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SETS OF UNIT VECTORS WITH SMALL SUBSET SUMS

KONRAD J. SWANEPOEL

Abstract. We say that a family {xi | i ∈ [m]} of vectors in a Banach space
X satisfies the k-collapsing condition if

∥∥∑
i∈I xi

∥∥ ≤ 1 for all k-element sub-
sets I ⊆ {1, 2, . . . ,m}. Let C(k, d) denote the maximum cardinality of a k-
collapsing family of unit vectors in a d-dimensional Banach space, where the
maximum is taken over all spaces of dimension d. Similarly, let CB(k, d) de-
note the maximum cardinality if we require in addition that

∑m
i=1 xi = o.

The case k = 2 was considered by Füredi, Lagarias and Morgan (1991). These
conditions originate in a theorem of Lawlor and Morgan (1994) on geometric
shortest networks in smooth finite-dimensional Banach spaces. We show that
CB(k, d) = max {k + 1, 2d} for all k, d ≥ 2. The behaviour of C(k, d) is not as
simple, and we derive various upper and lower bounds for various ranges of
k and d. These include the exact values C(k, d) = max {k + 1, 2d} in certain
cases.

We use a variety of tools from graph theory, convexity and linear alge-
bra in the proofs: in particular the Hajnal–Szemerédi Theorem, the Brunn–
Minkowski inequality, and lower bounds for the rank of a perturbation of the
identity matrix.

0. Notation

Let [n] denote the set {1, 2 . . . , n}, |A| the cardinality of the set A, and
(
S
k

)
the

set {A ⊆ S | |A| = k} of k-subsets of S. Let d ≥ 2 and m > k ≥ 2 be integers.
Given expressions A and B that depend (in particular) on d, we use the notation
A = O(B) or A � B to indicate that A ≤ CB for some absolute constant C > 0
and sufficiently large d, and A = o(B) or A≪ B to indicate that A/B → 0 as
d→∞. We use A ∼ B to mean A/B → 1 as d→∞.

Let X = Xd denote a d-dimensional real Banach space with norm ‖·‖. We
denote the convex hull of a subset A ⊆ X by conv(A). The boundary of A is the
set

∂A = {x ∈ X |x is a limit point of A and of X \A} .
Throughout the paper we use the term Minkowski space for finite-dimensional real
Banach space. Denote the closed ball with centre c and radius r by

B(c, r) = {x ∈ X | ‖x− c‖ ≤ r} .
The unit ball of X is BX := B(o, 1). Denote the dual of X by X∗. The elements
of X∗ are the linear functionals over X, that is, linear functions

x∗ : X → R, x 7→ 〈x∗,x〉 ,
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with norm
‖x∗‖∗ := sup {〈x∗,x〉 |x ∈ BX} .

Any x ∈ X has a dual unit vector : a functional x∗ ∈ X∗ such that ‖x∗‖∗ = 1
and 〈x∗,x〉 = ‖x‖. It is well-known that if the norm of a finite-dimensional X is
smooth, that is, if ‖·‖ is differentiable on X \{o}, then X∗ is strictly convex, that is,
the boundary of BX∗ does not contain a line segment. Also, if X is strictly convex,
then X∗ is smooth. Recall that a space is smooth iff any x ∈ X \ {o} has a unique
dual unit vector.

Define the (multiplicative) Banach-Mazur distance between two Minkowski spaces
X and Y of the same dimension as

dBM(X,Y ) = inf {λ ≥ 1 |BY ⊆ T (BX) ⊆ λBY for some linear T : X → Y } .
Denote the coordinates of x ∈ Rd by x = (x(1), . . . ,x(d)). Let p ∈ [1,∞). The

space `dp is Rd with the norm

‖x‖p = ‖(x(1),x(2), . . . ,x(d))‖p :=
( d∑
i=1

|x(i)|p
)1/p

,

and the space `d∞ is Rd with the norm

‖x‖∞ = ‖(x(1),x(2), . . . ,x(d))‖∞ := max {|x(i)| | i ∈ [d]} .

1. Introduction

Definition 1. A family {xi | i ∈ [m]} of m (not necessarily distinct) vectors in
some Minkowski space X satisfies the k-collapsing condition if∥∥∥∑

i∈I
xi

∥∥∥ ≤ 1 for all I ∈
(
[m]

k

)
,

the full collapsing condition∥∥∥∑
i∈I

xi

∥∥∥ ≤ 1 for all I ⊆ [m],

the strong balancing condition if
m∑
i=1

xi = o,

and the weak balancing condition if

o is in the relative interior of conv {xi | i ∈ [m]} .

In previous work by Füredi, Lagarias, Morgan, Lawlor and the present author
[13, 25, 31, 32], the full collapsing condition and the 2-collapsing condition with or
without the strong or the weak balancing condition were considered. Surprisingly,
the 2-collapsing condition together with strong or weak balancing were often enough
to give bounds on the size of the family of vectors that were still tight for the strong
collapsing condition. The question then arises whether for instance similar results
hold for instance for the 3-collapsing condition. In this paper we study the k-
collapsing condition for any k ≥ 2 with or without the strong balancing condition.

In Section 1.1 we survey previous results in order to sketch a context for the
work presented here. The new results of this paper are summarised in Section 1.2.
Section 1.3 contains an overview of the remaining sections.
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1.1. Previous work. The full collapsing and strong balancing conditions of Def-
inition 1 originate in a theorem of Lawlor and Morgan [25] on geometric shortest
networks in smooth Minkowski spaces. We next describe their work.

Given a family N = {pi | i ∈ [n]} of points in a Minkowski space X, a Steiner
tree is a (finite) tree T = (V,E) such that N ⊆ V ⊂ X. The points in V \ N
(if any) are called the Steiner points of T . The length `(T ) of a tree is the sum∑

xy∈E ‖x− y‖ of the edge lengths. A Steiner minimal tree of N is a Steiner tree
of N that minimises `(T ). By a compactness argument [7] any finite family of
points in a Minkowski space has at least one Steiner minimal tree. The following
theorem characterises the edges that are incident to a Steiner point of a Steiner
minimal tree when the underlying Minkowski space is smooth.

Theorem 2 (Lawlor and Morgan [25]). Let N = {pi | i ∈ [n]} be a family of points,
all different from the origin o, in a smooth Minkowski space X. Let p∗i be the dual
unit vector of pi, i ∈ [n]. Then the Steiner tree that joins o to each pi by straight-
line segments is a Steiner minimal tree of N if and only if the family {p∗i | i ∈ [n]}
satisfies the full collapsing condition and the strong balancing condition in the dual
space X∗.

Since the dual of a smooth Minkowski space is strictly convex, a natural problem
suggested by Theorem 2 is to find an upper bound on the cardinality of a family
of unit vectors satisfying the full collapsing and strong balancing conditions in a
strictly convex Minkowski space.

Theorem 3 (Lawlor and Morgan [25]). Let N = {xi | i ∈ [n]} be a family of unit
vectors satisfying the full collapsing condition and the strong balancing condition in
a d-dimensional strictly convex Minkowski space. Then n ≤ d + 1. This bound is
tight.

Combined with Theorem 2 this implies that the degree of a Steiner point in any
Steiner minimal tree in a d-dimensional smooth Minkowski space is bounded from
above by d+ 1.

The following theorem characterises the edges incident to an arbitrary point
of a Steiner minimal tree in a smooth Minkowski space. Observe that if p is a
Steiner point of a Steiner minimal tree T = (V,E) of the point family N , then T is
still a Steiner minimal tree of N ∪ {p} (but with p not a Steiner point anymore).
Therefore, the condition in this characterisation should be logically weaker than the
characterisation appearing in Theorem 2, and it turns out that the full balancing
condition has to be dropped.

Theorem 4 ([32]). Let N = {pi | i ∈ [n]} be a family of points, all different from
the origin o, in a smooth Minkowski space X. Let p∗i be the dual unit vector of pi,
i ∈ [n]. Then the Steiner tree that joins o to each pi by straight-line segments is a
Steiner minimal tree of N ∪ {o} if and only if the family {p∗i | i ∈ [n]} satisfies the
full collapsing condition in the dual space X∗.

The following is a strengthening of Theorem 3:

Theorem 5 ([32]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-dimen-
sional strictly convex Minkowski space satisfying the strong collapsing condition.
Then n ≤ d+ 1.
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Therefore, all points in a Steiner minimal tree in a smooth d-dimensional Min-
kowski space have degree at most d + 1. Generalising Theorems 2 and 4 to non-
smooth Minkowski spaces is much more involved. There the degrees of Steiner
points can be as large as 2d; see [35] for a further discussion. We now leave the
original motivation of Steiner minimal trees behind and continue to survey previous
work on the various collapsing and balancing conditions.

After the paper of Lawlor and Morgan [25], Füredi, Lagarias and Morgan [13]
introduced the 2-collapsing and weak balancing conditions, and used classical com-
binatorial convexity to study these conditions. They showed the following.

Theorem 6 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional Minkowski space X satisfying the 2-collapsing
and weak balancing conditions. Then n ≤ 2d, with equality only if N consists of a
basis of X and its negative.

They also mention without proof that if N is a family of 2d unit vectors in a d-di-
mensional Minkowski space satisfying the full collapsing and the strong balancing
condition, then the space is isometric to `d∞. We extend the above theorem to the
k-collapsing condition, requiring however the strong balancing condition instead of
the weak one (Theorem 20). The proof is completely different.

For strictly convex norms Füredi, Lagarias and Morgan [13] obtained the follow-
ing stronger conclusion (thus weakening the hypotheses of Theorem 3 in a different
way from Theorem 5).

Theorem 7 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional strictly convex Minkowski space satisfying the
2-collapsing condition and the weak balancing condition. Then n ≤ d+ 1.

Without any balancing condition or condition on the norm, they showed the
following:

Theorem 8 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional Minkowski space X satisfying the 2-collapsing
condition. Then n ≤ 3d − 1.

This exponential behaviour for the 2-collapsing condition without any balancing
condition is necessary:

Theorem 9 (Füredi, Lagarias and Morgan [13]). For each sufficiently large d ∈ N
there exists a strictly convex and smooth d-dimensional Minkowski space with a
family N of at least 1.02d unit vectors that satisfies the following strengthened 2-
collapsing condition: ‖x+ y‖ < 1 for all {x,y} ∈

(
N
2

)
.

We construct similar exponential lower bounds for the k-collapsing condition
(Theorem 32).

In an earlier paper [31] we applied the Brunn–Minkowski inequality to improve
the upper bound of Theorem 8 as follows.

Theorem 10 ([31]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-dimen-
sional Minkowski space X satisfying the 2-collapsing condition. Then n ≤ 2d+1+1.

In this paper we combine the Brunn–Minkowski inequality with the Hajnal-
Szemerédi Theorem from graph theory to extend the above theorem to the k-
collapsing condition (Theorem 30). In [13] it was asked whether there is an upper
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bound polynomial in d for the size of a collection of unit vectors in a d-dimensional
Minkowski space satisfying the strong collapsing condition but not necessarily any
balancing condition. This was subsequently answered as follows:

Theorem 11 ([31]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-di-
mensional Minkowski space X satisfying the strong collapsing condition. Then
n ≤ 2d, with equality if and only if X is isometric to `d∞, with N corresponding to
{±ei | i ∈ [d]} under any isometry.

The analogous theorem for the strictly convex case is as follows:

Theorem 12 ([32]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-di-
mensional strictly convex Minkowski space X satisfying the full collapsing condition.
Then n ≤ d+1. If, in addition, the balancing condition is not satisfied then n ≤ d.

