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National Carbon Dioxide Emissions: 

Geography Matters 

 

This article examines the role of geographical factors as determinants of cross-country 

differences in per capita carbon dioxide emissions. Such differences have been 

explained by economists mostly in terms of per capita income. Geographical factors on 

the other hand have been neglected by economic analysis. We examine the effects of 

cold and hot climates, transportation requirements and the availability of renewable 

energy sources on emissions. We find that with the exception of cooling requirements as 

measured by hot climates, all these geographical factors are statistically significant 

determinants of emissions in accordance with our expectation. Furthermore, cold 

climates and the availability of renewable resources are also substantively important. 

 

Key words: Global, carbon dioxide, quantitative analysis, climate, transportation, 

renewable energy 

 

Introduction 

Economists have analysed the determinants of differences in carbon dioxide (CO2) 

emissions across countries for more than a decade (see, for example, Shafik 1994; 

Grossman and Krueger 1995; Holtz-Eakin and Selden 1995; Schmalensee et al. 1998; 

Galeotti and Lanza 1999; Ravallion, Heil and Jalan 2000; Heil and Selden 2001). They 

mainly explain such differences with the help of per capita income as the independent 

variable in an analytical framework called the Environmental Kuznets Curve (EKC). In 

this framework, emissions first rise with increasing income, but at a decreasing rate. For 
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some pollutants, a turning point is within the range of existing income levels such that 

emissions are predicted to fall in some countries with high income levels (Cole and 

Neumayer 2004). In the case of CO2 emissions, however, the estimated turning point is 

typically much beyond even the highest existing income level such that emissions 

merely rise at a decreasing rate with higher income levels, but are not predicted to fall in 

any country. 

Economic analysis has not been interested in the impact of geographical factors on 

such emissions. Geography should clearly matter, however. For example, we would 

expect countries faced with cold winter months to have higher heating requirements 

than others with very mild or even warm winters. Similarly, countries with hot summers 

might have greater cooling requirements with consequently greater emissions. We 

would expect countries with populations spatially scattered across a big land area to 

have higher transportation requirements and therefore higher emissions than small 

countries or those with highly concentrated clusters of population. Finally, we would 

expect countries, which nature endowed with the gift of renewable energy resources to 

have lower emissions. Hydroelectricity, for example, can only be generated if 

sufficiently voluminous water flows and a suitable topography are available. Wind and 

solar energy use are most suitable for coast lines and regions with high solar influx. Of 

course, how a country makes use of its natural endowment of renewable resources is to 

some extent also determined by political will and economic capacity. But a fundamental 

dependence on geography exists. Unfortunately, it is not possible to separate one from 

the other for a global sample. 

Economic analysis has not completely overlooked the potential importance of 

geography, since many studies include country-specific fixed effects or at least model 

these as random effects forming part of the stochastic error term. Sometimes the 
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inclusion of country-specific fixed effects is explicitly justified with reference to 

‘climatic patterns or resource endowments’ as in Heil and Selden (2001, p. 38). 

However, the inclusion of such effects is unsatisfactory for mainly two reasons. First, it 

meshes geographical factors together with any other country-specific fixed effects. 

Second, in failing to include geographical variables explicitly in the estimations, these 

studies can offer no insights into the distinct impact of different geographical factors on 

CO2 emissions. 

This article attempts to demonstrate that geography indeed matters when it comes 

to CO2 emissions. It improves upon more preliminary earlier estimates undertaken 

within a more basic estimation framework (Neumayer 2002). We will show that cold 

climates, limited access to renewable energy sources and higher transportation 

requirements are all statistically significantly associated with higher CO2 emissions. In 

contrast, cooling requirements as approximated by hot climates exert no statistically 

significant impact upon emissions. 

