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Abstract: 

Providing operators with objective incentives for cost efficiency and continuous 

improvement in the provision of public services are major concerns for 

regulators.  Measuring efficiency empirically is complex and this complexity is 

accentuated when the same operator is responsible for delivering more than one 

service (e.g. in order to explore potential economies of scope). Based on a sample 

of operators that provide water and wastewater services, this paper uses a shared 

input data envelopment analysis model to measure separately the efficiency of 

each service. The results show that a single measure may not provide enough 

information for monitoring multi-utilities. Together with other indicators, the 

proposed model can assist decision-makers in prioritizing efforts to improve 

overall efficiency. 

Keywords: cost efficiency; multi-utilities; shared input DEA; water sector. 
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1. Introduction 

Measuring the cost efficiency in the delivery of public utility services is of crucial importance. 

For the same level of service, higher efficiencies should lessen the burden on rate and/or 

taxpayers (if there is regulatory pressure). However, when the same operator delivers more than 

one service, performance measurement becomes more challenging (Torres and Morrison, 2006) 

and global efficiency measures tend to be less useful. Traditional methodologies do not always 

highlight in which service efficiency is lower: a key issue for both decision-makers and 

regulators. 

 

In a given territory, water and wastewater services are often jointly provided by the same 

operator. In fact, empirical evidence supports the argument that there are economies of scope 

between drinking water supply and wastewater collection/treatment/disposal, especially in 

smaller utilities (Abbott and Cohen, 2009). Most methodologies used in the literature to 

evaluate the performance of water utilities only estimate overall efficiencies and do not assess 

the cost efficiency of each activity (e.g. see Gomez and Rubio, 2008 or Romano and Guerrini, 

2011 for a general overview of the literature). It could be the case that, for example, a given 

operator is cost efficient in drinking water supply and inefficient in the delivery of wastewater 

services. Using an overall efficiency score would not highlight this conclusion in a 

straightforward manner. Although evaluating the overall efficiency of operators in these cases 

still has significant value, managing to separate the efficiency of the water and wastewater 

services could be of further use for decision-makers and regulators. 

 

Several methodologies have been used to assess the performance of water and wastewater 

services (Berg and Marques, 2011).
1
 A conventional classification is the division between 

parametric and nonparametric methodologies, and both have their strengths and limitations (for 

a more detailed discussion see Fried, 2008). Despite being widely used in the literature, 

                                                      
1
 For simplicity, in this paper we use the term ‘water utilities’ to refer to operators that jointly provide 

drinking water and wastewater services in a given territory. 
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parametric methodologies require an a priori definition of the cost or production function and 

the acceptance of various assumptions derived from economic theory (which may reduce the 

acceptability of the results by some members of the scientific community). Nonparametric 

methodologies use the information ‘within the data’ to estimate efficiency scores and they do 

not require as many assumptions or constraints
2
. Among the many methodologies available, the 

data envelopment analysis (DEA) is the most frequently used by researchers. By means of linear 

programming, DEA estimates a best practice frontier using the inputs and outputs of all 

observations and computes efficiencies using the most favorable weights for each decision-

making unit (DMU). 

 

The information asymmetries between regulators (independent agencies or local authorities) and 

operators (public or private) hinder the effectiveness of the regulatory framework (Berg, 2000). 

Frequently, the lack of transparency and sufficient detail in the annual statements of the 

operators do not allow the proper design and monitoring of incentives for cost efficiency. 

Although there are several operators that already do this explicitly in their financial statements, 

incurred costs (operations and capital) and staff are not typically allocated to the corresponding 

service (in our case, water and wastewater). To the best of our knowledge, this is the first 

application of a nonparametric model designed to estimate the cost efficiency of each output 

(i.e. each service) in the water sector, when both services are jointly provided by the same 

operator.
3
 

 

The objective of this paper is to propose a model for estimating not only the overall efficiency 

of water utilities, but also the cost efficiency in each of the services provided. In this case, the 

                                                      
2
 However, nonparametric methodologies also have some drawbacks. For instance, they are very sensitive 

to extreme data and outliers, they suffer from the ‘curse of dimensionality’ problem and they are 

deterministic methodologies with a non-statistic nature. 

3
 Evidently, we are referring to the use of the shared input DEA model (see section 3.3). There are several 

cases where regulators use (partial) performance indicators to assess the cost efficiency of each service. 

See, for instance, the case of the Portuguese regulator (ERSAR, 2010). 
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two services under analysis are drinking water and wastewater services. Using a shared input 

DEA methodology (see Beasley, 1995; Cook and Green, 2004; and Cook et al., 2000), the 

authors are also able to report estimates for the cost shares that correspond to each service. 

