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ABSTRACT: We examine spatial features of the evolution of the US
urban system using US Census data for 1900 – 1990 with non-parametric
kernel estimation techniques that accommodate the complexity of the
urban system. We consider spatial features of the location of cities and
city outcomes in terms of population and wages. Our results suggest a
number of interesting puzzles. In particular, we find that city location is
essentially a random process and that interactions between cities do not
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1. Introduction

This paper considers the spatial characteristics of the US urban system, along with several of its

other attributes, as it evolved over the twentieth century. As any urban system develops some

cities prosper while others decline. Further, as the system expands, we may see new metropolitan

areas form while other declining cities die. That is, both the size and number of cities can change

as the urban system evolves. At the same time we may also observe changes in the geography of the

urban system. For example, changes in the location of different activities, in the location of larger

and smaller cities or in the nature of the spatial relationships between cities.

Both the size distribution and the geography of the urban system have been the subject of

considerable empirical investigations. Work on the size distribution has tended to centre on the

question of whether Zipf’s law or its deterministic equivalent, the rank size rule, holds for cities.

Carroll (1982) and Cheshire (1999) provide an overview of the earlier literature while Gabaix and

Ioannides (2003) consider more recent work. As the latter makes clear, work by Gabaix (1999)

on the relationship between Gibrat’s law and Zipf’s law has provided an alternative basis for

structuring empirical work. Recent work on the city size distribution does not just update the

older literature but also provides new insights and methods for studying the issues. See, for

example Eaton and Eckstein (1997), Dobkins and Ioannides (2000; 2001), Black and Henderson

(2002), Overman and Ioannides (2001) and Ioannides and Overman (2003).

In contrast, our understanding of geographical features of the urban system is limited to either

intra-metropolitan spatial structure or very specific features of inter-metropolitan geography, as

emphasised in particular by central place theory a la Christaller and Losch. Thus, while recent

advances in empirical methods have increased our understanding of the evolution of the city size

distribution, spatial features of the urban system remain largely unexplored.1 This paper seeks to

redress this balance.

Such an undertaking is timely given that recent theoretical advances have highlighted the

importance of spatial dimensions in understanding the evolution of urban systems. The theorists

who have developed the New Economic Geography, including Masahisa Fujita, Paul Krugman

and Anthony Venables [ Fujita, Krugman and Venables (1999) ], have added important new spatial

1Two papers do consider the issue. Dobkins and Ioannides (2001) examine the basic dynamics of spatial interactions
among US cities and its impact on their populations focusing particularly on the entry of new cities. Black and
Henderson (2002) consider the importance of both first and second nature geography in explaining the growth rates
of cities. They find that both factors are important in explaining city growth.
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insights to the established literature on systems of cities, represented most notably by the work of

J. Vernon Henderson [ Henderson (1974; 1988) ]. The system of cities approach, as the latter has

come to be commonly known, featured powerful models of intrametropolitan spatial structure, but

neglected intermetropolitan spatial structure. Subsequently, intermetropolitan spatial structure

played a key role in the new economic geography literature, starting with the work of Paul

Krugman [ Krugman (1991) ].2 Further, as shown by Fujita and Thisse (2002), the importance

of spatial dimensions is not just restricted to the New Economic Geography. Rather, it is a general

feature of recent theoretical advances in our understanding of the economics of agglomeration.

This recent theorising has formalised thinking about two fundamental features of any given

location – the first and second natures – that determine the extent of development at that location

[ Krugman (1993) ]. First nature features are those that are intrinsic to the physical site itself,

independent of any development that may previously have occurred there. For example, locations

on navigable rivers, with favourable climates have first nature features that might encourage

development. The second nature features of a location are those that are dependent on the spatial

interactions between economic agents. These second nature features might depend on previous

development at the location (e.g. the availability of specialist suppliers) or on the spatial structure

of the economic system more generally (e.g. the benefits of good access to a large market).

We had to resolve two key questions in undertaking our analysis of the spatial evolution of the

US urban system. The first is how this theoretical work should help structure our analysis. Our

conclusion was that, at the current stage of development, the precise implications of these models

for growth in a system of cities are pretty fuzzy. Real life geography, the tendency for all cities

to grow, the gradual convergence to some kind of equilibrium in the westward expansion of the

country, the movement of population towards the sunbelt, and changes in the US urban system

induced by a shift, over the period of study, in industrial structure away from manufacturing and

towards services are all important features in the spatial evolution of the US urban system that

have not yet been elaborated in the formal theory. Thus, in what follows, we seek to increase our

understanding of first and second nature features of the US urban system without restricting our

analysis to specific functional forms. Towards the end of the paper, we consider what this sort of

analysis can tell us about recent theoretical work.

2Tabuchi (1998) attempts to synthesise the system of cities literature with the economic geography-based theories by
incorporating intrametropolitan commuting costs as well as intermetropolitan transport costs.
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A number of other authors have taken the opposite approach and attempted to estimate

structural parameters of Krugman type models. Thomas (1996), Hanson (2000) and Combes and

Lafourcade (2001) all undertake this type of analysis. While interesting, the extreme complexity of

these analyses make it difficult to ascertain what we actually learn about the spatial features of the

economies that these authors consider.

The second key question that we have to resolve related to the appropriate empirical tools to

use. We have chosen to focus predominantly on non-parametric methods proposed by Quah (1993;

1996a,b; 1997; 1999). These methods have been widely applied in the growth literature for studying

the evolution of income disparities across countries or regions. As we will see below they are

ideally suited to capturing and simplifying the spatial features of the evolution of quite complex

urban systems. In particular, they do not impose the sort of structure that parametric analyses rest

on, namely fitting a representative city into the data.

The evidence that we consider falls in to two broad categories. The first relates to the location

of cities. The second to the size and growth of cities. The paper is structured as follows. In section

2 we describe the data that we use. In section 3 we consider spatial features of the location of cities

while in section 4 we turn from location to spatial elements of city outcomes in terms of population

and wages. Finally, section 5 relates our findings to theory and concludes.

