject
to dropout, the first two of which are most common. Selection models factorise the joint
density into the product of the marginal density of the measurement process and the con-
ditional density of the missingness mechanism given the measurement. In their key paper
on selection models for non-ignorable dropout, Diggle and Kenward (1994) combine a mul-
tivariate Gaussian linear model for the measurement process with a logistic dropout model.
Molenberghs, Kenward, and Lesaffre (1997) use a similar framework to model dropout prob-
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abilities when the variable of interest is ordinal. Jansen, Beunckens, Molenberghs, Verbeke,
and Mallinckrodt (2006) also study non-Gaussian outcomes such as binary, categorical or
count data. They consider both generalized linear mixed models, for which the parame-
ters can be estimated using maximum likelihood, and marginal models estimated through
generalized estimating equations, which is a nonlikelihood method and hence requires a
modification to be valid under MAR.

Pattern-mixture models (Little, 1993) are an alternative to selection models. They
factorise the joint density in the opposite way, that is as the product of the marginal density
of the dropout mechanism, and the conditional density of the measurement process given the
dropout. In other words, the measurement process is defined over different dropout patterns.

The third general approach for modeling dropout are shared-parameter models, in which
both the measurement process and dropout are influenced by a latent variable or random
effect (e.g. Wu & Carroll, 1988; Wu & Bailey, 1989; Henderson, Diggle, & Dobson, 2000).
A shared parameter model is thus a selection model which is also conditional on a latent
variable. This specification allows the dropout to be non-ignorable given the observed data
only, but ignorable given also the latent variables. Roy (2003) introduced a shared-parameter
model in which the dependence between the measurement process and time of dropout is due
to a shared latent variable that is assumed to be discrete, so that the marginal distribution
of the measurement is a mixture over the dropout classes of the latent variable. Dantan,
Proust-Lima, Letenneur, and Jacqmin-Gadda (2008) compare pattern-mixture models and
latent class models in dealing with informative dropout.

Our approach to handling dropout in multivariate longitudinal data draws on ideas of
shared parameter models for univariate longitudinal data, and on previous work on modeling
non-ignorable item nonresponse in multivariate cross-sectional data. Early examples of the
latter are Knott, Albanese, and Galbraith (1990) and O’Muircheartaigh and Moustaki (1999),
who present a latent variable approach that allows missing values to be included in the
analysis and information about latent attitudes to be inferred from nonresponse. They
propose two latent dimensions, one to summarise the attitude and the other to summarise
response propensity. For each observed variable, an indicator variable for responding is
created, taking the value 1 if the individual responds and 0 if he or she does not respond. The
attitude items are explained by the attitudinal latent variable, and the binary response items
depend both on the attitudinal variable and the response propensity latent variable, thus
allowing for non-ignorable missingness. Holman and Glas (2005) use reformulations of the
models of O’Muircheartaigh and Moustaki (1999) to assess the extent to which the missing
data are non-ignorable. Within the same framework, Moustaki and Knott (2000) present a
latent variable model for binary and nominal observed items which includes covariate effects
on attitudinal and response propensity items. In our study, we extend this approach to the
longitudinal case with nonrandom dropout.

The models developed in this paper are latent variable models in which a continuous
latent variable is used at each time point to explain the associations among multiple observed
response items. Random effects are included to account for repetition of items over time.
For modeling dropout, we introduce dropout indicators which are modeled with a hazard
function. Different structures among the latent variables and the dropout mechanism are
explored in two different model specifications which allow attitudes and covariates to affect
both the latent variable and the dropout indicators.
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We apply the proposed models to study the evolution of people’s attitudes towards
women’s work, using data from the British Household Panel Survey. Five waves of the
survey (1993, 95, 97, 99, 2001) are considered here. Dropout occurs in all waves but the first
one. We analyse three survey items, which are worded as follows: ‘A woman and her family
would all be happier if she goes out to work’ (labelled ‘Family’ below), ‘Both the husband
and wife should contribute to the household income’ (‘Contribution’), and ‘Having a full-
time job is the best way for a woman to be an independent person’ (‘Independent’). For
each of them, the response options are ‘Strongly agree’, ‘Agree’, ‘Neither agree nor disagree’,
‘Disagree’, and ‘Strongly disagree’. The attitudinal latent variable will be defined so that
the higher an individual scores on the latent variable, the more conservative are his or her
views towards women’s work. The analysis aims to explore how much each of the three
items contributes to measuring this attitude and how the attitude evolves over the nine-year
period, accounting for dropout by incorporating the dropout mechanism in the model.