Somewhat surprisingly, geographical aspects have not played much of a role in the 

negotiations of emission reductions in Kyoto, Japan, in 1997 (Jones 2001). They have, 

however, at times been considered in debates about what a fair allocation of emission 

reduction obligations would look like. For example, Grubb et al. (1992, p. 314) 

examine, without endorsing, “reasonable emissions” as one criterion for an 

internationally just allocation rule. They define a ‘reasonable level of emissions for each 

country’ as the ‘level that would support a consistent, modest standard of living, given 

the national climatic and other conditions [emphasis added]. Permits would be granted 

for emissions at this level, but not for those “luxury” emissions in excess of this 

amount’. The Intergovernmental Panel on Climate Change (IPCC 1995, p. 104) 

contemplates a similar allocation rule under the heading “basic needs”. Such a rule 
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would allow countries ‘the right to emit the minimum levels of greenhouse gases 

needed to meet the basic needs of their citizens (…). It would perhaps be close to the 

allocation of emission permits according to population, although basic needs could vary 

from country to country depending on climate and other matters [emphasis added]’. As 

a final example, consider the attempt by Benestad (1994) to construct a formula for just 

allocation of CO2 emission rights according to energy needs, including such things as a 

country’s heating and cooling requirements, transportation needs as well as renewable 

energy sources potential. Since this study examines the relative importance of a number 

of geographical factors explaining cross-country differences in CO2 emissions, it can 

also shed some light on the relevance of these and other normative allocation rules that 

refer to such factors. 

 

Research design 

We use a panel of per capita CO2 emissions covering the period 1960 to 1999 with up to 

163 countries. The country coverage is entirely driven by the availability of data. We 

estimate variants of the following model: 

 

ln(Eit) = β0 + β1ln(Yit) + β2(lnYit)2 + β3Ci + β4Ri + β5Ai + Tt + eit

 

where countries are indicated by i and years by t. The variable E stands for per 

capita CO2 emissions, Y is income per capita, C is a climate variable, R is the percentage 

of total energy consumption derived from renewable energy sources, A is a measure for 

transportation requirements, Tt are year-specific dummy variables and eit is a stochastic 

error term. The dependent variable is logged to make its distribution less skewed, which 

typically makes the estimated model more compatible with distributional assumptions 
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of the estimation (Wooldridge 2000). The logging of the income variable is common in 

the EKC literature, partly because it allows an elasticity interpretation of the estimated 

coefficients and partly because empirically the model fit is better with the income 

variable logged. Our major results remain valid if these variables were not logged. The 

year-specific dummy variables capture exogenous advances in carbon saving 

technology open to all countries. 

For panel data, common estimators used are the fixed-effects and either the 

generalised least squares (GLS) or the full maximum-likelihood random-effects 

estimators. The fixed-effects estimator cannot be used here since some of our variables 

do not vary over time. Instead of the GLS or the random-effects estimators we use a 

generalised estimating equations (GEE) estimator, which is an extension of the 

generalized linear model (GLM) approach. It is asymptotically equivalent to a random-

effects estimator, but has important advantages as well. First, it is easy to compute 

standard errors that are robust to heteroscedasticity. Second, observations can be 

assumed to be clustered, which means that they are assumed to be independent only 

across countries, but not necessarily across time within any one country.1 Zorn (2001, p. 

470) calls for the use of GEE estimators for cases ‘in which the standard assumption 

that the data are conditionally independent can be called into question’. Since 

observations within any one country are certainly not independent over time, using 

standard errors that are robust towards clustering by countries is clearly advantageous. 

Total per capita CO2 emissions from fossil fuel burning and cement manufacturing 

were taken from data compiled by the Carbon Dioxide Information Center, the 

definitive source for such data (Marland et al. 2002). Income is measured as real per 

capita GDP in purchasing power parity taken from the Penn World Table 6.1 (Heston, 

Summers and Aten 2003). For our climate variables we use two proxy variables for cold 
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climates and the consequent heating requirements. One is the average minimum 

temperature in degrees Centigrade in the coldest climatic season of the year. For 

countries located in the Northern hemisphere this means December, January and 

February, for those in the Southern hemisphere the temperatures refer to June, July and 

August. The other variable is the annual number of frost days, which is defined as the 

number of days in which daily minimum temperature drops below zero degrees 

Centigrade. Both variables are very highly correlated as one would expect. Neumayer 

(2002) suggests that the maximum temperature as a proxy for cooling requirements is 

not consistently and robustly associated with higher emissions. Nevertheless, we use the 

average maximum temperature in the hottest climatic seasons of the year as a further 

variable in extended estimations to our main analysis. All variables are taken from the 

climate data set for political areas described in Mitchell, Hulme and New (2002).  

