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Abstract

In many economic applications, it is often of interest to categorize, classify or label individuals by

groups based on similarity of observed behavior. We propose a method that captures group affiliation or,

equivalently, estimates the block structure of a neighboring matrix embedded in a Spatial Econometric

model. The main results of the LASSO estimator shows that off-diagonal block elements are estimated

as zeros with high probability, property defined as “zero-block consistency”. Furthermore, we present

and prove zero-block consistency for the estimated spatial weight matrix even under a thin margin of

interaction between groups. The tool developed in this paper can be used as a verification of block

structure by applied researchers, or as an exploration tool for estimating unknown block structures.

We analyzed the US Senate voting data and correctly identified blocks based on party affiliations.

Simulations also show that the method performs well.
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1 Introduction

Classification problems are a common endeavor in Economics and Econometrics research. This is the
problem of identifying and assigning individuals to groups based on their observed behavior or common
characteristics. This problem can come in many formats. Examples include estimating groups of countries
such that their income levels are mutually dependent, industrial inter-linkages and many issues regarding
strategic interaction among economic agents. In the nonparametric case, see the classical examples in
Ferraty and Vieu (2006). Identification of groups can be used to improve prediction, or can itself be the
main purpose of a study.

A spatial weight matrix W can be used to indicate the existence of groups which are represented as
diagonal blocks, producing a block diagonal matrix W. Elements wij that fall outside blocks are therefore
zero, indicating that there is no connection between individuals i and j. The classification into groups can
describe, for example, de facto political parties operating at a Congress, abstracting from self-denominated
labels. Political history is full of examples where parties operate jointly, pressing for a single agenda, thus
behaving like a single political entity. Another example is defector policymakers, who effectively operate
in a more similar way to political parties other than the one he or she pledged alliance. In both cases, it
is useful to have an empirical tool that classifies individuals into groups, independently of labeled political
affiliation.

The purpose of this paper is to show the properties of a LASSO-based estimator that uncovers the
block structure of an unknown spatial weight matrix when only the outcomes (the response variables) are
observed. Estimating the block structure of a spatial weight matrix is also a useful addition to the Spatial
Econometrics literature, which usually assumes a known spatial weight matrix using expert knowledge, or
more often just rough proxies like the inverse of “distances” or its arbitrary powers.

As shown in Arbia and Fingleton (2008) and Pinkse and Slade (2010), estimation accuracy of other
parameters in a spatial lag/error model depends crucially on the correct specification of the spatial weight
matrix. With these concerns in mind, there are other attempts in the literature to estimate the spatial
weight matrix together with other important parameters in a spatial lag/error model. Pinkse et al. (2002)
suggested to estimate a nonparametric smooth function for the elements of the spatial weight matrix.
Beenstock and Felsenstein (2012) suggested using a moment estimator for the spatial weight matrix. Bhat-
tacharjee and Jensen-Butler (2013) proposes to estimate the spatial weight matrix by first estimating the
error covariance matrix. These methods can suffer from the need to input an appropriate distance metric,
which is still determined by the user, or to estimate a large error covariance matrix, which can be inaccurate
as the dimension of the panel is large and can be close to the sample size - one of the major characteristics
of a large time series panel. There are other ad hoc approaches as well, many of which unfortunately lack
theoretical analysis of the properties of the resulting estimators.

Recently, Lam and Souza (2013) suggested to estimate jointly the spatial weight matrix and other
parameters in a spatial lag/error model through the use of adaptive LASSO penalization, which was first
developed in Zou (2006) for variable selection problems in standard regression. They provided theoretical
analysis of the properties of the resulting estimators, including the spatial weight matrix and other impor-
tant parameters in the model, and the size of the panel is allowed to be close to or even larger than the
sample size. However, in their paper, the authors assumed the existence of exogenous covariates, which are
not necessarily observed in a setting when the interest lies purely on classifying individuals into groups.
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In this paper, our objective is to estimate the block structure of the spatial weight matrix in a spatial
lag/error model in the absence of exogenous covariates (see model (2.3) and section 2 for details in how
we arrive at such a model for estimation). We then propose a LASSO estimator that captures with high
probability all the zeros that fall outside blocks of interactions, property defined as “zero-block consistency”.
We can also estimate the diagonal blocks to be non-zero with probability 1. In section 4, we show zero-block
consistency of the LASSO estimator of a spatial weight matrix even when there is a slight overlap between
the groups. In other words, there is a small number of “hybrid” individuals.

Motivated by a set of US Senate voting data, in this paper we use the method to explore if the
Republicans and the Democrats form two major blocks based on their voting records. We find that along
the year of 2013, the method correctly identifies two groups, with Independent Senators behaving mostly
as Democrats. The margin of interaction – defined as the Senators with cross-partisan links – is as small
as seven Senators, a clear indication of strong polarization in the political chamber. Interestingly, for
retrospective years, the degree of interaction was substantially higher, spiking at the last years of the Bush
administration.

An interesting computational aspect of a spatial weight matrix with blocks of zeros in the off-diagonal
is that we can store it in the computer as a banded matrix which reduces the amount of memory used. This
provides another motivation for the development of our estimators in this paper to detect block structure
in the spatial weight matrix.

The rest of the paper is organized as follows. In section 2, we introduce the spatial lag/error model
with blocks in the spatial weight matrix, and proposed a LASSO minimization problem for finding the
estimator of the spatial weight matrix. Section 3 presents the concept of zero-block consistency, with
probability lower bound of such consistency for the LASSO estimator explicitly given, thus showing that
block detection is achieved with high probability. Section 4 relaxed all the previous settings and results
to overlapping blocks. Section 5 presents our simulation results as well as the complete analysis of the US
Senate voting data. Conclusion is in section 6, and all technical proofs are in section 7.

2 The Model and the LASSO Estimator

One of the most commonly-used model for describing spatial interaction in a panel is the spatial lag model,

yt = ρWyt + Xtβ + εt, t = 1, . . . , T. (2.1)

See for example equation (19.5) of Anselin et al. (2006), which is a stacked version of the above. Here, yt

is an N ×1 vector of response variables, and Xt is an N ×K matrix of exogenous covariates. The so-called
spatial weight matrix W has elements that express the strength of interaction between location i (row)
and j (column). Therefore, the spatial weight matrix W can be interpreted as the presence and strength
of a link between nodes (the observations) in a network representation that matches the spatial weights
structure (Anselin et al., 2006). Such a structure is assumed to be constant across time points t = 1, . . . , T .
The parameter ρ is called the spatial autoregressive coefficient. The spatial lag model (2.1) is typically
considered as the specification of the equilibrium outcome of a spatial or social interaction process, in
which the value of the dependent variable for one agent is jointly determined with that of the neighboring
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agents (Elhorst, 2010). As an example, in the empirical literature on strategic interaction among local
governments (Brueckner, 2003), the spatial lag model is theoretically consistent with the situation where
taxation and expenditures on public services interact with that in nearby jurisdictions.

To utilize model (2.1), the spatial weight matrix W has to be specified. Yet, recent researches suggest
that the estimation accuracy of the model depends crucially on the correct specification of W. See Arbia
and Fingleton (2008) and Pinkse and Slade (2010) for some empirical experiments on this. Moreover,
Lemma 2 of Lam and Souza (2013) also shows that if the estimation of W is not good enough, estimation
accuracy of β can potentially suffer. Furthermore, Plümper and Neumayer (2010) points out that a common
practice of row-standardization in the specification of W in model (2.1) is in fact problematic, since it alters
not only the metric or unit of the spatial lag, but also the relative weight given to the observations.

Observing the drawbacks of model (2.1), Lam and Souza (2013) proposes to estimate the spatial weight
matrix together with other parameters in the model, using

yt = W1yt + W2Xtβ + εt, t = 1, . . . , T. (2.2)

The term ρW in model (2.1) is replaced by the spatial weight matrix W1, to be estimated from the data.
The addition of matrix W2 is a generalization to model (2.1). Model (2.2) allows the spatial weight matrix
to be estimated from the data, which overcomes the various drawbacks that are mentioned in the paragraph
above when using a spatial lag model. They showed, among various results, that the elements of the spatial
weight matrix can be sign-consistently estimated using the adaptive LASSO, i.e. the non-zeros in W1 and
W2 are estimated with the correct signs, and the zeros in them are estimated as zeros, with probability
going to 1.

In this paper, we are motivated to estimate the block structure of a spatial weight matrix. As our
primary interest resides is detecting or classifying groups of individuals based on their outcome variables, it
is not always the case that exogenous covariates exist or be relevant to a particular empirical question. For
example, for the US senators’ data, the main objective is to classify them into different de facto parties,
irrespective of other potential variables that could explain observed behavior. As a consequence, the results
in Lam and Souza (2013) cannot be directly applied.

This motivates us to study the following model:

yt = W∗yt + εt, t = 1, . . . , T, (2.3)

where yt is an N × 1 vector of observations at time t, εt is a zero mean noise vector of the same size,
and W∗ is the spatial weight matrix of size N , with 0 on its main diagonal. This model is in fact model
(1.6) in LeSage and Pace (2008), with the term ρC there replaced by the spatial weight matrix W∗, to be
estimated from data.