Section 2 lays out the general framework for the proposed model and presents two
possible model specifications, and Section 3 describes the results from the data analysis.
Final comments and conclusions are given in Section 4.

2. A latent variable model for multivariate longitudinal data
subject to dropout

A latent variable model is first specified for the complete-case multivariate data, dis-
regarding dropout. This model is formed of two parts: the measurement part in which the
observed variables are explained by a latent variable at each time point, and the structural
part which defines relationships among the latent variables over time. Having specified this
model for the complete data, we then define models for the dropout mechanism with a hazard
function. Finally, the link between attitudes and dropout is specified.

2.1 Modeling the observed indicators: The measurement model

We will consider ordinal items as they are among the most common type of items
used for measuring attitudes in social surveys. Suppressing the index for a subject (e.g.
survey respondent) for convenience, let yt = (y1t, y2t, ..., ypt) be p × 1 vectors of observed
ordinal variables for a single subject at times t = 1, 2, ..., T . Let cit denote the number of
categories for yit, the ith variable (i = 1, 2, ..., p), at time t. It is assumed that each yit is a
manifestation of an underlying unobserved continuous variable y∗it. For an ordinal variable
yit with cit categories, its relationship with y∗it is given in Jöreskog (2005) as

yit = s⇔ τ
(i)
s−1 < y∗it ≤ τ (i)s , s = 1, · · · , cit, (1)

where τ (i)0 = −∞, τ (i)1 < τ
(i)
2 < . . . < τ

(i)
cit−1 , and τ

(i)
cit = ∞ are known as thresholds. There

are cit − 1 estimable thresholds for an ordinal variable with cit categories. The underlying
variable y∗it is assumed to have a standard normal distribution.

The items yt = (y1t, y2t, ..., ypt) at each time t are regarded as measures of a continuous
attitudinal time-dependent latent variable zat , which is assumed to be normally distributed.
For simplicity, the model below is presented assuming that the items are unidimensional (i.e.
one latent variable is sufficient to explain dependencies among items at a given time point),
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but it can be extended to accommodate more latent variables. The measurement model for
zat at each time t is the classical factor analysis model

y∗it = λizat + ui + εit; i = 1, ..., p ; t = 1, ..., T, (2)

where λi is the loading of the latent variable zat on y∗it, ui is an item-specific random effect,
and εit is a random error. In this model, associations among different items at the same
time (y∗it, y

∗
jt for i 6= j) are explained by the dependence on the common latent variable zat ,

while associations between the values of the same item measured at different time points
(y∗it, y

∗
it′ for t 6= t′) are explained both by the covariance between corresponding attitudinal

latent variables (zat , zat′ ) and the item-specific random effect ui (equivalently, errors εit of
the same item across time could be allowed to correlate rather than introducing the random
effects). It is assumed that the random effects ui are independently normally distributed
as ui ∼ N(0, σ2

ui
) for i = 1, ..., p, and that εit are independent and normally distributed as

εit ∼ N(0, υ2εit) for i = 1, ..., p and t = 1, ..., T , where υ2εit = 1 − (λ2i var(zat) + σ2
ui
) since

each y∗it is assumed to have a standard normal distribution. The error terms εit and random
effects ui are assumed to be uncorrelated.

In the measurement model (1)–(2) we have imposed the assumption of invariance of
measurement across time for each item i = 1, . . . , p, by constraining the thresholds τ (i)s (for
each s = 1, . . . , cit) and the loading λi for each i = 1, . . . , p to be the same at all time points
t = 1, . . . , T . The advantages of this constraint are both technical and conceptual. On the
technical side, it yields a more parsimonious model and avoids some possible identification
problems that may arise with increasing the number of time points (Bijleveld, Mooijaart,
van der Kamp, & van der Kloot, 1998). The conceptual advantage is clearer interpretation
of the model results. If the loadings and thresholds are not constrained to be time-invariant,
we cannot guarantee that the latent variable has the same interpretation at each time point.