The full collapsing condition is closely connected to certain notions from the
local theory of Banach spaces. The absolutely summing constant or the 1-summing
constant π1(X) of a Minkowski space X is defined to be the infimum of all c > 0
satisfying

m∑
i=1

‖xi‖ ≤ c max
εi=±1

∥∥∥ m∑
i=1

εixi

∥∥∥
where x1, . . . ,xm ∈ X. It is clear that 2π1(X) is an upper bound to the number
of unit vectors that satisfy the full collapsing condition. Deschaseaux [9] showed
that π1(X) ≤ d with equality iff X is isometric to `d∞. This gives another proof
of Theorem 11, apart from the characterisation of the family of unit vectors in the
case of equality. Franchetti and Votruba [12] showed that if X is 2-dimensional
then 2π1(X) equals the perimeter of the unit circle. By a result of Gołąb [15] (see
also [26]), the perimeter of the unit circle is less than 4 unless X is isometric to `2∞.
This implies the 2-dimensional case of Deschaseaux’s theorem.

For q ≥ 2, the cotype q constant κq(X) of a Minkowski space X is defined to be
the infimum of all c > 0 such that

m∑
i=1

‖xi‖q ≤ cq
( 1

2m

∑
εi=±1

∥∥∥ m∑
i=1

εixi

∥∥∥q)
where x1, . . . ,xm ∈ X. Thus, (2κq(X))q is an upper bound for the number of
vectors satisfying the full collapsing condition. For instance, bounds on the cotype
2 constants for `dp (essentially consequences of the Khinchin inequalities) give upper
bounds independent of the dimension for fixed p ∈ [1,∞). Details may be found
in [32].

A more general question was asked by Sidorenko and Stechkin [29, 30] and Ka-
tona and others [19, 20, 21, 22, 23], where the ‘≤ 1’ in the collapsing conditions is
replaced by ‘≤ δ’ or ‘< δ’. In this direction work was also done in [33]. We do not
pursue this generalisation here, instead leaving it for a later investigation, as it will
be seen that the arguments in this paper are already quite involved.

1.2. Overview of new results. In this paper we only consider the k-collapsing
condition and strong balancing condition. It will be convenient to define the fol-
lowing discrete quantities.

Definition 13. For any k ≥ 2, define Ck(X) to be the largest m such that a family
of m vectors in X of norm at least 1 exists that satisfies the k-collapsing condition.
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Also, define CBk(X) to be the largest m such that a family of m vectors in X
of norm at least 1 exists that satisfies the k-collapsing condition and the strong
balancing condition.

Next define the numbers

C(k, d) := max
{
Ck(Xd)

∣∣Xd is a d-dimensional Minkowski space
}
,

C(k, d) := min
{
Ck(Xd)

∣∣Xd is a d-dimensional Minkowski space
}
,

CB(k, d) := max
{
CBk(Xd)

∣∣Xd is a d-dimensional Minkowski space
}
,

CB(k, d) := min
{
CBk(Xd)

∣∣Xd is a d-dimensional Minkowski space
}
.

A compactness argument shows that C(k, d) and CB(k, d) are always finite. Al-
though the vectors occurring in Theorems 2 to 12 above are unit vectors, we weaken
this to vectors of norm at least 1 in the above definition. Indeed, it turns out that
the quantities C(k, d) and CB(k, d) stay exactly the same whether we require the
vectors to be of norm ≥ 1 or = 1. See Corollary 40 in Section 5 for this non-trivial
fact.

1.2.1. Some general observations. We first show that C(k, d) and CB(k, d) are easily
determined. Since we have assumed d ≥ 2, it follows that for any value of k ≥ 2
there exist k+1 unit vectors that satisfy the strong balancing condition, hence also
the k-collapsing condition.

Proposition 14. Let k, d ≥ 2. Then Ck(Xd) ≥ CBk(Xd) ≥ k+1 for any d-dimen-
sional Xd.

In Section 2 we show that these inequalities cannot be improved in general:

Proposition 15. Ck(`d2) = CBk(`d2) = k + 1 for any k ≥ 2 and d ≥ 2.

Consequently, the lower numbers C(k, d) and CB(k, d) are known.

Corollary 16. C(k, d) = CB(k, d) = k + 1 for all k, d ≥ 2.

The rest of the paper is concerned with the upper numbers C(k, d) and CB(k, d)
The family of d unit vectors and their negatives {±e1, . . . ,±ed} shows the following:

Proposition 17. Let k, d ≥ 2. Then

Ck(`d∞) ≥ CBk(`d∞) ≥ 2d.

Keeping in mind Proposition 14, we obtain a simple lower bound.

Corollary 18. C(k, d) ≥ CB(k, d) ≥ max {k + 1, 2d} for all k, d ≥ 2.

In Section 2 we show that equality is possible in Corollary 18:

Proposition 19. For any k ≥ 2 and d ≥ 2,

Ck(`d∞) = CBk(`d∞) = max {k + 1, 2d} .

1.2.2. Large k-collapsing families with the balancing condition. It turns out that
Xd = `d∞ is an extremal case for the quantity CBk(Xd).

Theorem 20. For any k ≥ 2 and d ≥ 2,

CB(k, d) = max {k + 1, 2d} .
If d ≥ 2, 2 ≤ k ≤ 2d − 2 and CBk(Xd) = 2d, then any family of 2d vectors

of norm at least 1 satisfying the k-collapsing and strong balancing conditions are
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necessarily unit vectors consisting of a basis of Xd and its negative. If furthermore
d ≤ k ≤ 2d − 2, then the only space Xd for which CBk(Xd) = 2d is `d∞ up to
isometry. (If 2 ≤ k ≤ d− 1 then there are infinitely many non-isometric spaces Xd

such that CBk(Xd) = 2d.)

Cf. Theorem 6 above. The proof uses a reduction to m ×m matrices that are
perturbations of the identity matrix in a certain weak sense, together with results
on lower bounds of the ranks of such matrices (Lemma 41). In order to apply these
lower bounds we have to solve certain convex optimization problems (Lemmas 42
and 43). Analogous to Theorem 7 above we make the following conjecture.

Conjecture 21. If Xd is a strictly convex d-dimensional Minkowski space then

CBk(Xd) ≤ max {k + 1, d+ 1} .

This conjecture holds for k = 2 [13]. Also, for each d ≥ 2 there exists a strictly
convex d-dimensional space with d+ 1 unit vectors satisfying the strong collapsing
condition, so this conjecture would give the best possible estimate if true. Analogous
to Theorem 6 we may hope for a positive answer to the following question.

Question 22. Can the strong balancing condition in Theorem 20 be replaced by
the weak balancing condition? That is, if the family {x1, . . . ,xm} of unit vectors in
a d-dimensional Minkowski space Xd satisfies the k-collapsing condition and weak
balancing condition, is m ≤ max {k + 1, 2d}?

Our methods do not seem to offer any way of using the weak balancing condition.
Again, it is known that the answer is yes when k = 2 [13].

1.2.3. Large k-collapsing families without the balancing condition. Estimating C(k, d)
is much harder. The same proof techniques as for CB(k, d) work only up to a cer-
tain extent and the details become much trickier. Also, for k fixed, C(k, d) grows
exponentially in d as d → ∞ (Theorems 23, 30, 32, summarised in Table 1). For
k = c

√
d with c < 1 we have that C(k, d) has polynomial growth as d → ∞ (The-

orems 24 and 33), and for the range
√
d < k < 2d −

√
d/2, C(k, d) is linear in d,

in particular C(k, d) = 2d when 0.45d < k < 2d −
√
d/2 (Theorem 25). If d ≤ 7,

we obtain C(k, d) = max {k + 1, 2d} for all but finitely many k (Theorem 26). For
larger d and with k very large (� dd+2) we obtain C(k, d) = k + 1 (Theorem 27).

Theorem 23. For k ≥ 2 let γk be the unique (positive) solution to

(1 + x)1/x
(
1 +

1

x

)
= k2.

Then e/k2 < γk < e/(k2 − e) and

C(k, d) < 1.33k2γkd+2. (1)

If k <
√
d then

C(k, d) < k√
d
k2γkd+2.

In particular, if k = c
√
d with c < 1, then C(k, d) = O(d1+e/c2) as d→∞.

See Table 1 for the first few values of γk. Compare (1) with the lower bound
(2) below in Theorem 32. The next theorem gives a slightly sharper result for k a
small multiple of

√
d. See also the lower bound of Theorem 33 below.
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Upper bound Upper bound Lower bound
from Theorem 23 from Theorem 30 from Theorem 32

k γk k2γkd (1 + 2
k )
d

(
1 + 1

2(2k+1)2

)d
2 1 4d 2d 1.02d

3 0.3541686 2.178d 1.667d 1.0102d

4 0.1854203 1.673d 1.5d 1.0061d

5 0.1149225 1.448d 1.4d 1.0041d

6 0.0784510 1.325d 1.334d 1.0029d

7 0.0570503 1.249d 1.286d 1.0022d

8 0.0433914 1.198d 1.25d 1.0017d

9 0.0341301 1.162d 1.223d 1.0013d

Table 1. Values of γk (defined in Theorem 23) together with the
upper bounds to C(k, d) given by Theorems 23 and 30 and the
lower bound to C(k, d) given by Theorem 32. The values of γk are
rounded to the nearest decimal, of k2γk and 1 + 2/k are rounded
up and of 1 + 1/(2(2k + 1)2) are rounded down. The numbers in
bold denote the better of the two upper bounds for each value of k.

Theorem 24. For any ε > 0 and p ∈ N, p ≥ 2, there exist d0 and c > 0 such that
for all d > d0, if (

(p!)−1/(2p) + ε
)√

d < k ≤
√
d

then C(k, d) < cdp.

For larger k we obtain almost optimal results. In particular, we obtain the exact
result C(k, d) = 2d for (

√
6− 2)d+O(1) < k < 2d−

√
d/2.

Theorem 25. Let k ≥ 3 and d ≥ 2.

(1) If
√
d < k ≤ d+1

2 then C(k, d) ≤ 2d(k−1)2
k2−d = 2d

(
1 + d−2k+1

k2−d

)
.

(2) If −2d+
√
6d2 + 3d+ 1 ≤ k ≤ 2d−

√
d/2 then C(k, d) = 2d.

(3) If d ≥ 3 and k > 2d−
√
d/2 then C(k, d) ≤ k + 1+

√
2d−3
2 .

For values of d up to 7 as k → ∞ the same methods as used in proving Theo-
rems 20, 23, 24 and 25 give the following exact values.

Theorem 26. C(k, d) = max {k + 1, 2d} in the following cases:
(1) d = 2 and k ≥ 2,
(2) d ∈ {3, 4, 5} and k ≥ 3,
(3) d = 6 and k ∈ {3, 4, 5, . . . , 10} ∪ {17, 18, 19 . . . },
(4) d = 7 and k ∈ {3, 4, 5, . . . , 12} ∪ {41, 42, 43, . . . }.

The proof method gives no information for d ≥ 8 and k large. (The estimate
C(2, 3) ≤ 9 is also obtained in the proof.) For arbitrary d, as long as k is large, we
obtain the following using a completely different technique.

Theorem 27. If k � dd+2 then C(k, d) = k + 1.

The proof uses geometric tools from convexity, in particular the Brunn–Minkowski
inequality and the theorem of Carathéodory. The hypothesis k � dd+2 is most
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likely not best possible, but we need at least k ≥ 2d − 1 for the conclusion of this
theorem to hold, as shown by the example of k ≤ 2d−2 and the family {±ei | i ∈ [d]}
in `d∞.

Conjecture 28. C(k, d) = k + 1 whenever k ≥ 2d− 1.

By Theorem 26 this conjecture holds for d ≤ 5. The next conjecture has non-
empty content only for d ≥ 8.

Conjecture 29. C(k, d) = 2d if 2d−
√
d/2 ≤ k ≤ 2d− 2.