2. Data

There are a variety of ways to define cities empirically. In this paper we use contemporaneous

Census Bureau definitions of metropolitan areas, whenever possible. From 1900 to 1950, we use

metropolitan areas as they were defined by the 1950 census. For years before 1950, we use Bogue’s

reconstructions of what each metro area’s population would have been with the metropolitan areas

defined as they were in 1950 [ Bogue (1953) ]. From 1950 to 1980, we use the metropolitan area

definitions that were in effect for those years. However, between 1980 and 1990, the Census Bureau

redefined metropolitan areas. The effect of the redefinitions were that the largest U.S. cities took a

huge jump in size, and several major cities were split into separate metro areas. While this might be

appropriate for some uses of the data, it would introduce “artificial” differences in growth patterns

for the 1980–1990 period. Therefore, we reconstructed the metro areas for 1990, based on the 1980

definitions, much as Bogue did earlier. We believe that this gives us the most consistent definitions

of US cities (metropolitan areas) that we are likely to find.
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The method raises a question as to which cities, as defined or reconstructed, should be included.

In the years from 1950 to 1980, we use the Census Bureau’s listing of metropolitan areas. Although

the wording of the definitions of metropolitan areas has changed slightly over the years, the

number 50,000 is minimum requirement for a core area within the metropolitan area. Therefore,

we used 50,000 as the cutoff for including metropolitan areas as defined by Bogue prior to 1950.

Adopting the same cutoff facilitates comparability with a fair amount of previous research.

Table 1 presents summary statistics for the data in the ten different time periods. The second

column reports the US population while the third reports the urban population. The trend towards

increasing urbanisation is clear, with the percentage of population classified as urban rising from

38% in 1900 to 77% in 1990. The nearly seven fold increase in urban population is not mirrored

by comparable increases in city sizes. As we see from column four mean city size has little more

than doubled over the period. The average city in 1990 was 2.2 times the average city size in 1900.

From column five we see that median city size has grown slightly slower doubling in size between

1900 and 1990. Column six shows how we can reconcile the huge growth in urban population with

the relatively small growth in average city size - the number of cities has almost tripled over the

period from 112 in 1900 to 334 in 1990. While it is often difficult to deal econometrically with an

increasing number of cities, it is clear that the entry of new cities is a key aspect of the evolution of

the US urban system.

In addition to population we also have data on earnings in all cities in the sample for all years

drawn from Census reports. Data on earnings are not available for non-urban areas, but population

data are available for all counties (urban and non-urban) in all periods.3 We use these county based

data to consider some second nature features of the evolution of the urban system.

As we are interested in spatial features, we need to be able to specify the location of cities

and counties. We take the centre of the city as the latitude and longitude given in the 1999 Times

World Atlas. For counties we take the latitudes and longitudes of the largest human settlement.

We use this information when calculating distances between cities. The distance between cities is

calculated as the geodesic distance between them on the basis of great circle distances.4 We feel that

this is the most appropriate distance metric for studying the spacing of cities as the urban system

3We are grateful to Duncan Black for sharing with us his county-based data. More details on the county data are
available in Black and Henderson (2002).

4Great circle distances are calculated as follows. For any two locations A and B, we can calculate the angle formed
by a ray joining the two points A and B and a ray joining A to the centre of the earth as follows:

angle = (sin(latA) × sin(latB)) + (cos(latA) × cos(latB) × cos(longA − longB)) ,
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evolves. Clearly some topographical features may make geodesic distances a poor approximation

to economic distance for a few cities. However, the only feasible alternative measures using

transport networks are very problematic when studying the evolution of the urban system over

such a long time period. Clearly the location of the highway network is highly endogenous with

respect to city location as construction begins in the middle of the sample period. The rail network

circa 1900 might be useful as an exogenous measure of distances between the 112 cities extant at

that time, but would provide no information for new cities, that entered from 1900 to 1990 and are

nearly twice as many as those extant in 1900.

We also assign cities to one of nine regions according to the Census Bureau division of the

country. Kim (1997) argues that the census regions are likely to serve well as economic regions, at

least over the first half of the century.5

Finally, we use the date of settlement for each city, as obtained by Dobkins and Ioannides

(2001). At first glance, one would suppose that the east to west settlement of the country would

determine settlement dates, but we find early settlement dates in the west and late ones along

the east coast. Settlement here refers to historical references to settlement in a location, and our

variable is compiled by sifting through historical records. In a number of cases, the dates are

references to military forts. We use those dates because often the site of the fort determined the site

of the city that grew up nearby. The earliest date is that of Jacksonville, Florida, in 1564, and the

latest is Richland, Washington, originally the site of a nuclear facility settled in 1944.

3. The Location of Cities

This section deals with issues pertaining to spatial features of the location of cities. We begin with

some basic facts about the spacing of cities as the US urban system has evolved. To do this, we

examine the evolution of average bilateral distances between cities relative to the average distance

of a city from its nearest neighbor. Referring to Table 2, we see that the average bilateral distance

where latA and longA are the latitude and longitude of location A measured in radians. Similarly for latB and longB.
The distance is then

distance = 3954 × acos(angle).

acos(angle) gives us the approximate distance if the two points were located on a circle of radius one. We then need to
multiply by the radius of (a circular) earth (3954 miles) to get an estimate of the distance. The assumption of a spherical
earth leads to an error of approx 0.2% on an area the size of the US.

5Kim (1997), p. 7–9, discusses the original intention of the definition of U.S. regions as delineating areas of homo-
geneous topography, climate, rainfall and soil, but subject to requirement that they not break up states. By design,
the definitions were particularly suitable for agriculture and resource-based economies. The role of those industries as
inputs to manufacturing would make them likely to serve well as economic regions.
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between cities rises by nearly 25%, from 802.5 miles in 1900 to 1005 miles in 1990, as the US urban

system expanded over the North American land mass. In contrast, the average distance of a city

from its nearest neighbor falls by 35%.6 Put together, these numbers clearly show that US urban

system both expanded and thickened during the twentieth century.

But what drives the location of cities that determines this spacing of the urban system? Theoret-

ical reasoning points to first or second nature features of potential locations as the key determinant

of whether or not a city is located there. Let us assume, for the moment, that the first and second

nature features that are most favourable for cities are not evenly distributed across the US. This

means, in turn, that cities themselves will not be evenly distributed across the US. In empirical

terms, we can think of an uneven distribution as a departure from randomness, where randomness

would imply that cities are equally likely to locate at all locations. This discussion suggests that

a first step should be to test whether the urban system has evolved so as the location of cities is

non-random.