Naturally, this methodology could prove to be very useful for regulators and decision makers 

who wish to benchmark their services against the best practices of the sector. 

 

This article is organized in the following manner. After this introduction, section 2 briefly 

describes the importance of economic regulation in the water sector. It addresses some 

international experiences and the difficulties of putting in place an effective framework of 

incentives for cost efficiency. Section 3 presents the shared input DEA model along with the 

data used to assess its usefulness (consisting of 253 observations from 45 Portuguese water 

utilities for the period 2002-2008). Section 4 summarizes the results obtained and, finally, 

section 5 provides a discussion, concluding the paper.  

 

2. Economic regulation and incentives for cost efficiency in the water sector 

The water utilities industry presents several features (market failures) that justify regulatory 

intervention (either implicit or explicit). Among the many concerns, the existence of economies 

of scale and economies of scope, the ‘essential’ character of the services and their impact on the 

well-being of society, the existence of asymmetric information, the need for very high (sunk) 

investments and long-lived assets, and the occurrence of negative (and positive) externalities, 

should be highlighted (Marques, 2010). These market failures might lead to mismanagement 

(lack of effort to improve efficiency) and/or misconduct (setting prices above cost recovery 

levels and thus earning abnormally high profits). Hence, the presence of regulation is crucial for 

the protection of customer as well as other stakeholder interests. Regulation intends to work as 

an “invisible hand” that provides the right incentives for the regulated companies to become 

more productive (Witte and Marques, 2010).  
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Due to the asymmetric information environment and the magnitude of other market failures, 

performance-based or incentive regulation is gaining importance in the water sector (Marques, 

2010). This regulatory process, sometimes called ‘yardstick competition’, is based on the use of 

benchmarking tools and in the scorecards obtained to make judgments for the future (Shleifer, 

1985). One of the main advantages is the fact that it offers strong incentives towards efficiency 

and innovation by the water operators, both in their operation and capital expenses (OPEX and 

CAPEX, respectively). In addition, this methodology also fosters transparency and the sharing 

of information. 

 

Concerning the regulation of water utilities the literature distinguishes two different 

benchmarking approaches (Marques, 2006). The first relies on the benchmarking used to set the 

operators’ prices and tariffs. The types of benchmarking tools used are diverse, varying on the 

actors and on the features of the countries involved. The UK, Chile and Colombia are some 

remarkable examples of countries which apply this regulatory methodology. The second 

approach concerns ‘sunshine regulation’ which consists of the comparison and public discussion 

of the operators’ performance. Sunshine regulation is very popular in the water sector, not only 

because it is easily applicable but also because it is better accepted by the water utilities. Several 

countries, such as Portugal, Australia, Brazil or Zambia have applied this ‘name and shaming’ 

regulatory methodology with good outcomes. 

 

Regarding the methodologies used in the scope of the first approach, econometric and 

mathematical programming methodologies are dominant, particularly frontier methodologies 

such as stochastic frontier analysis (SFA) or DEA. These methodologies use the best practices 

as benchmarks and normally encompass multiple inputs and outputs. Since these methodologies 

estimate overall measures of efficiency, they are known as total or global methodologies (see 

Fried et al., 2008). The second approach uses partial methodologies such as performance 

indicators (see Alegre et al., 2006), for example the number of employees per thousand of 

connections or number of bursts per 100 km of mains length. These indices provide only a 
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partial portrait of the issue under analysis but due to simplicity and ease of understanding they 

are quite popular in the water sector, mostly among engineers and managers. Hence, partial 

measures are widely used by the operators for managerial purposes and by the regulators to 

supervise the quality of service. In this article, we will focus on the first regulatory 

benchmarking approach and on the costs and efficiencies of water and wastewater services 

(regulation of multi-utilities). 

 

Many regulators all over the world are using benchmarking and performance-based regulatory 

methodologies (Marques et al., 2011). In order to oversee the quality of service and/or to set 

prices and tariffs watchdogs are ‘using and abusing’ this tool (Berg, 2010). Benchmarking 

allows gathering insights to perform real interpretations of the way utilities work but its careless 

use might be perverse (Marques and Witte, 2010). One of the major problems is the comparison 

of ‘apples with oranges’, which is particularly more serious when operators provide different 

services such as water, wastewater, electricity or gas (multi-utilities). This paper develops and 

proposes a methodology to overcome this issue by disentangling the costs and relative 

efficiencies per service provided. 

 

3. Data and methodology 

3.1 Background: Portuguese water sector 

Currently (2012), in Portugal, as in many countries namely in continental Europe, drinking 

water supply and wastewater services are the responsibility of local governments. One 

distinctive feature of the Portuguese water sector is the significant vertical disintegration of 

service provision: ‘wholesale’ and ‘retail’ services are usually delivered by different operators 

(Cruz et al., 2012). In drinking water supply services, the ‘wholesale’ segment encompasses all 

activities from water abstraction to reservoir storage (including transportation and treatment). 

