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EQUILATERAL SETS AND A SCHÜTTE THEOREM FOR THE
4-NORM

KONRAD J. SWANEPOEL

Abstract. A well-known theorem of Schütte (1963) gives a sharp lower bound
for the ratio of the maximum and minimum distances between n+ 2 points in
n-dimensional Euclidean space. In this note we adapt Bárány’s elegant proof
(1994) of this theorem to the space `n4 . This gives a new proof that the largest
cardinality of an equilateral set in `n4 is n+ 1, and gives a constructive bound
for an interval (4− εn, 4 + εn) of values of p close to 4 for which it is known
that the largest cardinality of an equilateral set in `np is n+ 1.

1. Introduction

A subset S of a normed space X with norm ‖·‖ is called equilateral if for some
λ > 0, ‖x− y‖ = λ for all distinct x,y ∈ S. Denote the largest cardinality of an
equilateral set in a finite-dimensional normed space X by e(X).

For p ≥ 1 define the p-norm of a vector x = (x1, . . . , xn) ∈ Rn as

‖x‖p = ‖(x1, . . . , xn)‖p =

( n∑
i=1

|xi|p
)1/p

.

When dealing with a sequence x1, . . . ,xm ∈ Rn of vectors, we denote the coordinates
of xi as (xi,1, . . . , xi,n). Denote the normed space Rn with norm ‖·‖p by `np . It is
not difficult to find examples of equilateral sets showing that e(`np ) ≥ n+ 1. It is a
simple exercise in linear algebra to show that e(`n2 ) ≤ n+ 1. A problem of Kusner
[4] asks if the same is true for `np , where p > 1. For the current best upper bounds
on e(`np ), see [1]. We next mention only the results that decide various cases of
Kusner’s question. A compactness argument gives for each n ∈ N the existence of
εn > 0 such that p ∈ (2− εn, 2 + εn) implies e(`np ) = n+ 1. However, this argument
gives no information on εn. As observed by Cliff Smyth [8], the following theorem
of Schütte [6] can be used to give an explicit lower bound to εn in terms of n:

Theorem 1 (Schütte [6]). Let S be a set of at least n+ 2 points in `n2 . Then

max
x,y∈S

‖x− y‖2
min

x,y∈S,x6=y
‖x− y‖2

≥


(
1 +

2

n

)1/2

if n is even,(
1 +

2

n− (n+ 2)−1

)1/2

if n is odd.

The lower bounds in this theorem are sharp.

Corollary 2 (Smyth [8]). If |p− 2| < 2 log(1+2/n)
log(n+2) = 4(1+o(1))

n logn then the largest
cardinality of an equilateral set in `np is e(`np ) = n+ 1.
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The dependence of εn = 4(1+o(1))
n logn on n is necessary, since e(`np ) > n + 1 if

1 ≤ p < 2 − 1+o(1)
(ln 2)n [10]. (These are the only known cases where the answer to

Kusner’s question is negative.)
There is also a linear algebra proof that e(`n4 ) = n + 1 [10]. As in the case of

p = 2, compactness gives an ineffective εn > 0 such that if p ∈ (4− εn, 4 + εn), then
e(`np ) = n+ 1. The question arises whether Schütte’s theorem can be adapted to
`n4 , so that a conclusion similar to Corollary 2 can be made for p close to 4. Proofs
of Schütte’s theorem have been given by Schütte [6], Schoenberg [5], Seidel [7] and
Bárány [2]. It is the purpose of this note to show that Bárány’s simple and elegant
proof of Schütte’s theorem can indeed be adapted.

Theorem 3. Let S be a set of at least n+ 2 points in `n4 . Then

max
x,y∈S

‖x− y‖4
min

x,y∈S,x6=y
‖x− y‖4

≥


(
1 +

2

n

)1/4

if n is even,(
1 +

2

n− (n+ 2)−1

)1/4

if n is odd.

Corollary 4. If |p− 4| < 4 log(1+2/n)
log(n+2) = 8(1+o(1))

n logn then the largest cardinality of an
equilateral set in `np is e(`np ) = n+ 1.

We do not know whether the lower bounds in Theorem 3 are sharp. The following
is the best upper bound that we can show.

Proposition 5. There exists a set S of n+ 2 points in `n4 such that

max
x,y∈S

‖x− y‖4
min

x,y∈S,x 6=y
‖x− y‖4

= 1 +

√
2

n
+O(n−3/4).

