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An analytical solution for the two-sided Parisian stopping time,

its asymptotics and the pricing of Parisian options

Angelos Dassios, Jia Wei Lim

Department of Statistics, London School of Economics

Houghton Street, London WC2A 2AE

Abstract

In this paper, we obtain a recursive formula for the density of the two-sided Parisian

stopping time. This formula does not require any numerical inversion of Laplace trans-

forms, and is similar to the formula obtained for the one-sided Parisian stopping time

derived in Dassios and Lim [6]. However, when we study the tails of the two distributions,

we find that the two-sided stopping time has an exponential tail, while the one-sided stop-

ping time has a heavier tail. We derive an asymptotic result for the tail of the two-sided

stopping time distribution and propose an alternative method of approximating the price

of the two-sided Parisian option.

Keywords Brownian excursion, Double-sided Parisian options, Tail asymptotics

1 Introduction

Parisian options were first introduced by Chesney, Jeanblanc and Yor [4]. They are path

dependent options whose payoffs depend not only on the final value of the underlying asset,

but also on the path trajectory of the underlying above or below a predetermined barrier L.

For example, the owner of a Parisian down-and-out call loses the option when the underlying
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asset price S reaches the level L and remains constantly below this level for a time interval

longer than D, while for a Parisian down-and-in call, the same event gives the owner the right

to exercise the option. Parisian options are a kind of barrier option. However, they have

the advantage of not being as easily manipulated by an influential agent as a simple barrier

option, and thus protect against easy arbitrage.

Previous literature has largely focused on using Laplace transforms to price Parisian options.

In Chesney et al. [4], Dassios and Wu [8], and Schröder [11], the problem is reduced to finding

the Laplace transform of the Parisian stopping time, which is the first time the length of the

excursion reaches level D. In Chesney et al. [4], the Laplace transform of the stopping time

was obtained using the Brownian meander and Azema martingale, while Dassios and Wu [7]

introduced a perturbed Brownian motion and a semi-Markov model to obtain the Laplace

transform. In both of these, an explicit form for the Laplace transform of the distribution of

the Parisian stopping time was found. Other methods of pricing Parisian options include the

PDE method, studied by Haber, Schönbucher and Wilmott [10], the simulation method, as

in Anderluh [1] and Bernard and Boyle [3], and the combinatorial approach in Costabile [5].

In Dassios and Lim [6], a recursive solution for the density of the one-sided Parisian stopping

time was found and a procedure for pricing Parisian options was proposed, that does not

require any numerical inversion of Laplace transforms.

There are also other types of Parisian options. Cumulative Parisian options, which are

related to the total excursion time above (or below) a barrier, are studied in Chesney et

al. [4], two-sided Parisian options are introduced in Dassios and Wu [8], and double barrier

Parisian options in Dassios and Wu [7] and Anderluh and Weide [2]. In this paper, we study

the density of the two-sided Parisian stopping time. Using the same method as in Dassios and

Lim [6], we obtain a recursive formula for its density. The formula obtained has some similarity

to that of the one-sided case. The advantage of this method compared to that in the previous

literature is that there is no Laplace transform to invert. This increases speed, and the formula
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is not an approximation, hence accuracy can be almost exact. Furthermore, we find that the

two-sided stopping time has an exponential tail, and we derive an asymptotic result for it.

However, a study of numerical results and graphs show that the one-sided stopping time has

a heavier tail. Based on the asymptotic result, we propose a new method of approximating

the two-sided stopping time.

Finally, we use the results to price two-sided Parisian options, which are options that get

knocked in or out when the underlying either stays D units of time above or below the barrier.

These were first introduced in Dassios and Wu [8]. The Laplace transform of the pricing

formula was given in their paper. Our approach does not require any numerical inversion of

the Laplace transform.

Section 2 sets out some definitions and notations. Section 3 derives the density of the two-

sided Parisian stopping time. Section 4 gives the result for the asymptotic tail probability

of the above distribution. Section 5 gives some numerical results and graphs comparing the

distributions of the one and two-sided Parisian stopping times. Section 6 shows how to use

the results to price two-sided Parisian options.