We assume that
∥∥W∗

∥∥
∞ ≤ η < 1, where

∥∥A∥∥∞ = maxi
∑
j |Aij | is the L∞ norm of a matrix A. This

ensures that (IN −W∗)−1 exists, so that yt = (IN −W∗)−1εt is stationary. Model (2.3) allows us to study
the dependence of one dependent variable on the neighboring ones. In the context of the US senate voting
data analysis to be carried out in section 5.3, we are studying the dependence structure of one senator’s
voting pattern on the other senators, which is captured by the spatial weight matrix W∗. Note that there
were other attempts to estimate connectedness in the US Congress in the literature. See, for example,
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Fowler (2006).

Since we are interested in studying the block structure of W∗, without loss of generality, we assume
the components of yt are sorted so that the spatial weight matrix W∗ is block diagonal, with

W∗ =


W∗

1

. . .

W∗
G

 , εt =


ε
(1)
t

...
ε
(G)
t

 , (2.4)

where G is the number of blocks in W∗. The blocks will potentially represent the dependence structure
of voting patterns of senators from within the Republican, the Democrats, and other parties in the US
senate voting data. An important assumption for {εt} is that cov(ε

(i)
t , ε

(j)
t ) = 0 for i 6= j. Otherwise, the

block structure in W∗ is not identifiable. Detailed assumptions can be found in section 3.1. Relaxation to
overlapping blocks is treated in section 4. Such a relaxation is necessary since we expect that even under
polarization of political parties, there are few individual senators from different parties sharing similar
political views, thus voting similarly on certain issues. Then the corresponding elements in the spatial
weight matrix are non-zero, connecting the blocks representing different parties. Hence the blocks in the
spatial weight matrix will be slightly overlapping in the end.

As presented in earlier paragraphs, for recovering the block structure of the spatial weight matrix in
(2.4), if there were exogenous covariates, the adaptive LASSO estimator proposed in Lam and Souza (2013)
is more than sufficient, since it has been shown that the adaptive LASSO estimator is asymptotically sign-
consistent for the elements in the spatial weight matrix. In this paper, we complement their results by
showing that, even in the absence of exogenous covariates, it is still possible to accurately estimate the block
structure of the spatial weight matrix. Furthermore, the disturbance decay assumption in Lam and Souza
(2013) is neither needed nor feasible, or else yt would have decaying variance as well. The disturbance
decay assumption entails that the maximum variance of the disturbances in εt are decaying as the sample
size goes to infinity. In view of the block structure of W∗ in (2.4), the matrix Π∗ = (IN −W∗)−1 also has
the same block structure, say

Π∗ =


Π∗1

. . .

Π∗G

 ,

with Π∗j having the same size as W∗
j in (2.4). Hence y

(j)
t = Π∗jε

(j)
t , and is uncorrelated with ε

(i)
t for

1 ≤ i 6= j ≤ G by the assumption that cov(ε
(i)
t , ε

(j)
t ) = 0 for i 6= j. Without a block structure in W∗, a

response variable yti and a disturbance variable εtj cannot be uncorrelated in general. This is the reason
why the disturbance decay assumption is not needed in our setting, but is needed in general in Lam and
Souza (2013).

Before proposing our estimator, we write (2.3) as a linear regression model,

y = Zξ∗ + ε, (2.5)

where y = vec{(y1, . . . ,yT )T}, ε = vec{(ε1, . . . , εT )T}, ξ∗ = vec(W∗T) and Z = IN ⊗ (y1, . . . ,yT )T. Here,
the operator vec denotes the column by column vectorization of a matrix, while ⊗ denotes the kronecker
product between two matrices. The design matrix Z contains the endogenous variables yt, and hence least
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square estimation will be biased. Furthermore, when N is close to T , e.g. N = T/2, it has a serious negative
effect on the accuracy of the least square estimators since the inverse (ZTZ)−1 will be ill-conditioned.

Since we assume there is a block structure in W∗, we know that ξ∗ is a sparse vector, that is, ξ∗

should have a lot of zeros corresponding to the zero blocks in W∗. This motivates us to propose the
LASSO penalization on the elements of ξ = vec(WT) to obtain

ξ̃ = min
ξ

1

2T

∥∥y − Zξ
∥∥2 + γT

∥∥ξ∥∥
1
, subj. to

N∑
j=1

wij < 1, (2.6)

where
∥∥v∥∥

1
=
∑
i |vi| represents the L1-norm of the vector v and

∥∥v∥∥ = (
∑
i v

2
i )1/2 represents the L2

norm, and we denote the elements of W as wij . Since ξ is a vector containing all the elements of the
spatial weight matrix W, the above penalization problem can be viewed as a least square estimation for
the elements of W (represented as the vector ξ) with constraint on the magnitude of

∥∥ξ∥∥
1
(the absolute

sum of all the elements of W). That is, ξ̃ is the solution to the following problem:

min
ξ

1

2T

∥∥y − Zξ
∥∥2, subj. to

∥∥ξ∥∥
1
≤ cT and

N∑
j=1

wij < 1,

where cT is determined by the tuning parameter γT . The row sum constraint in (2.6) and the above ensure
the stationarity of the estimated model. The rate for the tuning parameter γT will be discussed after
Theorem 3 in section 3.3.

Theorem 3 in section 3 shows that the solution ξ̃ for the LASSO penalization problem in (2.6) is zero-
block consistent - that is, the zero off-diagonal blocks in W∗ in (2.4) for model (2.3), with corresponding
zero patterns in ξ∗ = vec(W∗T), are estimated as zeros in ξ̃ with probability going to 1. The theorem
also says that the diagonal blocks are estimated to be non-zero with probability equal to 1. In the context
of the US senate voting data, if the Republican party and the Democrat party are forming two blocks in
the spatial weight matrix W∗ because of the political polarity in their voting patterns, the spatial weight
matrix W̃ recovered from the LASSO estimator ξ̃ in (2.6) will be able to show such blocks with high
probability.

3 Zero-Block Consistency of the LASSO Estimator

Before presenting the main results of this paper, we introduce the notation to be used for the rest of the
paper, and the main technical assumptions. The definition of zero-block consistency will also be given in
the subsection below.

3.1 Main assumptions and notations

(i) The spatial weight matrix W∗ is block diagonal as in (2.4), with at least one W∗
i 6= 0, and∥∥W∗

∥∥
∞ ≤ η < 1 uniformly as T,N → ∞, where η is a constant. We also assume, uniformly as

T,N →∞, ∥∥W∗∥∥
1
≤ ηc,
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where
∥∥A∥∥

1
= maxj

∑
i |Aij | is the L1 norm of a matrix A, and ηc is a constant.

(ii) The vector εt can be partitioned as in (2.4), with the length of ε(j)t the same as the size of W∗
j .

Furthermore, E(εt) = 0 and cov(ε
(i)
t , ε

(j)
t ) = 0 for i 6= j. Also, var(εtj) ≤ σ2

ε < ∞ uniformly as
T,N →∞, where σ2

ε is a positive constant.

(iii) Define dT = N
T . Then we assume dT → d ∈ [0, 1) as T,N →∞.

(iv) The series {εt} is causal, with
εt =

∑
i≥0

Φiηt−i, Φ0 = IN ,

where ηt = (ηt1, . . . , ηtN )T, and the ηti’s are independent and identically distributed random variables
with mean 0 and variance σ2, having finite fourth moments. Furthermore, we assume that uniformly
as N,T →∞, ∑

i≥1

∥∥Φi

∥∥ ≤ σ(1−
√
d)− e− c

σ(1 +
√
d) + e

,

for some constants e, c > 0.

(v) The tail condition P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied for ηti and εti for all integer t and

i = 1, . . . , N , for the same positive constants D1, D2 and q.

(vi) There are constants w > 2 and α > 1
2 −

1
w such that for all positive integer m,

∑
i≥m

∥∥Φi

∥∥
∞ ≤ Cm

−α
(

max
i,j
|Jij |

)− 1
2w

,

where C > 0 is a constant (can depend on w), and Jij =The index set for the non-zero elements of
the j-th row of Φi.

Assumption (i) requires the absolute row sum of W∗ to be uniformly less than 1, which is a regularity
condition to ensure that the model is stationary. This row sum condition is in fact less restrictive than the
commonly used row-standardization, which forces the absolute sum of each row to be equal to 1 in model
(2.1). For stationarity, we need |ρ| < 1 in the model, so that in effect each row is forced to sum to ρ in
the matrix ρW. See equation (3.3) in Fischer and Wang (2011) and the descriptions therein to learn more
details in row-standardization. On the other hand, the row sum condition in assumption (i) merely needs
the absolute sum of each row of W∗ to be less than 1, and each of them can be unequal.

We give a hypothetical trade example to illustrate that the row sum condition is reasonable in practice.
It is well known that the income of a country can depend on others, for example through trade linkages.
Suppose the partners of country A experience a positive income shock. In the situation described above,
it is then expected that country A, as demand for its export rises, will experience some positive spillover
from partners’ income shock. The row sum condition implies that the overall effect perceived from A’s
point of view will not be larger than the average shock accrued by its partners, weighted by the elements
of W corresponding to row that represents country A. In other words, it is supposed that the income shock
in the trade partners is not amplified through linkages, which is reasonable to assume to the extent that
A’s economy is not overly dependent on the export sector.
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Assumption (ii) is an important identifiability condition for the block structure of W∗. Assumptions
(iii) and (iv) facilitate the bounding of the minimum eigenvalue of a sample covariance matrix of the
observations using random matrix theories. They also make bounding various terms in the proof much
easier. Assumption (v) is a relaxation to normality. When q = 2, the random variables are sub-gaussian,
while they are sub-exponential when q = 1. When 0 < q < 1, the random variables are heavy-tailed.
Hence assumption (v) is a significant relaxation to normality. Together with assumption (v), assumption
(vi) allows us to apply the Nagaev-type inequality in Theorem 1 to determine the tail probability of the
mean of the product process {εtiεtj −E(εtiεtj)}. It can actually be relaxed to allow for 0 < α < 1/2− 1/w

at the expense of more complicated rate in the Nagaev-type inequality in Theorem 1. See Remark 1 after
Theorem 1 for more details on this.