Unfortunately, this bound is far from the lower bound of 1 + 1
2n +O(n−2) given

by Theorem 3.

2. Proofs

Proof of Theorem 3. Consider any x1, . . . ,xn+2 ∈ Rn, and let

µ = min
i6=j
‖xi − xj‖4

and
M = max

i,j
‖xi − xj‖4 .

By Radon’s theorem [3] there is a partition A∪B of {x1, . . . ,xn+2} such that the con-
vex hulls of A and B intersect. Without loss of generality we may translate the points
so that o lies in both convex hulls. Write A = {a1, . . . ,aK} and B = {b1, . . . , bL}
where K + L = n + 2 and K,L ≥ 1. Then there exist α1, . . . , αK , β1, . . . , βL ≥ 0
such that

K∑
i=1

αi = 1,
K∑
i=1

αiai = o,

L∑
j=1

βj = 1,
L∑

j=1

βjbj = o.


(1)
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Also, for all i ∈ [K] and j ∈ [L],

‖ai − aj‖44 ≤M
4 whenever i 6= j, (2)

‖bi − bj‖44 ≤M
4 whenever i 6= j, (3)

and ‖ai − bj‖44 ≥ µ
4. (4)

Apply the operation
K∑
i=1

αi

K∑
j=1
j 6=i

αj to both sides of the inequality (2):

(
1−

K∑
i=1

α2
i

)
M4 =

K∑
i=1

αi(1− αi)M
4 =

K∑
i=1

αi

K∑
j=1
j 6=i

αjM
4

≥
K∑
i=1

αi

K∑
j=1

αj

n∑
m=1

(ai,m − aj,m)4

=

n∑
m=1

K∑
i=1

K∑
j=1

αiαj(a
4
i,m − 4a3i,maj,m + 6a2i,ma

2
j,m − 4ai,ma

3
j,m + a4j,m)

=

n∑
m=1

K∑
i=1

αia
4
i,m − 4

n∑
m=1

( K∑
i=1

αia
3
i,m

)( K∑
j=1

αjaj,m

)

+ 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( K∑
j=1

αja
2
j,m

)
− 4

n∑
m=1

( K∑
i=1

αiai,m

)( K∑
j=1

αja
3
j,m

)

+

n∑
m=1

K∑
j=1

αja
4
j,m,

which by (1) simplifies to(
1−

K∑
i=1

α2
i

)
M4 ≥ 2

n∑
m=1

K∑
i=1

αia
4
i,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)2

. (5)

Similarly, if we apply
L∑

j=1

βj

L∑
i=1
i 6=j

βi to (3), we obtain

(
1−

L∑
j=1

β2
j

)
M4 ≥ 2

n∑
m=1

L∑
j=1

βjb
4
j,m + 6

n∑
m=1

( L∑
j=1

βjb
2
j,m

)2

. (6)

Next apply
∑K

i=1 αi

∑L
j=1 βj to (4):

µ4 =

K∑
i=1

αi

L∑
j=1

βjµ
4 ≤

K∑
i=1

αi

L∑
j=1

βj

n∑
m=1

(ai,m − bj,m)4

=

n∑
m=1

K∑
i=1

L∑
j=1

αiβj(a
4
i,m − 4a3i,mbj,m + 6a2i,mb

2
j,m − 4ai,mb

3
j,m + b4j,m)
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=

n∑
m=1

( K∑
i=1

αia
4
i,m

)( L∑
j=1

βj

)
−4

n∑
m=1

( K∑
i=1

αia
3
i,m

)( L∑
j=1

βjbj,m

)

+ 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

βjb
2
j,m

)
− 4

n∑
m=1

( K∑
i=1

αiai,m

)( L∑
j=1

βjb
3
j,m

)

+

n∑
m=1

( K∑
i=1

αi

)( L∑
j=1

βjb
4
j,m

)
(1)
=

n∑
m=1

K∑
i=1

αia
4
i,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

βjb
2
j,m

)
+

n∑
m=1

L∑
j=1

βjb
4
j,m,

that is,

n∑
m=1

K∑
i=1

αia
4
i,m +

n∑
m=1

L∑
j=1

βjb
4
j,m ≥ µ4 − 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

βjb
2
j,m

)
. (7)