Regarding wastewater services, this segment includes the transportation, treatment and disposal 

of wastewater. The ‘retail’ segment of drinking water services therefore consists in the storage 

and distribution of water to final consumers. Residential wastewater collection corresponds to 
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the ‘retail’ segment of this service. ‘Wholesale’ services are provided by regional operators 

while municipalities typically ensure the provision of ‘retail’ services in their jurisdictions. 

Table 1 presents a summary of the market structure of the Portuguese water sector. 

 

 

[Insert table 1] 

 

 

The publicly-owned regional operators in charge of ‘wholesale’ services consist of public-

public partnerships where the central state is the major shareholder (and the municipalities 

served by these operators are minor shareholders, Marques, 2008). There is also one private 

concessionaire operating in the ‘wholesale’ market. Of the 21 operators in this segment, three 

provide water abstraction, treatment and storage services, six provide wastewater treatment and 

disposal services and 12 provide both types of services. 

 

Most semi-autonomous operators in the ‘retail’ market are municipally-owned (municipal 

departments, municipal services or municipal companies). However, since the 1990's, private 

participation in the water sector has been showing a steady increase, mainly through public-

private partnership (PPP) arrangements. Currently, around 21% of the Portuguese population is 

served by purely contractual (e.g. concessions) or institutionalized (mixed capital companies) 

PPP arrangements (Cruz and Marques, 2012). The majority of the ‘retail’ operators provide both 

drinking water and wastewater services. One should note that many of these operators also carry 

out some activities that are classified as ‘wholesale’ services. 

 

Another defining aspect of the Portuguese water sector is the regulatory framework in place. 

Unlike most EU countries, Portugal has a sector-specific regulator: The Water and Waste 

Services Regulation Authority (ERSAR in the Portuguese acronym). The intervention of this 

regulatory agency has been mainly focused on quality of service issues (by carrying out a 
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sunshine regulation approach, see Marques, 2006). In fact, an annual performance assessment, 

which covers only concessionaire companies, has been conducted since 2003 using the public 

disclosure of results as a 'name and shame' strategy. In addition, all 'wholesale' operators have 

been under explicit economic regulation. Recently, the regulatory power and jurisdiction of 

ERSAR was enlarged to encompass all water utilities. 

 

3.2 Description of the sample 

Our sample includes utilities that operate in the Portuguese ‘retail’ segment and exclusively 

provide drinking water (D) and wastewater (W) services.
4
 The data refers to a seven-year period 

(2002-2008). Thus, the sample contains 253 observations from 45 water utilities serving about 

4.4 million inhabitants (of a total of 10.6 million). Figure 1 provides a graphical representation 

of the four types of operators studied in this paper. The capital letters ‘D’ and ‘W’ are used to 

refer to drinking water and wastewater services, respectively. The lowercase letters are used to 

distinguish the operators that carry out ‘retail’ (‘r’) services and the ones that also perform 

‘wholesale’ (‘w’) services.
5
 For instance, Dr-Wwr operators provide drinking water supply 

(water ‘retail’ service) and wastewater collection and treatment (wastewater ‘wholesale’ and 

‘retail’ services). 

 

 

[Insert figure 1] 

 

 

Since there are many more operators in the retail segment, we chose to apply the shared input 

DEA model to the water and wastewater ‘retail’ market. Regional operators were excluded from 

                                                      
4
 Some utilities in the sample also carry out such services as water abstraction or wastewater treatment.  

5
 We consider that an utility carries out ‘wholesale’ services when its own bulk water production is more 

than 50% of the total water used in the network (regarding the drinking water supply activity) or when it 

has wastewater treatment plants (regarding the wastewater treatment activity). 
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the analysis to maintain the consistency of the sample (moreover, the number of ‘retail’ 

customers is included as an output variable in the model). All 'retail' operators that also provide 

municipal solid waste (or other) services were equally excluded from the sample. Figure 2 

displays the number of operators according to the type of services provided distributed over 

time (on the left) and the percentage of the total number of observations recorded throughout the 

period 2002-2008 (on the right). 

 

 

[Insert figure 2] 

 

 

This study uses total cost (in euros) as an input to the model. This variable includes capital costs 

(sum of depreciation and interest paid) and operational costs. As outputs we considered the 

number of customers of drinking water supply services and the number of customers served by 

wastewater collection. Table 2 presents the summary statistics of these input and output 

variables (overall and for the four clusters of operators). The data were obtained from the annual 

account reports published by the water utilities and from the annual reports of ERSAR. Since 

the aim of water utilities is to reduce the inputs consumed for a given level of outputs delivered 

(minimize costs for a predetermined level of service), in the following analysis an input 

orientation was adopted. 