The share of total energy consumption derived from renewable resources is 

calculated from data in WRI (2003). As this is the variable with the lowest availability, 

our estimations are run once with and once without it. In addition to hydroelectricity, 

renewable resources also cover energy from primary solid biomass, thermal solar, 

photovoltaic solar, wind, biogas, liquid biomass, and tide, wave, and ocean. Fuel and 

waste renewable energy sources in the form of biomass are much used by poor 

developing countries. While they partly create CO2 (and other greenhouse gas) 

emissions, they are usually not included in CO2 emission data, which derive exclusively 

from estimates of fossil fuel burning and cement manufacturing. In as much as fuel and 

waste renewable energy sources substitute for fossil fuels, which would have otherwise 

been used, their consumption should lead to lower CO2 emissions thus measured. In this 

respect, they do not differ from other substitute renewable energy sources that entail few 
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CO2 emissions, such as hydroelectricity. It is therefore correct to include them for the 

purposes of explaining cross-country CO2 emissions here. 

As concerns transportation requirements, big countries have higher transportation 

requirements as goods and people are typically moved over longer distances. However, 

it would be highly misleading to simply take a country’s total land area as a proxy for 

its transportation requirements. This is because often huge parts of big countries such as 

Canada or the Russian Federation are sparsely inhabited, if at all. To measure 

transportation requirements, we take two proxy variables. CIESIN (2001) provides 

geographical information systems data from some time in the late 1990s on the 

percentage of total land area that is either urbanised (as indicated by lights at night) or 

used for agriculture. Multiplied by total land area this provides a good proxy to the total 

land area impacted by human activities and hence for a country’s transportation 

requirements (data for land area taken from World Bank 2002). As an alternative proxy 

variable, we use the total length of the road network, both paved and unpaved. Poor 

over-time availability made it necessary to take the average length of the road network 

in the 1990s, with data taken from IRF (various years). Roads are built where people 

live. Big countries will have a larger road network, but its length also depends on how 

scattered the population is over the entire land area. For example, Australia has a small 

total length of road network relative to its land area as its population tends to be 

clustered in a few population centres along the coast line. India has a smaller land area, 

but much larger total length of road network as its population is scattered almost all 

over the country. Our two proxy variables are very highly correlated as one would hope 

for given that they are supposed to approximate the same underlying concept 

transportation requirements. Table 1 provides summary statistics on all variables, table 

2 a matrix of bivariate correlation coefficients. 
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< Insert tables 1 and 2 about here > 

 

 

Results 

We start with the model that excludes the renewable energy variable and therefore has 

the largest sample size as it. Column I of table 3 shows the expected EKC results: The 

coefficient of the linear income term is positive and statistically significant, whereas the 

coefficient of the squared term is negative and significant. A higher minimum 

temperature during the cold season is associated with lower CO2 emissions, a longer 

total road network with higher emissions, all in line with expectations. In column II we 

replace the temperature variable with the annual number of frost days, which is highly 

significant with the expected positive sign. In columns III and IV we repeat the first two 

estimations, but replace the total road length with the variable measuring the land area 

impacted by human beings. In both estimations, this variable has the expected positive 

sign, but it is marginally insignificant in column III and only marginally significant at 

the .1 level in column IV. 

 

< Insert table 3 about here > 

 

In table 4 we similarly estimate four different models analogous to table 3, but add 

the variable measuring the share of total energy consumption derived from renewable 

resources. The statistical significance of the existing variables is often slightly reduced 

in this smaller sample, but all remain significant at the .05 level with the expected signs. 