Add (5) and (6) together:(
2−

K∑
i=1

α2
i −

L∑
j=1

β2
j

)
M4

≥ 2

n∑
m=1

K∑
i=1

αia
4
i,m + 2

n∑
m=1

L∑
j=1

βjb
4
j,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)2

+ 6

n∑
m=1

( L∑
j=1

βjb
2
j,m

)2

(7)
≥ 2µ4 − 12

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

βjb
2
j,m

)

+ 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)2

+ 6

n∑
m=1

( L∑
j=1

βjb
2
j,m

)2

= 2µ4 + 6

n∑
m=1

(( K∑
i=1

αia
2
i,m

)2

− 2

( K∑
i=1

αia
2
i,m

)( L∑
j=1

βjb
2
j,m

)
+

( L∑
j=1

βjb
2
j,m

)2
)

= 2µ4 + 6

n∑
m=1

( K∑
i=1

αia
2
i,m −

L∑
j=1

βjb
2
j,m

)2

≥ 2µ4.

Therefore,
M4

µ4
≥ 2

2−
∑K

i=1 α
2
i −

∑L
j=1 β

2
j

. (8)

By the Cauchy-Schwarz inequality and (1),
∑K

i=1 α
2
i ≥ 1/K and

∑L
j=1 β

2
j ≥ 1/L.

Therefore,

K∑
i=1

α2
i +

L∑
j=1

β2
j ≥

1

K
+

1

L
≥

{
2

n+2 + 2
n+2 if n is even,

2
n+1 + 2

n+3 if n is odd.
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Substitute this estimate into (8) to obtain

M4

µ4
≥


1 +

2

n
if n is even,

1 +
2

n− (n+ 2)−1
if n is odd,

which finishes the proof. �

Proof of Corollary 4. It is well known and easy to see that for any x ∈ Rn, if
1 ≤ p ≤ 4 then ‖x‖4 ≤ ‖x‖p ≤ n1/p−1/4 ‖x‖4 and if 4 ≤ p < ∞ then ‖x‖p ≤
‖x‖4 ≤ n1/4−1/p ‖x‖p. Suppose that there exists an equilateral set S of n+2 points
in `np . Then

max
x,y∈S

‖x− y‖4
min

x,y∈S,x 6=y
‖x− y‖4

≤ n|1/4−1/p|.

Combine this inequality with Theorem 3 to obtain 1 + 2
n ≤ n

|1−4/p|. A calculation
then shows that

|p− 4| ≥ 4 log(1 + 2/n)

log(n+ 2)
=

8

n log n

(
1 +O(n−1)

)
. �

Proof of Proposition 5. Let k ∈ N, x, y ∈ R, and
a := (1 + x, x, x, . . . , x) ∈ `k4 and b := (y, y, . . . , y) ∈ `k4 .

We would like to choose x and y such that ‖a‖4 = ‖b‖4 and ‖a− b‖4 = 21/4. This
is equivalent to the following two simultaneous equations:

(1 + x)4 + (k − 1)x4 = ky4

(1 + x− y)4 + (k − 1)(x− y)4 = 2.

}
(9)

We postpone the proof of the following lemma.

Lemma 6. For each k ∈ N the system (9) has a unique solution (xk, yk) satisfying
yk > 0. Asymptotically as k →∞ we have

xk = −k−1/2 + k−3/4 +O(k−1) and yk = k−1/4 − k−3/4 +O(k−1).

Using the solution (x, y) = (xk, yk) from the lemma, we obtain

‖a‖4 = ‖b‖4 = k1/4y = 1− k−1/2 +O(k−3/4).

Write a1, . . . ,ak for the k permutations of a and set ak+1 = b. Then (9) gives that
{a1,a2, . . . ,ak+1} is equilateral in `k4 . Finally, let n = 2k. Then in the set

S = {(ai,o) | i = 1, 2, . . . , k + 1} ∪ {(o,ai) | i = 1, 2, . . . , k + 1}
of n+ 2 points in `n4 the only non-zero distances are 21/4 and 21/4 ‖a‖4. Therefore,

max
x,y∈S

‖x− y‖4
min

x,y∈S,x6=y
‖x− y‖4

=
1

‖a‖4
= 1 +

√
2

n
+O(n−3/4).