 

 

[Insert table 2] 

 

 

 

3.3 A shared input DEA model 
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Most methodologies used in the performance evaluation literature (either parametric or 

nonparametric) only allow for the estimation of the global efficiencies of each DMU. If the 

DMU carries out several activities, the analyst is not able to learn which one is the least (or the 

most) cost efficient. In this paper we implement a nonparametric methodology that allows us to 

estimate overall and partial cost efficiencies (corresponding to each of the services provided by 

the DMUs). More specifically, this study intends to evaluate the cost efficiencies of the drinking 

water and wastewater services for the operators that provide them together. The methodology 

proposed also allows estimating the share of the total costs allocated to each of the two services 

for each water utility. This is useful because, occasionally, operators report their costs without 

detailing the cost shares of each service provided. The methodology is based on the DEA 

technique, initially developed by Charnes et al. (1978) by extending the ideas of Farrel (1957) 

and Debreu (1951). 

 

Although parametric methodologies are dominant in the performance measurement literature, 

nonparametric models present several ‘competitive advantages’: there is no need to choose a 

functional form to represent the cost or production function, information about prices of inputs 

is not necessary and one does not require so many assumptions. ‘Traditional’ DEA, as for most 

methodologies in the literature, simply allows the analyst to estimate an overall efficiency ke  

for the DMU k. These efficiency measures are defined as a ratio between a weighted sum of 

outputs and a weighted sum of inputs. The methodology selects the optimal weights associated 

to the respective inputs and outputs in order to maximize the overall efficiency of each DMU. 

This is especially useful when the details on the exact (real) relative importance of the inputs 

and outputs in the production or cost function are unknown. 

 

The first proposal for this methodology was the following. Consider that 
px   are the p 

inputs used by n DMUs to produce the q outputs
qy   and that iu  and lv  are the weights of 

the outputs and inputs, respectively: 
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This formulation corresponds to an input orientation; i.e. it is implicit that the DMUs aim at 

rationalizing/minimizing input consumption for a given level of output production. As 

mentioned above, this is also the orientation adopted in the present study. It is assumed that, for 

water utilities, demand is an exogenous variable and the objective is to deliver the services at 

least possible cost for the population. 

 

The formulation presented in (1), however, has a drawback: it presents an infinite number of 

solutions and the computation is quite complex (Coelli et al. 2005). To overcome these 

problems, we consider another constraint which is to assume that the denominator of the 

objective function is equal to the unit: 
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 (2) 
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Later on, this formulation evolved to its dual form: 
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 (3) 
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The model described above considers the existence of constant returns to scale (CRS). 

According to Banker et al. (1984), to assume a variable returns to scale (VRS) technology one 

needs to add the constraint 1
1

 

n

i i  to the formulation on (3). 

 

The DEA methodology uses linear programming to construct a nonparametric piecewise linear 

frontier over the data. The efficiency scores of observations are computed against that frontier.
6
 

However, as already mentioned, DEA models have some shortcomings. On the one hand, it 

simply provides one overall efficiency score for operators that deliver several services or 

produce many outputs; this does not allow regulators to know the partial efficiencies (and cost 

shares) corresponding to each activity or service. On the other hand, DEA models adopt input 

and output weights for the computation of efficiency scores that are not necessarily real. In the 

current study we use and adaptation of the DEA model that allows for estimating the cost shares 

allocated to each output or service provided by the DMUs. This is particularly relevant for 

multi-utilities operating in the water sector because the annual account reports do not always 

present incurred costs per type of activity carried out. This information is only known by 

managers (if known at all). 

 

                                                      
6
 The observations located on the frontier are considered to be cost efficient and have efficiency scores 

equal to the unit. Observations that lie below the ‘best practice frontier’ are regarded as inefficient, 

exhibiting efficiency scores below the unit. 
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To estimate the cost share of each activity as well as the respective cost efficiencies, we 

implement a shared input DEA model as suggested by Beasley (1995) and others, such as 

Jahanshahloo et al. (2004) and Chen et al. (2010). This adapted DEA model computes the cost 

shares and partial efficiencies simultaneously, envisaging the maximization of the overall 

efficiency. To this end, the constraints (4.4), (4.5) and (4.6) are added to the formulation shown 

in (3). Thus, the model goes as follows: 

 

 


q

i ikik yue
1

max
 (4.1) 

s.t. 