To do this, we first need a precise definition of randomness in a spatial context. We will assume

that under the null hypothesis of randomness, city location is randomly distributed according to

a spatial Poisson process where the probability of a city locating in any given area is proportional

to that area.7 Clearly such a definition ignores the large topographical variation that we see across

the US, but this variation is one of the key determinants of first nature differences across locations

and thus should not be taken in to account in our definition of randomness.

The test that we use is a very simple test for non-randomness first proposed by Clark and

Evans (1954). The basic idea is to assume that some underlying spatial probability process, in our

case spatial Poisson, determines the distribution of cities and then to compare the actual distance

between cities to the distance that we would expect if cities were located randomly according

to this distribution. Although a full matrix of intercity distances is available, Clark and Evans

(1954) show that a “sufficient” test of non-randomness can be based on the distance to nearest

neighbor city only.8. However, even if location of cities is non-random, we may fail to reject the

null-hypothesis of randomness. Non-randomness might be manifested in other dimensions than

6The dispersion of the former declines while that of the latter slightly grows, as evidenced by the coefficient of
variation and nonparametric densities that we have estimated but do not report here. Both those distributions become
more symmetric, as evidenced by the ratio of medians to means and the nonparametric densities.

7That is, we treat cities as points and ignore their own areas. For details, see Cliff and Ord (1975) and Ripley (1979).
8Sufficient in the sense that the statistical test is asymptotically valid for a large number of underlying spatial

probability processes obeying a number of standard assumptions. See also Ripley (1979).

6



the distance to nearest neighbor. We return to this possibility below.9

Define: di as the distance to city i’s nearest neighbor; dA as the mean nearest neighbor distance;

dE as the expected mean nearest neighbor distance under the assumption that locations follow a

spatial independent Poisson distribution; σ2
E as the expected variance of mean nearest neighbor

distance under the assumption that locations follow a spatial independent Poisson distribution;

ρ as the spatial density of cities; and, I as the number of cities. Then the Clark-Evans test for

non-randomness is based on the simple test statistic CE = (dA − dE)/σE which is distributed

asymptotically N(0,1). To calculate the statistic, we need to use our specific assumption on the

spatial process that governs the random location of cities to allow us to calculate the expected mean

and variance. Under our assumption that cities are located according to a spatial Poisson distribu-

tion, these take a simple form: the expected mean nearest neighbor distance is dE = 1/(2
√

ρ), and

the standard deviation is σ(dE) = 0.26136/(
√

Iρ).

Table 3 shows the results for the US as a whole for each of the census years. The final column

reports R = dA/dE, the ratio of actual to expected distance. A number less than one indicates

that cities are closer together than would be expected if they were randomly located. Conversely,

a number greater than one indicates that cities are further apart than would be expected if they

were randomly located. The CE column reports the Clark-Evans test statistic that tells us whether

this departure from randomness is significant. From the table, we see that US cities are spaced

closer than we would expect if they were randomly located, but that this non-randomness is only

significant at the beginning of the century. We find this result surprising for two reasons. First, we

had strong theoretical priors that first and second nature features would matter for city location.

Second, casual observation suggests that cities are very clustered in certain parts of the country.

For those who find the theoretical reasoning convincing, there are a number of possible reactions

to this finding that, for the US urban system as a whole, city locations are essentially random.

The first is to question our underlying assumption on the uneven distribution of first and second

nature features. The second is to argue that non-randomness might show up in more detailed

(higher order) features of the spacing of cities. The third possibility is that the error occurs because

we consider the US urban system as a whole when we know there are strong regional variations

particularly with respect to the distribution of first nature features. As we see next, all of these

9Indeed, a large number of additional test statistics, including extensions to k-nearest neighbor methods, have been
developed since the original Clark and Evans test used here. See, for example, Diggle (1983) for a description of these
methods.
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arguments have some bite.

Let us start with the possibility that first and second nature features are evenly, rather than

unevenly distributed across the US. The evidence we present in section 4 shows that second nature

features are clearly not evenly distributed across space.10 What about first nature features? The

problem is that these first nature effects are largely unobserved and may change over time thus

making it impossible to directly assess whether these features are evenly or unevenly distributed.

We can make some progress however, by considering indirect evidence on the role of first

nature. A theoretical model that explains city location on the basis of first nature should see

good locations settled first and the largest cities developed at these good locations. Given our

discussion above, we cannot assess whether good locations are evenly distributed, but we can

consider whether good sites are settled first. If better first-nature sites are settled earlier, on average

– arguably, a rather simplistic view of history – then early settlement would confer a permanent

advantage in terms of city size. To test this relationship we would like to consider the relationship

between relative city size and the date at which a city was settled. We do this by constructing the

distribution of city sizes relative to the US average (US relative) and the distribution of city sizes

relative to cities settled at roughly the same date (Same date relative) and then studying how the

two relate to one another.

A general way to look at these kinds of relationships between two distributions of interest, has

been proposed by Danny Quah in a series of papers [ Quah op. cit. ]. Quah proposes estimating

stochastic kernels that give the distribution of one of the variables (Same date relative) conditional

on the distribution of another variable (US relative). These tools have been widely used to study

income inequalities across countries and regions but have not been widely used to study urban

systems.11 There are several advantages in using this approach to study the spatial evolution of

the urban system. Most importantly, it imposes no structure on the underlying relationships. The

estimated relationships can be non-linear and are allowed to change over time. A further attractive

property is that, in the evolution of the urban system, no city is truly representative of the entire

distribution of cities. Standard parametric tools rely on the assumption that there is some average

(representative) unit whose outcomes can be modelled in a concise way as the function of a limited

10For example, given the distribution of economic activity across the US, some cities clearly have better access to large
markets.

11In a companion piece, Overman and Ioannides (2001), we use these tools to study non-spatial features of the
evolution of the US urban system.
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number of variables and unknown parameters. The stochastic kernel method does not rely on

this representative agent assumption. This flexibility makes the method ideal for studying highly

non-linear evolving systems. For readers unfamiliar with the methodology, Appendix A provides

additional technical information on estimation.

Figure 1 shows the stochastic kernel mapping from the distribution of US relative city sizes

to the distribution of same date relative city sizes [ c.f., Quah (1999) ]. The US relative city sizes

are constructed by taking the (log of the) ratio of city size to the US average city size. The same

date relative city sizes are defined as the (log of the) ratio of city size to the mean city size for

cities that were settled at a similar period. Settlement dates are constructed as outlined in section

2 and grouped in to similar settlement dates using twenty year bands. Both distributions are

normalized by subtracting their mean and dividing by their standard deviation, so that each

univariate distribution has a variance of 1 and a mean of 0.