There are more notations and definitions before we move to our main results. Define the set

H = {j : ξ∗j = 0 and corresponds to the zero blocks in W∗}. (3.1)

In other words, the set H excludes those zeros within the diagonal blocks W∗
i for i = 1, . . . , G. Define

n =maximum size of Wi, i = 1, . . . , G. For the rest of the paper, we use the notation vS to denote a vector
v restricted to those components with index j ∈ S. Hence, for instance, we have ξ∗H = 0 by definition. Let
λT = cT−1/2 log1/2(T ∨ N), where c is a constant (see Corollary 2 for the plausible values of c). Finally,
define the set

Aε =
{

max
1≤i,j≤N

∣∣∣ 1

T

T∑
t=1

[εtiεtj − E(εtiεtj)]
∣∣∣ < λT

}
. (3.2)

For W∗ being block diagonal as in (2.4) and an estimator Ŵ, we define the estimator ξ̂ = vec(ŴT) to be
zero-block consistent for estimating W∗ if

P (ξ̂H = 0)→ 1, T,N →∞. (3.3)

In this paper when we say that T,N →∞ together, we mean they approach infinity jointly rather than N
being a function of T or vice versa.

3.2 Why LASSO alone is sufficient

Before presenting our main results, readers who are familiar with LASSO for the classical linear model
y = Xβ∗ + ε may wonder : how can LASSO be zero-block consistent in our setting, when for a classical
linear model, it is generally selection inconsistent unless the necessary condition given by Theorem 1 of
Zou (2006), |C21C

−1
11 s| ≤ 1, is satisfied?

To answer this question, we first clarify the differences between selection consistency in Zou (2006)
and zero-block consistency in our paper. The selection consistency in Zou (2006) concerns with the correct
identification of zeros and non-zeros in the true regression parameter β∗ of a linear regression model
y = Xβ∗ + ε. However, zero-block consistency concerns only on the correct identification of zeros which
are elements of the zero blocks in the block diagonal spatial weight matrix W∗ in (2.4). For the elements
in the diagonal blocks W∗

i , i = 1, . . . , G in (2.4), we are not concerned with correct identification of zeros
and non-zeros. With this in mind, at the very most we can only draw parallels between the two.
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One important parallel is that the necessary and sufficient condition for zero-block consistency in our
setting, depicted in equation (7.5) in section 7 (see the proof of Theorem 3 therein to see how we arrive at
such necessary and sufficient condition), resembles the necessary condition |C21C

−1
11 s| ≤ 1 in Theorem 1 of

Zou (2006). Using the notation in equation (7.5) in our paper, the matrix 1
T ZT

HZD depicts the covariance
matrix between the columns of the design matrix Z of model (2.5) corresponding to the set H defined in
(3.1), and the columns of Z corresponding to the set D defined at the beginning of the proof of Theorem
3. This matrix is parallel to the matrix C21 of Zou (2006). Similarly, the matrix 1

T ZT

DZD is parallel to the
matrix C11. For the necessary and sufficient condition (7.5) to be satisfied, a necessary condition can be
derived from (7.5) to be ∣∣∣ 1

T
ZT

HZD

( 1

T
ZT

DZD

)−1
gD

∣∣∣ ≤ 1,

which completely resembles the condition |C21C
−1
11 s| ≤ 1 in Theorem 1 of Zou (2006), except that gD is a

vector containing 1,−1 and some values with magnitude smaller than 1, whereas s in Zou (2006) contains
only 1 or −1.

Under model (2.5), we can use equations (7.8) and (7.12) in section 7 to show that on the set Aε defined
in (3.2),∣∣∣ 1

T
ZT

HZD

( 1

T
ZT

DZD

)−1
gD

∣∣∣ ≤ ∥∥∥ 1

T
ZT

HZD

∥∥∥
∞
·
∥∥∥( 1

T
ZT

DZD

)−1∥∥∥
∞
·
∥∥gD∥∥∞ = O(λTn

3/2) = o(1),

so that the necessary condition above is satisfied on the set Aε when T,N are large enough, which has
P (Aε) → 1 by Corollary 2. Both equations (7.8) and (7.12) are proved on the basis of the form of the
model (2.3) and various assumptions in section 3.1, including the row sum and column sum assumption (i)
for the spatial weight matrix W∗ and the causal assumption for the process {εt} in assumption (iv).

In brief, the special form of our model (2.3) so that yt = Π∗εt, and the assumptions for the spatial
weight matrix and the disturbance process, are all reasons for the LASSO estimator in (2.6) to be zero-block
consistent.

3.3 Main results

We first present a theorem and its corollary concerning the probability lower bound of the set defined in
(3.2), which is the lower bound for the tail probability of the mean of the product process {εtiεtj−E(εtiεtj)}.
We show in Theorem 3, the main result of this paper, that this is also the probability lower bound for the
LASSO solution ξ̃ in (2.6) being zero-block consistent. Implications and explanations of our main result
will also be discussed after presenting the theorem.

Theorem 1. With the causal representation for εt in assumption (iv), together with assumptions (v) and
(vi), there exists constants C1, C2 and C3 independent of T, v and the indices i, j, such that

P
(∣∣∣ 1

T

T∑
t=1

[εtiεtj − E(εtiεtj)] > v
∣∣∣) ≤ C1T

(Tv)w
+ C2 exp

(
− C3Tv

2
)
.

The proof of Theorem 1 is relegated to section 7. This theorem utilizes Lemma 1 of Lam and Souza
(2013), where a functional dependence measure for a general time series is presented and discussed. With
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the causal representation of εt and assumptions (v) and (vi), the conditions in Lemma 1 of Lam and Souza
(2013) are satisfied, and hence the Nagaev-type inequality there can be invoked.

Remark 1. If 0 < α < 1/2− 1/w, then the inequality in Theorem 1 becomes

P
(∣∣∣ 1

T

T∑
t=1

[εtiεtj − E(εtiεtj)] > v
∣∣∣) ≤ C1T

w(1/2−α)

(Tv)w
+ C2 exp

(
− C3T

βv2
)
,

where β = (3 + 2αw)/(1 +w). Consequently, we need to redefine λT = cT−β/2 log1/2(T ∨N) and any rates
of convergence in the paper needed to be modified. For the sake of clarity we do not present those results
in the paper, but just assume α > 1/2− 1/w, as in assumption (vi).

The following corollary is an immediate consequence of Theorem 1.

Corollary 2. With the same constants C1,C2 and C3, and the same conditions as in Theorem 1, we set
the constant c in λT such that c ≥

√
3/C3. Then we have

P (Aε) ≥ 1− C1

(C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
− C2N

2

T 3 ∨N3
.

It approaches 1 as T,N →∞ if we assume further that N = o(Tw/4−1/2 logw/4(T )).

Proof of Corollary 2. By the union sum inequality, putting v = λT in the result of Theorem 1,

P (Acε) ≤
∑

1≤i,j≤N

P
(∣∣∣ 1

T

T∑
t=1

[εtiεtj − E(εtiεtj)]
∣∣∣ ≥ λT)

≤ N2
( C1T

(TλT )w
+ C2 exp(−C3Tλ

2
T )
)

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+ C2N

2 exp(−c2C3 log(T ∨N))

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+

C2N
2

(T ∨N)c2C3

≤ C1

(C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
+

C2N
2

T 3 ∨N3
,

for c ≥
√

3/C3. The result follows. �

Remark 2. Assumption (vi) is satisfied, for instance, if α ≥ 1/2, |Iij | is finite uniformly for all i, j,
and ∑

i≥m

∥∥Φi

∥∥
∞ ≤ Cm

−α.

If assumption (v) is also satisfied, we can actually set w to be any constant larger than 2, so that the
condition N = o(Tw/4−1/2 logw/4(T )) is satisfied for a large enough constant w. In light of Remark 1, we
can allow for α < 1/2 as well, with more complicated rate for the lower bound of P (Aε).

It turns out that the probability lower bound in Corollary 2 is the same as the probability lower bound
for the LASSO estimator ξ̃ in (2.6) to be zero-block consistent.
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Theorem 3. Under assumptions (i) to (vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large enough
T,N , the LASSO solution ξ̃ in (2.6) is such that

P (ξ̃H = 0) ≥ P (Aε),

which approaches 1 as T,N → ∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough T,N ,
P (ξ̃Hc 6= 0) = 1.

The proof of Theorem 3 is relegated to section 7. In words, this theorems says that a zero-block
consistent estimator W̃ for the spatial weight matrix exists and is given by the LASSO estimator ξ̃ using
the relation ξ̃ = vec(W̃T), with probability going to 1. The estimator is also a useful one in detecting block
structure of the spatial weight matrix, in the sense that the diagonal blocks are estimated to be non-zero
at the same time with probability 1, as long as the tuning parameter γT goes to 0. In the context of the US
senate voting data analysis in section 5.3, it means that with the number of senators (the dimension N) and
the number of voting instances (the number of time points T ) large enough, if the voting patterns indeed
align with political parties so that the underlying spatial weight matrix is block diagonal as in (2.4) with
each block representing a political party, then the probability that the LASSO estimator for the spatial
weight matrix has the same block diagonal structure is large. Also, the tuning parameter γT → 0 means
that in practice it has to be small, so that the penalization towards the elements of the spatial weight
matrix, through the term

∥∥ξ∥∥
1
in (2.6), cannot be too large. If this is too large, then the whole spatial

weight matrix can be estimated as 0, which is definitely zero-block consistent, albeit completely useless for
our purpose.