1
1

 

p

l lkl xv
 (4.2) 

njxvyu
p

l jll

q

i jii ,...,10
11

 
 (4.3) 

qinjxvyu
s

l jlli

r

i jii ,...,1;,...,10
11

 
  (4.4) 

nj
q

i i ,...,11
1

 
  (4.5) 

maxmin   i  (4.6) 

0e li vu
 (4.7) 

 

Where i  is the ratio of inputs (costs) associated with service i and ke  is the overall cost 

efficiency score of DMU k. As in ‘traditional DEA’, higher scores indicate higher overall cost 

efficiencies. 

 

On constraint (4.4), the parcel  

r

i jii yu
1

 consists of the sum of the r weighted outputs 

concerning activity i and  

s

l jlli xv
1
  the s weighted inputs consumed in activity i. In the 

current study, since there is only one output associated with each service and only one input for 

both activities (total costs), this is simplified to 0 jllijii xvyu  . The objective of this 
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constraint is to compute the optimal cost shares for each DMU, imposing that the partial cost 

efficiency scores kie  are below the unit. Furthermore, the constraint (4.5) ensures that the total 

costs are fully allocated to the various activities carried out by the DMUs. Constraint (4.6) 

allows for the imposition of a minimum and maximum cost share to be allocated to activity i, 

which is useful when one has some knowledge regarding the actual range of these values. The 

methodology will look for the most favorable option within the admissible range of values in 

order to maximize the overall efficiency of each DMU. In the current study we opted not to 

include limits to the values for the cost shares. Instead, we adopted the constraint 21 uu  . This 

restriction imposes a higher weight for the drinking water services (in relation to the wastewater 

services). This makes sense because 1) in all Portuguese municipalities the number of drinking 

water customers is always higher than the number of customers of wastewater services (not all 

customers have a connection to the wastewater network), and 2) experience shows that, 

generally in Portugal, drinking water services have higher costs associated. 

 

At last, the overall (aggregate) cost efficiency scores are determined through the partial cost 

efficiency estimates kie  weighted by the respective DEA-estimated cost shares: 

 

 


q

i kiik ee
1


 (5) 

 

Where the partial cost efficiency scores kie  are defined as a ratio between the weighted sum of 

the r outputs concerning service i and the weighted sum of the s inputs consumed by service i: 

 

 


s

l jlli

r

i jiiki xvyue
11
  (6) 
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In the following sections the partial cost efficiencies 1ke  and 2ke  refer to drinking water 

services and wastewater services, respectively. In a similar fashion, 1  and 2  refer to the 

inputs (costs) allocated to drinking water services and wastewater services, respectively. 

 

4. Empirical results 

Using the shared input DEA model described in the previous section we were able evaluate the 

cost efficiency of the different activities carried out by the water utilities (drinking water and 

wastewater services). During the process the estimates for the cost shares of the services were 

also computed for all operators. The results confirm the expectation that, typically, drinking 

water services are more relevant in the cost structure of the operators (i.e. 21    for a 95%: 

confidence level: p-value of the Kruskal-Wallis test = 5.555e-078 < 0.05). In fact, on average 

and regarding the Portuguese ‘retail’ segment, drinking water services are responsible for 64% 

of the total costs (while the remaining costs are allocated to wastewater services). Table 3 

presents the overall and partial cost efficiency estimates along with the respective cost shares for 

all observations in the sample. As we have mentioned above, for the same DMU, the sample 

includes values from different years. In our formulation, the cost shares are allowed to vary 

freely from one year to the other and this could lead to inconsistent results. However, the results 

show that the cost share estimates do not change significantly for the same operator. 

 

 

[Insert table 3] 

 

 

Although the results reveal that, on average, drinking water services seem to be slightly more 

efficient than wastewater services (i.e. 21 kk ee  ) this difference is not statistically significant at 

a 95% confidence level according to the results obtained by the Kruskal-Wallis test (p-value = 

0.729 > 0.05). As it can be seen in figure 3, the partial cost efficiencies 1ke
 
and 2ke  are directly 
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correlated indicating that, in general, the operators exhibit similar partial cost efficiencies for 

both services, although some have higher efficiencies for drinking water services (when the 

average partial cost efficiency 1ke
 
is higher than the average of 2ke ). Note that, for regulators 

and managers, it is interesting to learn where each operator is standing in the scatter plot of 

figure 3. 

 

 

[Insert figure 3] 

 

 

As shown in figure 4 and tables 4 and 5, if we cluster the observations by type of services 

provided (see figure 1) it is possible to discern that ‘retail’ operators that also carry out drinking 

water ‘wholesale’ services present higher overall and ‘ 1ke ’ efficiencies. This could be an 

indication of the presence of economies of vertical integration for drinking water services. 