The share of renewable resources is negatively associated with emissions and highly 
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statistically significant. The variable measuring the land area impacted by human beings 

is now significant in both model specifications at the higher confidence level of .05. 

This effect is due to the inclusion of the renewable resource share as a further 

explanatory variable rather than due to the reduction in sample size. This follows from 

re-running regressions III and IV on the same sample, but without the renewable energy 

share variable included (detailed results not reported). 

 

< Insert table 4 about here > 

 

We will now include the maximum temperature during the hot climatic season as 

an additional control variable to our preferred model. Our preferred model is that in 

which heating requirements are approximated by the annual number of frost days and 

transportation requirements by the total length of road network. This model is preferred 

because these variables are more clearly statistically significant than their respective 

alternatives. We find the maximum temperature variable to be highly insignificant 

(column I of table 5). This holds true as well for the smaller sample with the renewable 

resource variable included (column II). Indeed, the same holds true for any other model 

specification (detailed results not reported). 

As a further sensitivity analysis, we tested whether our results are due to the 

influence of outliers. Belsley, Kuh and Welsch (1980) suggest excluding observations 

as outliers that have both high residuals and a high leverage. Their criterion is to 

exclude an observation if its so-called DFITS is greater in absolute terms than twice the 

square root of (k/n), where k is the number of independent variables and n the number of 

observations. DFITS is defined as the square root of (hi/(1-hi)), where hi is an 

observation’s leverage, multiplied by its studentized residual. Applying this criterion 
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leads to the exclusion of 4 countries and 257 observations in the estimation with the 

larger sample size and the exclusion of 2 countries and 122 observations in the smaller 

sample where the renewable resource variable is included. Re-estimating our preferred 

model with the remaining observations leads to the results reported in columns III and 

IV of table 5. Clearly, the results from our main analysis are not driven by the presence 

of outliers. 

 

< Insert table 5 about here > 

 

Discussion 

In accordance with the existing literature we find a non-linear effect of per capita 

income levels on per capita CO2 emissions. Theoretically, therefore, there exists a level 

of income after which emissions are predicted to decrease with further increases in 

income. This so-called turning point can be calculated as -β1/(2β2), where β1 is the 

coefficient of the linear and β2 the coefficient of the squared income term. The turning 

point in our estimations lies between $55000 as a low estimate (based on results from 

table 3) and about $90000 as a high estimate (based on results from table 4). In 

accordance with the existing literature, we therefore find a turning point that is beyond 

any currently existing per capita income levels such that CO2 emissions in all countries 

are predicted to increase with higher income levels, albeit at a decreasing rate. 

What about our geographical variables? To get a feeling for the importance of these 

variables, it is a good idea to see how much predicted emissions change due to a 

substantial increase in the variable, where we use a one standard deviation increase to 

mean substantial. A one standard deviation increase in the average minimum 

temperature in the cold season reduces CO2 emissions by between 15 per cent (table 4) 
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and 41 per cent (table 3).2 A one standard deviation increase in the annual number of 

frost days increases emissions by between 22 per cent (table 4) and 71 per cent (table 3). 

These are clearly non-negligible differences in emissions demonstrating that climatic 

factors are not only statistically significant, but also substantively important. 

In comparison, transportation requirements are less substantively important. The 

emission increase due to a one standard deviation increase in the total road length is 

estimated to be between about 8 per cent (table 4) and 17 per cent (table 3). The 

respective figures for the total land area impacted by human beings are 6 and 9 per cent. 

These emission increases are clearly more modest compared to the ones for climatic 

factors. 

With respect to the availability of renewable energy sources, a one standard 

deviation increase in the share of total energy consumption satisfied with renewable 

sources is predicted to lower CO2 emissions by about 42 per cent. Again, the availability 

of renewable energy sources has an impact on CO2 emissions that is both statistically 

significant and substantively important. 