2 Definitions

We will use the same definitions for the excursions as in Chesney et al. [4]. Let S be the under-

lying asset following a geometric Brownian motion, and Q denote the risk neutral probability

measure. The dynamics of S under Q is

dSt = St(rdt+ σdWt), S0 = x, (2.1)

where Wt is a standard Brownian motion under Q, and r and σ are positive constants. For

simplicity, assume zero dividends. Let K denote the strike price of the option and we introduce
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the notations

m =
1

σ

(
r − σ2

2

)
, b =

1

σ
ln

(
L

x

)
, k =

1

σ
ln

(
K

x

)
,

so that the asset price St = xeσ(mt+Wt). Also define

gSL,t = sup{s ≤ t|Ss = L}, dSL,t = inf{s ≥ t|Ss = L},

with the usual convention that sup ∅ = 0 and inf ∅ =∞. The trajectory of S between gSL,t and

dSL,t is the excursion which straddles time t. We are interested here in t − gSL,t, which is the

age of the excursion at time t. We further denote by gWL,t and dWL,t the excursion lengths when

the underlying process is the Brownian motion W . For D > 0, we now define

τ+L,D(S) = inf{t ≥ 0|1St>L(t− gSL,t) ≥ D}, (2.2)

τ−L,D(S) = inf{t ≥ 0|1St<L(t− gSL,t) ≥ D}, (2.3)

τL,D(S) = τ+L,D(S) ∧ τ−L,D(S). (2.4)

Thus, τ+L,D(S) denotes the first time that the length of the excursion of process S above the

barrier L reaches level D, while τ−L,D(S) denotes the first time the length of the excursion of

process S below L reaches level D. We also introduce the following notation for the stopping

times pertaining to the standard Brownian motion W instead of S. Furthermore, without loss

of generality, as any time t of interest can be expressed in units of the window length D, we

let D = 1 from now on.

τ+b = inf{t ≥ 0|1Wt>b(t− gWb,t) ≥ 1}, (2.5)

τ−b = inf{t ≥ 0|1Wt<b(t− gWb,t) ≥ 1}. (2.6)
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The two-sided stopping time is the minimum of the two one-sided stopping times with the

same barrier. We denote it by τb and we have

τb = τ+b ∧ τ
−
b .

We note however that we have taken the window length of both sides to be the same (i.e., 1

in our case).

The owner of a Parisian min-in option receives the payoff only if there is an excursion be-

low the level L or above level L which is of length greater or equal to D. This will be the

case if τL(S) ≤ T , where T is the maturity time of the option, and τL(S) = τL,D(S). The

price Cmini (x, T ) of a Parisian min-in call with initial underlying price x, maturity T , and

parameters K,L,D, r fixed, is

Cmini (x, T ) = EQ

[
e−rT1{τL(S)≤T}(xe

σ(mT+WT ) −K)+
]
. (2.7)

We introduce a new probability measure P, which makes Zt = Wt +mt a standard Brownian

motion under P. Applying Girsanov’s Theorem, we have

Cmini (x, T ) = EP

[
e−(r+

1
2
m2)T1{τb≤T}e

mZT
(
xeσZT −K

)+]
. (2.8)

To simplify, also let

∗Cmini (x, T ) = e(r+
1
2
m2)TCmini (x, T ). (2.9)

We denote by Ft = σ(Zs, s ≤ t) the natural filtration of the Brownian motion (Zt, t ≥ 0).

Then τb is an Ft-stopping time, and by the strong Markov property of Brownian motion

∗Cdi (x, T ) = EP

[
1{τb≤T}E

[
emZT

(
xeσZT −K

)+ |Fτb]] (2.10)
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= EP

[
1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]
. (2.11)

We will first study the density function of τb, which we will denote by fb(t), and then use it

to obtain the price of a Parisian min-in call option.

3 Density of the two-sided Parisian stopping time

In this section, we give an analytical formula for the density of the two-sided Parisian stopping

time. The formula is very similar to that for the one-sided stopping time.