With γT → 0, the condition for the maximum block size n = o({γT /λT }2/3) implies that we need
n = o(T 1/3 log−1/3(T ∨N)). In practice, the method performs well even if the maximum block size is
relatively large compared to T ; see section 5 for simulation results. In theory, γT should be chosen to be
small in order to align with γT → 0. Yet if γT is too small, it will not allow for a block with reasonable
size. And of course, γT cannot be set too large also, or the whole weight matrix is shrunk to zero. See
section 5 for the introduction of a BIC criterion for choosing γT .

4 Relaxation for Overlapping Blocks

The spatial weight matrix in (2.4) and the theories presented in section 3 do not include the case where
some of the blocks are overlapping. Yet in many practical cases, some or all of the blocks are slightly
overlapping despite the non-overlapping majority. As described in the introduction and section 2, this can
happen when there are small number of “hybrid” individuals who are interacting with more than one group.

Formally, suppose there are G ≥ 2 non-overlapping sets I1, . . . , IG ⊂ {1, . . . , N} such that w∗ij = 0

for i ∈ Ia and j ∈ Ib with a 6= b. Then I1, . . . , IG form G groups for the majority of the components of
yt, with G(G− 1) corresponding zero blocks in the spatial weight matrix W∗ if we order the components
so that those in a set Ij are grouped together. Note that if the groups are overlapping, then necessarily⋃G
i=1 Ii ⊂ {1, . . . , N}. We introduce extra conditions in this section so that the zero-block consistency in

Theorem 3 is valid for the estimator of these zero blocks.
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To facilitate understanding of the notation above, we introduce a hypothetical example. For our US
senator voting data, suppose there are three major blocks, representing the Republicans, the Democrats
and the Independent Senators respectively. However, over a certain period of time, there is one Republican
who not only cooperates with some other fellow Republicans, but also with another Democrat and another
Independent Senator. Then over this period of time, the voting pattern of this Republican can depend
not only on some other fellow Republicans, but also on the Democrat and the Independent Senator with
whom he or she is cooperating. Using the notation introduced above, then G = 3, but these three senators
who are cooperating across parties will not be registered into the sets I1, I2 or I3, since the corresponding
elements in the spatial weight matrix W∗ will be non-zero as their voting patterns can depend on each
other. Then I1 ∪ I2 ∪ I3 ⊂ {1, . . . , N}.

Define the set

H ′ = {j : ξ∗j = 0 and corr. to one of the G(G− 1) zero blocks in W ∗}. (4.4)

This set corresponds to H in (3.1) when the blocks are non-overlapping. Consider two additional assump-
tions below:

(i)’ The spatial weight matrix W∗ is such that, for i ∈ Iq, q = 1, . . . , G, we have uniformly as T,N →∞,

∑
j 6∈Iq

|π∗ij | ≤ cπλT ,

where cπ is a constant, and π∗ij denotes the (i, j)-th element of Π∗ = (IN −W∗)−1.

(Rii) Define the set I ′ = {1, . . . , N}/
⋃G
i=1 Ii. The vector εt can always be partitioned as

εt = (εT

I1 , . . . , ε
T

IG , ε
T

I′)
T.

Then we assume cov(εIi , εIj ) = 0 for i 6= j, and cov(εti, εtj) ≤ cελT for i ∈ Iq, q = 1, . . . , G and
j ∈ I ′, uniformly as T,N → ∞, where cε > 0 is a constant. Also, var(εti) ≤ σ2

ε < ∞ uniformly as
T,N →∞, where σ2

ε is a positive constant.

Assumption (i)’ is an additional assumption on top of (i) in section 3.1. It says that the matrix (IN−W∗)−1

should also have approximately the same block structure as W∗, where the elements corresponding to the
zero blocks in W∗ should be close to 0, with order specified. This assumption is likely to be true when the
blocks are only slightly overlapping, which is what we are concerned with. Assumption (Rii) is to replace
(ii) in section 3.1. It says that the noise series for those components not in any blocks should have only
weak correlation with those noise series in blocks. Between blocks, the correlation should still be 0 for
identifiability of block structure.

We are now ready to present a version of Theorem 3 for overlapping blocks.

Theorem 4. Suppose there are overlapping blocks in W∗. Under assumptions (i), (i)’, (Rii) and (iii) -
(vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large enough T,N , the LASSO solution ξ̃ in (2.6) is
such that

P (ξ̃H′ = 0) ≥ P (Aε),
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which approaches 1 as T,N → ∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough T,N ,
P (ξ̃H′c 6= 0) = 1.

This theorem is in parallel with Theorem 3. Zero-block consistency continues to hold even when there
are overlapping blocks in the spatial weight matrix.

5 Practical Implementation

We use the Least Angle Regression algorithm (LARS) of Efron et al. (2004) to implement the minimization
in (2.6). A unique solution is guaranteed since the minimization problem in (2.6) is convex. The LARS is
very fast since the order of complexity of the algorithm is the same as that for ordinary least squares.

For choosing a suitable γT , following Wang et al. (2009), we propose a BIC criterion as below:

BIC(γT ) =
N∑
i=1

log
(
T−1

∥∥ỹi − (Zξ̃γT )i
∥∥2)+ |SγT |

log(T )

T
log(log(N − 1)), (5.1)

where y = (ỹT
1 , . . . , ỹ

T

N )T with ỹi = (yi1, . . . , yiT )T. The vector ξ̃γT is the LASSO solution to (2.6) with
tuning parameter being γT . Also, (Zξ̃γT )i is the vector with length T which is the portion of the vector
Zξ̃γT (see (2.5)) corresponding to ỹi. Finally, the set SγT = {j : (ξ̃γT )j 6= 0}, so that |SγT | counts the
number of non-zeros estimated in ξ̃γT . This BIC criterion is in fact the sum of individual BIC criteria for
the estimator of the ith row of the spatial weight matrix, with response variable ỹi. We denote γBIC the
tuning parameter that minimizes the BIC criterion in (5.1). This γBIC will then be used in (2.6) to find
the LASSO solution ξ̃.

5.1 Simulation results

In this paper, we focus on block detection, and there are no theoretical supports for accurate estimation of
the elements of W∗ in the non-zero diagonal blocks. We measure the performance of block detection using
the across-block specificity, defined as the proportion of true zeros in the non-diagonal zero blocks estimated
as zeros. For the sake of completeness and independent interest, we include other measures as well to gauge
the overall performance of estimating W∗. One is the within-block sensitivity, defined as the proportion
of true non-zeros estimated as non-zeros, and the within-block specificity, defined as the proportion of true
zeros in the diagonal blocks estimated as zeros. We also use the L1 error bound

∥∥ξ̃ − ξ∗
∥∥
1
/(N(N − 1))

and the L2 error bound
∥∥ξ̃ − ξ∗

∥∥/√N(N − 1) for comparing the overall estimation performance across
different T,N combinations.

We generate the data using the model yt = W∗yt + εt for a given triplet (T,N, κ), where κ is the
sparsity parameter controlling the overall sparsity of W∗. We generate W∗ by randomly selecting between
2 and 4 diagonal blocks as in (2.4), with uniform probability on their start and end points. Models with
blocks of fewer than 5 individuals or with within-block sparsity larger than 90% are rejected. The latter
condition restricts blocks from being excessively large.

Within all blocks, we choose [(1−κ)N(N − 1)] elements to be non-zeros with value 0.3. It means that
a larger κ represents a sparser W∗. Note that a relatively sparse W∗ may have dense blocks as the sparsity
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level is defined for the overall matrix W∗. To ensure stationarity, each element w∗ij of W∗ is divided by
1.1×max

(
1,
∑N
j=1 w

∗
ij

)
. In Table 3, shown in the Appendix, we relax this condition to move close to the

non-stationary case. The covariance matrix for {εt} is defined in the same way, with the same sparsity κ.
Hence the within-block pattern of spatial correlation is very general. In each iteration of the simulation,
we generate both W∗ and the data in order to ensure that the simulation is carried over a wide range of
true models. Thus, the results are not influenced by a particular choice of W∗.

Table 1 shows the simulation results with tuning parameter γT chosen by minimizing the BIC criteria
(5.1) for different values of N and T . The number of replications is 200. It is clear that on average the
estimator is zero-block consistent, since the across-block specificity is always close to 99% in all cases, and
in general gets better as N increases. While within-block accuracy is not guaranteed, the within-block
specificity and sensitivity are quite good, even when T is not large. The overall sparsity level is close to κ
in most cases. One notable feature is that with N fixed, as T gets larger, the overall sparsity level decreases.
This is because as T gets larger, the tuning parameter γT selected by the BIC criterion gets smaller, as is
evident from Table 1. It means that as T gets larger, BIC does not allow as much penalization to the model.
This is because there are many non-zero within-block elements in the main diagonal blocks which can only
be detected when T is large enough and γT small enough. As T gets larger, it is more beneficial to have
a smaller γT so that the non-zero parameters are estimated as non-zeros within the diagonal blocks. With
a smaller γT , the within-block sensitivity certainly increases while the within-block specificity certainly
decreases, and hence the overall sparsity decreases. These are exactly what one can observe from Table
1. The choice of tuning parameter when there are many explanatory variables that are highly endogenous
like in our case is definitely a future direction for research.