In order to set the scale for the time-dependent attitude latent variables, and for their
variances σ2

1, ..., σ
2
T to be estimable, the loading λ1 on the first observed variable y1t is set

to 1. Also, the loadings of each random effect ui on an item at different occasions yi1, ..., yiT
are all set to 1, thus making all occasions contribute equally to the random effect. Then the
variances σ2

ui
of the random effects are left to be estimated.

This model specification has been introduced by Dunson (2003) in a generalized linear
latent variable model framework for different response types where Markov Chain Monte
Carlo (MCMC) methods were used for estimation. Cagnone et al. (2009) propose a full-
information maximum likelihood estimation method for the same model specification with
ordinal variables. Cai (2010) develops an EM algorithm for full-information maximum
marginal likelihood estimation that is computationally efficient due to the use of a dimension
reduction technique of the latent variable space for the two-tier item factor analysis model,
which fits into this model specification. Composite likelihood approaches have also been
proposed to reduce estimation complexity for this type of models (see Vasdekis, Cagnone, &
Moustaki, 2012). We consider estimation using diagonally weighted least squares (DWLS),
and weighted least squares (WLS) for the same model specification for multivariate longitu-
dinal data within a structural equation modeling (SEM) framework where ordinal variables
are treated using underlying continuous variables.
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2.2 Modeling the latent variables: The structural model

The structural part of the model addresses the question: how should the attitudinal la-
tent variables be linked in order to capture the longitudinal nature of the data? Throughout,
we will assume that the possible measurement occasions t = 1, . . . , T are the same for every
subject, and evenly spaced in time. We then specify that the T × 1 vector of attitude latent
variables za = (za1 , ...,zaT )

′ follows a multivariate normal distribution za ∼ MVN(T )(µ,Γ)
where µ is a vector of means and Γ a covariance matrix with diagonal elements σ2

t repre-
senting the variances of the latent variables, and off-diagonal elements σtt′ their covariances
such that σtt′ is the covariance between zat and zat′ . The values of these parameters may be
unconstrained, or depend further on the model specification, as defined below. For example,
it is logical to expect that attitudes are more strongly correlated when they are measured at
closer time points, in which case σtt′ should be higher when t and t′ are close to each other.
For identification, the mean of za1 is set to 0.

A specification for the structural part which takes the time ordering explicitly into
account is the first-order autoregressive [AR(1)] structure where za1 ∼ N(0, σ2

1) and

zat = αt + φzat−1 + δt, t = 2, ..., T, (3)

where αt is an intercept, φ a regression coefficient representing the dependence of the attitude
at time t on that at the previous occasion t−1, and δt ∼ N(0, υ2δt) is a random error which is
uncorrelated with za1 , ..., zat−1 . This formulation explicitly captures the time ordering in the
data, by presenting the model as a sequence of conditional distributions rather than a joint
distribution with a completely free correlation matrix Γ. It expresses the dynamic nature of
the latent attitude variable (Dunson, 2003; Cagnone et al., 2009) and accounts for the serial
correlation in it in a form where the latent variable at time point 3, say, is only related to that
measured at time 1 via the latent variable at time 2. Another alternative specification would
be a random effects model in which a random intercept and possibly a random slope affect
the time-dependent latent variables as in a standard growth mixture model for observed
repeated measures; for example, see Muthén and Masyn (2005) and Muthén, Asparouhov,
Hunter, and Leuchter (2011). However, this type of model is not considered here.

More generally, we may also be interested in studying the associations between the
attitudinal latent variables and observed covariates (explanatory) variables, such as demo-
graphic and socioeconomic characteristics of survey respondents. Let xt denote a vector of
such covariates, noting that some components of xt (e.g. sex and race) may be constant over
time while others (e.g. marital status and health condition) may be time-varying. In this
case, the AR(1) structure in (3) can be extended to include covariates, as

zat = αt + φzat−1 + θ
′xt + δt, t = 2, ..., T, (4)

where θ is a vector of regression coefficients for xt.