Theorem 3.1 Denoting by f0(t) the probability density function of τ0, we have

f0(t) =
n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ..., (3.1)

for t > 1, where Lk(t) is defined recursively as follows:

L0(t) =
1

π
√
t
, for t > 0, (3.2)

Lk+1(t) =

∫ t−k

1
Lk(t− s)

√
s− 1

πs
ds, for t > k + 1. (3.3)

Proof. The Laplace transform of the density of τ0 is (see Dassios and Wu [8])

f̂0(β) =
1

Ψ(
√

2β)− eβ
√
πβ

,

where Ψ(x) is

Ψ(x) = 1 + x
√

2πe
x2

2 N (x),

and N (x) denotes the standard normal distribution function. Note however, that the formula

given in Dassios and Wu [8] differs from this because the function Ψ(x) is defined differently.
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Now, we have

1

β
e−β

(
Ψ
(√

2β
)
− eβ

√
πβ
)

=
e−β

β
+ 2

√
π

β

∫ √2β
−∞

1√
2π
e−

x2

2 dx−
√
π

β

=
e−β

β
+

√
π

β

(
1 + 2

∫ √2β
0

1√
2π
e−

x2

2 dx

)
−
√
π

β

=
e−β

β
+

∫ 1

0

e−βs√
s
ds (3.4)

=

∫ ∞
1

e−βsds+

(∫ ∞
0

e−βs√
s
ds−

∫ ∞
1

e−βs√
s
ds

)
=

√
π

β
+

1

β

∫ ∞
1

e−βs

2s3/2
ds

=

√
π

β

(
1 +

1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
,

so

f̂0(β) =
e−β

√
πβ
(

1 + 1√
πβ

∫∞
1

e−βs

2s3/2
ds
) (3.5)

= e−β
∞∑
k=0

(−1)k
1√
πβ

(
1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
. (3.6)

We denote

L̂k(β) =
1√
πβ

(
1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
. (3.7)

As L̂1(β) → 0 as β → ∞, and L̂k(β) is continuous and decreasing in β, there exists β∗ > 0

such that the above expansion from line (3.5) to (3.6) is valid for all β > β∗. Furthermore, if

L denotes the Laplace transform operator, we have the following Laplace inversions

L−1
(

1√
πβ

)
=

1

π
√
t

(3.8)

L−1
(

1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

√
t− 1

πt
1{t>1}, (3.9)
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because the LHS of (3.9) is the product of two functions whose inversion is known, so by

taking their convolution we get

L−1
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

∫ t

0

1

2π
√
t− s

1

2s3/2
1{s>1}ds

=

[
−
√
t− s

2πt
√
s

]t
1

=

√
t− 1

2πt
1{t>1}.

Hence, taking the Laplace inversion of equation (3.7), we obtain that Lk is the kth convolution

of (3.9), and L0 is the expression obtained in (3.8). Finally, we note that for n < t < n + 1,

Lk(t) is zero for k > n, so we only need a finite sum up to n, where the series expansion is

valid for β > β∗. Hence, we have the recursive solution.

For b > 0, we are only interested in the case {Tb < 1}, where Tb is the first hitting time of

level b, since if Tb ≥ 1, τb = 1. We have the following recursive solution for the density of τb

on the set {Tb < 1}.

Theorem 3.2 For b > 0, we denote by fb(t, Tb < 1) the probability density function of the

two-sided stopping time τb on the set {Tb < 1}. We have

fb(t, Tb < 1) =

n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ..., (3.10)

for t > 0, where Lk(t) is defined recursively as follows:

L0(t) = 1{0<t≤1}
1

π
√
t
e−

b2

2t + 1{t>1}
2

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)
, (3.11)

Lk+1(t) =

∫ t−k

1
Lk(t− s)

√
s− 1

πs
ds, for t > k + 1. (3.12)

Proof. We have

E
[
e−βτb(t)1{Tb<1}

]
= E

[
e−β(Tb+τ0)1{Tb<1}

]
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= E
[
e−βTb1{Tb<1}

] 1

Ψ(
√

2β)− eβ
√
πβ

= e−β
∞∑
k=0

(−1)k
E
[
e−βTb1{Tb<1}

]
√
πβ

(
1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

Furthermore,

L0(t) = L−1
(
E
[
e−βTb1{Tb<1}

]
√
πβ

)