The way to interpret this stochastic kernel is as follows. Take a point on the US relative axis,

say 1.0, which corresponds to a city with (log) city size that is one standard deviation above the US

(log) mean. Now imagine taking a cross-section across the stochastic kernel orthogonal to the US

relative axis and parallel to the same date relative axis. This cross-section traces out a conditional

distribution giving the same date relative city sizes for all the cities whose population is one

standard deviation above the US mean. The stochastic kernel plots these conditional distributions

for all values of US relative city size.12

Consider the end of the century first. To continue with our illustrative example, take the point

1.0 on the US relative axis and read across the stochastic kernel parallel to the same date relative

axis to get the conditional distribution. The mass of this conditional distribution is tightly centred

around 1.0 on the same date relative axis. That is, cities one standard deviation above the US mean

also tended to be one standard deviation bigger than cities settled at the same date. Looking at the

kernel we see that the same applies for cities one standard deviation below the mean and for US

relative city sizes more generally.

From the stochastic kernel for 1990 it is clear that initial benefit conferred no advantage at the

end of the century. To understand why we reach this conclusion it is useful to ask what would

we have expected to see if early settlement had conferred a permanent advantage? If this were

the case, cities that were large relative to the US average, would be better first-nature sites, settled

12Actually, for technical reasons the kernel is not plotted for the very largest cities. See Appendix A for more details.
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earlier. Thus, although they are large relative to the US, we would expect them to be a similar size

to sites that were settled at the same time (on similarly good sites). Likewise, smaller cities would

be located on poorer sites settled later. However, although they are small relative to the US, we

would expect them to be a similar size to cities on similarly poor sites that were settled at similar

late dates. That is, if first nature characteristics matter most, then the stochastic kernel should map

cities to approximately zero in the same-date relative distribution. Cities settled at similar dates

should be of similar sizes.

Therefore, from the stochastic kernel for 1990 one can only conclude that early settlement

in good first nature locations has conferred no permanent advantage. One could object to this

interpretation by arguing that changes in transportation and infrastructure have rendered inland

and temperate climate locations much better first nature sites than they were 100 hundred years

ago. This is clearly true, but what stands out is that this relationship also held at the beginning of

the century, as the figure for 1910 shows. If good sites were settled first, the advantages of these

sites had already largely diminished by the beginning of the twentieth century.

These findings are actually consistent with the idea that economic geography might play some

role in determining the location of cities, despite our finding that location was essentially random.

If first nature effects do not play a particularly large role in determining city outcomes, then

it is possible that there are many reasonably good sites fairly evenly spread across the US. If

good sites are spread out, then location may appear to be essentially random. Viewed from a

dynamic perspective, it may be that what makes a good location is changing over time and with

so few cities entering there are plenty of good first nature sites in terms of these new factors that

make a particular location desirable. Both of these stories reintroduce first nature geography as a

determinant of city location, but only at the expense of downplaying first nature importance for

city outcomes in the twentieth century!

What about second nature geography? As we mentioned above the evidence we present in

section 4 shows that second nature features are clearly not evenly distributed across space. This

observation, coupled with the finding of random location of cities, suggests that second nature

might not play a particularly important role in determining the location of cities. We can, however,

identify some role for second nature if we consider the location of different sizes of cities.

Figure 2 shows a stochastic kernel mapping the distribution of population (US relative city size)

to the distribution of distance to nearest neighbors, f̂ (di|Pi). Both variables are normalised exactly

10



as before. Starting this time with the beginning of the century, the figure for 1910 shows that

smaller cities tended to locate far away from their neighbors. A city one standard deviation below

mean population size tended to be one standard deviation above the mean in terms of distance to

their nearest neighbor. The reverse holds for larger cities. That is, big cities are only ever found

close to other cities, while small cities may be close to other cities but are much more likely to be by

themselves. By 1990 the relationship has changed. Smaller cities still tend to be further from their

nearest neighbor, but the relationship is not as stark as in 1910. While it is possible to contrive a

first nature story that might lead to this particular pattern, it seems much more likely that second

nature interactions between cities explain the different relative location patterns of large and small

cities. Again, this story reintroduces a role for geography in determining the spacing of different

types of cities rather than the spacing of cities per se.

In our discussion of the randomness result we suggested three issues that we might like to

consider further. We have provided some evidence for the possibility that first nature and second

nature may still play some role in determining the location patterns of cities despite the fact that,

for the US urban system as a whole, city locations are essentially random. We now consider a final

possibility, that the system as a whole looks random because of offsetting factors when we pool

different regional systems that are non-random. To give a concrete example, cities in one region

may be too close together because in that region closely spaced locations on the seacoast make

good sites for cities, while cities in another region may be too spread out because in that region

mountains and deserts force cities apart. When we pool these two regions it is possible that the

overall pattern may look random.

Table 4 shows that this may be part, but not all of the story. The table shows the same nearest

neighbor statistic, reported in table 3, but calculated for census regions rather than the entire US.

(Figure 3 clarifies the designation of US census regions). The table shows that randomness can

be rejected for two out of the four regions for which we report results. In particular, the South

and West regions show strong evidence of non-randomness. Cities in the South are too far apart.

An explanation could be that although mountain ranges there are distinct but not particularly

massive, the South’s urban development might have been influenced by its plantation economy

past.13 Cities in the West are too close together, in part because deserts and the sea coast restrict

the area of urban development. We still cannot reject randomness for the Mid West and North East

13We owe this suggestion to a referee.
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however. In these two regions cities are essentially randomly located suggesting that we still find

a puzzle about the role of first and second nature at other spatial scales.

To conclude, most theories of the location of cities allow some role for first or second nature

in driving location. In light of this theoretical reasoning, our results on the randomness of city

locations present somewhat of a puzzle. We can rescue a role for first nature by considering smaller

spatial scales and allowing for the fact that first nature might not actually be that important during

the twentieth century. Likewise, we find some role for second nature geography in explaining the

location patterns of different size cities. Clearly, more work remains to be done. However, for now,

we turn from the issue of city location to the issue of city sizes and wages to assess the role that

second nature might play in determining city outcomes.