2.3 Modeling the dropout

Dropout is a form of missing data in which a respondent in a longitudinal study fails to
respond at a given occasion and never comes back to the study. It contrasts with ‘intermit-
tent’ missingness where an individual who does not show up at a given occasion may return
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at a subsequent one. Dropout is typically the most common form of missingness in longitu-
dinal studies. We will focus solely on it, and assume that there is no intermittent missingness
in the data. We also assume that, at each time point, variables for a respondent are either
fully observed or totally missing, i.e. that there is no item nonresponse. We define the prob-
ability that a respondent drops out at time t, given that they have remained in the study
up to and including time t− 1, by the hazard function ht = P (K = t | K ≥ t), t = 2, ..., T ,
where K is a discrete random variable that indicates the time of dropout. We also define a
set of dropout indicators dt, t = 1, . . . , T , such that dt = 0 when yt is observed and dt = 1
if a respondent drops out at time t (Muthén & Masyn, 2005). After the time of dropout, dt
itself is regarded as missing and can be set to an arbitrary value such as 999. We treat the
observations at the first occasion as complete data, so that d1 = 0 for all respondents, and
define d = (d2, ..., dT ). For an example with three waves (T = 3), an individual will have
d = (0, 0) if they show up on all three occasions, d = (0, 1) if they drop out on the third
occasion, and d = (1, 999) if they drop out on the second occasion. With this notation, the
hazard function can also be expressed as

ht = P (K = t | K ≥ t) = P (dt = 1), t = 2, ..., T.

In the more general case of intermittent missingness we could define binary missingness
indicators such that the indicator dt at time t has the value 0 if yt is observed and 1 if it is
missing. In that case, the missingness indicators may be assumed to measure a single latent
variable zdt which summarises an individual’s ‘response propensity’. Such a propensity may
also be thought to exist in our case, where only dropout is considered. However, since
the dropout indicators are created from a single variable (time of dropout), this latent
propensity cannot be separately identified. Nevertheless, we will still employ such zdt as a
convenient computational and presentational device, but with a formulation where they have
a conditional variance of 0, given the attitude latent variables zat and (possibly) covariates
xt (Muthén & Masyn, 2005). This means that zdt will be deterministic functions of zat and
xt, which will then affect the dropout indicators via zdt .

In the same way as for the observed items yt in equation (1), we assume a set of contin-
uous variables d∗ = (d∗2, . . . , d

∗
T ) to underlie the set of dropout indicators d = (d2, . . . , dT ).

Each of the d∗t is assumed to have a standard normal distribution and to be modeled as

d∗t = λdtzdt + εdt , t = 2, ..., T, (5)

where λdt is the loading of zdt on the dropout variable at time t, and εdt ∼ N(0, σ2
εdt
) is a

random error, with σ2
εdt

= 1 − λ2dtvar(zdt). Since the missingness indicators are all binary,
only one threshold τdt is estimated for each variable d∗t .

We will consider two special cases of this model. In the first, we take zdt = zat−1 for
t = 2, . . . , T . Model (5) then becomes

d∗t = λdtzat−1 + εdt , t = 2, ..., T. (6)

In this formulation, the probability of dropping out at a given time point depends only on the
value of the latent attitude variable at the immediately preceding time point. The dropout
indicators are thus in effect treated just like further ‘measures’ of the attitude. Because the
loadings λdt can vary with t, the effect of attitude on dropout may depend on time.
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In our second dropout model we define zdt = zd instead as a time-constant quantity
which depends on the attitude only through its value za1 at the first time point. In this
formulation we also allow for the possibility that the response propensity depends also on
covariates x1 measured at the first time point. We thus define zd = βza1 + ω

′
dx1, where β

is a regression coefficient representing the dependence of the dropout ‘latent variable’ zd on
the attitude latent variable za1 at the first time point, and ωd is a vector of the regression
coefficients of covariates x1 similarly. Furthermore, in (5) we take λdt = 1 for all t, to obtain

d∗t = βza1 + ω
′
dx1 + εdt , t = 2, ..., T. (7)

Here the time-constant dropout variable zd is regressed solely on za1 in order to avoid a
multicollinearity problem that is very likely to occur if zd was regressed on other attitude
latent variables as well, due to the high correlation expected between the latent variable
across different time points. Attitude at the first time is particularly chosen because it is
the only occasion with complete data, and because it avoids a specification where dropout
at time t would depend on attitude at future time points. Following the same argument,
dropout is also regressed only on covariates measured at the first time.