Another way to gauge the importance of geographical factors is to compare the 

CO2 emissions of two fictitious countries. Consider one “average” country at the mean 

of all independent variables. The second country also has mean income levels, but is 

geographically disadvantaged in the sense that the annual number of frost days and the 

total length of road network are one standard deviation above the mean, whereas the 

renewable resource share is one standard deviation below the mean. Our estimations in 

column II of table 4 predict that the geographically disadvantaged country has .83 tons 

higher per capita emissions than the other country. Given that mean CO2 emissions per 

capita are .91 tons with a standard deviation of 1.32 tons, this is clearly a non-negligible 

difference in emissions. 
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What might explain the insignificance of the maximum temperature variable as a 

proxy for cooling requirements due to hot climates? One explanation could be that it is a 

bad proxy variable for cooling requirements. However, there is no strong reason why 

this should be the case. A perhaps more convincing explanation could be that whereas 

heating represents a necessity good in cold climates with consumers having few 

alternatives if they do not want to freeze to death, cooling is likely to be a luxury good 

in hot climates. Those who can afford will have air conditioning and other cooling 

devices, those who cannot will not. Many countries with very hot climates are also 

relatively poor countries with many people not willing or able to afford air conditioning. 

On the whole, we have demonstrated that geography matters when it comes to 

explaining variation in CO2 emissions. Cold climates and the availability of renewable 

energy sources exert a statistically significant impact upon such emissions that is also 

substantively important. We found transportation requirements to be statistically 

significant as well, but less substantively important. 

Our findings become policy relevant when it comes to debates over a fair allocation 

of emission rights. They clearly show that any simplistic allocation rule on the basis of 

GDP or population cannot be ‘fair’ as it would ignore the important role that geography 

plays in determining cross-country differences in emissions. The results presented 

above give geographically disadvantaged countries some arguments at hand to request 

higher emission rights than are given to geographically advantaged countries. The world 

has only started to embark upon negotiating national emission rights. As emission 

reduction obligations become tougher in follow-up agreements to the Kyoto Protocol 

with more countries required to reduce emissions we can expect that countries pay 

much more attention to geographical factors than they have done so far.3 Since 
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geography matters for CO2 emissions it will also eventually matter for negotiations 

about emission reductions. 
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Notes

 
1 At least within Stata, the statistical package used here, there is no easy option to use 

the random-effects estimators with such robust standard errors. Note that our main 

results remain valid if we use a random-effects estimator or a GLS estimator with a 

heteroscedastic and autoregressive error term instead. 

2 Ironically, global warming can be expected to have a small negative feedback effect 

on carbon dioxide emissions as it is likely to raise minimum temperatures in the cold 

season as well. According to our estimations, a one degree Centigrade increase in the 

average minimum temperature would reduce per capita emissions by between 2 (table 

4) and 5 percent (table 2). 

3 The same applied to historical accountability for greenhouse gas emissions (Neumayer 

2000). 
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Table 1 Summary statistics 

 

 N Mean Std. Dev. Min. Max. 

CO2 p.c. (metric tons) 4688 0.91 1.32 0.01 16.88 

GDP p.c. (US$ of 1996) 4688 5982 6020 281.3 41354 

minimum temperature (degree C) 4688 9.7 10.6 -28.1 24.2 

maximum temperature (degree C) 4688 29.1 5.7 10.6 43.4 

number of frost days (per annum) 4688 39.2 57.5 0 252.5 

total length road network (km) 4688 210371 682341 246 6330325

total land area impacted by humans (sq km) 4688 197936 480399 63 2930918

renewable energy (% of energy consumption) 2881 0.31 0.31 0 1 
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Table 2 Matrix of bivariate correlation coefficients 

 

 ln (CO ln (GDP p.c.)2 p.c.) minimum temp. maximum temp. frost days length road network land area impacted 

ln (GDP p.c.) .8972       

minimum temperature -.5530 -.5295      

maximum temperature -.5051 -.5788 .7134     

frost days .5407 .5349 -.9269 -.8338    

length road network .2034 .1755 -.2217 -.0351 .2060   

land area impacted .1026 .0234 -.2264 -.0096 .2004 .8282  

renewable energy share -.8399 -.7462 .5179 .3058 -.4028 -.1457 -.0657 

 