= 1{0<t≤1}

∫ t

0

b√
2πs3

e−
b2

2s
1

π
√
t− s

ds+ 1{t>1}

∫ 1

0

b√
2πs3

e−
b2

2s
1

π
√
t− s

ds

= 1{0<t≤1}

∫ ∞
b√
t

2

π
√

2π
e−

x2

2

√
x2

tx2 − b2
dx+ 1{t>1}

∫ ∞
b

2

π
√

2π
e−

x2

2

√
x2

tx2 − b2
dx

= 1{0<t≤1}

∫ ∞
b2

t

1

π
√

2π
e−

y
2

√
1

ty − b2
dy + 1{t>1}

∫ ∞
b2

1

π
√

2π
e−

y
2

1√
ty − b2

dy

= 1{0<t≤1}
2

π
√
t
e−

b2

2t

∫ ∞
0

1√
2πt

e−
x2

2t dx+ 1{t>1}
2

π
√
t
e−

b2

2t

∫ ∞
b
√
t−1

1√
2πt

e−
x2

2t dx

= 1{0<t≤1}
1

π
√
t
e−

b2

2t + 1{t>1}
2

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)
.

The Lk for k = 1, 2, ... is derived in the same way.

And for b < 0, we have

fb(t, Tb < 1) = f−b(t, T−b < 1),

due to the symmetry of the standard Brownian motion.

4 Tail distribution of the two-sided Parisian stopping time

In this section, we prove that the two-sided stopping time τ0 has an exponential tail, unlike

the distribution of the one-sided stopping time τ−0 . This is as expected, because the one-sided

case involves the hitting time of a Brownian motion, which follows a heavy tailed distribution

with infinite expectation, while the two-sided one involves the hitting time of a Brownian
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motion reflected at zero, which has an exponential tail. We present some numerical results

and graphs to see what happens when t→∞. Furthermore, we compare this to the one-sided

stopping time τ−0 , which has a heavier tail as we will see.

Theorem 4.1 Let F̄0(t) be the tail of the distribution of the two-sided Parisian stopping time

τ0 with barrier 0. It has an exponential tail. As t→∞, we have

F̄0(t) ∼ 2e−β
∗
e−β

∗(t−1), (4.1)

for some constant β∗ > 0 such that −β∗ is the unique solution of the equation

∫ 1

0

e−βs√
s
ds+

e−β

β
= 0. (4.2)

Proof. First, we have

f̂0(β) =
1

Ψ(
√

2β)− eβ
√
πβ

=
e−β

β
(∫ 1

0
e−βs√
s
ds+ e−β

β

) .
For simplicity, as any function h(t) with Laplace transform ĥ(β), when shifted by 1, has

Laplace transform

L(h(t− 1)) = e−βĥ(β), for t > 1,

we can exclude e−β in the numerator from our calculations, and shift the resulting function

at the end of the calculations by the window length 1 to obtain the actual tail. The intuition

behind this is that, because the window length is 1, the stopping time will not occur before

time 1, and hence it is only useful to study the density for t > 1. We then have

1

β
(∫ 1

0
e−βs√
s
ds+ e−β

β

) =
1

1 +
∫ 1
0 (1− e−βv) 1

2v3/2
dv

10



=

∫ ∞
0

e−ue
−u

∫ 1
0 (1−e−βv) 1

2v3/2
dv
du

= E
(
e−βXT

)
,

where XT is a subordinator (non-decreasing Lévy process) with Lévy measure 1
2v3/2

for v < 1

at an independent exponential time T ∼ Exp(1). Hence, we observe an interesting connection

between the distributions of the Parisian stopping time and that of the Lévy process XT . This

suggests possibilities for further study. The first step above follows from (3.4) and the second

step can be derived as below:

∫ 1

0
(1− e−βv) 1

2v3/2
dv =

∫ 1

0

∫ v

0
βe−βudu

1

2v3/2
dv

=

∫ 1

0
βe−βu

∫ 1

u

1

2v3/2
dvdu

=

∫ 1

0
βe−βu

(
1√
u
− 1

)
du

= β

(∫ 1

0

e−βs√
s
ds+

e−β

β

)
− 1.

Next, we define two new discrete random variables T and T :

T =

∞∑
k=1

(k − 1)h1{(k−1)h<T≤kh}

T =

∞∑
k=0

kh1{(k−1)h<T≤kh}

so that T ≤ T ≤ T . They have probability functions

P (T = kh) = e−kh(1− e−h) k = 0, 1, ...,

P (T = kh) = e−(k−1)h(1− e−h) k = 1, 2, ....