Since Theorem 25 gives C(k, d) = 2d for (
√
6− 2)d+O(1) < k < 2d−

√
d/2, it

is likely that the bound in Conjecture 29 already holds for values of k smaller than
(
√
6− 2)d. On the other hand, as implied by Theorem 33 below, we need at least

k > ( 12 + o(1))
√
d.

We show the following upper bound using a method closely related to the proof
of Theorem 27. We again use the Brunn–Minkowski inequality, but combine it with
the Hajnal–Szemerédi Theorem from graph theory:

Theorem 30. For any k, d ≥ 2, C(k, d) ≤ k(1 + 2
k )
d + k − 1.

Asymptotically for fixed k as d → ∞, this bound is better when k ≤ 5 while
for k ≥ 6 Theorem 23 is better. See Table 1 for a comparison between the upper
bounds given by Theorem 23 and Theorem 30 for k = 2, . . . , 8.

Related to Proposition 15 is the following result on spaces close to Euclidean
space.

Proposition 31. Let D = dBM(Xd, `d2) be the Banach-Mazur distance between Xd

and `d2. Then for any k > D2,

Ck(Xd) ≤ k2 −D2

k −D2
= k +D2 +

D4 −D2

k −D2
.

In particular, if D2 ≤ (2k − 1)/(k + 1) then Ck(Xd) = k + 1.

Its simple proof is at the end of Section 2. By John’s theorem [17], dBM(Xd, `d2) ≤√
d, from which follows Ck(Xd) ≤ k + d + d2−d

k−d if k > d. This estimate is worse,
however, than the estimates of Theorems 25 and 26 whenever k > d. On the other
hand, if D = dBM(X, `d2) is sufficiently small, then Proposition 31 may give bounds
better than Theorems 25. In particular, Proposition 31 is better than Theorem 25
in the range d < k ≤ 2d −

√
d/2 if dBM(X, `d2) ≤

√
(2d−k)k
2d−1 , and in the range

k > 2d−
√
d/2 if dBM(X, `d2) ≤ (d/2)1/4.

1.2.4. Bounding C(k, d) from below. We now turn to lower bounds. The first, gen-
eralising Theorem 9, uses a simple greedy construction of sets of almost orthogonal
Euclidean unit vectors (Lemma 49 in Section 9).

Theorem 32. For all k ≥ 2 and sufficiently large d depending on k, there exists a
strictly convex and smooth d-dimensional Minkowski space Xd such that

Ck(Xd) ≥
(
1 +

1

2(2k + 1)2

)d
. (2)
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The proof in fact gives a norm that is a C∞ function on Rd \ {o}. The lower
bound (2) almost matches the upper bound (1) from Theorem 23 asymptotically
in the sense that as k →∞ and d≫ log k, (2) implies that C(k, d)1/d − 1� 1/k2,
while (1) implies that C(k, d)1/d − 1� (log k)/k2. See the last column in Table 1.
(Note that since C(k, d) ≥ k + 1, we need d to grow with k in order to have
limk→∞ C(k, d)1/d = 1, and in fact limk→∞(k + 1)1/d = 1 iff d≫ log k.)

The second lower bound uses a well-known algebraic construction of almost or-
thogonal Euclidean vectors [18, 10] (Lemma 50 in Section 9).

Theorem 33. For any d ∈ N let q = qd be the largest prime power such that
d ≥ q2 − q + 1. (By the Prime Number Theorem, qd ∼

√
d as d → ∞.) Then for

each c ∈ N and k ≥ 2 satisfying c ≤ q − 2 and

k ≤ q − 1

2c
− 1

2

(
∼
√
d

2c
as d→∞

)
there exists a d-dimensional Minkowski space Xd such that

Ck(Xd) ≥ qc+2 (∼ d1+c/2 as d→∞).

In particular, when k ≤ ( 12 + o(1))
√
d as d → ∞ we have Ck(d) � d3/2. The

lower bound of Theorem 33 is better than that of Theorem 32 when k �
√
d/ log d.

For k a small multiple of
√
d, Theorems 23 and 24 give an upper bound polynomial

in d while Theorem 33 gives a lower bound polynomial in d, but with a gap between
the degrees of the polynomials. Nevertheless, Theorem 33 matches the bound (1)
of Theorem 23 in a similar sense as in the discussion after Theorem 32, in that it
implies that C(k, d)1/d − 1� (log k)/k2 as k →∞ and k ∼

√
d/(2c), c ∈ N.

1.3. Organisation of the paper. In Section 2 we use elementary averaging ar-
guments involving coordinates and inner products to prove Proposition 19 on `d∞,
Proposition 15 on `d2 and Proposition 31 on spaces close to `d2. In Section 3 we
use the Brunn–Minkowski inequality and the Hajnal–Szemerédi Theorem to prove
Theorem 30. This is followed in Section 4 by a proof of Theorem 27 which is
along similar lines. In addition to the Brunn–Minkowski inequality it uses a met-
ric consequence of Carathéodory’s Theorem that may be of independent interest
(Lemma 37). Then in Section 5 we reformulate the notion of a k-collapsing col-
lection of vectors in terms of matrices. There we also prove a general version of a
well-known result that bounds the rank of a matrix from below (Lemma 41). These
results are applied in Section 6, where Theorem 20 is proved, and Section 7 where
Theorems 25 and 26 are proved. These proofs are all somewhat technical and in-
volve an application of Lemma 41 combined with convex optimisation. In Section 8
Theorems 23 and 24 are proved. The arguments are similar as in Sections 6 and 7
and use in addition a well-known bound on the rank of an integer Hadamard power
of a matrix (Lemma 44). In Section 9 we derive the lower bounds of Theorems 32
and 33.

2. Two elementary averaging arguments

In This section we collect two simple arguments, one for `d∞ (Proposition 34),
the other for `d2 (Lemma 35). These are the essential ingredients of the proofs of
Propositions 19, 15 and 31.
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Proposition 34. Let k, d ≥ 2. If S = {xi | i ∈ [m]} ⊂ `d∞ is a k-collapsing family
of m > k+1 vectors of norm at least 1, then m ≤ 2d. If furthermore m = 2d, then
S = {±e1, . . . ,±ed}.

Proof. Suppose that there exist a coordinate j ∈ [d] and two distinct indices i ∈ [m]
such that xi(j) ≥ 1. Without loss of generality, xm−1(1),xm(1) ≥ 1. By the k-
collapsing condition, for any I ∈

(
[m−2]
k−2

)
,∑

i∈I
xi(1) ≤ −2 +

∑
i∈I∪{m−1,m}

xi(1) ≤ −2 +
∥∥∥∥ ∑
i∈I∪{m−1,m}

xi

∥∥∥∥
∞
≤ −1.

Fix a J ∈
(
[m−2]
k

)
(note that k ≤ m− 2). It follows that(
k − 1

k − 3

)∑
i∈J

xi(1) =
∑

I∈( J
k−2)

∑
i∈I

xi(1) ≤ −
(

k

k − 2

)
,

which gives ∑
i∈J

xi(1) ≤ −
(

k

k − 2

)
/

(
k − 1

k − 3

)
= −k/(k − 2) < −1,

hence
∥∥∑

i∈J xi
∥∥
∞ > 1, contradicting the k-collapsing condition.

Therefore, for each coordinate j ∈ [d] there is at most one index i ∈ [m] such
that xi(j) ≥ 1. Similarly, there is at most one i ∈ [m] such that xi(j) ≤ −1.
Therefore, there are at most 2d pairs (i, j) ∈ [m] × [d] such that |xi(j)| ≥ 1. On
the other hand, since ‖xi‖∞ ≥ 1 for each i ∈ [m], there are at least m such pairs,
which gives m ≤ 2d.

If we assume m = 2d, then for each j ∈ [d] there is exactly one i ∈ [m] such that
xi(j) ≥ 1, and exactly one i ∈ [m] such that xi(j) ≤ −1. We may then renumber
the xi such that x2i−1(i) ≥ 1 and x2i(i) ≤ −1 for each i ∈ [d]. By the k-collapsing
condition, for any J ∈

(
[m−2]
k−1

)
,∑

i∈J
xi(d) + 1 ≤

∑
i∈J∪{2d−1}

xi(d) ≤
∥∥∥∥ ∑
i∈J∪{2d−1}

xi

∥∥∥∥
∞
≤ 1,

hence
∑
i∈J xi(d) ≤ 0. Similarly,

∑
i∈J xi(d) ≥ 0. Therefore,

∑
i∈J xi(d) = 0

for each J ∈
(
[m−2]
k−1

)
. Since k − 1 < m − 2, it follows that xi(d) = 0 for all

i ∈ [m − 2] and x2d−1(d) = 1, x2d(d) = −1. Similarly, xi(j) = 0 for all i, j such
that i /∈ {2j − 1, 2j}, and x2j−1(j) = 1, x2j(j) = −1. We conclude that x2i−1 = ei
and x2i = −ei for all i ∈ [d]. �

Proof of Proposition 19. By Propositions 14 and 17,

Ck(`d∞) ≥ CBk(`d∞) ≥ max {k + 1, 2d} .
Proposition 34 implies that Ck(`d∞) ≤ max {k + 1, 2d}. �

The next lemma occurs in an equivalent form in [19, Lemma 5].

Lemma 35. Let k ≥ 2 and λ ∈ (0,
√
k). Let x1, . . . ,xm be vectors in an inner

product space such that ‖xi‖2 ≥ 1 for all i ∈ [m] and∥∥∥∑
i∈I

xi

∥∥∥
2
≤ λ for all I ∈

(
[m]

k

)
. (3)
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Then

m ≤ k2 − λ2

k − λ2
.

Proof. Square (3) and sum over all I ∈
(
[m]
k

)
to obtain(

m

k

)
λ2 ≥

(
m− 1

k − 1

) m∑
i=1

‖xi‖22 +
(
m− 2

k − 2

) m∑
{i,j}∈([m]

2 )

2 〈xi,xj〉

=

((
m− 1

k − 1

)
−
(
m− 2

k − 2

)) m∑
i=1

‖xi‖22 +
(
m− 2

k − 2

)∥∥∥ m∑
i=1

xi

∥∥∥2
2

≥
((

m− 1

k − 1

)
−
(
m− 2

k − 2

))
m+ 0,

which simplifies to the conclusion of the theorem. �

Proof of Proposition 15. For the upper bound, set λ = 1 in Lemma 35. The lower
bound follows from Proposition 14. �

Proof of Proposition 31. By the definition of the Banach-Mazur distance there ex-
ists an inner product on Xd such that ‖x‖ ≤ ‖x‖2 ≤ D ‖x‖ for all x ∈ Xd. Then
apply Lemma 35 with λ = D. �

3. The Brunn–Minkowski inequality and graph colourings

In this section we prove Theorem 30 which gives an upper bound for C(k, d) for
fixed k that is exponential in d. The proofs of Theorems 27 and 30 are similar, but
that of Theorem 30 is somewhat more straightforward, and that is why we consider
it first. We first discuss the three main tools used in its proof. The first is the
dimension-independent version of the Brunn–Minkowski inequality (see Ball [5]).
The idea of using the Brunn–Minkowski inequality is from [31], where it is used
in the case k = 2. Denote the volume (or d-dimensional Lebesgue measure) of a
measurable set A ⊆ Rd by vol (A).

Brunn–Minkowski inequality. If A,B ⊂ Rd are compact sets and 0 < λ < 1,
then

vol (λA+ (1− λ)B) ≥ vol (A)
λ
vol (B)

1−λ
.

Induction immediately gives the following version for k sets:

k-fold Brunn–Minkowski inequality. Let A1, A2, . . . , Ak ⊂ Rd be compact and
λ1, λ2, . . . , λk > 0 such that

∑k
i=1 λi = 1. Then

vol (λ1A1 + λ2A2 + · · ·+ λkAk) ≥
k∏
i=1

vol (Ai)
λi .