4. Spatial Features of The City Size and Wage Distributions

We have already said as much as we are going to say on the role of first nature and the size of

cities. To reiterate, if early settlement of good sites conferred an advantage, then this advantage

had already faded by the beginning of the twentieth century. In this section, our focus is on the role

that second nature features may play in determining the distribution of city sizes. We again use

the same tools, developed by Danny Quah [ Quah op. cit. ] and employed above, to characterise

some key spatial aspects of the evolution of the US urban system. We start with a key question

and consider whether second nature features help determine the distribution of city sizes and

wages. In particular, we will consider whether spatial interactions between locations (both urban

and non-urban) help determine city outcomes. This focus is driven both by our interest in spatial

features per se and by the type of data that we have available.

Traditionally, models of the urban system have investigated the spatial interaction between

locations using the concept of market potential. As we see in its definition below, this concept

measures whether a location has good access to markets. Cities should be large and pay high

wages if their location has high market potential [See for example Harris (1954)]. New economic

geography models [ Krugman (1992); Fujita et al. (1999) ] have formalised this reasoning and

shown that market potential should be a function of city incomes, distances between cities and the

city price indices for manufactured goods. These models suggest that the effect of high market po-

tential at a location might not be unambiguously positive. Given those theoretical foundations, we

begin our analysis of spatial interactions between cities by using the concept of market potential.
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In what follows, we examine the relationship between city sizes or wages and market potential

using a series of stochastic kernels. However, before turning to details on the construction of the

market potential, we briefly consider the advantages of using our non-parametric approach to

study these spatial interactions. All of these stem from the fact that we do not need to impose

any restrictions on the mapping from market potential to city sizes or wages.14 In particular, we

do not have to impose any form of linearity. Nor do we have to impose monotonicity so, for

example, we can allow the distribution of city size or wages conditional on market potential to

be twin peaked. This sort of flexibility is important given that theoretical reasoning suggests that

competition effects may sometimes dominate demand effects implying that high market potential

may be associated with both small and large cities. Finally, we do not have to restrict the mapping

to be stationary over time. As we show below, this flexibility allows us to identify features of the

spatial evolution of the US urban system that would be completely obscured were we to adopt a

more standard parametric approach.

A. City sizes conditional on market potential

Given the available data we can construct three different definitions of market potential for city i

at time t based on the following formula:

mpit = ∑
j �=i

Pjt

Dij
. (1)

The first two measures differ depending on whether the summation is across all cities or all

counties in the US. In words, city i’s market potential is the sum over all other cities (counties) j

of population in city (county) j, Pjt, weighted by the inverse of distance between i and j, Dij.When

the summation is across all cities, we will refer to this as market potential (cities), and when

it is across counties as market potential (counties)15. Taking different definitions is interesting

because it allows us to see whether spatial interactions between cities differs from general spatial

interactions between cities and other (non–city) locations in the US.

In addition to population data, we also have wage data for cities, but not counties, back until

1900. These wage data allow us to construct a third measure of market potential, where cities are

weighted by average wages as well as distance: mpW
it = ∑j �=i

WjtPjt
Dij

. We will refer to this as market

14That is, over and above some regularity conditions. See Appendix A.
15For the county based market potential measure, note that the sum is over all counties that are not part of that

metropolitan area in 1990.
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potential (wages). This measure may better capture the importance of demand from other cities

and regions than the measures that only consider population, and is thus closer to the Krugman

version of the market potential model [ Krugman (1992) ].

The definition of market potential involves a somewhat arbitrary choice on the importance

of distance. Results do not, however, appear to be too sensitive to the assumptions on how

distance enters. In addition, in common with many authors, we are assuming that transport costs

are directly related to the distance between cities without any consideration of actual transport

networks and costs. Finally, given the lack of data on actual transport costs and changes in sectoral

composition of output, we have chosen to take the “neutral” viewpoint that general transport costs

are unchanged over the sample period. Again, without any further information on transport costs

over the period, it is unclear what alternative assumption would be better.16

As before, when calculating the stochastic kernels both population and market potential are

taken as (the log of) ratios to the contemporaneous mean, and the distributions are normalized

by subtracting the mean and dividing by the standard deviation. The stochastic kernels are

read exactly as before. For example, take a point on the market potential axis, say 1.0, which

corresponds to a city with log market potential that is one standard deviation above the log mean.

Cutting across the stochastic kernel parallel to the city size axis gives the conditional distribution

of relative city sizes for cities with market potential one standard deviation above the mean. The

stochastic kernel plots these conditional distributions for all values of market potential.17

B. Stochastic kernels for city sizes conditional on market potential

To study how city sizes and wages might be affected by spatial interactions, we report results

for several stochastic kernels in the form of three-dimensional figures and contours.18 Figure 4

reports stochastic kernels f̂ (Pi|mpi), for city size conditional on market potential (cities), Figure 5

on market potential (counties) and Figure 6 on market potential (wages).

From Figures 4, a and b, and 5, a and b, we see that the 1910 kernels are somewhat skewed

towards the diagonal. This is perhaps easiest to see in the contour plot. For the low market

16 It would be possible to allow for the effect of distance to decrease through time. However, the changing composition
of consumption from manufacturing to services, means that, at an aggregate level, it is not clear whether general
transport costs have been rising or falling. Thus, Hanson (2000) finds that the estimated effects of distance increase
between 1970 and 1980, which he interprets as a net increase in effective transport costs.

17As before we do not give results for the very largest cities although we do use them to calculate market potentials.
18The contours work exactly like the more standard contours on a map. Any one contour connects all the points on

the stochastic kernel at a certain height.
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potential cities, we can readily identify a peak in the stochastic kernel that lies on the diagonal

in the south-west of the diagram.19 This peak contains most of the mass for the smaller cities. In

contrast, the conditional distribution for the largest cities is relatively flat although there is some

evidence that the very highest market potential cities do tend to be bigger than average.