11



We note that T is the upper bound for T and T is its lower bound. Hence, we have that

P (T ≤ t) ≤ P (T ≤ t) ≤ P (T ≤ t), and thus

P (XT > x) ≤ P (XT > x) ≤ P (XT > x),

because Xt is a subordinator and hence increasing. We then proceed to show that, as h→ 0,

both P (XT > x) and P (XT > x) converge to the same limit.

We have

E
(
e−βXT

)
=
∞∑
k=0

e−kh(1− e−h)e
−kh

∫ 1
0 (1−e−βv) 1

2v3/2
dv
,

and

E
(
e−βXT

)
=
∞∑
k=1

e−(k−1)h(1− e−h)e
−kh

∫ 1
0 (1−e−βv) 1

2v3/2
dv
.

First, consider E
(
e−βXT

)
. We define the function ĝh(β) as

ĝh(β) = e
−h

∫ 1
0 (1−e−βv) 1

2v3/2
dv
,

and note that ĝh(β) is the Laplace transform of Xh,

ĝh(β) = E
(
e−βXh

)
.

We also denote Gh(x) as the distribution of Xh, and Gh(x) as its survival function. Then

∞∑
k=0

e−kh(1− e−h)e
−kh

∫ 1
0 (1−e−βv) 1

2v3/2
dv

=
∞∑
k=0

e−kh(1− e−h) (ĝh(β))k

=
1− e−h

1− ĝh(β)e−h
.
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Now, let L(x) be the tail distribution P (XT > x), and L̂(β) its Laplace transform. So we have

L̂(β) =
1− 1−e−h

1−ĝh(β)e−h

β

=
e−h 1−ĝh(β)

β

1− ĝh(β)e−h
,

and thus,

L̂(β)
(

1− ĝh(β)e−h
)

= e−h
1− ĝh(β)

β

L̂(β)− L̂(β)ĝh(β)e−h = e−h
1− ĝh(β)

β

Inverting the Laplace transform on both sides and writing the second term as a convolution,

we have

L(x)−
∫ x

0
L(x− y)dGh(y)e−h = e−hGh(x).

Let β∗ > 0 be such that −β∗ is the solution to the equation

1 +

∫ 1

0
(1− e−βv) 1

2v3/2
dv = 0.

We note that this equation has a unique negative solution, because the expression on the left

hand side of this equation is decreasing for negative β. Furthermore, as β → 0, the expression

approaches 1, and as β → −∞, the expression approaches −∞. Next, we define L
∗
(x) as

L(x)eβ
∗x = L

∗
(x).

Then, we have

L
∗
(x)e−β

∗x −
∫ x

0
L
∗
(x− y)e−β

∗(x−y)dGh(y)e−h = e−hGh(x)

L
∗
(x)−

∫ x

0
L
∗
(x− y)eβ

∗ydGh(y)e−h = e−heβ
∗xGh(x).
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By the key renewal theorem (see Feller [9] Chapter 11), we have that as x→∞,

L
∗
(x) →

∫∞
0 e−heβ

∗yGh(y)dy∫∞
0 yeβ∗ydGh(y)

=

e−h
(

1− e−h
∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
)

−β∗ d
dβ∗ ĝh(β∗)

=

e−h
(

1− e−h
∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
)

−β∗
(
h
∫ 1
0 e

β∗v 1
2
√
v
dv
)
e
−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
.

We denote this by Ch. When h→ 0, we get

Ch =

∫ 1
0 (1− eβ∗v) 1

2v3/2
dv

−β∗
∫ 1
0 e

β∗v 1
2
√
v
dv

=
−1

−β∗

2

(∫ 1
0 e

β∗v 1√
v
dv − eβ∗

β∗

)
− eβ∗

2

= 2e−β
∗
.

Likewise, we denote by l(x) the tail distribution P (XT > x), and l̂(β) its Laplace transform.

Similarly, we can compute

l̂(β) =
1− 1−e−h

1−ĝh(β)e−h
ĝh(β)

β

=

1−ĝh(β)
β

1− ĝh(β)e−h
,

and thus,

l̂(β)
(

1− ĝh(β)e−h
)

=
1− ĝh(β)

β
.