These results are in line with the literature. Indeed, economies of vertical integration have been 

observed in the water and wastewater sectors, particularly in smaller utilities (Abbott and 

Cohen, 2009). Furthermore, the ‘Drw-Wrw’ operators correspond to the observations that 

present higher cost efficiencies for wastewater services (‘ 2ke ’). This obviously makes ‘Drw-

Wrw’ and ‘Drw-Wr’ operators the most efficient ones (especially the ‘Drw-Wrw’ operators). 

Figure 4 ant table 4 also present the ‘traditional DEA’ CRS and VRS efficiency scores. 

 

 

[Insert figure 4] 

 

 

[Insert table 4] 
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[Insert table 5] 

 

 

Figure 5 helps us to illustrate the usefulness of the model presented in this paper. To a great 

extent, more than drawing wide-ranging conclusions about a sector, this methodology is 

especially useful for evaluating each operator individually. In addition to the shared-input DEA 

overall and partial efficiencies, this graphical representation also shows the CRS, VRS and scale 

efficiency (SE) scores for each cluster of operators.
7
 Note that drawing these spider charts for 

each individual operator would be very relevant both for regulators and managers (creating a 

sort of “water utility scorecard” that provides detailed information to the analyst). This way, one 

is able to have the perception of the overall efficiency of the operator and also learn on which 

services there is more room for improvement. 

 

 

[Insert figure 5] 

 

 

5. Discussion and conclusion 

The results show that the major share of the total costs of multi-utilities providing water and 

wastewater services are allocated to drinking water supply (around 64%, on average). The 

shared input DEA model also allowed us to conclude that there is no statistical significant 

difference between the efficiencies of drinking water services and wastewater services. 

Furthermore, it seems that vertically integrated operators (providing ‘retail’ and ‘wholesale’ 

drinking water and wastewater services) have higher cost efficiencies for both services and 

therefore also in overall terms. This is an interesting finding with potential policy implications 

                                                      
7
 SE scores are obtained by dividing CRS scores by VRS scores (using the ‘traditional DEA’ model). 
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(that go against recent reforms, for instance, in Portugal and the Netherlands). However, 

detecting the presence of economies of vertical integration is neither the major objective of this 

paper nor the main usefulness of the shared input DEA model. Additional research should be 

carried out on this topic regarding the Portuguese ‘retail’ water and wastewater markets. 

 

As we have shown (for instance in figure 5), used in conjugation with ‘traditional’ 

methodologies for measuring global performance, the model proposed in this paper to 

disentangle the cost efficiency of water and wastewater services can generate more information 

that is useful for the missions of regulators and managers. Since it allows for identifying 

asymmetric performances in water and wastewater services when these are jointly provided by 

the same operator, the methodology would especially useful for the operators that are far away 

from the central tendency (regression), as exemplified in figure 3.  

 

The usual lack of transparency and detailed financial information regarding the management of 

water utilities often hinders the effectiveness of regulation. The proposed methodology tries to 

cope with this reality and provides a solution to the classic problem of information asymmetry. 

Moreover, as the primary regulators of the water and wastewater services provided in their 

jurisdictions, municipalities are in need of useful tools for monitoring their utilities. Indeed, the 

exercise carried out in this paper could be repeated individually for all water utilities. The 

shared input DEA model does not only provide local governments with their ‘global’ picture, it 

also allows for the identification of those activities for which there is still room for 

improvements. Finally, the fact that the methodology implemented computes the most favorable 

cost efficiency score for each operator (as in ‘traditional DEA’ and given the proper 

constraints), increases the acceptability of the model as a performance assessment tool. 

 

Acknowledgements 

The authors would like to thank the two anonymous reviewers for their positive comments and 

suggestions that highly improved an earlier version of this article. 



19 

 

References 

Abbott, M., Cohen, B., 2009. Productivity and efficiency in the water industry. Utilities Policy 

17 (3-4), 233-244. 

Alegre, H., Baptista, J., Cabrera, E., Cubillo, F., Duarte, P., Hirner, W., Merkel, W., Parena, R., 

2006. Performance Indicators for Water Supply Services. IWA Publishing, London. 

Banker, R., Charnes, A., Cooper, W., 1984. Some models for the estimation of technical and 

scale inefficiencies in data envelopment analysis. Management Science 30 (9), 1078-1092. 

Berg, S., 2000. Sustainable regulatory systems: laws, resources, and values. Utilities Policy 9 

(4), 159-170. 

Berg, S., 2010. Water Utility Benchmarking: Measurement, Methodologies, and Performance 

Incentives. IWA Publishing, London. 

Berg, S., Marques, R., 2011. Quantitative studies of water and sanitation utilities: a 

benchmarking literature survey. Water Policy 13 (5), 591-606. 