This relationship between market potential and city size does not persist as the US urban system

evolves. The entire series of snapshots, not reported here, show the stochastic kernels for the

each decennial year 1900 – 1990, slowly twisting back until they appear, by 1990, to have become

virtually independent of market potential. The peaks become less and less pronounced, as the

distribution of city sizes conditional on low market potential shows greater variance. By 1990,

Figures 4, c and d, and 5, c and d, suggest that the conditional distributions of city sizes are almost

identical across all values of market potential. Only for the very largest cities is city size positively

related to market potential. We underscore the importance of this finding. It suggests, at least from

a non-parametric vantage point, that the distribution of city sizes conditional on market potential

is basically independent of the level of market potential.

This basic result does not change when we incorporate information on the wages paid in

different cities. Figure 6 considers the co-evolution of market potential (wages) and city sizes. The

stochastic kernels for city size distributions conditional on market potential (wages), for 1910 and

1990, accord with those in Figures 4 and 5. Again, the entire series for the century – not reported

here – shows the kernel slowly twisting back until by 1990, the distribution of city size has become

virtually independent of market potential. These results thus provide additional support for our

earlier comments.

Before proceeding, we summarise what our results so far tell us about the spatial interactions

between cities. First, they tell us that this relationship is non-linear — at least to the extent that there

may be differences between small and large cities. Second, the nature of the interaction evolves

over time. That is, the mapping from market potential (however measured) to population is not

stationary. Third, if, as theory suggests, we can capture the second nature features of the system

through a reduced-form market potential variable, then the spatial interaction between cities was

weak at the beginning of the century and has further weakened over time.

As for the results on city location, these findings are puzzling given our theoretical priors.

Again, we can investigate the issue further by considering extensions along a number of dimen-

19Around (-1.0,1.0) for figure 4 and around (-0.75,0.75) for figure 5.
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sions. We choose to focus on three particular features. First, we consider spatial interactions

between neighboring cities. Second, we consider whether spatial interactions might determine

population growth rates rather than levels. Finally, we consider the effect of spatial interactions on

wages rather than population.

C. Spatial interactions among neighbors

Examining the relationship between cities and their neighbors is interesting for two reasons. First,

because we saw above that looking at nearest neighbors allowed us to identify a difference between

large and small cities. Second, because the new economic geography literature suggests that large

cities might cast an agglomeration shadow that affects their immediate neighbors. 20 To get at

the first of these two issues, Figure 7, c and d, reports stochastic kernels for the size of nearest

neighbors conditional on city size, for 1910 and 1990, respectively. From this, we see that the

distribution of nearest neighbor size is practically independent. This finding is consistent with the

low correlations between sizes of cities and nearest neighbors reported in the eighth column of

table 2. Putting this together with our earlier finding on the location of cities, we see that there

are differences in the spacing of large and small cities but not in the type of cities that they have as

neighbors. Large cities tend to be found close to other cities and their neighbors may be large or

small. The same is true for the neighbors of small cities, even though small cities tend to be further

away from their neighbors.

Turning briefly to the issue of agglomeration shadows, Figure 7, a and b, reports stochastic

kernels for city size distributions conditional on market potential (cities), excluding the component

of market potential from the nearest neighbor. If agglomeration shadows mattered, then cities

with very high market potential might be small if they fell inside this agglomeration shadow. This

is one possible explanation of our finding of only weak evidence for a positive effect of market

potential when we considered the stochastic kernels from market potential to city size (Figures 4,

5 and 6). Figure 7, a and b, show that such considerations do not change our overall conclusions

with respect to the spatial interactions between cities. Clearly more work remains to be done

on this issue. Yet for the moment, we find relatively limited evidence in support of the idea of

agglomeration shadows. Overall, our results for nearest neighbors suggest that this dimension

20Krugman (1993) suggests that once a particular site is settled, its presence may skew further development in its
vicinity in its favor, via its agglomeration shadow.
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might matter more for city location than it does for city outcomes. We now turn from nearest

neighbors to consider the growth rates of cities.

D. City growth rates conditional on market potential

Given that there is only a very weak relationship between city size and market potential, it would

be unlikely that we would find one between city growth and market potential.21 Instead, we look

at whether a city’s growth relative to its long run average can be explained by deviations of that

city’s market potential from its long run average. That is, whether spatial interactions between

cities can explain periods of ‘over’ or ‘under’-performance relative to long run trends. To do this,

we consider the difference between this period’s relative growth rates and the time average of

growth rates for that city. We also do the same for market potential. Thus for both variables

we look at differences from a city specific fixed effect. Figure 8 shows stochastic kernels for the

distribution of growth rates conditional on the distribution of market potentials.22

Once again, they show clearly, that the relationship changes slowly during the century. At the

beginning of the century, cities with (historically) unfavourable levels of market potential were

actually seeing (historically) high levels of growth. By 1990 cities with (historically) high market

potential were seeing higher growth. Interestingly, this finding is consistent with our findings

above on first nature and city size. Our results there suggested that if first nature confers an

advantage, the effect was most important at the beginning of the century. Put together with our

results here, it seems possible that good first nature sights at the beginning of the century were

growing fast even though their second nature position might have been less favourable. By the end

of the century, once the system had developed, first nature matters less but cities with historically

high market potential do now tend to see higher growth. Thus, by the end of the twentieth century

spatial interactions between cities do help to explain good times and bad times even if we find

limited evidence for their role in explaining which cities are large or small.

21If there was a relationship between growth and market potential we would clearly expect it to manifest in a
relationship between size and market potential.

22As before, we normalise both variables using the mean and standard deviation when calculating the stochastic
kernel. This normalisation helps control for the fact that the cross-sectional average market potential and growth rates
vary over time.
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E. City wages conditional on market potential

We have just seen that there is a role for spatial interactions in explaining fluctuations in city growth

rates. We now show that there is also a role in explaining outcomes in terms of wages. To do this we

use our stochastic kernels to analyse the evolution of the wage distribution rather than city sizes.

Again, we capture spatial interactions between cities in the determination of the wage distribution

through the use of our market potential measures. In general, we would expect cities with high

relative market potential to have high relative wages. This prediction is not confirmed by the 1910

data, reported in Figure 9, a and b. Wages are relatively high for cities with low market potential.

However, as before, as the urban system develops the relationship changes. According to Figure

9, c and d, in 1990, the stochastic kernel is slowly twisting towards the diagonal with higher wages

associated with larger market potential. Putting this together, we reach a now familiar conclusion.

At the beginning of the twentieth century, a city’s ability to generate high wages appears to be

independent of spatial interactions. However, by the end of the century, spatial interactions do

help determine wages even if they have relatively little impact on overall population.