Inverting the Laplace transform, we have

l(x)−
∫ x

0
l(x− y)dGh(y)e−h = Ḡh(x),

14



and we define l
∗
(x) as

l(x)eβ
∗x = l

∗
(x).

Then, we have

l
∗
(x)−

∫ x

0
l
∗
(x− y)eβ

∗ydGh(y) = eβ
∗xGh(x).

By the key renewal theorem,

l
∗
(x) →

∫∞
0 eβ

∗yGh(y)dy∫∞
0 yeβ∗ydGh(y)

=
1− e−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv

−β∗
(
h
∫ 1
0 e

β∗v 1
2
√
v
dv
)
e
−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
.

We denote this by Ch. When h→ 0, we get

Ch = 2e−β
∗
.

Finally, note that

eβ
∗xP (XT > x) ≤ eβ

∗xP (XT > x) ≤ eβ∗xP (XT > x)

L
∗
(x) ≤ eβ

∗xF̄0(x) ≤ l∗(x).

As h → 0, L
∗
(x) and l

∗
(x) converge to the same limit as x → ∞. Hence, eβ

∗xF̄0(x) also

converges to this limit as x → ∞. Shifting the resulting function to the right by 1, we thus

have

F̄0(t)→ 2e−β
∗
e−β

∗(t−1),

as t→∞.

Remark 4.2 We can compute β∗ numerically to be 0.854.
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5 Numerical Results

The table below presents the survival functions for both τ0 and τ−0 , computed using a time

step of h = 0.001 with R.

Table 1: One and two-sided survival functions for 0 < t ≤ 10
t F̄0(t) F̄−0 (t) t F̄0(t) F̄−0 (t)

1.5 0.555931 0.775033 6.0 0.015114 0.403422
2.0 0.369469 0.681770 6.5 0.010779 0.387956
2.5 0.242144 0.614236 7.0 0.007910 0.374142
3.0 0.159600 0.563552 7.5 0.006003 0.361704
3.5 0.105503 0.523602 8.0 0.004726 0.350429
4.0 0.070093 0.491082 8.5 0.003866 0.340146
4.5 0.046893 0.463944 9.0 0.003278 0.330718
5.0 0.031679 0.440854 9.5 0.002872 0.322033
5.5 0.021687 0.420896 10.0 0.002586 0.313997

We can see that the two-sided survival function goes to 0 much faster than the one-sided

one.

The following graph compares the density functions of the one and two-sided cases. The

red line represents f0(t) while the black line f−0 (t), plotted against time. This graph suggests

that f−0 (t) has a heavier tail.

Figure 1: Graph of f0(t) and f−0 (t) versus t for 0 < t ≤ 50

16



The following graph depicts the tails F̄0(t) (black) and the approximation Cβ∗e
−β∗t (red).

Figure 2: Graph of F̄0(t) and Cβ∗e
−β∗t versus t for 0 < t ≤ 20

It suggests that the asymptotic provides a good approximation for the survival function.

The following graph plots F̄−0 (t) against ln (t).

Remark 5.1 Based on the asymptotics in Theorem 3.4, we propose a new method of obtaining

the density of the two-sided stopping time when b = 0. From the recursions in Theorem 3.1,

we can compute the closed form formula for the density f0(t) for 1 < t ≤ 4. For t > 4, we

approximate the density with the asymptotics. We have from Theorem 3.1

L0(t) =
1

π
√
t
, for t > 0.

L1(t) =

∫ t

1
L1(t− s)

s− 1

πs
ds

=

∫ t−1

0

√
t− s− 1

π2(t− s)
√
s
ds

=

[
2 arctan

(√
s

t− s− 1

)
− 2√

t
arctan

(√
s

t(t− s− 1)

)]t−1
0

=
1

π
− 1

π
√
t
.

17



L2(t) =

∫ t−1

1
L2(t− s)

√
s− 1

πs
ds

=
1

π2

∫ t−1

1

(√
t− s− 1

t− s
ds−

√
t− s− 1√
s(t− s)

)
ds

=
1

π2
[
2 arctan(

√
t− s− 1)− 2

√
t− s− 1

]t−1
1

− 1

π2

2 arctan

√
s

t− s− 1
−

2 arctan

(√
s

t(t−s−1)

)
√
t


t−1

1

=
2
√
t− 2

π2
−

4 arctan
√

t−2
t

π2
√
t

.