The second tool is the Hajnal–Szemerédi Theorem. A k-colouring of a graph
G = (V,E) is a function f : V → [k] such that f(x) 6= f(y) whenever xy ∈ E.
Any k-colouring partitions the vertex set V into colour classes f−1(i), i ∈ [k]. A
k-colouring of a graph on m vertices is called equitable if each colour class has
cardinality bm/kc or dm/ke. The following result was originally a conjecture of
Erdős [11]. Although the original proof [16] was quite complicated and long, there
is now a relatively simple, compact proof, due to Kierstead and Kostochka [24].
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Hajnal–Szemerédi Theorem. Let G be a graph with maximum degree ∆. Then
for any k > ∆, G has an equitable k-colouring.

The third tool is the following simple consequence of the triangle inequality.

Lemma 36. Let x1, . . . ,xk be vectors of norm at least 1 in a normed space such
that ∥∥∥ k∑

i=1

xi

∥∥∥ ≤ 1.

Then for each i ∈ [k] there exists j ∈ [k] such that ‖xi − xj‖ ≥ 1.

Proof. By the triangle inequality and the hypotheses,

k ≤ ‖kxi‖ =
∥∥∥ k∑
j=1

xj +

k∑
j=1

(xi − xj)
∥∥∥ ≤ ∥∥∥ k∑

j=1

xj

∥∥∥+ k∑
j=1

‖xi − xj‖

≤ 1 +

k∑
j=1

‖xi − xj‖ = 1 +

k∑
j=1
j 6=i

‖xi − xj‖ .

The average distance between xi and the other points is then bounded below:

1

k − 1

k∑
j=1
j 6=i

‖xi − xj‖ ≥ 1,

which implies that ‖xi − xj‖ ≥ 1 for some j 6= i. �

Proof of Theorem 30. Let V = {xi | i ∈ [m]} ⊂ Xd be a k-collapsing family with
each ‖xi‖ ≥ 1. Define a graph G on V by joining xi and xj if ‖xi − xj‖ < 1. By
Lemma 36, the maximum degree ∆ of G is at most k−2. By the Hajnal–Szemerédi
Theorem, G has an equitable k-colouring. This gives a partition I1, . . . , Ik of [m]
such that each |It| ∈ {q, q + 1}, where q := bm/kc, and such that ‖xi − xj‖ ≥ 1
whenever i, j are distinct elements from the same It. For each t ∈ [k] let

St :=
⋃
j∈It

B
(
xj , 1/2

)
.

Then
vol (St) = (1/2)d |It| vol (BX) . (4)

By the k-collapsing property,

1

k
(S1 + · · ·+ Sk) ⊆ B

(
o,

1

2
+

1

k

)
. (5)

Substitute (4) and (5) into the k-fold Brunn–Minkowski inequality
k∏
t=1

vol (St)
1/k ≤ vol

(1
k
(S1 + · · ·+ Sk)

)
,

to obtain ( k∏
t=1

|It|
)1/k

≤
(
1 +

2

k

)d
.
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Set r := m− kq. There are r sets It of cardinality q + 1 and k − r of cardinality q.
Therefore, ((m− r

k
+ 1
)r(m− r

k

)k−r)1/k

≤
(
1 +

2

k

)d
. (6)

Instead of minimising the left-hand side over all r ∈ {0, 1, . . . , k − 1}, we simply
weaken it to

m− r
k
≤
(
1 +

2

k

)d
,

to obtain

m ≤ k
(
1 +

2

k

)d
+ r ≤ k

(
1 +

2

k

)d
+ k − 1. �

By taking more care in minimising the left-hand side of (6) it is possible to find
a slightly better upper bound. However, it is not possible to show that C(k, d) ≤
k
(
1 + 2

k

)d from only (6). For instance, the values d = 4, m = 19, k = 6 satisfy (6),
but not m ≤ k

(
1 + 2

k

)d. (Of course C(6, 4) = 8 by Theorem 26.)

4. The Brunn–Minkowski inequality and Carathéodory’s theorem

In this section we prove Theorem 27, which considers k-collapsing sets when
k≫ d as d→∞. We use the Brunn–Minkowski inequality in much the same way
as in the proof of Theorem 30, but now coupled with Carathéodory’s theorem from
combinatorial convexity.

Carathéodory’s Theorem. Suppose that p is in the convex hull of a family
{xi | i ∈ I} of points in Rd. Then p ∈ conv {xi | i ∈ J} for some J ⊆ I with
|J | ≤ d+ 1.

Carathéodory’s theorem is used to prove the following auxiliary result. The tech-
nique is very similar to an argument in [36] that bounds the number of vertices of
edge-antipodal polytopes.

Lemma 37. Let d ≥ 2, n ≥ 1 and {xi | i ∈ [n]} ⊂ Xd be such that ‖xi‖ ≥ 1 for
each i ∈ [n] and

diam {xi | i ∈ [n]} < 1 + 1/d. (7)
Then ∥∥∥ 1

n

n∑
i=1

xi

∥∥∥ > 1/d2. (8)

Proof. Let P := conv {xi | i ∈ [n]}. By convexity, the centroid 1
n

∑n
i=1 xi is in P .

Choose p ∈ P of minimum norm. It is sufficient to prove that ‖p‖ > 1/d2. Suppose
first that p = o. Then by Carathéodory’s Theorem, o =

∑
i∈J λixi where J ⊆ [n],

|J | ≤ d + 1, λi ≥ 0 for each i ∈ J , and
∑
i∈J λi = 1. Note that |J | ≥ 2. For any

j ∈ J ,
−xj =

∑
i∈J\{j}

λi(xi − xj),

hence, by the triangle inequality,

1 ≤
∑

i∈J\{j}

λi ‖xi − xj‖ ≤
∑

i∈J\{j}

λi diamP = (1− λj) diamP .
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Summing over all j ∈ J , we obtain |J | ≤ (|J | − 1) diamP and

diamP ≥ |J |
|J | − 1

≥ d+ 1

d
.

However,
diamP = diam {xi | i ∈ [n]} < 1 + 1/d

by assumption, a contradiction. It follows that p 6= o, hence p is in some facet of
P . We apply Carathéodory’s Theorem to the affine span of this facet, which is of
dimension < d:

p =
∑
i∈J

λixi where J ⊆ [n], |J | ≤ d, λi ≥ 0 for each i ∈ J , and
∑
i∈J

λi = 1.

If |J | = 1 then p = xi for some i ∈ [n] and ‖p‖ ≥ 1 > 1/d2. Thus, without loss of
generality we assume that |J | ≥ 2. It follows that for each j ∈ J ,

p− xj =
∑

i∈J\{j}

λi(xi − xj)

and, again by the triangle inequality,

1− ‖p‖ ≤ ‖xj‖ − ‖p‖ ≤ ‖p− xj‖ ≤
∑

i∈J\{j}

λi ‖xi − xj‖

≤
∑

i∈J\{j}

λi diamP = (1− λj) diamP .

Sum over all j ∈ J to obtain (since |J | ≥ 2) that

(1− ‖p‖) |J | ≤ (|J | − 1) diamP < (|J | − 1)(1 + 1/d)

and
1− ‖p‖ < |J | − 1

|J |
(1 + 1/d) ≤ d− 1

d
(1 + 1/d) = 1− 1/d2.

It follows that ‖p‖ > 1/d2. �

The above proof in fact shows that if diam {xi} = 1 + 1/d − ε for some ε > 0,
then

∥∥∥ 1
n

∑n
i=1 xi

∥∥∥ ≥ 1/d2 + (1 − 1/d)ε. It can be shown that this inequality is
sharp. It can also be shown that the right-hand side of (7) cannot be increased:
There exist d-dimensional Minkowski spaces with d + 1 unit vectors x1, . . . ,xd+1

such that diam {xi} = 1+1/d although
∑d+1
i=1 xi = o. For details see the extended

version of this paper (arXiv:1210.0366).

Proof of Theorem 27. Suppose that Ck(Xd) ≥ k + 2. Let {xi | i ∈ [k + 2]} ⊂ Xd

be a k-collapsing collection of vectors of norm at least 1. We aim to show that
k = O(dd+2). We first bound

∥∥∥∑k+2
i=1 xi

∥∥∥ as in (9) and each ‖xj‖ as in (10).
Then we define a graph by joining xi and xj if they are ε-close. We use the
Brunn–Minkowski inequality and the k-collapsing condition to bound the number
of isolated points of this graph in (11). We then use the k-collapsing condition and
the triangle inequality to show that the non-isolated points have a small diameter,
and, choosing ε appropriately, Lemma 37 bounds the norm of the sum of the non-
isolated points in (13). Combined with the bound (9) on

∥∥∥∑k+2
i=1 xi

∥∥∥ and (11) on the
number of isolated points, we finally bound the number of vectors by an expression
in O(dd+2).

http://arxiv.org/abs/1210.0366
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Let s :=
∑k+2
i=1 xi. The k-collapsing condition gives an upper bound to the norm

of s as follows: Since∑
S∈([k+2]

k )

∑
i∈S

xi =

(
k + 1

k − 1

) k+2∑
i=1

xi =

(
k + 1

k − 1

)
s,

the triangle inequality gives(
k + 1

k − 1

)
‖s‖ ≤

∑
S∈([k+2]

k )

∥∥∥∑
i∈S

xi

∥∥∥ ≤ (k + 2

k

)
,

and

‖s‖ ≤
(
k + 2

k

)
/

(
k + 1

k − 1

)
= 1 + 2/k. (9)

Without loss of generality, ‖xi‖ = 1 for some i ∈ [k+2]. For each j ∈ [k+2]\{i} the
k-collapsing condition implies that ‖(s− xi)− xj‖ ≤ 1, and again by the triangle
inequality,

‖xj‖ ≤ 1 + ‖s‖+ ‖xi‖ ≤ 3 + 2/k. (10)
Let ε > 0 (to be fixed later). Define a graph G on [k+2] by joining i and j whenever
‖xi − xj‖ < ε. Let C ⊆ [k + 2] be the set of all isolated vertices of G. Suppose
for the moment that |C| ≥ 2. Partition C into two parts as equally as possible:
C = C1 ∪ C2 with C1 ∩ C2 = ∅ and

∣∣|C1| − |C2|
∣∣ ≤ 1. Let

St :=
⋃
j∈Ct

B(xj , ε/2) for t = 1, 2.

Then
vol (St) = |Ct| (ε/2)d vol (BX) .

By the k-collapsing condition, S1 + S2 ⊆ B(s, 1 + ε), which gives

vol
(1
2
S1 +

1

2
S2

)
≤
(1 + ε

2

)d
vol (BX) .

By the Brunn–Minkowski inequality,

vol
(1
2
S1 +

1

2
S2

)
≥ vol (S1)

1/2
vol (S2)

1/2
=
√
|C1| · |C2|(ε/2)d vol (BX) .

It follows that
|C| − 1

2
<
√
|C1| · |C2| ≤

(
1 +

1

ε

)d
and

|C| < 2
(
1 +

1

ε

)d
+ 1. (11)

This bound clearly also holds if |C| < 2.
Next consider the complement C ′ := [k + 2] \ C, consisting of the vertices of G

of degree at least 1. We claim that

diam {xi | i ∈ C ′} < 1 + ε. (12)

Consider distinct i, j ∈ C ′. There exist i′, j′ ∈ C ′ such that i′ 6= i, j′ 6= j,
‖xi − xi′‖ < ε and ‖xj − xj′‖ < ε. Then by the triangle inequality and the k-
collapsing condition,

‖2xi − 2xj‖ = ‖xi − xi′ + xi + xi′ − s+ s− xj − xj′ + xj′ − xj‖
≤ ‖xi − xi′‖+ ‖xi + xi′ − s‖+ ‖s− xj − xj′‖+ ‖xj′ − xj‖
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< ε+ 1 + 1 + ε,

which shows (12). In order to apply Lemma 37 to {xi | i ∈ C ′} we set ε = 1/d and
obtain that ∥∥∥∑

i∈C′
xi

∥∥∥ > |C ′|
d2

=
k + 2− |C|

d2
. (13)

On the other hand, by (9) and (10),∥∥∥∑
i∈C′

xi

∥∥∥ =
∥∥∥s−∑

i∈C
xi

∥∥∥ ≤ ‖s‖+∑
i∈C
‖xi‖

≤ 1 +
2

k
+ |C|

(
3 +

2

k

)
.