Overall, we can reach a number of conclusions about the impact of spatial interactions on city

size. As a general rule, there is no simple relationship governing the spatial interaction of cities.

The relationships we can identify are generally non-linear, sometimes non-monotonic and nearly

always changing over time. All of this clearly urges caution in application of standard parametric

techniques to studying the evolution of the US urban system. As well as urging caution, our non-

parametric techniques have allowed us to identify a number of spatial features of city outcomes.

There is limited evidence of a weak relationship between good access to markets (high market

potential) and city size at the beginning of the century. This relationship has weakened further

over time. This result may be driven by the fact that market potential should take into account

competition effects that cause agglomeration shadows. However, a preliminary analysis of these

phenomena looking at nearest neighbors finds no clear evidence that it is empirically important.

Despite these somewhat negative findings, spatial interactions do play a role, both in terms of

periods when cities over-perform and in terms of wages. In direct contrast to our findings on

spatial interactions and population, both of these relationships are strong towards the end of the

century and weak at the beginning.
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5. Conclusions

This paper has used a number of different approaches to analyse the spatial evolution of the US

urban system over the period 1900 to 1990. Our work is the first to consider a wide range of spatial

features of the US urban system as it has evolved during the twentieth century. The techniques

that we use are particularly appropriate for studying the complex evolution of the system because

they impose so little structure on the analysis. Our results confirm some theoretical insights, but

also throw up a number of puzzles.

The first group of findings concern the spatial pattern of the location of cities in the US. By the

end of the twentieth century, the location of cities in the US was essentially random. This finding

is partly explained by the fact that we pool regions with very different topographies. Breaking

down the result by region suggests that cities in the West are too close together, while cities in the

South are too far apart. But, this aggregation does not tell the whole story. Cities in the North and

Mid-West are still randomly distributed. Our finding of randomness does not totally preclude a

role for first and second nature in determining the location of cities. One possibility is that there

are many good first nature sites for cities at the end of the twentieth century. This was less true at

the beginning of the century as our results on city size and settlement dates have shown. We can

also identify a role for second nature, by considering the location of different sizes of cities. Large

cities tend to be located close to other cities, while small cities tend to be isolated. Many other

spatial features of the location of cities remain to be investigated and we are still surprised at how

little work is being (has been) done in this area.

Our second group of findings concern the role of the spatial interactions between cities in

explaining city outcomes. Our results suggest that there is no simple positive relationship between

city sizes and market potentials. This relationship appears to change substantially over time.

There is some evidence of a positive relationship between city sizes and market potential at the

start of the century. At the end of the century, such a positive relationship apparently only holds

for the largest cities. In fact, an important finding stands out very clearly. By the end of the

century the distribution of city sizes conditional on market potential is nearly independent of

market potential. Similar results hold if we recalculate market potential weighting by city wages

or using data from counties rather than cities. Further evidence suggests that this result would

not change significantly if we could take account of the agglomeration shadow effects in models
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of new economic geography. However, much more work needs to be done before we can conclude

that these effects are definitely not present in the data.

There is, however, a role for second nature in determining city outcomes along at least two

dimensions. First, spatial interactions do matter for understanding when a city grows fast relative

to its historical average. Second, spatial interactions do matter for understanding which cities pay

higher wages. Interestingly, these spatial features are only weakly present at the beginning of the

period and both slowly emerge during the century.

Taken together, our results provide a rich picture of the spatial evolution of the US urban system.

But many key features of that spatial evolution remain to be examined. We leave these issues to

further work.
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Appendix A. Technical appendix

A. Estimating the stochastic kernel

The stochastic kernel shows the distribution of some variable y (e.g. population) conditional on

the distribution of another variable x (e.g. market potential). To estimate that stochastic kernel,

we first derive a non–parametric estimate of the joint distribution f (x,y). Kernel estimation of

this joint density requires picking a kernel and a bandwidth. Results are generally not sensitive to

the choice of kernel (here we use a Gaussian kernel). The choice of bandwidth does matter. The

bandwidth we use is the optimal bandwidth based on Silverman (1986) and is a function of the

range or the variance whichever is the larger.

Once we have the joint distribution f (x,y) we numerically integrate under this joint distribution

with respect to y to get f̂ (x). (We could also estimate the marginal distribution f (x) using a

univariate kernel estimate). The asymptotic statistical properties of both estimators are identical,

and in practice tend to produce very similar estimates. Next we estimate the distribution of y

conditional on x by dividing through f (x,y) by f (x). Thus we estimate f (y|x) by: f̂ (y|x) = f̂ (x,y)
f̂ (x)

.

Under regularity conditions, this gives us a consistent estimator for the conditional distribution

for any value x. The stochastic kernel records this conditional distribution for all values of x.

B. Treatment of outliers

For the particular applications in this paper, we sometimes ignore very large cities when calculat-

ing both the optimal bandwidth and plotting the figures. At points in the sample period, New York

is up to 25 times the mean city size (1930). Including these very large cities is conceptually simple,

but technically problematic. Very large outliers automatically drive up the optimal bandwidth

that we use when calculating the stochastic kernels. When this happens, the detail in the lower

end of the distribution (comprising the main body of cities) is obscured, as the estimates are

over–smoothed. To get round this problem, we calculate the bandwidth restricting the sample

range to the bottom 95% of all cities in any single year. A similar problem occurs with the

plots. Including cities 25 times the mean city size would obscure all the detail just to include

one additional city. Thus, we also ignore these cities when plotting the stochastic kernel. However,

once the bandwidth is calculated all cities are used to calculate the stochastic kernel.
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C. Sample size

Stochastic kernels for the beginning of the century are always for 1910 rather than 1900. This is

for two reasons. (i) For consistency when we plot the stochastic kernels using growth rates. (ii)

To increase the sample size. In 1900 we only have 112 cities, in 1910 we have 139. There are

small-sample issues in non-parametric estimation concerning the speed with which the stochastic

kernel converges to the true distribution. See Hardle (1994) for details.