Hence, we have an approximation for the density:

f0(t) =



1
π
√
t

for 1 < t ≤ 2

2
π
√
t
− 1

π for 2 < t ≤ 3

2
π
√
t
− 1

π −
4
π2 tan−1

√
t− 2 + 4

π2
√
t

tan−1
√

t−2
t + 2

π2

√
t− 2 for 3 < t ≤ 4

2β∗e−β
∗t for t > 4

,

where β∗ = 0.854. For b > 0, a closed form formula cannot be found, but we can similarly ap-

proximate the density fb(t) with the asymptotic for large values of t. For fb(t), the asymptotic

formula as t→∞ is

fb(t, Tb < 1) ∼ 2β∗e−β
∗(t+1)

∫ 1

0
eβ
∗s− b

2

2s
b√

2πs3
dt.

6 Pricing two-sided Parisian Options

6.1 Min-call-in Parisian call

A min-call-in Parisian call is a call option that gets knocked in, as the name suggests, when

either the underlying makes an excursion above the barrier or an excursion below the barrier

of a certain length. Here, we price a min-call-in Parisian call with the same window length

18



D = 1 above and below the barrier.

Theorem 6.1 The price of a two-sided Parisian-in option on the underlying S as defined in

(2.1), with barrier L, strike price K, maturity time T > 1, and window length D = 1, is

∗Cmini (x, T ) = xφ(σ +m)−Kφ(m)

+

√
π

2

∫ T

0
fb(t;Tb < 1) (xψ(σ +m,hb, b, ρ, t) + ψ(−(σ +m), hb,−b,−ρ, t)

−K
(
ψ(−m,h′b,−b,−ρ, t) + ψ(m,h′b, b, ρ, t)

))
dt, (6.1)

where fb(t;Tb < 1) is the density function of the two-sided Parisian stopping time with barrier

b as in Theorem 3.3, and

ψ(x, y, b, ρ, t) = e
x2(1+T−t)+2bx

2

(
Z(−x)N

(
−xρ− y√

1− ρ2

)
− ρZ(y)N

(
−x− ρy√

1− ρ2

)
−x (N (−x)−Nρ(−x, y))) , (6.2)

φ(x) = e
x2T
2

(
N (b− x)−N 1√

T

(
b− x, k − xT√

T

))
−e

x2T+4bx
2

(
N (−b− x)−N 1√

T

(
−b− x, k − 2b− xT√

T

))
, (6.3)

and

hb =
1√

1 + T − t
(k − b− (σ +m)(1 + T − t)) (6.4)

h′b =
1√

1 + T − t
(k − b−m(1 + T − t)) (6.5)

ρ =
1√

1 + T − t
. (6.6)
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Proof. First, we note that τb is an Ft-stopping time, and by the strong Markov property of

Brownian motion

∗Cmini (x, T ) = EP

[
1{τb≤T}E

[
emZT

(
xeσZT −K

)+ |Fτb]]
= EP

[
1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]

= EP

[
1{Tb>1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]

+EP

[
1{Tb≤1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]
.

If Tb > 1, τb = 1, so

EP

[
1{Tb>1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]

= EP

[
1{Tb>1}1{1≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − 1)
e
− (y−Z1)

2

2(T−1) dy

]

=
1√

2π(T − 1)

∫ b

−∞

∫ ∞
k

emy(xeσy −K)e
− (y−z)2

2(T−1)
1√
2π

(
e−

z2

2 − e−
(z−2b)2

2

)
dzdy

= xφ(σ +m)−Kφ(m).