Beasley, J.E., 1995. Determining teaching and research efficiencies. Journal of the Operational 

Research Society 46 (4), 441–452. 

Charnes, A., Cooper, W., Rhodes, E., 1978. Measuring the efficiency of decision making units. 

European Journal of Operational Research 2 (6), 429-444. 

Chen, Y., Du, J., Sherman, H.D., Zhu, J., 2010. DEA model with shared resources and 

efficiency decomposition. European Journal of Operational Research 207 (1), 339–349. 

Coelli, T.J., Rao, D.P., O'Donnell, C.J., Battese, G.E., 2005. An Introduction to Efficiency and 

Productivity Analysis. Springer, New York. 

Cook, W.D., Green, R.H., 2004. Multicomponent efficiency measurement and core business 

identification in multiplant forms: a DEA model. European Journal of Operational Research 

157 (3), 540–551. 

Cook, W.D., Hababou, M., Tuenter, H.J.H., 2000. Multicomponent efficiency measurement and 

shared inputs in Data Envelopment Analysis: an application to sales and service performance 

in bank branches. Journal of Productivity Analysis 14 (3), 209–224. 



20 

Cruz, N., Marques, R., 2012. Mixed companies and local governance: no man can serve two 

masters. Public Administration 90 (3), 737-758. 

Cruz, N., Marques, R., Romano, G., Guerrini, A., 2012. Measuring the efficiency of water 

utilities: a cross-national comparison between Portugal and Italy. Water Policy 14 (5), 841-

853. 

Debreu G., 1951. The coefficient of resource utilization. Econometrica 19 (3), 273-292. 

De Witte, K., Marques, R., 2010. Designing incentives in local public utilities, an international 

comparison of the drinking water sector. Central European Journal of Operation Research 18 

(2), 189-220. 

ERSAR, 2010. Annual Report on Water and Waste Services in Portugal. The Water and Waste 

Services Regulation Authority, Lisbon. 

Farrell, M., 1957. The measurement of productive efficiency. Journal of Royal Statistical 

Society A 120 (3), 253-281. 

Fried, H., Lovell, C., Schmidt, S., 2008. The Measurement of Productive Efficiency and 

Productivity Change. Oxford University Press, New York. 

Gómez, F., Rubio, M. 2008. Efficiency in the management of urban water services. What have 

we learned after four decades of research? Hacienda Pública Española 185 (2), 39-67. 

Jahanshahloo, G.R., Amirteimoori, A., Kordrostami, S., 2004. Measuring the multi-component 

efficiency with shared inputs and outputs in data envelopment analysis. Applied 

Mathematics and Computation 155 (1), 283–293. 

Marques, R., 2006. A yardstick competition model for Portuguese water and sewerage services 

regulation. Utilities Policy 14 (3), 175-184. 

Marques, R., 2008. Comparing private and public performance of Portuguese water services. 

Water Policy 10 (1), 25-42. 

Marques, R., 2010. Regulation of Water and Wastewater Services: An International 

Comparison. IWA Publishing, London. 

Marques, R., Simões, R., Pires, J., 2011. The international experiences in use of benchmarking 

in the regulation of water utilities. Polish Journal of Environmental Studies 20 (1), 125-132. 



21 

Marques, R., Witte, K., 2010. Towards a benchmarking paradigm in European water utilities. 

Public Money and Management 30 (1), 42-48. 

Romano, G., Guerrini, A., 2011. Measuring and comparing the efficiency of water utility 

companies: A data envelopment analysis approach. Utilities Policy 19 (3), 202-209. 

Shleifer, A., 1985. A theory of yardstick competition. The RAND Journal of Economics 16 (3), 

319-327. 

Torres, M., Morrison, P., 2006. Driving forces for consolidation or fragmentation of the US 

water utility industry: a cost function approach with endogenous output. Journal of Urban 

Economics 59 (1), 104-120. 

 



 

Figure 1 – Types of water utilities in the sample according to their degree of vertical integration 
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Figure 2 – Number of operators and number of observations clustered by type of service provided 

 

 



 

Figure 3 – Scatter plot of the partial cost efficiency scores 1ke
 
and 2ke   

 

 

 

 

 



 

Figure 4 – Plot of shared input DEA overall and partial cost efficiency scores and DEA efficiency 

scores clustered by type of utility (average values) 
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Figure 5 – Detailed information on the cost efficiency of water utilities (average values) 

 

 

 

 



Table 1 – Market structure of the Portuguese water sector. Source: ERSAR (2010). 

 Management model 

 Private (no.) Mixed (no.) Public (no.) 