By (11) and the choice of ε, |C| ≤ 2(d+ 1)d. Combined with (13), we obtain

k + 2

d2
< 1 +

2

k
+ |C|

(
3 +

2

k
+

1

d2

)
= O(dd). �

5. Reformulation in terms of matrices

In this section we reduce the existence of a d-dimensional Minkowski space ad-
mitting vectors satisfying the k-collapsing or strong balancing conditions to the
existence of a matrix of rank at least d satisfying certain properties. As a conse-
quence we show that there is no loss of generality in assuming that the vectors in
the definitions of C(k, d) and CB(k, d) (Def. 13) are unit vectors. We also present
a general version of a well-known lower bound for the rank of a square matrix in
terms of its trace and Frobenius norm.

Lemma 38. Let 2 ≤ k ≤ m− 2. Suppose that {αi | i ∈ [m]} ⊂ R is a k-collapsing
family of real numbers. If |αi| ≥ 1 for some i ∈ [m], then |αj | ≤ 2− |αi| ≤ 1 for all
j 6= i.

Proof. Without loss of generality, αm ≥ 1. Let j ∈ [m−1]. Choose any I, J ∈
(
[m]
k

)
such that I \J = {m} and J \ I = {j}. By the k-collapsing condition,

∑
s∈I αs ≤ 1

and
∑
s∈J αs ≥ −1. Subtract these two inequalities to obtain αm − αj ≤ 2, hence

αj ≥ αm − 2.
Before proving that αj ≤ 2− αm, we first show that

S := {s ∈ [m] |αi > 0}

contains at most k − 1 elements. Suppose this is false. Choose any I ∈
(
S
k

)
such

that m ∈ I. By the k-collapsing condition,

0 <
∑

s∈I\{m}

αs ≤ 1− αm ≤ 0,

a contradiction. Consequently,

|[m] \ (S ∪ {j})| ≥ m− k ≥ 2,

and there exist two distinct indices i′, j′ ∈ [m] \ {j,m} such that αi′ ≤ 0 and
αj′ ≤ 0. Choose any I, I ′ ∈

(
[m]
k

)
such that I \ I ′ = {j,m} and I ′ \ I = {i′, j′}.

By the k-collapsing condition,
∑
s∈I αs ≤ 1 and

∑
s∈I′ αs ≥ −1. Subtract these

inequalities to obtain αj + αm − αi′ − αj′ ≤ 2. Therefore,

αj ≤ 2− αm + αi′ + αj′ ≤ 2− αm. �
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Lemma 38 does not hold if k = m− 1 ≥ 4, as shown by the family {αi | i ∈ [m]},
where

α1 = · · · = αm−2 =
−2

m− 3
, αm−1 =

m− 1

m− 3
, αm =

2m− 4

m− 3
.

However, it is easily seen that Lemma 38 holds when k = m− 1 ∈ {2, 3}.

Lemma 39. Let 2 ≤ k < m and d ≥ 2. Let Xd be a d-dimensional Minkowski
space, x1, . . . ,xm ∈ Xd, and x∗i ∈ (Xd)∗ a dual unit vector of xi for each i ∈ [m].
Then the m×m matrix A = [ai,j ] := [〈x∗i ,xj〉] has rank at most d and satisfies the
following properties:

ai,i ≥ 1 for all i ∈ [m] if ‖xi‖ ≥ 1 for all i ∈ [m], (14)

ai,i = 1 for all i ∈ [m] and |ai,j | ≤ 1 for all distinct i, j ∈ [m]

if ‖xi‖ = 1 for all i ∈ [m],

}
(15)

the family of numbers in each row of A is k-collapsing (in R)
if {xi | i ∈ [m]} is k-collapsing,

}
(16)

and the sum of each row of A is 0 if
m∑
i=1

xi = o. (17)

Conversely, given any m × m matrix A = [ai,j ] with rank(A) ≤ d, there exists a
d-dimensional Minkowski space Xd and a family {xi | i ∈ [m]} ⊂ Xd such that

‖xi‖ ≥ 1 for all i ∈ [m] if ai,i ≥ 1 for all i ∈ [m], (14′)

‖xi‖ = 1 for all i ∈ [m] if ai,i = 1 for all i ∈ [m]

and |ai,j | ≤ 1 for all distinct i, j ∈ [m],

}
(15′)

{xi | i ∈ [m]} is k-collapsing if the family of
numbers of each row of A is k-collapsing (in R),

}
(16′)

m∑
i=1

xi = o if the sum of each row of A is 0. (17′)

Proof. Let x1, . . . ,xm ∈ Xd with dual unit vectors x∗1, . . . ,x
∗
m ∈ (Xd)∗ be given,

and let A = [ai,j ] := [〈x∗i ,xj〉]. The factorisation

A = [〈x∗i ,xj〉]i,j∈[m] = [x∗1, . . . ,x
∗
m]T[x1, . . . ,xm]

of A into matrices of rank at most d shows that A has rank at most d.
Since |ai,j | = |〈x∗i ,xj〉| ≤ ‖xj‖ and ai,i = 〈x∗i ,xi〉 = ‖xi‖, we obtain (14) and

(15). Also, if I ∈
(
[m]
k

)
and

∥∥∥∑j∈I xj

∥∥∥ ≤ 1, then for any i ∈ [m],∣∣∣∑
j∈I

ai,j

∣∣∣ = ∣∣∣∑
j∈I
〈x∗i ,xj〉

∣∣∣ = ∣∣∣〈x∗i ,∑
j∈I

xj

〉∣∣∣ ≤ ∥∥∥∑
j∈I

xj

∥∥∥ ≤ 1,

which gives (16). Similarly, if
∑m
j=1 xj = o, then for any i ∈ [m],∑

j∈I
ai,j =

〈
x∗i ,

m∑
j=1

xj

〉
= 〈x∗i ,o〉 = 0,

which is (17).
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Next, assume that an m × m matrix A = [ai,j ] of rank at most d is given.
Let xj be the j-th column of A, considered as an element of `m∞. Let Xd be any
d-dimensional subspace of `m∞ that contains span({xj | j ∈ [n]}). (If d > m, let
Xd = `d∞ be a superspace of `m∞.) Keeping the definition of ‖·‖∞ in mind, it is
easily seen that (14′), (15′), (16′), and (17′) all hold. �

Corollary 40. Let 2 ≤ k < m and d ≥ 2. There exists a d-dimensional Minkowski
space that contains a k-collapsing [and balancing ] family of m vectors of norm ≥ 1
iff there exists a d-dimensional Minkowski space that contains a k-collapsing [and
balancing ] family of m unit vectors.

Proof. The case k = m−1 is trivial, as there exist k+1 unit vectors that sum to o if
d ≥ 2. Thus, we assume that k ≤ m− 2. Suppose that there exists a d-dimensional
Minkowski space that contains k-collapsing family of m vectors of norm ≥ 1 [that
satisfies the balancing condition]. By the first part of Lemma 39 there exists an
m × m matrix A = [ai,j ] of rank at most d, such that each row is k-collapsing
and ai,i ≥ 1 for each i ∈ [m] [and each row sums to 0]. Crucially, by Lemma 38,
|ai,j | ≤ 1 for all j 6= i. If we divide row i of A by ai,i, for each i, we obtain a matrix
Ã = [ãi,j ] := [ai,j/ai,i] of the same rank as A, with each row k-collapsing, ãi,i = 1,
and |ãi,j | ≤ 1 for all i, j [and each row sums to 0]. By the second part of Lemma 39,
there exists a d-dimensional Minkowski space that contains a k-collapsing family of
unit vectors [and also satisfies the balancing condition]. �

The next lemma has various combinatorial and geometric applications [1, 2, 3,
4, 6, 8, 28]. We omit the standard proof. See the extended version of this paper
(arXiv:1210.0366) for a proof of a version for complex numbers and historical
remarks.

Lemma 41. Let A = [ai,j ] be any n× n matrix with real entries. Then∣∣∣ n∑
i=1

ai,i

∣∣∣2 ≤ rank(A)

( n∑
i=1

n∑
j=1

a2i,j

)
. (18)

Equality holds in (18) if and only if A is symmetric and all its non-zero eigenvalues
are equal.

6. A tight upper bound for CBk(X)

In this section we prove Theorem 20 using the tools of Section 5. To show that
CBk(Xd) ≤ max {k + 1, 2d} for all d-dimensional Xd, it is sufficient by Lemmas 38
and 39 to prove that for any m×m matrix A = [ai,j ] of rank at most d, such that
each row is k-collapsing and has sum 0, each entry |ai,j | ≤ 1, and each diagonal
entry ai,i = 1, we have that m ≤ 2d if k ≤ m − 2. By Lemma 41 it is sufficient
to show that

∣∣∑
i ai,i

∣∣2/∑i,j |ai,j |
2 ≥ m/2. Since

∑
i ai,i = m, this is equivalent to∑

i,j a
2
i,j ≤ 2m. Also, it follows from ai,i = 1 that it will be sufficient to show that

m∑
j=1
j 6=i

a2i,j ≤ 1 for each i ∈ [m].

This is implied by the next lemma, which solves a convex maximisation problem
with linear constraints.

http://arxiv.org/abs/1210.0366
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Lemma 42. Let k,m ∈ N such that 2 ≤ k ≤ m− 2. Then

max

{
m−1∑
i=1

α2
i

∣∣∣∣∣
m∑
i=1

αi = 0, αm = 1, {αi | i ∈ [m]} is k-collapsing

}
= 1.

The maximum value
∑m−1
i=1 α2

i = 1 is attained under these constraints only if for
some j ∈ [m− 1], αj = −1 and αi = 0 for all i ∈ [m− 1] \ {j}.

Proof. Since
∑m
i=1 αi = 0, the family {αi | i ∈ [m]} is k-collapsing iff it is (m− k)-

collapsing. Thus, without loss of generality, k ≤ m/2.
The k-collapsing and balancing conditions imply the following constraints in the

variables α1, . . . , αm−1: ∑
i∈I

αi ≤ 0 for all I ∈
(
[m− 1]

k − 1

)
(19)

and
m−1∑
i=1

αi = −1. (20)

Since these constraints, as well as the objective function f(α1, . . . , αm−1) :=
∑m−1
i=1 α2

i

are symmetric in the variables α1, . . . , αm−1, we may assume without loss of gen-
erality that

α1 ≥ α2 ≥ · · · ≥ αm−1. (21)

Then (19) becomes equivalent to the single inequality

k−1∑
i=1

αi ≤ 0. (22)

By Lemma 38, all |αi| ≤ 1, and it follows that the m− 1 linear inequalities in (21)
and (22) define a polytope P in the hyperplane H of Rm−1 defined by (20). The
convex function f attains its maximum on P at a vertex of P . Since the point in
(α1, . . . , αm−1) ∈ Rm−1 with coordinates

αi =
−2i

m(m− 1)
, i ∈ [m− 1]

satisfies (20), as well as (21) and (22) with strict inequalities (as well as (20)), P
has non-empty interior in H. It follows that P is an (m− 2)-dimensional simplex,
and it is easy to calculate its m− 1 vertices, as follows.