Table 2 introduces slightly overlapping blocks. For any two blocks, their overlapping size is chosen
randomly to be max(q1, q2), where q1 is 5% of the minimum size of the blocks and q2 is a random integer
between 1 and 4. This setting contains the case where T = 200 and N = 75 with 2 main blocks that are
slightly overlapping, which is similar to the situation in the real data analysis in section 5.3, where there
are T = 251 voting instances and N = 98 senators, and two main blocks that are slightly overlapping.
Again, the tuning parameter γT is chosen such that the BIC criterion in (5.1) is minimized. The results
are shown in Table 2. The simulation results show similar pattern as in Table 1: across-block specificity,
although shows a slight deterioration, is still around 97% to 99% in most cases. The tuning parameter γT
selected by the BIC criterion is again decreasing with T , and hence the within-block specificity and the
overall sparsity decreases as T increases, but the within-block sensitivity increases, like those in Table 1.

5.2 Simulation results for nonstationary models

In order to see how the stationarity of model (2.3) is important to the practical performance of our
method, we show simulation results with adjusted normalization of elements in W∗ in order to move closer
to nonstationarity, with results shown in Table 3. We also added results for a nonstationary model in Table
4. They are substantially worse than those in 5.1, which are associated with stationary models.

14



Table 1: Simulations with non-overlapping blocks.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 80.64%
(3.310)

81.66%
(2.814)

80.20%
(2.460)

96.99%
(3.992)

90.36%
(4.645)

84.31%
(2.684)

Within-Block Sensitivity 70.56%
(5.832)

79.44%
(5.566)

89.17%
(4.578)

18.33%
(18.829)

52.22%
(20.268)

87.78%
(7.566)

N = 25 Across-Block Specificity 97.01%
(2.035)

97.60%
(1.857)

97.67%
(1.819)

99.42%
(1.139)

98.70%
(1.738)

98.13%
(0.718)

L1 0.0237
(0.002)

0.0205
(0.001)

0.0215
(0.003)

0.0136
(0.001)

0.0132
(0.001)

0.0124
(0.000)

L2 0.1206
(0.014)

0.0826
(0.006)

0.0769
(0.011)

0.0842
(0.006)

0.0667
(0.005)

0.0511
(0.005)

Sparsity 85.94%
(2.183)

83.94%
(2.297)

80.26%
(3.151)

97.75%
(2.815)

93.85%
(3.184)

90.06%
(1.447)

γBIC 0.3500
(0.051)

0.2401
(0.053)

0.1588
(0.023)

0.4979
(0.158)

0.2687
(0.062)

0.1529
(0.014)

Within-Block Specificity 77.35%
(1.007)

74.57%
(1.781)

78.75%
(1.250)

89.15%
(2.534)

89.38%
(1.389)

80.27%
(1.239)

Within-Block Sensitivity 55.71%
(2.846)

66.02%
(2.374)

75.00%
(2.796)

45.80%
(7.885)

61.86%
(5.029)

87.47%
(3.129)

N = 50 Across-Block Specificity 98.56%
(0.501)

98.94%
(0.347)

98.78%
(0.361)

99.47%
(0.282)

99.42%
(0.325)

98.68%
(0.408)

L1 0.0188
(0.000)

0.0151
(0.000)

0.0139
(0.000)

0.0113
(0.000)

0.0106
(0.000)

0.0112
(0.000)

L2 0.1508
(0.007)

0.1031
(0.004)

0.0782
(0.002)

0.1124
(0.005)

0.0937
(0.004)

0.0875
(0.004)

Sparsity 87.46%
(0.620)

87.40%
(0.619)

84.48%
(0.694)

95.03%
(1.090)

93.37%
(0.724)

90.35%
(0.651)

γBIC 0.4807
(0.037)

0.3670
(0.050)

0.1913
(0.016)

0.5048
(0.078)

0.3131
(0.025)

0.1884
(0.014)

Within-Block Specificity 82.20%
(1.281)

81.20%
(0.573)

77.47%
(0.690)

89.33%
(1.192)

87.13%
(0.627)

82.46%
(0.869)

Within-Block Sensitivity 40.96%
(2.620)

57.24%
(2.863)

68.51%
(1.274)

40.65%
(4.172)

56.74%
(3.329)

81.80%
(2.437)

N = 75 Across-Block Specificity 99.36%
(0.324)

99.45%
(0.316)

99.67%
(0.179)

99.51%
(0.168)

99.63%
(0.248)

99.09%
(0.349)

L1 0.0145
(0.000)

0.0129
(0.000)

0.0116
(0.000)

0.0102
(0.000)

0.0087
(0.000)

0.0091
(0.000)

L2 0.1467
(0.007)

0.1123
(0.005)

0.0867
(0.003)

0.1352
(0.005)

0.0974
(0.004)

0.0919
(0.004)

Sparsity 90.75%
(0.606)

88.35%
(0.352)

86.36%
(0.305)

94.71%
(0.552)

93.59%
(0.399)

90.96%
(0.431)

γBIC 0.5591
(0.070)

0.4145
(0.033)

0.2978
(0.027)

0.5690
(0.072)

0.3479
(0.033)

0.2091
(0.016)

Notes: Standard errors in parenthesis.

15



Table 2: Simulations with overlapping blocks.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 87.78%
(3.983)

74.42%
(2.618)

77.56%
(2.054)

96.99%
(3.448)

89.40%
(4.460)

88.46%
(1.742)

Within-Block Sensitivity 50.17%
(7.457)

77.04%
(4.362)

93.29%
(3.142)

18.18%
(17.008)

57.14%
(19.323)

93.12%
(7.471)

N = 25 Across-Block Specificity 97.24%
(1.476)

94.92%
(1.908)

91.32%
(2.425)

99.42%
(0.848)

98.56%
(1.505)

94.86%
(1.686)

L1 0.0211
(0.001)

0.0253
(0.001)

0.0218
(0.001)

0.0136
(0.000)

0.0131
(0.001)

0.0132
(0.001)

L2 0.1032
(0.006)

0.1071
(0.006)

0.0810
(0.006)

0.0846
(0.006)

0.0676
(0.007)

0.0528
(0.004)

Sparsity 90.47%
(2.422)

81.21%
(1.594)

79.29%
(1.897)

98.03%
(2.229)

93.40%
(3.010)

88.97%
(1.611)

λBIC 0.3603
(0.057)

0.2116
(0.030)

0.1411
(0.014)

0.5289
(0.153)

0.2496
(0.047)

0.1588
(0.018)

Within-Block Specificity 87.79%
(0.892)

82.91%
(1.494)

77.02%
(0.901)

90.51%
(2.265)

90.18%
(2.380)

87.98%
(0.661)

Within-Block Sensitivity 44.26%
(4.556)

61.22%
(2.819)

77.42%
(1.544)

47.17%
(3.450)

53.66%
(7.396)

88.45%
(2.298)

N = 50 Across-Block Specificity 97.61%
(0.565)

98.51%
(0.818)

97.20%
(0.677)

98.88%
(0.421)

99.07%
(0.318)

98.42%
(0.517)

L1 0.0199
(0.001)

0.0169
(0.001)

0.0166
(0.000)

0.0110
(0.000)

0.0113
(0.000)

0.0110
(0.000)

L2 0.1502
(0.008)

0.1064
(0.004)

0.1006
(0.004)

0.1072
(0.004)

0.1023
(0.003)

0.0834
(0.002)

Sparsity 87.36%
(0.986)

84.70%
(1.071)

82.19%
(0.522)

94.97%
(0.796)

93.64%
(1.163)

90.13%
(0.323)

λBIC 0.4532
(0.072)

0.2909
(0.044)

0.1854
(0.018)

0.4842
(0.054)

0.3131
(0.044)

0.1825
(0.000)

Within-Block Specificity 80.78%
(1.131)

78.59%
(0.924)

70.62%
(1.067)

92.48%
(1.440)

84.60%
(0.859)

84.67%
(0.897)

Within-Block Sensitivity 41.47%
(1.968)

52.42%
(2.573)

71.52%
(1.759)

33.05%
(5.628)

62.47%
(3.444)

78.24%
(2.481)

N = 75 Across-Block Specificity 98.62%
(0.478)

98.70%
(0.255)

98.45%
(0.291)

99.61%
(0.198)

98.83%
(0.395)

99.03%
(0.361)

L1 0.0141
(0.000)

0.0127
(0.000)

0.0112
(0.000)

0.0105
(0.000)

0.0095
(0.000)

0.0097
(0.000)

L2 0.1369
(0.005)

0.1140
(0.004)

0.0859
(0.003)

0.1433
(0.005)

0.1118
(0.004)

0.0986
(0.003)

Sparsity 90.65%
(0.581)

89.31%
(0.501)

87.01%
(0.463)

95.71%
(0.837)

92.98%
(0.506)

90.60%
(0.390)

λBIC 0.4904
(0.063)

0.3828
(0.025)

0.2564
(0.024)

0.5821
(0.059)

0.3511
(0.038)

0.2150
(0.010)

Notes: as in Table 1.
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In more details, for the first case, we adjust the normalization of elements w∗ij of W∗, which are now
divided by 1.05×max

(
0.5,

∑N
j=1 w

∗
ij

)
(compared to 1.1×max

(
1,
∑N
j=1 w

∗
ij

)
in baseline simulations). In

this way, we ensure that row sum of W∗ is higher than 0.90 in over 60% of the cases for N = 25, 70% for
N = 50 and 95% for N = 75. In every case, by design the row-sum is smaller than 1. Apart from this,
the simulation setup remains unchanged. As can be seen, in comparison to Table 1, the performance is
slightly worse. However, across-block specificity is higher than 95% in all cases. Within-block specificity
and sensitivity remains satisfactory and in line with baseline simulations.

