

Frank Land

Book review: the technical and social
history of software engineering

Article (Accepted version)
(Refereed)

Original citation:

Land, Frank (2015) Book review: the technical and social history of software engineering.
Communications of the Association for Information Systems, 36 . pp. 577-581. ISSN 1529-3181

© 2014 The Author

This version available at: http://eprints.lse.ac.uk/60121/

Available in LSE Research Online: November 2014

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=f.land%40lse.ac.uk
http://aisel.aisnet.org/cais/
http://eprints.lse.ac.uk/60121/

 1

The Technical and Social History of Software Engineering

Capers Jones, Addison Wesley, 2014

Frank Land, London School of Economics

Review Article

A recent book promised from its title and authorship to fill a long-standing need for a text

which would gave readers of CAIS an understanding of the history of software

engineering. This article sets out to examine the extent to which the author succeeds in

meeting that promise. As such it is intended for the IS History section of CAIS.

The author Capers Jones has a long record of making significant contributions to

software metrics and the economics of software, including the publication of 15 books

related to these topics. Hence his new book on the technical and social history of

software engineering was eagerly received by this reviewer.

The book is long - 452 pages – but the subject is large and indeed as the author notes, if

his history had been fully comprehensive, it would have required at least 1000 pages.

In this book the author has set out to chronicle the innovations, the entrepreneurs, the

organizations, private and public, associated with the evolution of Information

Technology and its software. His starting point is the Stone Age and his story finishes in

2013 though he ventures some predictions up to the year 2019. Although the focus is

primarily on the American experience the author does make an attempt to bring an

international flavour to his account.

A prelude takes the long view, providing lists of innovations in mathematics, recording

and calculating from the beginning in the Stone Age, up to 1930. Subsequent chapters

take each decade from 1930 to 2019. The final chapters, chapters 11 and 12, review the

problems and failings of software engineering and report on the threats posed by

cybercrime and cyberwarfare.

The story told is often interesting and illuminating, but overall the book is a

disappointment. I would expect a history of software engineering to provide an account

of ideas behind the way software engineering developed including accounts of some of

the debates such as that triggered by Edsger Dijkstra’s letter in the Communications of

the ACM on the Go To statement.
1
 Vannever Bush’s ‘invention’ of the Memex

2

published in 1945 is not mentioned though it was an important milestone and surely ranks

close to Turing’s paper on computability and in its anticipation of hypertext and thus the

Worldwide Web Many more examples could be cited. The book is not the history of

software engineering, technical or social, that a student of the subject might expect.

1
 Edsger Dijkstra Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.

2
http://en.wikipedia.org/wiki/Memex

http://en.wikipedia.org/wiki/Memex

 2

Again no mention is made of the landmark program by Daniel Teichrow
3
, first at Case

Western, later at the University of Michigan in the 1960s, to devise a system which

would automate the production of computer code directly from the requirements

specification .The project named Information System Design and Optimization System

(ISDOS) developed a special Program Specification Language (PSA) and an associated

Problem Statement Analyser (PSL) followed by a code optimization process (SODA).

The system was successfully deployed in industry but also had important impact in

education and in triggering much fruitful research.

Another very important thread that is largely missing from the text –is the critical role

played by Government and politics in the evolution of IT and its enabling software.

True, developments in defense computing are discussed throughout the book, but the

larger role of Governments is neglected. A good example is the Japanese Government

sponsored project known as the 5
th

 Generation in 1982
4
. This $850 million project was

intended to lift computing into the new realms of knowledge based AI systems built on

improvements in both electronics and software engineering. The success of Japan at that

time, with its increasingly dominant role in automobiles and electronics, led

Governments and industry world-wide to fear the future dominance of Japan in

computing. The result was that the US (under DARPA), the UK (Alvey)
5
, France (Plan

Calcul
6
), and the European Union (ESPRIT

7
), each sponsored major multi-million dollar

research projects which brought academia, industry and Government into collaborative

research schemes. In the UK, for example, the Alvey programme, launched in 1983 with

funding of ₤350 million over 4 years for industry/academia projects included:

 VLSI (Very Large Scale Integration) technology for microelectronics

 IKBS (Intelligent Knowledge Based Systems) or Artificial Intelligence

 Software Engineering including the design and construction of Computer Aided

Software Engineering (CASE) tools

 Man-Machine Interface (included Natural Language Processing)

 Systems Architecture (for parallel processing)

Other Government initiatives in various countries with far reaching consequences were

concerned with the structuring and restructuring of their computer industries. This

included the attempt in the 1970s to bring together the major players in the Dutch,

German, French and UK computer industries as one company, UNIDATA
8
. The attempt

ultimately failed, partly because of the reluctance of the UK’s major player ICL to join

the consortium.