Case I. If α1 = · · · = αm−1 then (20) gives

(α1, . . . , αm−1) =
( −1
m− 1

, . . . ,
−1

m− 1︸ ︷︷ ︸
m− 1 times

)

and f(α1, . . . , αm−1) = 1/(m− 1) < 1.

Case II. If α1 = · · · = αt and αt+1 = · · · = αm−1 for some t ∈ [m − 2], and∑k−1
i=1 αi = 0, we distinguish between two subcases:
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Subcase II.i. t ≤ k − 1. Then solving these equations with (20) gives

(α1, . . . , αm−1) =
(k − 1− t
t(m− k)

, . . . ,
k − 1− t
t(m− k)︸ ︷︷ ︸

t times

,
−1

m− k
, . . . ,

−1
m− k︸ ︷︷ ︸

m− 1− t times

)

and

f(α1, . . . , αm−1) =
1

t

(k − 1)2

(m− k)2
+
m− 2k + 1

(m− k)2

≤ (k − 1)2 +m− 2k + 1

(m− k)2
(since t ≥ 1)

≤ (m/2− 1)2 +m− 2k + 1

(m/2)2
(since 2k ≤ m)

=
(m/2)2 − 2k + 2

(m/2)2
< 1.

Subcase II.ii. t ≥ k. Then

(α1, . . . , αm−1) =
(
0, . . . , 0︸ ︷︷ ︸
t times

,
−1

m− 1− t
, . . . ,

−1
m− 1− t︸ ︷︷ ︸

m− 1− t times

)

and

f(α1, . . . , αm−1) =
1

m− 1− t
≤ 1

with equality if and only if t = m− 2, and then

(α1, . . . , αm−1) = (0, . . . , 0,−1).

This shows that the maximum of f on P is 1, attained at only one point if the
coordinates are in decreasing order. �

Proof of Theorem 20. We first show that if m ≥ k+2, then a k-collapsing, strongly
balancing family of vectors of norm at least 1 has size at most 2d, and when it has
size 2d, it is indeed made up of a unit basis and its negative.

Let {xi | i ∈ [m]} be k-collapsing and strongly balancing with each ‖xi‖ ≥ 1. For
each xi, let x∗i ∈ X∗ be a dual unit vector. By Lemma 39, A = [aij ] := [〈x∗i ,xj〉] is
an m×m matrix of rank at most d, each row is k-collapsing, each diagonal element
is ≥ 1, and each row sum is 0. We will show that rank(A) ≤ m/2, with equality
implying that, after some permutation of the xi,

A =



1 −1 0 0 0 · · · 0 0 0
−1 1 0 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
0 0 −1 1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · 0 1 −1
0 0 0 0 0 · · · 0 −1 1


. (23)

By Lemma 38, |ai,j | ≤ 1 for all distinct i, j, and it follows that the matrix Ã =
[ãi,j ] := [ai,j/ai,i] formed by dividing each row of A by ai,i has the same rank as
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A, and its rows are still k-collapsing and sum to 0. By Lemma 42,
∑m
j=1 ã

2
i,j ≤ 2

for all i ∈ [m], and by Lemma 41,

d ≥ rank(A) = rank(Ã) ≥ m2

2m
=
m

2
.

This shows that m ≤ 2d. Suppose now that m = 2d. Then rank(A) = rank(Ã) = d,
by Lemma 41 Ã is symmetric, and by Lemma 42 each row of Ã has a 1 on the
diagonal, a −1 at some non-diagonal entry, and 0s everywhere else. Thus Ã = I−P ,
where P is a symmetric permutation matrix. The associated permutation must be
an involution. Therefore, after some permutation of the coordinates, Ã is as in (23).
Since Ã has an off-diagonal entry of absolute value 1 in each column, each ai,i = 1,
hence A = Ã and ‖xi‖ = 1 for all i ∈ [m]. Since A = [x∗1 . . .x

∗
2d]

T[x1 . . .x2d] and
the submatrix of A consisting of odd rows and columns is the d×d identity matrix,
it follows that {x1,x3, . . . ,x2d−1} and

{
x∗1,x

∗
3, . . . ,x

∗
2d−1

}
are bases of X and X∗,

respectively. Since 〈x∗i ,x1〉 = 〈x∗i ,x2〉 = 0 for all i ≥ 3,

x1,x2 ∈
⋂

j=2,...,d

kerx∗2j−1,

which is a one-dimensional subspace of X. Therefore, x1 = −x2. Similarly,
x2j−1 = −x2j for all j ∈ [d]. In particular, CBk(Xd) ≤ max {k + 1, 2d}. Since by
Proposition 19, CBk(`d∞) = max {k + 1, 2d}, we obtain CB(k, d) = max {k + 1, 2d}.

We next show the last part of the theorem. Suppose that k ≤ 2d. We have
already shown that for any Xd, a k-collapsing family of 2d vectors of norm ≥ 1 is
necessarily {±ei | i ∈ [d]} for some unit basis {e1, . . . , ed}. Note that {±ei | i ∈ [d]}
is k-collapsing if

∑
i∈I ei is contained in the unit ball for all I ⊆ [d] with |I| ≤ k.

Any o-symmetric convex body C that satisfies

Pk := conv

{
±
∑
i∈I

ei

∣∣∣∣∣ I ⊆ [d], |I| ≤ k

}
⊆ C ⊆ [−1, 1]d,

is the unit ball of a norm ‖·‖C such that {±ei | i ∈ [d]} is k′-collapsing in the norm
‖·‖C for all k′ = 2, . . . , k, with ‖ei‖C = 1. If k < d, Pk is a proper subset of [−1, 1]d
and we obtain infinitely many such unit balls C. If k ≥ d, Pk = [−1, 1]d and we
obtain the unique norm ‖·‖∞ up to isometry. �

7. Tight and almost tight upper bounds for Ck(X)

We now consider the k-collapsing condition without any balancing condition. As
in the previous section we solve a convex optimisation problem. This case is more
complicated and our results are only partial. Similar to the proof of Theorem 20,
determining the maximum in the following lemma gives an upper bound for Ck(X)
via Lemma 41.

Lemma 43. Let k,m ∈ N be such that 2 ≤ k ≤ m− 2. Then

max

{
m−1∑
i=1

α2
i

∣∣∣∣∣αm = 1, {αi | i ∈ [m]} is k-collapsing

}
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= max

{
m− 1

k2
, 1,

(k − 2)2 +m− 2

k2

}
if k < 2m/3,

≤ max

{
m− 1

k2
, 1,

(k − 2)2 +m− 2

k2
,

(k − 1)2

4(m− k − 1)(2k −m)(m− k)

}
if k ≥ 2m/3,

= max

{
m− 1

4
, 1

}
if k = 2,

=
(k − 2)2 +m− 2

k2
if 3 ≤ k ≤ m+2

4 ,

= 1 if m+2
4 ≤ k < 2m

3 , k ≥ 3,

≤ max

{
1,

(k − 1)2

4(m− k − 1)(2k −m)(m− k)

}
if k ≥ 2m/3, k ≥ 3.

Proof. Because the k-collapsing condition on {αi | i ∈ [m]} and the objective func-
tion f(α1, . . . , αm−1) :=

∑m−1
i=1 α2

i are symmetric in α1, . . . , αm−1, we may assume
without loss of generality that

α1 ≥ α2 ≥ · · · ≥ αm−1. (24)

Then the k-collapsing condition implies

−1 ≤ αm−k + αm−k+1 + · · ·+ αm−1 (25)

and

α1 + α2 + . . . αk−1 ≤ 0. (26)

We find the maximum of f over the set ∆ of points (α1, . . . , αm−1) that satisfy
(24), (25) and (26). In the cases of equality in the statement of the lemma, we will
obtain points in ∆ that also satisfy the k-collapsing condition. (In fact it can be
shown that (25) and (26) are equivalent to the k-collapsing condition given that
(24) holds.) By Lemma 38, |αi| ≤ 1 for each i ∈ [m − 1], hence ∆ is a polytope.
Setting αi = −i/km for i ∈ [m−1], we see that (24) and (26) are obviously satisfied
with strict inequalities, and (25) because

m−1∑
i=m−k

−i
km

= −1 + k(k + 1)

2km
> −1.

It follows that (
−1
km

,
−2
km

, . . . ,
−(m− 1)

km

)
∈ Rm−1

is an interior point of ∆. Since (24), (25) and (26) are m inequalities in total, it
follows that ∆ is a simplex. The convex function f attains its maximum at one of
the m vertices of ∆, which we calculate next. We distinguish between the following
three cases:

Case I. Equality in (24) and (25):

α1 = · · · = αm−1 and − 1 = αm−k + · · ·+ αm−1.

The vertex is
(α1, . . . , αm−1) =

( −1
k
, . . . ,

−1
k︸ ︷︷ ︸

m− 1 times

)
,
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and

f(α1, . . . , αm−1) =
m− 1

k2
.

Case II. Equality in (24) and (26):

α1 = · · · = αm−1 and α1 + · · ·+ αk−1 = 0.

Then (α1, . . . , αm−1) = o and f(α1, . . . , αm−1) = 0 < (m− 1)/k2.

Case III. For some t ∈ [m− 2],

α1 = · · · = αt =: a and αt+1 = · · · = αm−1 =: b

and equality in (25) and (26): Equality in (25) gives that

if m− k ≥ t+ 1 then b =
−1
k

; (25a)

if m− k ≤ t then (k −m+ 1 + t)a+ (m− 1− t)b = −1. (25b)

Independent of these two cases, equality in (26) gives that

if k − 1 ≤ t then a = 0; (26a)
if k − 1 ≥ t+ 1 then ta+ (k − 1− t)b = 0. (26b)

This gives us four subcases, with some being empty, depending on k and m.

Subcase III.i. If k − 1 ≤ t ≤ m− k − 1, then by (25a) and (26a),

(α1, . . . , αm−1) =
(
0, . . . , 0︸ ︷︷ ︸
t times

,
−1
k
, . . . ,

−1
k︸ ︷︷ ︸

m− 1− t times

)

and

f(α1, . . . , αm−1) =
m− 1− t

k2
≤ m− k

k2
<
m− 1

k2
.

This case occurs only if 2k ≤ m.

Subcase III.ii. If max {k − 1,m− k} ≤ t, then by (25b) and (26a),

(α1, . . . , αm−1) =
(
0, . . . , 0︸ ︷︷ ︸
t times

,
−1

m− 1− t
, . . . ,

−1
m− 1− t︸ ︷︷ ︸

m− 1− t times

)

and

f(α1, . . . , αm−1) =
1

m− 1− t
≤ 1,

with equality if t = m− 2. This case always occurs.
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Subcase III.iii. If t ≤ min {k − 2,m− k − 1} (which occurs only if k ≥ 3), then
by (25a) and (26b),

(α1, . . . , αm−1) =
(k − 1− t

kt
, . . . ,

k − 1− t
kt︸ ︷︷ ︸

t times

,
−1
k
, . . . ,

−1
k︸ ︷︷ ︸

m− 1− t times

)
and

f(α1, . . . , αm−1) =
1

k2

(
(k − 1)2

t
− 2k + 1 +m

)
≤ 1

k2
(
(k − 1)2 − 2k + 1 +m

)
=

(k − 2)2 +m− 2

k2
=: g(k,m).

Note that g(k,m) ≥ m−1
k2 (equality iff k = 3). Also, g(k,m) ≤ 1 iff k ≥ (m+ 2)/4.

Subcase III.iv. If m−k ≤ t ≤ k−2 (which occurs only if 2k ≥ m+2 and k ≥ 4),
then we solve (25b) and (26b) to obtain

a =
k − 1− t

t+ (m− 1− k)(k − 1)
and b =

−t
t+ (m− 1− k)(k − 1)

.