‘Wholesale’ segment 1 0 20 

‘Retail’ segment 28 5 246 

Note: not all ‘retail’ segment operators are served by the wholesale operators 

 

 



Table 2 – Summary statistics of input and output variables for the utilities in the sample 

 
Statistics Average Median 

St. 

Deviation 
Minimum Maximum 

Utilities 

(no.) 

Obs. 

(no.) 

   
 All utilities 

Input Total costs (€) 12,168,457 7,547,850 12,037,577 895,154 53,061,841  

253 Outputs Water customers 48,359 30,400 45,290 4,553 185,784 47 

Wastewater customers 36,154 18,672 39,790 1,222 185,561  

 
 

 Dwr-Wwr 

Input Total costs (€) 6,595,039 4,899,671 5,522,676 986,866 24,348,746  

103 Outputs Water customers 30,719 24,971 25,418 4,553 105,243 18 

Wastewater customers 21,760 13,747 22,507 1,223 102,643  

 
  

 Dwr-Wr 

Input Total costs (€) 8,752,367 8,978,700 4,051,488 3,687,439 15,343,292  

22 Outputs Water customers 38,779 29,016 16,714 19,839 59,189 5 

Wastewater customers 22,257 18,543 10,362 14,600 51,293  

 
  

 Dr-Wwr 

Input Total costs (€) 16,945,857 12,277,266 14,560,864 1,550,328 53,061,841  

80 Outputs Water customers 63,159 39,077 53,758 7,059 185,561 14 

Wastewater customers 49,697 36,404 49,289 3,346 185,561  

 
  

 Dr-Wr 

Input Total costs (€) 17,731,457 10,837,313 14,249,212 895,154 41,896,638  

48 Outputs Water customers 65,937 35,068 56,569 4,915 185,784 10 

Wastewater customers 50,836 27,616 46,703 4,464 147,141  

 

 



Table 3 – Descriptive statistics of the estimates for water utilities cost efficiencies and cost shares 

  
Average St dev. Min Max 

25 

percentile 

50 

percentile 

75 

percentile 

Efficiency 

estimates 

ke  0.530 0.138 0.154 1.000 0.432 0.522 0.605 

1ke  0.523 0.135 0.246 1.000 0.444 0.506 0.592 

2ke  0.515 0.199 0.000 1.000 0.387 0.511 0.655 

Cost 

share 

estimates 

1  0.641 0.107 0.179 1.000 0.602 0.602 0.631 

2  0.359 0.107 0.000 0.821 0.369 0.398 0.398 

 

 



Table 4 – Shared input DEA overall and partial cost efficiency scores and DEA efficiency scores 

clustered by type of utility (average and median values) 

  
Drw-Wrw Drw-Wr Dr-Wrw Dr-Wr All 

A
v

er
a

g
e 

ke  0.598 0.565 0.465 0.473 0.530 

1ke  0.593 0.569 0.452 0.470 0.523 

2ke  0.550 0.534 0.485 0.482 0.515 

CRS-DEA 0.688 0.651 0.551 0.564 0.618 

VRS-DEA 0.742 0.731 0.654 0.646 0.695 

M
ed

ia
n

s 

ke  0.591 0.527 0.491 0.444 0.522 

1ke  0.571 0.577 0.451 0.486 0.506 

2ke  0.605 0.547 0.491 0.476 0.511 

CRS-DEA 0.672 0.616 0.561 0.544 0.604 

VRS-DEA 0.780 0.777 0.676 0.586 0.693 

number of observations 103 22 80 48 253 

 

 

 

 

 



Table 5 – Results obtained by Kruskal-Wallis test when comparing the shared input DEA overall 

and partial cost efficiency scores clustered by type of utility 

 
Drw-Wrw Drw-Wr Dr-Wrw 

Drw-Wr 

Overall eff. (0.407) = 
  

1ke  

(0.856) = 

2ke  

(0.529) =     

Dr-Wrw 

Overall eff.  (1.800e-9) ≠ Overall eff.  (0.002) ≠ 
 

 1ke   

(3.987e-12) ≠ 

2ke   

(0.002) ≠ 

1ke   

(3.667e-6)  ≠ 

 2ke   

(0.420) =   

Dr-Wr 

Overall eff. (2.945e-7) ≠ Overall eff. (0.004) ≠ Overall eff.  (0.902) = 

1ke   

(1.921e-7) ≠ 

2ke   

(0.005) ≠ 

1ke   

(2.000e-4) ≠ 

2ke   

(0.330) = 

 1ke   

(0.174) = 

2ke   

(0.723) = 

p-values in parentheses; = means that the samples are not statistically different to the 95% confidence level; ≠ 

means that the samples are statistically different to the 95% confidence level 
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