The specification of the dropout models determines the nature and informativeness of
the dropout. The missing data will be MCAR if the models for d∗t depend neither on the
latent variables zat nor covariates xt, and MAR if they depend on xt but not on zat . In par-
ticular, any model where d∗t depends directly on the latent attitudes zat implies nonrandom
dropout, i.e. that the data are missing not at random (MNAR) and the dropout process is
thus non-ignorable. In model (6), non-ignorability holds unless λdt are 0 for all t = 2, . . . , T ,
and in model (7) it holds unless β = 0.

When dropout is non-ignorable, a model for it needs to be incorporated in the estima-
tion in order to obtain valid estimates for the parameters of interest in the structural and
measurement models. For multivariate longitudinal data, unlike in many other situations,
this can in fact be done without further unverifiable assumptions. In other words, combining
the elements described above it is possible to fit models which combine multivariate longi-
tudinal models for the latent attitude variables of interest with models for non-ignorable
dropout. In the next section we discuss such joint models in more detail.

2.4 Joint models for attitudes, measurements and dropout

Having set the general layout of the model, we now look into two particular specifica-
tions of it. In both of them, the measurement model of the observed items yit is defined by
equations (1) and (2), and the corresponding assumptions. Differences lie in the definitions
of the structural and dropout parts of the model, and the relationship between them.

The first model specification allows for the simple choice of a free mean structure and
correlation matrix for the attitudinal latent variables za = (za1 , ...,zaT )

′ at different time
points. In other words, we assume a multivariate normal distribution za ∼ MVN(T )(µ,Γ)
with µ and Γ unconstrained. For incorporating dropout, we assume model (6) where the
attitudinal latent variable zat−1 at each previous time point is allowed to directly affect the
dropout at the next one. The parameters of this dropout model are the thresholds τdt and
loadings λdt for t = 2, . . . , T , with non-zero λdt indicating nonrandom dropout. Figure (1)
gives an illustration of this model by a path diagram for an example with three time points.
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Figure 1. Path diagram for the first model specification (‘Model 1’).

The second model specification assumes a first-order autoregressive structure among
the latent variables za, as presented in equation (3), instead of freely correlating them. With
the attitude at the first time point also assumed to be normally distributed as za1 ∼ N(0, σ2

1),
this model too implies that za follows a multivariate normal distribution, but now with the
covariance matrix Γ being a constrained function of the parameters φ, σ2

1 and υ2δ2, . . . , υ2δT ,
and the mean vector unconstrained and depending on the parameters α2, . . . , αT and φ. For
this model specification we also examine the extension of the structural model by including
in it covariates xt with coefficients θ, as shown in equation (4).

For the dropout model in the second model specification, we assume a model where
the underlying dropout variables are modeled as a function of the dropout ‘latent variable’
zd which in turn is determined by the attitude latent variable za1 and covariates x1 at the
first time point, thus resulting in the dropout model (7). Figure (2) gives an illustration of
the joint model for the second model specification, for an example with three time points.

In the second specification the parameters of the dropout model are the thresholds
τdt (t = 2, . . . , T ) and the regression coefficients β and ωd, with non-zero β indicating
nonrandom dropout. These parameters are to be estimated, along with the parameters of
the measurement model (including the variances of the random effects ui) and the structural
model.