This gives the vertex as

(α1, . . . , αm−1) =
( k − 1− t
t+ (m− 1− k)(k − 1)︸ ︷︷ ︸

t times

,
−t

t+ (m− 1− k)(k − 1)︸ ︷︷ ︸
m− 1− t times

)

and

f(α1, . . . , αm−1) =
(m− 2k + 1)t2 + (k − 1)2t

(t+ (m− 1− k)(k − 1))2
=: sk,m(t).

We now determine

h(k,m) := max
{
sk,m(t)

∣∣∣ t ∈ [m− k, k − 2]
}
.

Since this maximum could occur in the interior of the interval [m − k, k − 2], and
the value of t where the maximum occurs might not be integral, we settle for
determining the maximum of sk,m(t) over all real values of t ∈ [m− k, k− 2]. Thus
h(k,m) will only be an upper bound for the maximum of f(α1, . . . , αm−1) on the
vertices of ∆ falling under this subcase. A calculation shows that s′k,m(t) ≥ 0 iff

t ≤ (k − 1)2(m− k − 1)

2(2k −m− 1)(m− k − 1) + k − 1
=: t0.

We next show that m− k ≤ t0 unless k = 4 and m = 6. A calculation shows that

m− k ≤ t0 ⇐⇒ (k − 1)2 ≤ 1

2
(m− k)((k − 1)2 − 1 + (2m− 3k)2).

Since m − k ≥ 2, this inequality clearly holds if 2m 6= 3k, while if 2m = 3k, it is
equivalent to

(k − 1)2 ≤ 1

4
k((k − 1)2 − 1),

which holds if k ≥ 5, but not if k = 4. However, in that case (k,m) = (4, 6) and
m− k = k − 2.
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Next we show that if k ≥ 2m/3 then t0 < k−2, and if k < 2m/3 then t0 > k−2.
A calculation gives that

t0 ≤ k − 2 ⇐⇒ 0 ≤ (k − 2)(m− k)(3k − 2m) + 2k −m− 1.

Since 2k−m− 1 > 0, we obtain t0 < k− 2 if k ≥ 2m/3. Otherwise 3k− 2m ≤ −1,
and

(k − 2)(m− k)(3k − 2m) + 2k −m− 1

≤ −(k − 2)(m− k) + 2k −m− 1 = −(k − 1)(m− k − 1) < 0.

It follows that t0 > k − 2 if k < 2m/3.
In summary,

h(k,m) =

{
sk,m(t0) if k ≥ 2m/3 and (k,m) 6= (4, 6),
sk,m(k − 2) if k < 2m/3 or (k,m) = (4, 6).

We next show that sk,m(k − 2) < 1, which means that this subcase is only
relevant when k ≥ 2m/3 and (k,m) 6= (4, 6). Since

sk,m(k − 2) =
(m− 2k + 1)(k − 2)2 + (k − 1)2(k − 2)

(k − 2 + (m− 1− k)(k − 1))2
,

a calculation shows that

sk,m(k − 2) < 1 ⇐⇒ m− 2k < (k − 1)2 ((m− k)(m− k − 1)− 1) ,

which holds since m− 2k < 0 and m− k ≥ 2. Finally we calculate

sk,m(t0) =
(k − 1)2

4(m− k − 1)(2k −m)(m− k)
.

This concludes estimating f at the vertices of ∆. To summarise the above case
analysis, we have shown that

max f(∆) = max

{
m− 1

k2
, 1,

(k − 2)2 +m− 2

k2

}
if k < 2m/3,

and

max f(∆) ≤ max
{
m−1
k2 , 1, (k−2)

2+m−2
k2 , (k−1)2

4(m−k−1)(2k−m)(m−k)

}
if k ≥ 2m/3.

The remaining claims of the lemma are now easily checked. �

Proof of Theorem 25. (1) Let
√
d < k ≤ (d + 1)/2. Suppose that there exist

m > 2d(1 + d−2k+1
k2−d ) vectors of norm ≥ 1 satisfying the k-collapsing condition;

equivalently, an m × m matrix A of rank ≤ d with 1s on the diagonal and such
that each row satisfies the k-collapsing condition. Since m > 2d ≥ 2k − 1, we have
k < (m+ 2)/4, and by Lemma 43 the sum of the squares of the entries in any row
of A is ≤ 1 + (k−2)2+m−2

k2 = 2 + m−4k+2
k2 . By Lemma 41,

d ≥ rank(A) ≥ m2

m
(
2 + m−4k+2

k2

) =
mk2

2k2 +m− 4k + 2
.

Solving for m (and taking note that k >
√
d) we obtain

m ≤ 2d(k − 1)2

k2 − d
,

contradicting the assumption on m. This shows that C(k, d) ≤ 2d(k−1)2
k2−d .
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(2) In particular we obtain that C(k, d) ≤ 2d when
√
d < k ≤ (d+ 1)/2 if

2d(k − 1)2

k2 − d
< 2d+ 1,

which is equivalent to k ≥ −2d+
√
6d2 + 3d+ 1. It remains to show that C(k, d) ≤

2d if (d+ 1)/2 < k ≤ 2d−
√
d/2. Suppose that there exists an m×m matrix A of

rank ≤ d with 1s on the diagonal and such that each row satisfies the k-collapsing
condition, where m = 2d+1. It then follows from k > (d+1)/2 that k > (m+2)/4.
If furthermore k < 2m/3 then by Lemmas 41 and 43, d ≥ rank(A) ≥ m2

m(1+1) and
m ≤ 2d, a contradiction. Therefore, k ≥ 2m/3. We next show that

(k − 1)2

4(m− k − 1)(2k −m)(m− k)
< 1, (27)

which again gives the contradiction m ≤ 2d by Lemmas 41 and 43.
Consider f(x) = (m − x − 1)(2x − m)(m − x), 2m/3 ≤ x ≤ m − 2. Then

f ′(x) = (4m− 6x)(m− x− 1)− 2x+m < 0, and it follows that the left-hand side
of (27) increases with k. It is therefore sufficient to prove (27) for k = 2d−

√
d/2,

that is
(2d−

√
d/2− 1)2

4
√
d/2(2d− 2

√
d/2− 1)(

√
d/2 + 1)

< 1.

This is equivalent to 8d
√
d/2 − 5d/2 − 6

√
d/2 − 1 > 0, which is easily seen to be

true.

(3) Let d ≥ 3 and k > 2d −
√
d/2. Suppose that there exists an m ×m matrix of

rank ≤ d with 1s on its diagonal and each row k-collapsing, wherem > k+ 1+
√
2d−3
2 .

As before, we aim to find a contradiction using Lemmas 41 and 43.
Writing t = m−k, we have t > 1+

√
2d−3
2 > 1. It follows that d < 2t2−2t+2 < 2t2,

hence k > 2d−
√
d/2 > 2d− t and m = k + t ≥ 2d+ 1.

Now we may assume without loss of generality that

m =

⌊
k +

1 +
√
2d− 3

2

⌋
+ 1.

Since

3k > 3(2d−
√
d/2) = 3d+ 3(d−

√
d/2) > 3d > 2d+

√
d/2 ≥ 4 +

√
d/2,

we have 4k−2 ≥ k+2+
√
d/2 > m and k > (m+2)/4. By Lemma 43, if k < 2m/3

or
(k − 1)2

4(m− k − 1)(2k −m)(m− k)
≤ 1,

then Lemma 41 would give d ≥ m2

m(1+1) and m ≤ 2d, a contradiction. Therefore,
k ≥ 2m/3 and

(k − 1)2

4(m− k − 1)(2k −m)(m− k)
> 1.

Lemma 41 now gives

d ≥ m2

m

(
1 +

(k − 1)2

4(m− k − 1)(m− k)(m− 2k)

) =
m(

1 +
(k − 1)2

4(t− 1)t(k − t)

) ,
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which implies

k + t = m ≤
(
1 +

(k − 1)2

4(t− 1)t(k − t)

)
d. (28)

If we set f(x) =
(
1 + (x−1)2

4(t−1)t(x−t)

)
d − (x + t) for x ≥ 2d − t + 1, it follows (since

d < 2t2, t ≥ 2, and k ≥ 2m/3) that

f ′(x) =
d

4(t− 1)t

(
1−

( t− 1

x− t

)2)
− 1

<
2t2

4(t− 1)t
− 1 =

2− t
2(t− 1)

≤ 0,

and f is strictly decreasing. It follows that since (28) holds for some k ≥ 2d− t+1,
it remains true if we substitute 2d− t+ 1 into k, that is,

2d+ 1 ≤
(
1 +

(2d− t)2

4(t− 1)t(2d− 2t+ 1)

)
d, (29)

which is equivalent to

4(d+ 1)(t− 1)t(2d− 2t+ 1) ≤ (2d− t)2d. (30)

We next show that the opposite inequality holds, which gives the required contra-
diction. Since t = m− k = b 1+

√
2d−3
2 c+ 1,

t− 1 ≤ 1 +
√
2d− 3

2
< t,

or equivalently,
2t2 − 6t+ 6 ≤ d ≤ 2t2 − 2t+ 1. (31)

It can be checked that
4(d+ 1)(t− 1)t(2d− 2t+ 1)− (2d− t)2d

= (t− 1)3(6t+ 4) + (t− 1)2 − 1

+ (2t2 − 2t+ 1− d)
(
(2d− t− 2)2 + 12d− 4t2 − 4t

)
.

(32)

By (31), since t ≥ 2,

12d− 4t2 − 4t ≥ 12(2t2 − 6t+ 6)− 4t2 − 4t = (5t− 9)(4t− 8) ≥ 0,

hence
(2t2 − 2t+ 1− d)((2d− t− 2)2 + 12d− 4t2 − 4t) ≥ 0.

Substitute this into (32) to obtain

4(d+ 1)(t− 1)t(2d− 2t+ 1)− (2d− t)2d
≥ (t− 1)3(6t+ 4) + (t− 1)2 − 1

> 0,

which contradicts (30). �

Proof of Theorem 26. Suppose that there exists an m×m matrix of rank ≤ d with
1s on its diagonal and with each row k-collapsing. We first treat the case k = 2.
By Lemmas 41 and 43,

m2

m(1 + max {1, (m− 1)/4})
≤ d.
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If the maximum in the denominator equals 1 then m ≤ 2d. Otherwise, m ≤
(1+(m−1)/4)d and it follows that (1−d/4)m ≤ 3d/4. If d < 4 thenm ≤ 3d/(4−d).
In particular, if d = 2 then m ≤ 3, and if d = 3 then m ≤ 9. This shows that
C(2, 2) = 4 and C(2, 3) ≤ 9.

Next assume that k ≥ 3. Without loss of generality, m = k + 2 > 2d. We aim
for a contradiction. Clearly, k = m− 2 > (m+2)/4. If the maximum in Lemma 43
equals 1, Lemma 41 gives m ≤ 2d, a contradiction. Therefore, k ≥ 2m/3, the
maximum in Lemma 43 equals

(k − 1)2

4(m− k − 1)(2k −m)(m− k)
=

(m− 3)2

8(m− 4)
> 1, (33)

and by Lemma 41,
m2

m
(
1 + (m−3)2

8(m−4)

) ≤ d. (34)

By (33), m ≥ 10 and k ≥ 8. Solving for m in (34) gives

m ≤ d+ 16 + 2
√
6d2 − 38d+ 64

8− d
if we assume d < 8. Since k = m− 2, we obtain

k ≤ 3d+ 2
√
6d2 − 38d+ 64

8− d
.