The case where n = 2k+1 is odd is handled by using the points a1, . . . ,ak+1 ∈ `k4 as
constructed above and the analogous construction of k+2 points a′1, . . . ,a′k+2 ∈ `

k+1
4

satisfying
∥∥a′i − a′j

∥∥
4
= 21/4 and ‖a′i‖4 = 1− (k + 1)−1/2 +O(k−1). Then the non-

zero distances between points in

S = {(ai,o) | i = 1, 2, . . . , k + 1} ∪ {(o,a′i) | i = 1, 2, . . . , k + 2}
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are 21/4 and
(
‖ai‖44 +

∥∥a′j∥∥44)1/4, giving the same asymptotics as before. �

Proof sketch of Lemma 6. For t ∈ R let

f(t) =

(
(1 + t)4 + (k − 1)t4

k

)1/4

= k−1/4 ‖(1, 0 . . . , 0) + t(1, 1, . . . , 1)‖4 .

Then (9) is equivalent to f(x) = |y| and f(x− y) = (2/k)1/4. Since ‖·‖4 is a strictly
convex norm, f is strictly convex. Since also f(0) = k−1/4 and limt→±∞ f(t) =∞,
it follows that there is a unique αk < 0 and a unique βk > 0 such that f(αk) =
f(βk) = (2/k)1/4. Thus, x−y ∈ {αk, βk}. It also follows that f is strictly decreasing
on (−∞, αk). It is immediate from the definition that f is strictly increasing on
(0,∞). Since f(−k−1/4) < (2/k)1/4 < f(k−1/4), it follows that αk < −k−1/4 and
βk < k−1/4.

By strict convexity of ‖·‖4, f also satisfies the strict Lipschitz condition

|f(t+ h)− f(t)| < h for all t, h ∈ R with h > 0.

It follows that t 7→ f(t) − t is strictly decreasing and t 7→ f(t) + t is strictly
increasing. Since limt→∞(f(t)− t) = 1/k and limt→−∞(f(t) + t) = −1/k, it follows
that f(t) > t+ 1/k and for each r > 1/k there is a unique t such that f(t)− t = r;
also f(t) > −t−1/k and for each r > −1/k there is a unique t such that f(t)+ t = r.

We now consider the two cases x− y = αk and x− y = βk.
Case I. If x − y = αk, then f(x) = |y| = |x− αk|. Since f(x) > −x − 1/k ≥
−x − k−1/4 > −x + αk, necessarily y = x − αk > 0 and f(x) − x = −αk. Since
−αk > k−1/4 ≥ 1/k, there is a unique xk such that f(xk) − xk = −αk, and since
f(0) − 0 = k−1/4 < −αk, it satisfies xk < 0. Setting yk = xk − αk, we obtain
that (9) has exactly one solution (xk, yk) such that xk − yk = αk, and it satisfies
xk < 0 < yk.
Case II. If x− y = βk, then we similarly obtain a unique solution (x, y), this time
satisfying x < 0 and y < 0.

Therefore, (9) has exactly two solutions, one with y > 0 and one with y < 0.
Next we approximate the solution (xk, yk) of Case I.

From f(αk) = (2/k)1/4 it follows that

(1 + αk)
4 + (k − 1)α4

k = 2, (10)

which shows first that αk = O(k−1/4) as k → ∞, and then, since αk < 0, that
αk = −k−1/4 +O(k−1/2). We may rewrite (10) as

αk = −k−1/4(1− 4αk − 6α2
k − 4α3

k)
1/4

= −k−1/4
(
1− αk − 3α2

k − 9α3
k +O(k−1)

)
, (11)

where we have used the Taylor expansion (1+x)1/4 = 1+ 1
4x−

3
32x

2+ 7
128x

3+O(x4).
Substitute the estimate αk = −k−1/4 + O(k−1/2) into the right-hand side of (11)
to obtain the improved estimate αk = −k−1/4 − k−1/2 + O(k−3/4), and again, to
obtain

αk = −k−1/4 − k−1/2 + 2k−3/4 +O(k−1).

Since
f(−k−1/2) + k−1/2 = k−1/4 + k−1/2 − k−3/4 +O(k−1) > −αk
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for sufficiently large k, and f(xk)− xk = −αk, it follows that xk > −k−1/2 for large
k, that is, xk = O(k−1/2). It follows that

f(xk)− xk = k−1/4
(
1 + xk +O(k−1)

)
− xk.

Set this equal to −αk and solve for xk to obtain xk = −k−1/2 + k−3/4 + O(k−1)
and yk = xk − αk = k−1/4 − k−3/4 +O(k−1). �
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