D. Parametric spatial regressions

The stochastic kernels from market potential to population are quite closely related to the paramet-

ric spatial autoregressions suggested by Anselin [Anselin (1988)] and others. In fact, the calculation

of market potential uses a spatial weighting matrix with each element (wij) equal to the inverse

of the distance Dij between cities i and j. However, our nonparametric approach does not impose

a uniform coefficient on the spatial AR term thus constructed and does not require the mapping

from the spatial AR term to population to be linear or one-to-one.
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1 2 3 4 5 6
Year U.S. Pop. U.S. Pop. Urban Number Mean Median

(000) (000) of cities Size Size
1900 75,995 29,215 112 259952 121830
1910 91,972 39,944 139 286861 121900
1920 105,711 50,444 149 338954 144130
1930 122,775 64,586 157 411641 167140
1940 131,669 70,149 160 432911 181490
1950 150,697 85,572 162 526422 234720
1960 179,323 112,593 210 534936 238340
1970 203,302 139,419 243 574628 259919
1980 226,542 169,429 322 526997 232000
1990 248,710 192,512 334 577359 243000

All figures are taken from Historical Statistics of the United States from Colonial Times to 1970, Volumes 1 and 2, and
Statistical Abstract of the United States, 1993.

Table 1. Descriptive statistics: decennial data, 1900 - 1990

Bilateral distances Nearest neighbor distances Nearest neighbor correlations
mean median variance mean median variance sizes growth rates

1900 802.5 642.5 594.8 70.9 55.7 61.8 -.073 .557
1910 863.8 686.5 623.2 68.3 54.6 58.3 -.059 .256
1920 864.0 697.9 609.6 66.2 51.8 54.5 -.058 .528
1930 876.9 720.1 600.2 64.8 51.8 50.0 -.065 .457
1940 884.9 734.9 596.7 64.4 53.4 46.1 -.062 .674
1950 890.8 745.7 594.0 65.3 53.4 46.6 -.062 .436
1960 940.4 813.8 603.0 56.9 46.3 52.5 .027 .126
1970 981.3 841.3 631.3 52.5 42.0 41.2 .091 .394
1980 998.7 856.9 639.6 45.9 36.9 33.2 .138 .467
1990 1005 868.5 637.1 45.5 37.0 32.3 .172

Columns two to four provide summary statistics for the matrix of bilateral distances between all cities at time t.
Columns five to seven provide summary statistics for the vector of distances from nearest neighbor. Distances are
calculated as described in the text. The last two columns give correlations between nearest neighbors in terms of
population size and growth rates. Calculations exclude Honolulu and Anchorage.

Table 2. Distances and Nearest neighbor Correlations
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Year Area Number Actual Density Expected Variance CE [N(0,1)] R
of cities distance distance

1900 2969834 112 70.9 3.77E-05 81.41 4.02 -2.61 0.87
1910 2969565 139 68.3 4.68E-05 73.08 3.24 -1.47 0.93
1920 2969451 149 66.2 5.01E-05 70.58 3.02 -1.45 0.93
1930 2977128 157 64.8 5.27E-05 68.85 2.87 -1.41 0.94
1940 2977128 160 64.4 5.37E-05 68.20 2.81 -1.34 0.94
1950 2974726 162 65.3 5.44E-05 67.75 2.78 -0.88 0.96
1960 2968054 209 56.9 7.04E-05 59.58 2.15 -1.24 0.95
1970 2967166 242 52.5 8.15E-05 55.36 1.86 -1.53 0.94
1980 2966432 320 45.9 11.0E-05 48.14 1.40 -1.59 0.95
1990 2963421 332 45.5 11.2E-05 47.23 1.35 -1.28 0.96

Figures for land area exclude Hawaii and Alaska and are taken from Historical Statistics of the United States from Colonial
Times to 1970, Volumes 1 and 2, and Statistical Abstract of the United States, 1993. Note that both sources show the
(non-water) land area decreasing from 1950. Number of cities is as per table 1 but excludes Honolulu and Anchorage.
Actual distance is from table 2. Density is number of cities divided by area. Expected distance and variance are
calculated as per the formulas in the text. The CE column gives the Clark-Evans test while the final column, R, reports
the ratio of actual to expected distance.

Table 3. Clark Evans Test - US

Year Mid West North East South West
1900 1.14 1.11 0.89 0.93
1910 1.15** 1.1 1.13* 0.68**
1920 1.13* 1.1 1.08 0.8
1930 1.12 1.1 1.17** 0.64**
1940 1.12 1.1 1.12* 0.72**
1950 1.12 1.1 1.17** 0.72**
1960 1.04 0.93 1.16** 0.84
1970 1.03 0.92 1.14** 0.83**
1980 1.03 1.08 1.08** 0.83**
1990 1.03 1.08 1.11** 0.83**

The table gives values of R (the actual to expected distance) for each of four census regions. ** indicates significant at
the 5% level, * indicates significant at the 10% level. Mid-West comprises East North Central and East South Central;
North-East comprises Mid-Atlantic and North East; South comprises South Atlantic; West North Central and West
South Central; West comprises Mountain and Pacific (excluding Hawaii and Alaska)

Table 4. Clark Evans Test - Regions

27



a: 1910 b: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) population at time t to (normalised) date conditioned population at time t.

Figure 1. Date Conditioning
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a: 1910 b: 1910

c: 1990 d: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) population at time t to (normalised) distance to nearest neighbor at time t.

Figure 2. Population to distance to nearest neighbor
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Figure 3. Census regions
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a: 1910 b: 1910

c: 1990 d: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) city based market potential at time t to (normalised) population at time t.

Figure 4. Market potential to population
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a: 1910 b: 1910

c: 1990 d: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) county based market potential at time t to (normalised) population at time t.

Figure 5. Market potential to population
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a: 1910 b: 1910

c: 1990 d: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) wage weighted city based market potential at time t to (normalised) population at
time t.

Figure 6. Market potential to population
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a: 1910 b: 1990

a: 1910 b: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
a & b report stochastic kernels from (normalised) city based market potential excluding the market potential
component from the nearest neighbor at time t to (normalised) population at time t.
c & d report stochastic kernels from (normalised) population at time t to (normalised) population of nearest neighbor
at time t.

Figure 7. Nearest neighbor
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All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) county based market potential at time t to rate of city growth over the period t to
t+1.

Figure 8. Market potential to growth rates
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a: 1910 b: 1910

c: 1990 d: 1990

All calculations done using Danny Quah’s tSrF econometric shell.
Stochastic kernel from (normalised) city based market potential at time t to (normalised) wage at time t.

Figure 9. Market potential to wage
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