Keeping in mind that m = k + 2 > 2d and m ≥ 10, we obtain a contradiction if
d ≤ 5 (and k ≥ 3); or if d = 6 and k ≥ 17; or if d = 7 and k ≥ 41. This proves the
theorem. �

8. Upper bounds using the ranks of Hadamard powers of a matrix

The following lemma, used by Alon in [1, 2], bounds the ranks of the integral
Hadamard powers of a square matrix from above in terms of the rank of the matrix.
It can be used to change a matrix to one that is sufficiently close to the identity
matrix so that Lemma 41 can give a good bound.

Lemma 44 (Alon [1, Lemma 9.2]). Let A = [ai,j ] be an n × n matrix of rank d
(over any field), and let p ≥ 1 be an integer. Then the rank of the p-th Hadamard
power A�p satisfies

rank(A�p) = rank([api,j ]) ≤
(
p+ d− 1

p

)
.

In order to use the above lemma in combination with Lemma 41 as before, we
need to maximise

∑
i x

2p
i on the simplex ∆ from the proof of Lemma 43. Here

we restrict the range of k to avoid the difficulties in Case III.iv in the proof of
Lemma 43.

Lemma 45. Let p, k,m ∈ N be such that 2 ≤ k ≤ (m+ 1)/2. Then

max

{
m−1∑
i=1

α2p
i

∣∣∣∣∣αm = 1, {αi | i ∈ [m]} is k-collapsing

}
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=


max

{
1,
m− 1

k2p

}
if k = 2,

max

{
1,

(k − 2)2p +m− 2

k2p

}
if k ≥ 3.

Proof. As in the proof of Lemma 43 we have to maximise the new objective function
fp(α1, . . . , αm−1) =

∑m−1
i=1 x2pi over the same simplex ∆ defined by (24), (25) and

(26) as before. Since fp is convex, it is again sufficient to calculate the values of fp
on the vertices of ∆. Using the same case numbering as in the proof of Lemma 43,
we obtain the following values:

Case I. fp(α1, . . . , αm−1) =
m− 1

k2p
.

Case II. fp(α1, . . . , αm−1) = 0 <
m− 1

k2p
.

Subcase III.i. fp(α1, . . . , αm−1) =
m− 1− t

k2p
≤ m− k

k2p
<
m− 1

k2p
.

Subcase III.ii. fp(α1, . . . , αm−1) =
1

(m− 1− t)2p−1
≤ 1 with equality iff t =

m− 2.

Subcase III.iii.

fp(α1, . . . , αm−1) =
1

k2p

(
t
((

k−1
t − 1

)2p − 1
)
+m− 1

)
=: gp(t)

≤ gp(1) =
1

k2p
(
(k − 2)2p +m− 2

)
since gp(t) is decreasing for 0 < t < k − 1. This case occurs only if k ≥ 3.

Subcase III.iv. The case m− k ≤ t ≤ k − 2 occurs only if 2k ≥ m+ 2, which we
have assumed to be false. �

Lemma 46. If p ∈ N and k >
(
d+p−1
p

) 1
2p then

C(k, d) < max

{
2k2p

(
d+p−1
p

)
k2p −

(
d+p−1
p

) , 2k − 1

}
.

Proof. By Lemmas 38 and 39, there exists an m ×m matrix A = [ai,j ] of rank at
most d, with 1s on its diagonal, and with each row k-collapsing, where m = C(k, d).
Without loss of generality, m ≥ 2k−1. By Lemma 45, for any row i ∈ [m] of A�2p,

m∑
j=1

a2pi,j < 2 +
m

k2p

and by Lemmas 41 and 44,(
p+ d− 1

p

)
≥ rank([a2pi,j ]) >

m2

m
(
2 + m

k2p

) ,
from which follows

m <
2k2p

(
d+p−1
p

)
k2p −

(
d+p−1
p

) . �
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Proof of Theorem 24. This is just a calculation from Lemma 46. Since

k2p(
d+p−1
p

) > ((p!)−1/2p + ε)2pdp(
d+p−1
p

) d→∞−−−→ (1 + (p!)1/2pε)2p > 1 + 2p(p!)1/2pε,

it follows that if d is sufficiently large depending on p and ε, then

k2p(
d+p−1
p

) > 1 + p(p!)1/2pε =: 1 + δ,

where δ > 0 depends only on p and ε. Then(
d+ p− 1

p

)−1
− k−2p > δ

k2p
,

and by Lemma 46, (since C(k, d) ≥ 2d ≥ 2k2 > 2k − 1)

C(k, d) < 2(
d+p−1
p

)−1 − k−2p < 2k2p

δ
≤ 2dp

δ
. �

Lemma 47. Let n > k ≥ 1 be integers and ε = k/n. Then(
n

k

)
<

(ε−ε(1− ε)−(1−ε))n√
2πε(1− ε)n

.

Proof. Substitute the Stirling formula in the form m! = eδm(me )
m
√
2πm, where

1
12m+1 < δm < 1

12m [27] into n!
k!(n−k)! to obtain(

n

k

)
<

(ε−ε(1− ε)−(1−ε))n√
2πε(1− ε)n

e
1

12n−
1

12k+1−
1

12(n−k)+1 .

It is easily seen that 1
a+b < 1

a+1 + 1
b+1 for all a, b ≥ 1. In particular, 1

12n <
1

12k+1 + 1
12(n−k)+1 and the lemma follows. �

Proof of Theorem 23. The function f(x) = (1+x)1/x(1+1/x) is strictly decreasing
on (0, 1] with limx→0+ f(x) = ∞ and f(1) = 4. Therefore, γ2 = 1 and (γk) is
strictly decreasing. Since f(x) < e · (1 + 1/x), we have f(e/(k2 − e)) < k2 and
γk < e/(k2 − e). Also, since

x

x+ 1
= 1− 1

x+ 1
< e−1/(x+1),

it follows that (1 + 1/x)x+1 > e. Set x = k2/e to obtain that f(e/k2) > k2 and
e/k2 < γk.

Let p := dγkde and γ := p/d. Then γ ≥ γk and it follows that

(1 + γ)1/γ
(
1 +

1

γ

)
≤ k2. (35)

We estimate
(
p+d−1
p

)
as follows:(

p+ d− 1

p

)
=

(
(1 + γ)d− 1

γd

)
=

1

1 + γ

(
(1 + γ)d

γd

)
<

(
(1 + 1/γ)γ(1 + γ)

)d√
2πγ(1 + γ)d

by Lemma 47
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≤ k2γd√
2πγ(1 + γ)d

by (35)

=
k2p√

2πγ(1 + γ)d
.

In particular,
(
p+d−1
p

)
< k2p since√

2πγ(1 + γ)d >
√

2πγd =
√
2πp ≥

√
2π > 1.

By Lemma 46, either C(k, d) < 2k − 1 or

C(k, d) < 2k2pk2p√
2πγ(1 + γ)d

(
k2p − k2p√

2πγ(1 + γ)d

)

=
2k2p√

2πγ(1 + γ)d− 1
.

This gives

C(k, d) < max

{
2√

2π − 1
k2p, 2k − 1

}
< 1.33k2γkd+2.

We now assume that k <
√
d. Then C(k, d) ≥ 2d > 2k − 2 and

C(k, d) < 2k2p√
2πγ(1 + γ)d− 1

<
2k2γk+2

√
2πγkd− 1

<
2k2γk+2√

2π(e/k2)d− 1
.

Since
√
2πe > 3 and d/k2 > 1, it follows that

√
2π(e/k2)d − 1 > 2

√
d/k2 and

C(k, d) < k3+2γkd/
√
d. �

9. Lower bounds

Lemma 48. Let k ≥ 2. Suppose there exist at least m unit vectors ui ∈ `d−12 such
that

|〈ui,uj〉| ≤
1

2k + 1
for all distinct i, j.

Then there exists a d-dimensional Minkowski space Xd such that Ck(Xd) ≥ m. If
|〈ui,uj〉| < 1/(2k + 1) for all distinct i, j, then Xd can be chosen to be strictly
convex and C∞.

Proof. The construction is similar to the construction in [13] of a strictly convex
d-dimensional space Xd such that C2(X

d) ≥ 1.02d. The main difference is that we
define the unit ball as an intersection of half spaces instead of a convex hull of a
finite set of points.

Consider `d−12 to be a hyperplane of `d2 with unit normal e. Let xi = ui+ e and
yi = (1 + 1

2k )ui −
1
2ke for each i ∈ [m]. Let

B :=
{
x ∈ `d2

∣∣ |〈x,yi〉| ≤ 1 for all i ∈ [m]
}
.
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If span({yi}) = Rd then B is bounded and is the unit ball of some norm ‖·‖B .
Otherwise {yi} spans a hyperplane with normal e′, say. In this case B as defined
above is unbounded, so we have to modify it. Before doing that, we show that
xi ∈ ∂B and ∑

i∈I
xi ∈ B for all I ∈

(
[m]

k

)
.

Let i, j ∈ [m]. Then

〈xi,yj〉 =
(
1 +

1

2k

)
〈ui,uj〉 −

1

2k
.

In particular, 〈xi,yi〉 = 1, and since − 1
2k+1 ≤ 〈ui,uj〉 ≤

1
2k+1 for distinct i, j, we

obtain

− 1

k
≤ 〈xi,yj〉 ≤ 0 for distinct i, j ∈ [m], (36)

and it follows that xi ∈ ∂B.
Next let I ∈

(
[m]
k

)
and i ∈ [m]. We distinguish between two cases, depending on

whether i ∈ I or not.
If i /∈ I, then by (36),

−1 ≤
〈∑
j∈I

xj ,yi

〉
≤ 0.

If i ∈ I, then again by (36),

1

k
= 1− k − 1

k
≤
〈∑
j∈I

xj ,yi

〉
≤ 1.

In both cases we have
∣∣∣〈∑j∈I xj ,yi

〉∣∣∣ ≤ 1 for all i, and it follows that
∑
j∈I xj ∈ B

for all I. If span({yi}) = Rd, then we have shown that B is the unit ball of a norm
‖·‖B such that {xi} is a k-collapsing family of unit vectors in Rd, ‖·‖B). In the case
where span({yi}) is a hyperplane with normal e′, we choose λ > 0 sufficiently large
so that |〈xi, e′〉| < λ for all i and

∣∣〈∑
i∈I xi, e

′〉∣∣ < λ for all I ∈
(
[m]
k

)
, and define

the required unit ball to be

B :=
{
x ∈ `d2

∣∣ |〈x,yi〉| ≤ 1 for all i ∈ [m] and |〈x, e′〉| ≤ λ
}
.

If |〈ui,uj〉| < 1/(2k + 1) for distinct i, j, then
∣∣∣〈∑j∈I xj ,yi

〉∣∣∣ < 1 for all i, and∑
j∈I xj ∈ intB for all I. Also note that no xj , j 6= i, is on any of the hyperplanes{

x ∈ `d2
∣∣ 〈x,yi〉 = ±1} or

{
x ∈ `d2

∣∣ 〈x, e′〉 = ±λ} .
Then a strictly convex and C∞ norm can be found with unit ball between conv {xi}
and B [14]. �

For a detailed proof of the following lemma, see [34]. It uses a greedy construc-
tion.

Lemma 49. Let δ > 0. For sufficiently large d depending on δ, there exist m ≥(
1 + δ2

2

)d
unit vectors ui in `d−12 such that |〈ui,uj〉| < δ for all distinct i, j.

Proof of Theorem 32. Immediate from Lemmas 48 and 49. �
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The following well-known lemma can be traced back to Kashin [18] (see also [10,
Lemmas 3.2 and 3.3]). We omit the proof, which can be found in the extended
version of this paper (arXiv:1210.0366).

Lemma 50. Let q be a prime power and s ∈ N with s < q. Then there exist qs+1

unit vectors in `q
2−q

2 such that the inner product of any two vectors is in the interval
[− 1

q−1 ,
s−1
q−1 ].

Proof of Theorem 33. Set s = c+ 1 in Lemma 50 and then apply Lemma 48. �
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