3. Data Analysis

The data used in this analysis come from five waves of the British Household Panel
Survey (BHPS). We consider three survey questions as given in Section 1, which are treated as
measures of a respondent’s attitude towards women’s work. The sample size of individuals
who gave complete answers in the first wave considered here (year 1993) is 5819. In the
second wave, with 10% dropout the sample size decreases to 5227, and in the third wave,
a further 6% dropout reduces it to 4901. Dropout continues at each wave until the sample
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Figure 2. Path diagram for the second model specification (‘Model 2’) with covariates.

size becomes 4296 at the last wave considered here (year 2001), constituting approximately
74% of the original sample size. Results from the two different model specifications outlined
previously are compared. Moreover, covariates are introduced and their effects studied under
the second model specification.

Data analysis is implemented in Mplus (Muthén & Muthén, 1998–2011). In a SEM
framework, since the underlying continuous variables are assumed to be jointly normally
distributed, each pair of them (say y∗i and y∗j ) is bivariate normal with correlation ρij; these
are known as the polychoric correlations (Jöreskog, 2005). Parameter estimation is done
in three steps where thresholds are estimated in the first step from the univariate marginal
distributions, and the polychoric correlations in the second from the bivariate distributions
for given thresholds. In the third stage, the factor analysis model is fitted to the estimated
polychoric correlation matrix using unweighted least squares (ULS), diagonally weighted
least squares (DWLS), and weighted least squares (WLS). In WLS, the weight matrix is an
estimate of the inverse of the asymptotic covariance matrix of polychoric correlations, while
DWLS involves only the diagonal elements of that weight matrix. Recent studies confirm
(Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Yang-Wallentin, Jöreskog, & Luo, 2010)
that the WLS estimator converges very slowly to its asymptotic properties and therefore
does not perform well in small sample sizes. DWLS and ULS are preferable to WLS and
they seem to perform similarly well in finite samples. However, in order to compute correct
standard errors and goodness-of-fit tests, the full weight matrix is needed. In our application,
DWLS is used for estimation and WLS for obtaining the standard errors and test statistics.

The models being studied are the ones introduced in Section 2, with items yit, i = 1, 2, 3,
and the dropout indicators dt used to give information on one attitudinal latent variable zat
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at waves t = 1, . . . , 5 (with d1 = 0 for all, as the observations are regarded as complete at
the first wave). The latent variable captures attitudes towards women’s work, with higher
values of it indicating more conservative attitudes.

We first carried out two preliminary analyses, which allowed us to conclude that two
assumptions introduced in Section 2 are satisfied in these data. First, we considered the
assumption of measurement invariance, which states that each parameter of the measurement
model (1)–(2) is the same at all time points t. A likelihood ratio test was carried out, and this
constraint was not rejected against a model which allowed for non-invariance of measurement
in the items. Next, for the second model specification we examined the assumption that the
dropout latent variable zd has its loadings λdt set to 1 at all of t = 2, . . . , 5, which for this
model specication also implies that the attitudinal latent variable measured at the first wave
(za1) will have the same effect on dropout indicators at all time points. The model with this
constraint was also not rejected against the unrestricted model where those loadings were
allowed to vary freely across the time points.

Table 1 gives parameter estimates for the two model specifications along with their
estimated standard errors (in brackets), when covariates are not yet considered. The at-
titude towards women’s work loads very similarly on all three items, suggesting that the
items contribute almost equally to measuring the attitude. The estimated thresholds for the
dropout model are given in the second part of Table 1.

In the first model specification, the variance of the attitudinal latent variable at wave
1 is estimated as 0.32. The variance does not change much across waves, indicating that the
variability of attitudes remains almost the same over time. The estimated covariance matrix
of za for the first model specification is given by

Γ̂ =


0.32 0.25 0.22 0.21 0.19

0.34 0.26 0.24 0.22
0.34 0.26 0.24

0.34 0.26
0.33

 .
The estimated covariances among the attitudinal latent variables are positive and signifi-
cant, indicating a strong positive correlation of a person’s attitude towards women’s work
across waves. As one would expect, the further apart the waves, the weaker is the covari-
ance between the attitudes. Furthermore, a loading is estimated for each time-dependent
attitudinal latent variable on the corresponding dropout indicator at the next wave. From
Table 1, these loadings are negative and significant at 10% level of significance, indicating
that the more conservative an individual’s attitude is towards women’s work, the less likely
they are to drop out of the study at the next wave. The dropout is thus non-ignorable.