For Tb ≤ 1, Zτb is independent of τb. This is because of the strong Markov property of

Brownian motion. We can then think of Zτb as a Brownian meander, because it is a Brownian

motion starting at b and conditioned to stay above b up to time 1. The value at time 1 of the

Brownian meander is independent of the last hitting time of level b. Furthermore, we denote

the density of Zτb by v(dz). The density of Zτb is that of the Brownian meander and we have

(see Yor [12] for more detail)

v(dz) = P (Zτb ∈ dz)

=
b− z

2
e−

(z−b)2
2 1{z<b}dz +

z − b
2

e−
(z−b)2

2 1{z>b}.
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Hence,

EP

[
1{Tb≤1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − τb)
e
−

(y−Zτb )
2

2(T−τb) dy

]

=

∫ T

0

∫ ∞
−∞

fb(t;Tb < 1)v(dz)

∫ ∞
−∞

emy (xeσy −K)+
1√

2π(T − t)
e
− (y−z)2

2(T−t) dydt

=

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1√
2π(T − t)

e
− (y−z)2

2(T−t) dydzdt

+

∫ T

0

∫ ∞
b

∫ ∞
k

fb(t;Tb < 1)
z − b

2
e

(z−b)2
2 emy(xeσy −K)

1√
2π(T − t)

e
− (y−z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e
− (y−z)2

2(T−t) dydzdt

+

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e
− (y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e
− (y−z)2

2(T−t) dydzdt

+

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e
− (y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0
fb(t;Tb < 1)(xψ(σ +m,h, b, ρ, t)−Kψ(m,h′, b, ρ, t))dt

+

√
π

2

∫ T

0
fb(t;Tb < 1)(xψ(−(σ +m), hb, b,−ρ, t)−Kψ(−m,h′b, b,−ρ, t))dt,

where the last step follows from:

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e
− (y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)e2b(σ+m) b− z
2

e
(b−z)2

2 xe(σ+m)(y−2b) 1

2π
√
T − t

e
− (y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k−2b

fb(t;Tb < 1)e2b(σ+m) b− z
2

e
(b−z)2

2 xe(σ+m)y 1

2π
√
T − t

e
− (y+z)2

2(T−t)dydzdt,

and

1

2π
√
T − t

∫ b

−∞

∫ ∞
k

xe(σ+m)ye
− (y+z)2

2(T−t) (b− z)e−
(z−b)2

2 dzdy (6.7)
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= e
(σ+m)2(1+T−t)−2b(σ+m)

2
x

2π
√
T − t

∫ b

−∞

∫ ∞
k−2b

(b− z) exp{−(y + (b− (σ +m)(1 + T − t)))2

2(T − t)
} (6.8)

exp{− (z − (b− (σ +m)))2

2(T − t)/(1 + T − t)
} exp{−2(y + (b− (σ +m)(1 + T − t)))(z − (b− (σ +m)))

2(T − t)
}dydzdt

= xe
(σ+m)2(1+T−t)−2b(σ+m)

2
1

2π
√

1− ρ2

∫ σ+m

−∞

∫ ∞
hb

(−v + (σ +m))e−
u2+2ρuv+v2

2 dudv (6.9)

= xe−2b(σ+m)ψ(−(σ +m), hb, b,−ρ, t).

In the above, expression (6.3) is obtained from (6.2) by a manipulation of the exponents, and

from expression (6.3) to (6.4), we have used the transformation u = y+(b−(σ+m)(1+T−t))√
1+T−t and

v = z − (b− (σ +m)).

6.2 Min-call-out Parisian Call

For the knock-out call with the same parameters, we have

Cmini (x, T ) = EQ
[
1{τb>t}(ST −K)+e−rT

]
= EQ

[
1{Tb<1}(ST −K)+e−rT

]
− EQ

[
1{Tb<1}1{τb≤T}(ST −K)+e−rT

]
=

∫ 1

0

b√
2πt3

e−
b2

2tCBS(L, T − t)dt−
(
Cmini (x, T )− (xφ(σ +m)−Kφ(m))

)
.

6.3 Numerical results

The following table gives the prices of the two-sided Parisian option for different values of

initial asset price S0 and window length D, for parameters K = 95, L = 90, T = 1 year,

r = 0.05 and σ = 0.2. These values are obtained using the recursive formula for t ≤ 4, and

the asymptotics for t > 4.
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Table 2: Price of Parisian min-in call
S0 D = 1 week D = 2 weeks D = 1 month D = 2 months

80 2.817708 2.809610 2.660829 2.123282
82 3.471103 3.430688 3.145066 2.482966
84 4.203278 4.101558 3.737759 3.096815
86 5.050461 4.978642 4.724678 4.261088
88 6.535228 6.639547 6.589191 6.342500
90 6.897115 6.895460 6.891562 6.872088.
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