Next, we implement a nonstationary case by normalizing the elements wij by 0.75×max
(

0.01,
∑N
j=1 w

∗
ij

)
.

Deterioration in performance can be clearly seen through the worsening of all measures. In particular, the
L1 criterion deteriorated by about 40-50 times and L2 one around 90-100 times of the values in Table 3.

Table 3: Simulations close to nonstationarity.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 75.51%
(2.815)

64.58%
(2.996)

73.34%
(2.280)

78.66%
(2.792)

79.71%
(1.760)

83.91%
(2.026)

Within-Block Sensitivity 75.42%
(5.327)

81.25%
(4.058)

81.67%
(4.364)

84.17%
(6.107)

88.75%
(2.480)

91.25%
(3.959)

N = 25 Across-Block Specificity 96.36%
(1.492)

97.40%
(1.374)

99.57%
(0.418)

96.96%
(0.873)

98.16%
(0.741)

98.82%
(1.204)

L1 0.0269
(0.001)

0.0289
(0.001)

0.0249
(0.001)

0.0237
(0.002)

0.0211
(0.001)

0.0188
(0.001)

L2 0.1546
(0.011)

0.1574
(0.011)

0.1319
(0.005)

0.1594
(0.012)

0.1357
(0.006)

0.1151
(0.005)

Sparsity 84.04%
(1.720)

82.31%
(1.401)

84.54%
(0.999)

87.17%
(1.300)

88.83%
(0.947)

89.65%
(1.390)

λBIC 0.3827
(0.056)

0.3004
(0.060)

0.4308
(0.054)

0.2949
(0.031)

0.2718
(0.020)

0.2179
(0.038)

Within-Block Specificity 73.72%
(1.785)

77.22%
(1.424)

71.80%
(0.995)

86.18%
(1.613)

71.69%
(1.672)

83.09%
(0.996)

Within-Block Sensitivity 66.63%
(1.742)

69.03%
(2.404)

84.13%
(0.937)

67.68%
(3.782)

81.20%
(2.797)

88.82%
(4.117)

N = 50 Across-Block Specificity 98.12%
(0.474)

98.35%
(0.635)

99.17%
(0.118)

97.95%
(0.459)

98.64%
(0.376)

99.35%
(0.398)

L1 0.0197
(0.001)

0.0180
(0.001)

0.0161
(0.000)

0.0155
(0.001)

0.0153
(0.000)

0.0133
(0.000)

L2 0.1743
(0.008)

0.1396
(0.005)

0.1144
(0.003)

0.1806
(0.007)

0.1725
(0.006)

0.1299
(0.004)

Sparsity 86.28%
(0.380)

84.65%
(0.753)

84.46%
(0.271)

90.75%
(0.750)

90.40%
(0.508)

89.94%
(0.626)

λBIC 0.6407
(0.079)

0.3717
(0.057)

0.3288
(0.023)

0.4343
(0.044)

0.3860
(0.045)

0.2579
(0.052)

Within-Block Specificity 84.50%
(0.569)

78.48%
(1.075)

70.77%
(1.520)

85.32%
(0.972)

77.39%
(0.978)

85.06%
(0.452)

Within-Block Sensitivity 39.01%
(1.115)

57.57%
(1.559)

73.85%
(1.417)

58.27%
(2.507)

74.91%
(1.356)

83.54%
(2.005)

N = 75 Across-Block Specificity 99.06%
(0.337)

99.15%
(0.263)

99.43%
(0.284)

99.16%
(0.417)

98.69%
(0.328)

99.12%
(0.322)

L1 0.0164
(0.000)

0.0132
(0.000)

0.0112
(0.000)

0.0135
(0.000)

0.0108
(0.000)

0.0105
(0.000)

L2 0.1745
(0.004)

0.1230
(0.002)

0.0967
(0.003)

0.1967
(0.008)

0.1402
(0.005)

0.1274
(0.005)

Sparsity 88.64%
(0.288)

87.61%
(0.443)

87.19%
(0.475)

91.34%
(0.641)

91.36%
(0.332)

90.24%
(0.335)

λBIC 0.5804
(0.084)

0.4050
(0.079)

0.3199
(0.058)

0.5706
(0.094)

0.3717
(0.040)

0.2357
(0.019)

Notes: as in Table 1.
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Table 4: Simulations for the nonstationary case.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 85.32%
(0.424)

94.26%
(0.479)

88.49%
(0.424)

86.88%
(3.377)

91.02%
(1.752)

91.57%
(0.632)

Within-Block Sensitivity 1.04%
(1.240)

4.17%
(1.543)

6.67%
(0.000)

12.92%
(3.753)

19.58%
(1.179)

6.67%
(0.000)

N = 25 Across-Block Specificity 91.85%
(0.427)

91.96%
(0.108)

91.97%
(0.085)

91.76%
(3.551)

92.50%
(0.403)

92.93%
(0.127)

L1 0.8141
(0.001)

0.7508
(0.041)

0.7207
(0.000)

0.4677
(0.029)

0.4994
(0.016)

0.5441
(0.001)

L2 193.1319
(0.125)

197.9038
(11.178)

163.4174
(0.004)

119.2568
(8.197)

182.1524
(14.187)

186.6742
(0.017)

Sparsity 96.71%
(0.305)

97.40%
(0.235)

96.90%
(0.124)

92.29%
(3.229)

96.25%
(0.321)

96.73%
(0.251)

λBIC 0.6665
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.3414
(0.248)

0.6238
(0.018)

0.5727
(0.000)

Within-Block Specificity 91.25%
(2.287)

97.35%
(0.485)

91.20%
(0.509)

94.42%
(0.300)

86.49%
(0.465)

99.25%
(0.072)

Within-Block Sensitivity 4.54%
(1.724)

1.38%
(0.304)

9.59%
(0.654)

3.96%
(0.287)

15.35%
(0.678)

2.44%
(0.000)

N = 50 Across-Block Specificity 92.97%
(0.059)

92.99%
(0.022)

92.93%
(0.051)

92.78%
(0.103)

92.01%
(0.212)

92.57%
(0.000)

L1 0.4106
(0.000)

0.4016
(0.000)

0.4021
(0.001)

0.3697
(0.002)

0.4951
(0.011)

0.3512
(0.000)

L2 96.3161
(7.643)

109.9296
(0.031)

139.6243
(1.246)

180.1242
(1.095)

743.8054
(63.704)

190.3584
(0.000)

Sparsity 98.71%
(0.213)

99.20%
(0.129)

96.93%
(0.092)

98.09%
(0.078)

95.31%
(0.212)

99.66%
(0.021)

λBIC 0.6665
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.6665
(0.000)

0.6286
(0.020)

0.5727
(0.000)

Within-Block Specificity 93.02%
(0.610)

95.53%
(0.209)

94.70%
(0.084)

94.75%
(0.241)

95.15%
(0.175)

91.49%
(0.179)

Within-Block Sensitivity 4.68%
(0.319)

5.23%
(0.409)

3.76%
(0.311)

0.40%
(0.127)

3.15%
(0.167)

4.68%
(0.471)

N = 75 Across-Block Specificity 92.67%
(0.012)

92.80%
(0.052)

92.11%
(0.067)

92.83%
(0.097)

91.97%
(0.038)

92.89%
(0.180)

L1 0.2733
(0.000)

0.2775
(0.001)

0.2414
(0.000)

0.2628
(0.000)

0.2612
(0.000)

0.7549
(0.087)

L2 65.1182
(0.050)

478.4065
(14.791)

51.7448
(0.018)

148.1981
(0.235)

146.0697
(0.147)

14041.1627
(4394.414)

Sparsity 98.82%
(0.065)

97.96%
(0.082)

96.35%
(0.059)

98.45%
(0.080)

98.46%
(0.069)

96.90%
(0.131)

λBIC 0.6345
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.6394
(0.014)

0.6143
(0.000)

0.5949
(0.018)

Notes: as in Table 1.

5.3 Analysis of US Senate bill voting

How polarized is the United States Congress? Do congressmen vote exclusively along partisan lines or are
there moments when partisanship gives way to consensus? To shed light on these questions, we use model
2.3 to analyze the voting records for the bills enacted and proposed by the United States Senate from
1993 to 2012, period from the first presidency of Bill Clinton to the first four years under Barack Obama.
Polarized voting pattern should give at least two blocks in the spatial weight matrix, one corresponding to
the Republicans, and another to the Democrats.

We use data compiled by GovTrack.us, a web site that freely keeps track of voting record in both
houses. Vote is recorded as 1 for "yes", -1 for "no" and 0 for absent for all bills that were proposed in
the period under study. To evaluate the evolution of polarization, we estimate the model within windows
of each calendar year, representing the first half or second half of a particular meetings of the biannual
legislative branch1. The composition of the Senate and the number of voting instances can be found in
Table 5.