In 1966 Soviet Union authorities, noting the success of the IBM 360 series world wide,

took the momentous, but heavily criticized, step to abandon the Soviet’s indigenous

3
http://www.pslpsa.com/index.php/79-isdos-category/90-dt-article

4
http://en.wikipedia.org/wiki/Fifth_generation_computer

5
http://hansard.millbanksystems.com/written_answers/1988/jan/21/alvey-project

6
http://en.wikipedia.org/wiki/Plan_calcul

7
https://aclweb.org/anthology/H/H91/H91-1007.pdf

8
http://www.feb-patrimoine.com/histoire/english/chronoa8.htm

http://www.pslpsa.com/index.php/79-isdos-category/90-dt-article
http://en.wikipedia.org/wiki/Fifth_generation_computer
http://hansard.millbanksystems.com/written_answers/1988/jan/21/alvey-project
http://en.wikipedia.org/wiki/Plan_calcul
https://aclweb.org/anthology/H/H91/H91-1007.pdf
http://www.feb-patrimoine.com/histoire/english/chronoa8.htm

 3

computer designs and replace them with IBM clones
9
. The Russians managed to clone

the hardware quite well but had more problems with the software engineering, failing to

properly re-engineer IBM systems software. At that time an embargo (CoCom
10

) initiated

by the US Government and its allies as part of its cold-war strategy prevented American

computer technology from being exported to the Soviets and its allies.

Although most of the initiatives, including the Japanese 5
th

 generation project, failed to

achieve their major targets, they left a lasting legacy in terms of collaboration across

borders and between Universities, research establishments and industry.

One further Government sponsored initiative which should be noted in a history of

software engineering was the launching in France and the UK of the Minitel
11

, Ceefax
12

and Prestel
13

 teletext service which provided subscribers with an information service

direct to their television screen. This anticipated much of the web-based services we now

rely on. The French system Minitel had considerable success with millions of

subscribers, in part due to the subsidies provided for subscribers and lasted well into the

21
st
 century. The uptake of Prestel services was more limited and faltered earlier and the

service was soon abandoned but Ceefax ran well into the 21
st
 century.

In his final chapter (chapter 12) Capers Jones discusses the rise and rise of Cybercrime

and more briefly notes the future of cyberwarfare. Unfortunately the book was written

just too early to catch the Edward Snowden revelations of the joint mass surveillance of

its citizens by Government agencies in the US and the UK. The advance of computing,

and communication capabilities all enabled by software engineering have provided the

means by which suitably equipped agents can capture details of all calls made on mobile

phones, email messages, data stored, searches made via browsers like Google, contents of

Facebook and Twitter messages, and can even decrypt coded information. Snowden’s

revelations indicate that Government agencies capture significant proportion of all

internet traffic. The purpose of this mass surveillance is security against terrorist attack

and criminal intent.

Any further editions of the book will surely include a discussion of the privacy versus

security aspects of the Snowden revelations, including the security of the surveillance

agencies themselves in the light of Snowden’s discoveries
14

.

There are a number of other omissions which a history might be expected to cover.

These include the establishment of the International Federation of Information Processing

(IFIP) by Isaac Auerbach
15

. IFIP has a number of Technical Committees each made up

of international working groups covering a range of topics including computer languages,

software engineering, different types of systems, and all aspects of computer education,

9
http://en.wikipedia.org/wiki/ES_EVM

10
http://en.wikipedia.org/wiki/CoCom

11
http://en.wikipedia.org/wiki/Minitel

12
http://en.wikipedia.org/wiki/Ceefax

13
http://en.wikipedia.org/wiki/Prestel

14
http://en.wikipedia.org/wiki/Edward_Snowden

15
http://en.wikipedia.org/wiki/International_Federation_for_Information_Processing

http://en.wikipedia.org/wiki/ES_EVM
http://en.wikipedia.org/wiki/CoCom
http://en.wikipedia.org/wiki/Minitel
http://en.wikipedia.org/wiki/Ceefax
http://en.wikipedia.org/wiki/Prestel
http://en.wikipedia.org/wiki/Edward_Snowden
http://en.wikipedia.org/wiki/International_Federation_for_Information_Processing

 4

as well as computing history – working group 9.7. There is no question that some of the

working groups have made major contributions to their fields of study, including the field

of software engineering.

Coverage of the role played by international standards organizations
16

 such as ISO and

the influence they have wielded in the evolution of software practices – both positive and

negative - are treated very lightly and not in a systematic manner. Another example is the

much discussed Productivity Paradox which emerged as a concept in the 1990s, though

the economic value of investing in business computer systems had been listed as a top

ranking concern of business leaders in survey after survey since the 1960s
17

.