The last part of Table 1 gives results for the structural part of the second model
specification. The estimated autoregressive parameter φ̂ = 0.874, with estimated standard
error of 0.007, again shows a significant and strong positive correlation of a person’s atti-
tude towards women’s work over time. In other words, liberal/conservative views at a given
wave are associated with liberal/conservative views at the preceding wave. The estimated
dropout parameter β̂ = −0.036, with estimated standard error of 0.009, shows a significant
dependence of dropout on attitude at the first wave, indicating non-ignorable dropout. The
negative coefficient shows that the more conservative an individual’s initial attitude is to-
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Table 1: Parameter estimates for Models 1 and 2, for modeling attitudes towards women’s work in
the British Household Panel Survey.

Model 1 Model 2
Measurement model

Est. S.E. Est. S.E.
‘Family’ λ1 1 1

‘Contribution’ λ2 1.115 (0.023) 1.115 (0.023)
‘Independent’ λ3 1.151 (0.025) 1.149 (0.025)
za1 on d∗2 λd2 -0.014 (0.008)
za2 on d∗3 λd3 -0.019 (0.011)
za3 on d∗4 λd4 -0.044 (0.018)
za4 on d∗5 λd5 -0.056 (0.029)

Dropout model

d∗2 τd2 1.272 (0.022) 1.272 (0.022)
d∗3 τd3 1.534 (0.027) 1.535 (0.027)
d∗4 τd4 1.533 (0.028) 1.536 (0.028)
d∗5 τd5 1.506 (0.029) 1.512 (0.029)

Random effects
Variances

u1 σ2
u1 0.195 (0.007) 0.187 (0.007)

u2 σ2
u2 0.229 (0.008) 0.220 (0.008)

u3 σ2
u3 0.192 (0.008) 0.183 (0.008)

Structural model
Variance of za1 σ2

1 0.318 (0.011) 0.301 (0.010)
Autoregressive parameter φ 0.874 (0.007)

Dropout parameter β -0.036 (0.009)

wards women’s work, the less likely they are to drop out of the study. This conclusion too
agrees with the one obtained from the first model specification. However, since the British
Household Panel Survey is not a study of just women’s work but also includes many other
items (not analysed here), dropout is likely to be related to other factors as well.

The estimated means of the time-dependent attitudinal latent variable are, in order,
0.0, 0.057, 0.085, 0.101, and 0.103. This gradual increase in the mean indicates that as time
goes by and people get older their views about women’s work become more conservative.
Another explanation is that since the more conservative people are less likely to drop out,
the ones who remain in the study as time passes will tend to hold more conservative views.

The sample size considered here is large. In this situation, the X2 goodness of fit
statistic is not very helpful, as it will tend to suggest significant lack of fit even given
very small discrepancies between the fitted and observed covariance matrices (Bijleveld et
al., 1998). We therefore evaluate the two models by their Root Mean Square Error of
Approximation (RMSEA) and Comparative Fit Index (CFI). The first model specification
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has an RMSEA of 0.017 and CFI 0.994, while the second has an RMSEA of 0.021 and CFI
0.991. The two model specifications seem to fit the data almost equally well, giving us the
choice of which one to adopt. In this case, the second specification seems to be the more
attractive option since it is more parsimonious and involves directed relationships rather
than free correlations among the latent variables.

Next, three time-invariant covariates (sex as a dummy variable for women, age at
first wave and initial educational attainment) and one time-varying covariate (occupational
status) are introduced to the second model specification and allowed to affect both the
attitude towards women’s work at each wave and the dropout mechanism. Education is
included as a binary variable that takes the value 1 if an individual has a medium or high
academic qualification and 0 if no academic qualification is acquired. This is measured at
the first wave and treated as time-invariant, as it tends to vary only slowly over time and
is thus highly correlated across different waves. Occupational status is defined as a binary
time-varying covariate which takes the value 1 if an individual is employed, retired or a
student, and 0 if the individual is unemployed. The effect of covariates on the corresponding
attitudes is constrained to be the same from wave 2 onwards. For the first wave, the effect
of covariates on the attitude is allowed to be different, as this latent value is modeled solely
as a function of covariates but not of previous attitudes.