Estimation is conducted in absolute disregard of party affiliation, and the tuning parameter γT is
1Congresses begin and end at the third day of January in odd-numbered years. Bills voted in the first two days of January

of odd years, if any, are discarded.
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chosen such that minimizes BIC criterion in (5.1). The outcome for year 2012, which involves T = 251

voting instances and N = 98 senators, is displayed in Figure 1. The estimated non-zero pairwise links are
displayed as a solid line in grey, length of which does not carry any information on its intensity or direction
and are purely determined by ease of visualization. The nodes are colored according to party affiliations:
Democrats are represented by blue, Republicans by red, and Independents by white.

It is immediately clear from Figure 1 that the Senate behaves as two almost exclusive blocks or groups,
defined exclusively along partisan lines, where the Independents behave most similarly to the Democrats.
It seems that the two blocks slightly overlap each other, and the results in Theorem 4 can be applied. One
Republican forms a block him/herself. Bear in mind that we are using a cross-validated tuning parameter,
and hence we are being conservative already in concluding a block structure in the spatial weight matrix.

It is of interest to visualize the number of political collaborations and its evolution throughout the
years. To achieve this, we build two measures of cross-partisanship association for a given year. The
first is based on the ratio of links with ends on Senators from different parties to the overall number of
links. We name this as "Cross-Party Connections". As seen in Figure 2, it is under 3% for all years
under study. The second measure is the number of Senators who are the starting points of directed links
towards colleagues from different parties, who are generically named "brokers". Both measures represent
the number of Senators and links that appear in the frontier and, therefore, could represent collaborative
cross-partisan political connections. Both measures show very limited collaboration if compared to the
overall legislative activity. It is concluded, therefore, that political affiliations are strong determinants of
group identity. It also appears that frontier between the groups and scope for collaborative legislative work
is very limited throughout the recent Senates history.

Table 5: Senate Composition.

Year Congress Rep Dem Ind Votes
1993 103rd 46 55 0 395
1994 329
1995 104th 53 46 1 613
1996 306
1997 105th 54 45 1 298
1998 314
1999 106th 55 45 1 374
2000 298
2001 107th 49 50 1 380
2002 253
2003 108th 51 48 1 459
2004 216
2005 109th 54 45 1 366
2006 279
2007 110th 49 50 2 442
2008 215
2009 111th 41 61 2 397
2010 299
2011 112th 47 51 2 235
2012 251

6 Conclusion

We developed the LASSO penalization for detecting block structure in a spatial weight matrix, when the
size of the panel can be close to the sample size. One distinct feature of our model is the absence of
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Figure 1: Visualization of the estimated spatial weight matrix for voting, 2012.
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Figure 2: Cross-party collaboration.
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covariates, which is motivated by the US senate voting data example analyzed in this paper. Also, there is
no need for the decay of variance of the noise series, like Lam and Souza (2013) does. One contribution of the
paper is the derivation of the probability lower bound for the LASSO estimator to be zero-block consistent
- a concept that an estimator correctly estimates the non-diagonal zero blocks as zero. We also proved that
the diagonal blocks of the estimator are not all zero with probability 1, so that block structure becomes
apparent in the estimator. We use the LARS algorithm for practical computation, which is well-established
for solving LASSO minimization efficiently, with computational order the same as ordinary least squares
iterations. The estimated spatial weight matrix is visualized by a graph with directional edges between
components. The absence of edges between two groups of components indicates two blocks. We also allow
for the fact that blocks sometimes can overlap slightly, and develop the corresponding theories to show
that zero-block consistency still holds in the case of slightly overlapping blocks. The US senate voting data
example demonstrates clearly such a case.

Our proofs utilize results from random matrix theories for bounding extreme eigenvalues of a sample
covariance matrix, as well as a Nagaev-type inequality for finding the tail probability of a general time
series process. These results can be useful for the theoretical development of other time series researches.

7 Appendix

Proof of Theorem 1. For a random variable z, define the norm
∥∥z∥∥

a
= [E|z|a]1/a. We need to show that

there are some constants µ,C > 0, w > 2 and α > 1/2− 1/w such that

max
1≤j≤N

∥∥εtj∥∥2w ≤ µ, (7.1)

∞∑
t=m

max
1≤j≤N

∥∥εtj − ε′tj∥∥2w ≤ Cm−α, (7.2)

where ε′t has exactly the same causal definition as εt as in assumption (iv) with the same values of Φi’s
and ηj ’s, except for η0, which is replaced by an independent and identically distributed copy η′0. With
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(7.1) and (7.2), we can use Lemma 1 of Lam and Souza (2013) for the product process {εtiεtj −E(εtiεtj)}
to complete the proof.

To prove (7.1), by the Fubini’s Theorem and assumption (v),

E|εtj |2w = E

∫ |εtj |2w
0

ds =

∫ ∞
0

P (|εtj | > s1/2w) ds ≤
∫ ∞
0

D1 exp(−D2s
q/2w) ds

=
4wD1

q

∫ ∞
0

x4w/q−1e−D2x
2

dx =
2wD1

qD
2w/q
2

Γ(2w/q) = µ2w <∞, (7.3)

so that max1≤j≤N
∥∥εtj∥∥2w ≤ µ <∞ for any w > 0. This proves (7.1).

To prove (7.2), denote φT
ij the j-th row of Φi. Then using the causal definition in assumption (iv),

|εtj − ε′tj | = |φT

tj(η0 − η′0)| ≤
∥∥φtj∥∥1 max

i∈Jtj
|η0i − η′oi|,

where Jtj is the index set of non-zeros in φtj as defined in assumption (vi). Hence by assumption (v) on
η0i and the calculations in (7.3),

∥∥εtj − ε′tj∥∥2w ≤ ∥∥φtj∥∥1[E{max
i∈Jtj

|η0i − η′0i|2w
}] 1

2w

≤
∥∥φtj∥∥1|Jtj | 1

2w max
i∈Jtj

∥∥η0i − η′0i∥∥2w
≤
∥∥φtj∥∥1|Jtj | 1

2w (max
i∈Jtj

∥∥η0i∥∥2w + max
i∈Jtj

∥∥η′0i∥∥2w)

≤ 2µ
∥∥φtj∥∥1|Jtj | 1

2w ,

so that by assumption (vi), using the same w > 2 in the assumption,

∞∑
t=m

max
1≤j≤N

∥∥εtj − ε′tj∥∥2w ≤ 2µ

∞∑
t=m

max
1≤j≤N

∥∥φtj∥∥1 max
1≤j≤N

|Jtj |
1

2w

≤ 2µmax
t,j
|Jtj |

1
2w

∞∑
t=m

∥∥Φt

∥∥
∞

≤ 2µmax
t,j
|Jtj |

1
2wCm−α

(
max
t,j
|Jtj |

)− 1
2w

= 2µCm−α,

which is (7.2) since µ,C are constants. This completes the proof of the theorem. �

Proof of Theorem 3. Define the set

D = {j : j 6∈ H, ξ∗j does not correspond to the diagonal of W∗},

and define J = D ∪H. Hence J contains indices for ξi not corresponding to the diagonal of W∗.
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The KKT condition implies that ξ̃ is a solution to (2.6) if and only if there exists a subgradient

g = ∂|ξ̃| =

g ∈ R2N2

:


gi = 0, i ∈ Jc;
gi = sign(ξ̃i), ξ̃i 6= 0;
|gi| ≤ 1, otherwise.


such that, differentiating the expression to be minimized in (2.6) with respect to ξJ ,

1

T
ZT

JZJ ξ̃J −
1

T
ZT

Jy = −γTgJ ,

where the notation AS represents the matrix A restricted to the columns with index j ∈ S. Using
y = ZJξ

∗
J + ε, the equation above can be written as

1

T
ZT

JZJ(ξ̃J − ξ∗J)− 1

T
ZT

Jε = −γTgJ .

For ξ̃ to be zero-block consistent, we need ξ̃H = 0, implying ZJ(ξ̃J − ξ∗J) = ZD(ξ̃D − ξ∗D). Hence, the
KKT condition implies that ξ̃ is a zero-block consistent solution if and only if

1

T
ZT

HZD(ξ̃D − ξ∗D)− 1

T
ZT

Hε = −γTgH ,

1

T
ZT

DZD(ξ̃D − ξ∗D)− 1

T
ZT

Dε = −γTgD, (7.4)

which can be simplified to∣∣∣ 1

T
ZT

HZD

( 1

T
ZT

DZD

)−1( 1

T
ZT

Dε− γTgD

)
− 1

T
ZT

Hε
∣∣∣ ≤ γT , (7.5)

since gH has elements less than or equal to 1.

We now show that, on the set Aε as defined in (3.2), (7.5) is true for large enough T,N , thus completing
the proof of zero-block consistency of ξ̃. To this end, there are four terms we need to bound. Define
I1, . . . , IG ⊂ {1, . . . , N} to be the index sets for the G groups of components as in (2.4). Then, consider on
the set Aε,

∥∥∥ 1

T
ZT

Hε
∥∥∥
max

= max
i∈Iq,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiεtj

∣∣∣∣∣ = max
i∈Iq,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗is

(
1

T

T∑
t=1

εtsεtj

)∣∣∣∣∣∣
≤ λT max

1≤i≤N

N∑
s=1

|π∗is| ≤
λT

1− η
, (7.6)

where we used the reduced form yt = Π∗εt = (IN−W∗)−1εt of model (2.3) and yti =
∑
j∈Iq π

∗
ijεtj for i ∈ Iq

for some q, with π∗ij being the (i, j)-th element of Π∗ = (IN−W∗)−1. The last line follows from assumption
(ii) that cov(εti, εtj) = 0 if i and j correspond to different groups, so that on Aε, |T−1

∑T
t=1 εtsεtj | ≤ λT .