Note: N = 2881. 
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Table 3 Results with renewable energy share excluded 

 

 I II III IV 

ln (GDP p.c.) 2.72*** 

(3.99) 

2.72*** 

(3.98) 

2.71*** 

(3.98) 

2.71*** 

(3.97) 

[ln (GDP p.c.)]2 -.12*** 

(3.04) 

-.12*** 

(3.05) 

-.12*** 

(3.03) 

-.12*** 

(3.04) 

minimum temperature -.05*** 

(6.83) 

 -.05*** 

(6.53) 

 

frost days  .01*** 

(6.70) 

 .01*** 

(6.45) 

length road network 2.22e-07*** 

(3.41) 

2.26e-07*** 

(3.07) 

  

land area impacted   1.63e-07 

(1.51) 

1.80e-07* 

(1.71) 

# countries 163 163 163 163 

# observations 4688 4688 4688 4688 

 

Note: Dependent variable is ln (CO2 p.c.). General Estimation Equations (GEE) estimation. 

Absolute z-values in parentheses. Robust standard errors allowing observations to be 

clustered by countries. Coefficients of constant and year-specific time dummies not shown. 

* statistically significant at .1 level  ** at .05 level  *** at .01 level. 
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Table 4 Results with renewable energy share included 

 

 I II III IV 

ln (GDP p.c.) 2.50*** 

(3.01) 

2.48*** 

(3.02) 

2.48*** 

(2.99) 

2.46*** 

(3.00) 

[ln (GDP p.c.)]2 -.11** 

(2.32) 

-.11** 

(2.33) 

-.11** 

(2.30) 

-.11** 

(2.30) 

renewable energy share -1.77*** 

(6.03) 

-1.79*** 

(6.30) 

-1.78*** 

(6.01) 

-1.80*** 

(6.29) 

minimum temperature -.02*** 

(2.60) 

 -.02** 

(2.41) 

 

frost days  .003*** 

(3.33) 

 .003*** 

(3.15) 

length road network 1.23e-07*** 

(3.81) 

1.12e-07*** 

(3.84) 

  

land area impacted   1.38e-07** 

(1.98) 

1.20e-07** 

(1.94) 

# countries 119 119 119 119 

# observations 2881 2881 2881 2881 

 

Note: Dependent variable is ln (CO2 p.c.). General Estimation Equations (GEE) estimation. 

Absolute z-values in parentheses. Robust standard errors allowing observations to be 

clustered by countries. Coefficients of constant and year-specific time dummies not shown. 

** statistically significant at .05 level  *** at .01 level. 
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Table 5 Sensitivity analysis 

 I II III IV 

ln (GDP p.c.) 2.71*** 

(3.96) 

2.51*** 

(3.03) 

3.32*** 

(5.66) 

2.12*** 

(3.37) 

[ln (GDP p.c.)]2 -.12*** 

(3.03) 

-.11** 

(2.34) 

-.15*** 

(4.29) 

-.09** 

(2.47) 

renewable energy share  -1.75*** 

(6.06) 

 -1.84*** 

(7.35) 

frost days .012*** 

(6.30) 

.005*** 

(3.45) 

.009*** 

(7.69) 

.003*** 

(3.94) 

length road network 2.05e-07***

(2.58) 

9.85e-08***

(2.93) 

1.86e-07***

(3.14) 

1.02e-07*** 

(4.12) 

maximum temperature .03 

(1.23) 

.02 

(1.14) 

  

# countries 163 119 159 117 

# observations 4688 2881 4431 2759 

 

Note: Dependent variable is ln (CO2 p.c.). General Estimation Equations (GEE) estimation. 

Absolute z-values in parentheses. Robust standard errors allowing observations to be 

clustered by countries. Coefficients of constant and year-specific time dummies not shown. 

** statistically significant at .05 level  *** at .01 level. 
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