Table 2 shows estimated regression coefficients of covariates on attitudes along with
their estimated standard errors. Sex, initial age and education seem to have a significant
effect on attitudes towards women’s work at the first wave. The negative coefficient of sex
indicates that, as expected, women seem to have more liberal attitudes towards women’s
work. Both age and education have significant positive coefficients on attitude at the first
wave. This indicates that older people and people with at least medium or high education
at the beginning of the study have more conservative views about women’s work. This is in
addition to the before-mentioned conclusion that as people get older (i.e. in the subsequent
waves) their views tend to get still more conservative. Although occupational status does
not seem to have a significant effect on attitude at the first wave, it does have a significant
effect from wave 2 onwards, indicating that those who are employed, retired or students have
more liberal attitudes towards women’s work than the unemployed. Sex ceases to have a
significant effect from wave 2 onwards. This is probably due to the fact that its effect is
already carried through the attitude from previous waves.

Table 2: Parameter estimates for the regression of the attitudinal latent variables on covariates (sex,
age, education and occupational status) for Model 2.

Effect on za1 Effect on za2 , ..., za5
Est. S.E. Est. S.E.

Sex (woman) -0.049 (0.019) -0.001 (0.006)
Age at first wave 0.001 (0.001) -0.001 (0.000)

Education 0.197 (0.022) 0.026 (0.007)
Occupational status -0.004 (0.032) -0.104 (0.016)

Table 3 shows estimated regression coefficients of covariates measured at first wave on
the dropout ‘latent variable’ z

d
, along with their estimated standard errors. All the time-
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invariant covariates are significant. Sex has a negative coefficient, indicating that women are
less likely to drop out. Age has a positive effect, meaning that older people are more likely
to drop out, while the negative coefficient of education indicates that those with medium or
high education are less likely to drop out of the study. In summary, older, less educated and
male respondents have a higher propensity to drop out. It is worth mentioning that having
accounted for those covariates, the dropout coefficient β of the attitude at the first wave is
still significant, indicating nonrandom dropout. However, it is now positive (0.027), opposite
to the coefficient in the model without covariates. Thus it now indicates that controlling for
these covariates, the more conservative an individual is at the first wave, the more likely he
or she is to drop out. The likeliest explanation of this reversal is controlling for education,
for which higher education is associated with more conservative attitudes but also with lower
probability of dropout.

Table 3: Parameter estimates for the regression of the dropout latent variable on covariates (sex,
age, education and occupational status) for Model 2.

Est. S.E.
Sex (woman) -0.110 (0.027)

Age at first wave 0.011 (0.001)
Education -0.080 (0.032)

Occupational status 0.033 (0.050)

4. Conclusion

We have proposed two model specifications that incorporate dropout within the latent
variable modeling framework to model multivariate longitudinal data. Both model specifica-
tions allow us to test whether the dropout depends on the variables of interest through the
modeling of the probability of dropping out at a given wave as a function of the latent vari-
ables (in which case the dropout is nonrandom), observed covariates, or both latent variables
and covariates. The models presented here are for ordinal observed variables and binary in-
dicators for the dropout. Extensions to other types of observed variables are straightforward
and do not require any further generalisations. The ordinal observed variables were modeled
using underlying continuous variables and the classical factor analysis model, employing the
three-step estimation procedure (thresholds, polychoric correlations, weighted least squares)
as described in Jöreskog (1994, 2005). The dropout mechanism was modeled with a hazard
function that may depend on the attitudinal latent variables and covariates. Different ways
of modeling the relationships among the latent variables and the dropout mechanism were
proposed and their advantages and disadvantages discussed. The proposed models remain
within the standard framework of a general latent variable model for longitudinal data, and
therefore estimation of model parameters and goodness-of-fit testing use conventional meth-
ods. Extensions of the proposed models to cope with intermittent missingness as well as
item nonresponse are under development.
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