Too often the treatment of topics is poorly balanced. Thus the very important topic of

Enterprise Resource Planning (ERP)
18

 which transformed the way many companies

arranged their information processing and the role of their in-house software engineers is

only mentioned in passing – receiving far less coverage than the Norden bombsight but

whose actual impact on software engineering is at best slight. There are many examples

of poor judgments on which topics to require more or less emphatic treatment. The

problem is exacerbated by the author’s use of long lists with the list of Beneficial Tools

and Applications (page 23) covering more than 9 pages. It is as if the author has

forgotten all his own stress about the importance of function points and reverted to lines

of code.

The fascinating Antikythera mechanism, possibly invented by Archimedes, which had the

capability of predicting solar and lunar eclipses and whose identification resulted in a

complete reappraisal of the mathematical and engineering expertise of the ancient

Greeks is listed in table 1.1 without any explanation. Inventions such as double entry

book keeping are not mentioned or commented on and neither is the re-invention of

movable type by Gutenberg around 1450
19

 – perhaps as important in the late Middle

Ages as the invention of electronic computers in the 20
th

 century.

Missing too from the early years is any discussion of the sophistication reached by

automata in the 16
th

, 17
th

 and 18
th

 century including the importance of arranging the

complicated movements of the figures by means of a fixed program determined by the

shaping of a cam and later the pattern of holes in a card driving musical instruments and

industrial machinery as in the Jacquard Loom. No mention is made of the 1951 invention

of micro-programming by Maurice Wilkes
20

, though the technique became central to the

architecture of the IBM 360 range providing an essential tool for permitting compatibility

across the range.

To avoid repetition see Robert Glass’s review of the book in the Spring 2014 edition of

the Software Practitioner providing a further critique of the book including naming

16

http://www.stanhopecentre.org/cotswolds/IT-Standardisation_Jakobs.pdf
17

http://ccs.mit.edu/papers/CCSWP130/ccswp130.html
18

http://en.wikipedia.org/wiki/Enterprise_resource_planning
19

http://en.wikipedia.org/wiki/Johannes_Gutenberg
20

http://en.wikipedia.org/wiki/Microcode

http://www.stanhopecentre.org/cotswolds/IT-Standardisation_Jakobs.pdf
http://ccs.mit.edu/papers/CCSWP130/ccswp130.html
http://en.wikipedia.org/wiki/Enterprise_resource_planning
http://en.wikipedia.org/wiki/Johannes_Gutenberg
http://en.wikipedia.org/wiki/Microcode

 5

more omissions. Robert Glass writes: “My major thoughts on what was missing from

Capers' book are:

1. There is no mention of the early business computers and their programming. They

were decimal, variable word length, and organizationally separate in industry from their

scientific brethren (both in the computer facility and the programmers' locations). They

were also very separate product lines at such companies as IBM. When the 360 did away

with that division, the social implications were powerful and troubling.

2. Stored-program computers. The earliest IBM machines, after board wired

calculators, could not store the program in memory. Instead, the Card-Programmed

Calculator (CPC) executed each instruction as it read the card containing it via the card

reader. Looping and branching were hugely complicated programming tasks in this

mode! The notion of stored programs was a major change in how programming and

computing was done.”

Names of important contributors are often listed with only the soubriquet ‘famous’ before

the name and without any explanation what the fame is based on. The reader who has not

come across that name but is interested has to search the internet to find out what the

named person is famous for.

More important each chapter has a table - see for example table 8.3 on page243 – giving

a breakdown of growth of Software Applications in the U.S. in the decade covered by the

chapter. No information is provided on how such a table was constructed or the sources

of the breakdown. The individual items are often ambiguous. What, for example, are

Information technology applications? What counts as an application? How accurate is

the breakdown and the numbers?

The author does not make clear who the book is written for. Reading it does not answer

the question. For the student of software engineering the book provides little to help for

the student to understand the ideas or practices which underlie software engineering. A

scholar would be concerned at the lack of citations to sources and the many omissions.

The ‘layman’ reader might be irritated by the long lists and the lack of explanations.

And yet the book has many virtues. It provides a readable account of the way the IT

industry has grown from very small beginnings both in range of application and in the

depth of its penetration into every aspect of our lives world wide. The later chapters on

the threats posed and the many failures are excellent. I liked Capers Jones’s

reminiscences of his early days as a programmer at IBM in part because they mirrored

my own experience with LEO computers a decade earlier.

Perhaps it would require at least two volumes to provide the kind of history which of

Software Engineering I would like to see. Is this a challenge Capers Jones is willing to

meet?

 6

	Land_ Book_ review_technical_2014_cover
	Land_Book_ review_technical_2014_author