We also used assumption (i) to arrive at

max
1≤i≤N

N∑
s=1

|π∗is| =
∥∥Π∗∥∥∞ ≤ ∥∥IN∥∥∞ +

∑
k≥1

∥∥W∗∥∥k
∞ ≤ 1 +

∑
k≥1

ηk =
1

1− η
.
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A potentially larger term is, by similar calculations on Aε,

∥∥∥ 1

T
ZT

Dε
∥∥∥
max

= max
i∈Iq,j∈Iq′

∣∣∣∣∣∣
∑
s∈Iq

π∗is

(
1

T

T∑
t=1

εtsεtj

)∣∣∣∣∣∣ ≤ σ2
ε + λT
1− η

, (7.7)

where we used assumption (ii) that var(εtj) ≤ σ2
ε . We also have, on Aε,

∥∥∥ 1

T
ZT

HZD

∥∥∥
∞
≤ n max

i∈Iq,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiytj

∣∣∣∣∣ = n max
i∈Iq,j∈Iq′

q 6=q′

∣∣∣∣∣∣
∑

s∈Iq,`∈Iq′

π∗isπ
∗
j`

( 1

T

T∑
t=1

εtsεt`

)∣∣∣∣∣∣ ≤ λTn

(1− η)2
. (7.8)

Finally, let σmax(A) = λ
1/2
max(ATA) denotes the maximum singular value of the matrix A, and σmin(A) the

smallest one. Then

∥∥∥( 1

T
ZT

DZD

)−1∥∥∥
∞
≤ n1/2λ−1min

( 1

T
ZT

DZD

)
≤ n1/2λ−1min

( 1

T
ZTZ

)
= n1/2λ−1min

( 1

T

T∑
t=1

yty
T

t

)
= n1/2λ−1min

(
Π∗
( 1

T

T∑
t=1

εtε
T

t

)
Π∗T

)
≤ n1/2σ−2min(Π∗)λ−1min

( 1

T

T∑
t=1

εtε
T

t

)
. (7.9)

To bound (7.9), we have

σ−2min(Π∗) = σ2
max(IN −W∗) ≤ (1 + σmax(W∗))2 ≤

(
1 +

∥∥W∗∥∥1/2
1

∥∥W∗∥∥1/2
∞

)2 ≤ (1 + η1/2η1/2c )2, (7.10)

where we used assumption (i) for bounding
∥∥W∗

∥∥
1
and

∥∥W∗
∥∥
∞.

Also, the conditions assumed in assumption (iv) for the ηti’s ensure that Theorem 5.11 on the extreme
eigenvalues of a sample covariance matrix in Bai and Silverstein (2010) can be applied. Hence, for each
integer i ≥ 0, we have

lim
T→∞

λmin

( 1

T

T∑
t=1

ηt−iη
T

t−i

)
= σ2(1−

√
d)2, lim

T→∞
λmax

( 1

T

T∑
t=1

ηt−iη
T

t−i

)
= σ2(1 +

√
d)2

almost surely, where d is specified in assumption (iii). For each i, let Ui be the almost sure set such that
the above limits hold. Then on the almost sure set U =

⋂
i≥0 Ui, the above limits hold for all integers

i ≥ 0. Hence on U , for large enough T,N , we have

λ
1/2
min

( 1

T

T∑
t=1

ηtη
T

t

)
≥ σ(1−

√
d)− e, λ1/2max

( 1

T

T∑
t=1

ηtη
T

t

)
≤ σ(1 +

√
d) + e,
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where the constant e is as in assumption (iv). Therefore, on U , for large enough T,N , we have

λmin

( 1

T

T∑
t=1

εtε
T

t

)
= σ2

min

(
T−1/2

∑
i≥0

Φi(η1−i, . . . ,ηT−i)
)

≥

σmin

(
T−1/2(η1, . . . ,ηT )

)
−
∑
i≥1

σmax

(
ΦiT

−1/2(η1−i, . . . ,ηT−i)
)

2

≥

λ1/2min

( 1

T

T∑
t=1

ηtη
T

t

)
−
∑
i≥1

∥∥Φi

∥∥λ1/2max

( 1

T

T∑
t=1

ηt−iη
T

t−i

)
2

≥

σ(1−
√
d)− e− (σ(1 +

√
d) + e)

∑
i≥1

∥∥Φi

∥∥
2

≥ c2, (7.11)

where c > 0 is a constant as in assumption (iv). Combining (7.10) and (7.11), on U and for large enough
T,N , (7.9) becomes ∥∥∥( 1

T
ZT

DZD

)−1∥∥∥
∞
≤ n1/2(1 + η1/2η

1/2
c )2

c2
. (7.12)

Hence combining the bounds (7.6), (7.7), (7.8) and (7.12), on Aε ∩ U , for large enough T,N , we have∣∣∣ 1

T
ZT

HZD

( 1

T
ZT

DZD

)−1( 1

T
ZT

Dε− γTgD

)
− 1

T
ZT

Hε
∣∣∣

≤
∥∥∥ 1

T
ZT

HZD

∥∥∥
∞

∥∥∥( 1

T
ZT

DZD

)−1∥∥∥
∞

∥∥∥ 1

T
ZT

Dε− γTgD

∥∥∥
max

+
∥∥∥ 1

T
ZT

Hε
∥∥∥
max

≤ λTn
3/2(1 + η1/2η

1/2
c )2

(1− η)2c2

(
σ2
ε + λT
1− η

+ γT

)
+

λT
1− η

= O(λTn
3/2) = o(γT ),

by the assumption n = o({γT /λT }2/3). Hence on Aε ∩U , (7.5) is satisfied for large enough T,N , so that ξ̃
is zero-block consistent, i.e. ξ̃H = 0. It is clear then for large enough T,N , Aε ∩U ⊆ {ξ̃H = 0}, and hence

P (ξ̃H = 0) ≥ P (Aε ∩ U) = P (Aε),

since U is an almost sure set. The part where P (Aε) → 1 if N = o(Tw/4−1/2 logw/4(T )) is given by the
results of Corollary 2. This completes the proof of the first half of Theorem 3.

For the second half, suppose ξ̃D = 0. Then using (7.4), we have

gD =
1

γT

( 1

T
ZT

Dε +
1

T
ZT

DZDξ
∗
D

)
=

1

γT

( 1

T
ZT

Dy
)
.

One of the element of gD is, for some j, with T,N large enough and on U ,

1

γT

( 1

T

T∑
t=1

y2tj

)
=

1

γT

( 1

T

T∑
t=1

π∗Tj εtε
T
t π
∗
j

)
≥
∥∥π∗j∥∥2
γT

λmin

( 1

T

T∑
t=1

εtε
T
t

)
≥ c2

γT
,

where πT
j is the j-th row of Π∗, with

∥∥π∗j∥∥ > 1, and we used (7.11). Since γT → 0, we have just proved
that this particular element goes to infinity as T,N → ∞, which is a contradiction since all elements in
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gD are less than or equal to 1 in magnitude. Hence we must have ξ̃D 6= 0 for large enough T,N . This
completes the proof of the theorem. �

Proof of Theorem 4. Define the set

D′ = {j : j 6∈ H ′, ξj does not correspond to the diagonal of W∗}.

Then the proof of this theorem is almost exactly the same as that for Theorem 3 by replacing D with D′

and H with H ′. The only differences are the bounds in (7.6) and (7.8). Consider, on Aε,

∥∥∥ 1

T
ZT

H′ε
∥∥∥
max

= max
i∈Iq,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiεtj

∣∣∣∣∣ = max
i∈Iq,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗is

( 1

T

T∑
t=1

εtsεtj

)
+
∑
s6∈Iq

π∗is

( 1

T

T∑
t=1

εtsεtj

)∣∣∣∣∣∣
≤ max
s∈Iq,j 6∈Iq

∣∣∣ 1

T

T∑
t=1

εtsεtj

∣∣∣∥∥Π∗∥∥∞ + max
s6∈Iq,j 6∈Iq

∣∣∣ 1

T

T∑
t=1

εtsεtj

∣∣∣max
i∈Iq

∑
s6∈Iq

|π∗is|

≤ λT + cελT
1− η

+ (σ2
ε + λT )cπλT = O(λT ), (7.13)

where we used assumption (Rii) that cov(εts, εtj) ≤ cελT when s ∈ Iq for some q and j 6∈ I` for any `, and
assumption (i)’ that

∑
j 6∈Iq |π

∗
ij | ≤ cπλT for i ∈ Iq. Also, on Aε,

∥∥∥ 1

T
ZT

H′ZD′

∥∥∥
∞
≤ n max

i∈Iq,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗js

( 1

T

T∑
t=1

ytiεts

)
+
∑
s6∈Iq

π∗js

( 1

T

T∑
t=1

ytiεts

)∣∣∣∣∣∣
≤ n

(
σ2
ε + λT
1− η

)
cπλT + nλT

(
1 + cε
1− η

+ cπ(σ2
ε + λT )

)
1

1− η
= O(λTn), (7.14)

where we used (7.13) in the last line. The rates in (7.13) and (7.14) are the same as (7.6) and (7.8)
respectively, and hence the results in Theorem 3 follows. �
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